
Networking-Enabling Enhancement for a Swarm of COTS Drones

Sondre Engebråten12, Kyrre Glette 12 and Oleg Yakimenko 3

Abstract— This paper presents the augmentation of a
commercial-of-the-self (COTS) multi-rotor unmanned aerial
system (UAS) to extend its capabilities by introducing in-
creased on-board processing power. The option to process
sensor information on-board reduces the required bandwidth
by only communicating relevant or important information and
therefore increases the level of UAS autonomy. It also enables
adaptive reactive abilities for a group of UAS executing a
coordinated, collaborative or cooperative mission. This paper
describes an effort to integrate a small board computer, more
specifically, an Odroid C2 with the COTS 3DR Solo drone, and
reviews the achieved enhanced capabilities of such a system.
This is an extension of a traditional autopilot, as such, the
original Ardupilot hardware and software is not modified in
this work.

I. INTRODUCTION

These days, quite a few companies offer a variety
of commercial-of-the-shelf (COTS) multi-rotor unmanned
aerial vehicles (UASs). Figure 1 shows examples of some
COTS drones widely used in university research.

These drones are designed to be operated using standard
radio-frequency (RF) remote controllers or mobile devices
and typically use either a manual mode (with some automa-
tion during take-off and landing operations) or standard way-
point navigation. Usually, these COTS drones (like the one
shown in Fig. 1a) utilize proprietary autopilots precluding
from developing and testing advanced guidance, navigation
and control (GNC) algorithms, but some drones allow com-
munication with or even modification of controller code (like
the one shown in Fig. 1c).

A typical autopilot is integrated with a set of corre-
sponding sensors (global positioning system receiver, 3-axis
accelerometer, 3-axis gyroscope, magnetometer and baro-
metric altimeter) and just enough computational power to
carry out typical GNC tasks, i.e. estimating drones position,
sequencing the way points or establishing a certain pattern,
and finally, following this pattern using one or another mod-
ification of proportional-integral-derivative (PID) controller.

For those drones allowing code modification, a massive
body of literature exists on exploring and field-testing the
new approaches within all three components of GNC triad.
Clearly, more advanced algorithms require more computa-
tional power on-board (to incorporate on-line image pro-
cessing, run deep-learning algorithms, provide networking
with other agents, etc.) [1], [2]. This means integrating
COTS drone with a companion computer. For example; the
Drone shown in Fig.1b, allows adding a high-performance

1Norwegian Defence Research Establishment, P.O. Box 25, 2027 Kjeller,
Norway Sondre.Engebraten@ffi.no

2University of Oslo, P.O. Box 1080, Blindern, 0316 Oslo, Norway
3Naval Postgraduate School, 699 Dyer Rd., Monterey, CA 93943, USA

embedded computer to enable developers to transform this
Drone into a more intelligent flying robot that can perform
complex computing tasks and advanced image processing
[3]. Previous work suggests that by adding additional pro-
cessing power, GNC tasks may be freely moved from lower
level autopilot to higher level controller and vise versa [4].

Several previous works take on the challenge on integrat-
ing against the Ardupilot autopilot in an effort to extend the
capabilities of the platform in some way [5]–[7]. However,
these are based on a custom built platforms, which takes a lot
of work to provision and this can now be avoided by using
ready to fly COTS drones [8]. Finally, works some works
show the integration of an Odroid with a Ardupilot autopilot
in a single vehicle context [9].

This paper describes an effort of developing a networking-
swarm-capable UAS, based on a popular 3DR Solo platform
(Fig.1c), which would enable field-testing of drone swarm
behavior and assessing their operational capabilities [10].
The key issue here is that the overall cost of the complete
platform, including a companion single-board computer,
Odroid C2 [11] is an order of magnitude cheaper of its
more sophisticated family members like the ones shown in
Figs. 1a,b. The paper presents a detailed description of the
developed system and is organized as follows. Section 2
discusses requirements to the system from the standpoint
of networking capability followed by Section 3 justifying
the choice of COTS 3DR Solo drone [8] and detailing a
procedure of 3DR Solo and COTS Odroid board integration.
Section 4 describes novel capabilities achieved for the fleet
of enhanced UASs. Section 5 ends the paper with some
concluding remarks.

II. NETWORKING AND ON-BOARD COMPUTING
REQUIREMENTS FOR SWARM OPERATIONS

A swarm can be viewed as a distributed sensor network,
or a bulk data sensor. Each agent may be equipped with a
number of sensors, while individually simple, the collective
data they produce may form a complete real-time view
of a larger area. When implementing a real-world swarm,
however, one of the primary issues with COTS hardware
today is networking, or more specifically, the lack of a light,
low-powered, high-bandwidth, fully-decentralized network
infrastructure. Without this, the swarm has to compromise
on the amount of data shared or the structure of the swarm
itself.

While each sensor only requires a small amount of band-
width, the aggregated stream of data may quickly overwhelm
even high bandwidth commercial networks such as 5Ghz
WiFi with a top speed of 1.3 Gbps. In order to achieve such
speeds these networks employ beamforming, a technique

(a) DJI Phantom 4 (b) DJI Matrice 210 (c) 3DR Solo

Fig. 1. Example of drones used in academic research [3], [8].

to adapt the radiation or listening patterns of antenna to
tune to certain directions. While this is great for achieving
higher bandwidth with limited spectrum, this complicates
communication for a swarm. In a swarm context, a lot of
the communication can benefit from the ability to broadcast
information, which makes this directional technique coun-
terproductive. There is also a physical limit on how many
links or client nodes such a network can support. This scales
poorly with a swarm with even a low number of agents as
the number of links scale quadratic. For instance, in a swarm
with n=5 agents, if all agents are to be able to communicate
with every other agent, this would require a total of 10 links
(0.5n(n-1)). In the case of 10 agents the number of individual
links increases to 45!

Requiring omni-directional communication, limits the
swarm to the lower-speed network technologies with a
maximum bandwidth of 433Mbit. Of course, this bandwidth
is computed for only 2 communicating nodes. Adding just
one additional node (scaling the number of nodes up to 3),
introduces collisions and on-air conflicts. Dividing the avail-
able bandwidth onto 3 (one-to-one) links yields a theoretical
maximum value of 144.3Mbit (under ideal conditions).

For larger networks, such as used by business users, the
issue of scaling within traditional wireless infrastructure may
be solved by increasing the number of base stations or access
points, reducing the emitted power and effectively spatially
sharing the spectrum by limiting the range of the individual
client nodes. This approach could be feasible for a swarm
as well, but an ideal swarm implementation would leverage
complete decentralization in order to attain robustness and
scalability. This includes moving computation, or sensor
information processing, closer to the sensor.

Moving the sensor processing close to the sensor, is similar
to the use of cache in a computer. The lower levels of
cache have significantly greater bandwidth compared to the
higher level of storage, i.e. by moving processing closer
to the sensor there is less or even no restriction on the
bandwidth the sensor can have. This may be one way to
make a real swarm systems feasible, lifting the bandwidth
restriction by doing most of the heavy processing close to
the sensor itself, only a very limited subset of the data needs
to be forwarded for additional review. This allows a highly
optimized swarm to process large amounts of sensor data
without infeasible network requirements. Moving processing

Autopilot (PX4)

3DR Solo

WIFI
Router

3DR Solo breakout board

3DR
Solo

Companion computer
 (Odroid C2)

Fig. 2. Decentralized swarm architecture.

closer to the sensor also helps in reducing latency, which is
of major importance for the agility of swarms. For example;
collision avoidance for multiple UASs, operating in close-
formations, will require split-second decisions.

The overall view of the system, which the authors are
trying to develop, is presented in Fig. 2. This figure illustrates
multiple drones connected to a common WiFi network. On-
board each drone, the network is supported by a powerful
companion computer that needs to be integrated with the
existing autopilot.

The initial experiments with a COTS-based UAS swarm,
assume a minimal volume of data to be shared. This include
drones identification number and three-dimensional position.
This enables optimizing swarm performance, while executing
reactive collision avoidance. For robustness, the lower limit
for the update rate is set to 10Hz.

III. 3DR SOLO-ODROID INTEGRATION

This section starts from justification on a COTS drone
that was chosen as a developmental platform followed by
a step-by-step procedure for integrating 3DR Solo drone
with Odroid board including hardware additions and software
setup.

A. 3DR Solo Drone

To implement the desired architecture (Fig. 2), the 3DR
Solo drone was chosen amongst all COTS UASs available
at the market. This choice based on the fact that relatively
inexpensive 3DR Solo utilizes a variation of the PX4 au-
topilot [12] running a fork of Ardupilot flight controller
firmware [13], [14]. What distinguishes this from other
COTS drones is the flexible integration options through the
Dronekit framework [15] and through the accessory port on
the Drone itself [16]. The accessory port is a custom Japan

Fig. 3. Overview of the required components for integration.

Aviation Electronics (JAE) connector, for which, 3DR has
created a reference board design.

The PX4-Ardupilot use the Micro Air Vehicle Commu-
nication Protocol (MAVLink) [17]. The MAVLink protocol
is an open-source telemetry protocol commonly used with
UASs as well as ground-based vehicles, which run Ardupilot
software. While being open-source, the MAVLink protocol
is in itself a fairly extensive interface, which is not trivial
to implement. The MAVLink protocol is available through a
universal asynchronous receiver/transmitter (UART) or serial
link from the autopilot. To be able to leverage the MAVROS
software stack, the proposed controllers are implemented in
Python using the Robot Operating System (ROS) framework.
(MAVROS is a client library which interacts with the autopi-
lot through MAVLink allowing a command to be sent to the
autopilot and telemetry to be received through standardized
ROS-Python interfaces [18].)

B. Breakout Board Build-up

The required components for integrating 3DR Solo drone
and Odroid computer are shown in Fig. 3 and include

• Odroid C1+/C2 single-board computer ($46)
• eMMC storage for Odroid board (from $16)
• UART to USB adapter (3.3V compatible)
• Power cable for Odroid board
• Breakout printed circuit board (PCB)
• DC/DC power supply
• JAE connector
The adapter board is produced based on a reference design

provided by 3DR. The design is open-source [19], and can
be readily manufactured by common PCB manufacturers. In
order to have one of these custom interface board made, all
that is required is to send the PCB design output files, to a
PCB manufacturer. The board seen in Figs.3-6 was manu-
factured by the Seeedstudio Fusion service [19]. Originally,
the reference design calls for a number of connectors for this
board, however, in this particular case only one of them, the
JAE connector, is required (shown in lower-right corner of

(a) (b)

Fig. 4. Breakout board and JAE connector (a); JAE connector soldered to
the board (b).

Fig. 5. Breakout board with the DC/DC power supply and control signal.

Fig. 3). When soldering the JAE contact on the board (Fig.
4a) the contact should be placed on the board side that has
no annotated connections (Fig. 4b).

Odroid C2 requires a stable 5V power supply and can
draw up to 2A. However, any small DC/DC converter
(supplying 5V) should work (red is positive/batt, black is
negative/ground/gnd). Figure 5 shows the Odroid board with
the wired power (on the left) and control signal (on the right).

C. Software Setup

The on-board companion computer runs Ubuntu 16.04
LTS (Long Term Support) [20]. Initially, the firmware that
comes with the Odroid C2 eMMC is unexpanded. This
means that not all the flash memory is available to use.
To amend this, the root file system needs to be expanded
to the size of the eMMC. This is done by first connecting
the Odroid C2 to the keyboard and screen. To complete the
installation and expand the file system, a script is provided.
After booting and opening a console window, one should
type

/usr/local/bin/root-utility.sh

Followed by selecting Option 4 Resize partition. Next, the
program should be terminated, and then the Odroid can be
rebooted again by typing:

sudo reboot

Fig. 6. Breakout board with header pins soldered.

Next, ROS needs to be installed to enable interfacing with
the autopilot. The can be accomplished by following an
official ROS ARM installation guide [21]. In addition to the
standard ROS installation, the MAVROS package is required.
This is installed by typing:

sudo apt-get install ros-kinetic-mav*

Once the Odroid board is prepared, the 3DR Solo Drone
needs to be configured. This step is required in order to
enable communication with the existing on-board autopilot.
The factory default firmware on 3DR Solo disables serial
port number 2. Enabling serial port number 2 is a two-step
process.

On the breakout board, there are two serial ports: SER2
and SER5. SER2 gives access to communicate with the
autopilot controller to receive telemetry and send commands.
SER5 gives access to a shell on the autopilot where it is
possible to enable SER2. To connect to this port a separate
adapter board needs to be soldered. This differs from the
first (Fig. 5) in that it has header pins on all the connectors
allowing easy access to SER5 for enabling the telemetry
serial port SER2. This breakout board can be seen in Fig. 6.
To enable SER2, connect SER5 TX, SER5 RX and ground
to a UART adapter. Using picocom on Linux, connect to the
Solo autopilot in a terminal by typing

picocom -b 57600 /dev/ttyUSB0

This gives a minimal shell on the autopilot. SER2 can then
be enabled by issuing the following set of commands:

nsh> cd /fs/microsd/APM
nsh> ls
/fs/microsd/APM:
TERRAIN/
LOGS/

nsh> echo >> uartD.en
nsh> ls

/fs/microsd/APM:
TERRAIN/
LOGS/
uartD.en

This completes the first step of enabling the SER2 port on
the autopilot microcontroller. The second step in enabling
SER2 involves configuring the autopilot to send telemetry
and receive over this port (SER2). This has to be done over
WiFi since access to the MAVLink protocol is required, and
SER2 is not yet enabled. The laptop needs to be connected
to the Solo WiFi hotspot (the default password is sololink).
To continue, ROS also needs to be installed on the laptop
being used. To connect to the Drone and start MAVROS, the
following command sequence should be used:

source /opt/ros/kinetic/setup.bash
roslaunch mavros apm2.launch \
fcu_url:=udp://0.0.0.0@10.1.1.10:14560 \
fcu_version:="v1.0"

These commands connect to the autopilot on the 3DR
Solo Drone through WiFi using the MAVLink protocol. With
the laptop connected, autopilot configuration parameters can
be set to allow for connections to the SER2 hardware
port. Parameters are set using the rosrun mavros mavparam
set {parameter} {value} syntax, where {parameter} is the
parameter name and {value} is its desired value. To complete
enabling telemetry over the SER2 port the {parameter}-
{value} pairs to be configured are

SERIAL2_BAUD 57
SERIAL2_PROTOCOL 1
BRD_SER2_RTSCTS 0
SR2_EXTRA1 10
SR2_EXTRA2 10
SR2_EXTRA3 10
SR2_EXT_STAT 10
SR2_PARAMS 10
SR2_POSITION 10
SR2_RAW_CTRL 10
SR2_RAW_SENS 10
SR2_RC_CHAN 10

The three first pairs simply enable the UART connection.
The following pairs establish the rate of messages in Hertz.
After restarting the Solo Drone, it should be ready to connect
to the Odroid board.

D. Completing Companion Computer Integration

The programmed breakout board connects to the Odroid
boards RX and TX pins (Fig. 7a) by pins SER2 TX and
SER2 RX (RX connects to TX and vice versa). The complete
(assembled and connected) payload (breakout board with
Odroid C2) is shown in Fig. 7b.

Figure 8a presents an example of the final payload attached
to the Solo adapter (at the drones bottom) as is, while Fig.
8b demonstrates a more elegant design that utilizes a custom
case. In both designs, the WiFi adapter joining the swarm
agents through the 5Ghz shared WiFi network can be seen.

(a) (b)

Fig. 7. The Odroid board (a), and complete payload (b).

(a) (b)

Fig. 8. 3DR Solo with a fully integrated payload (a); and example of
on-board computer enclosure (b).

An external antenna is important to guarantee connectivity
across the entire operation area. Empirical experiments in-
dicate a range of several hundred meters, even with just
this basic antenna configuration. As these drones will be
operating in a restricted area, this is more than sufficient
for the joint swarm network.

E. Ground Control Station
The Drone control architecture is shown in Fig. 9. This

control architecture embodies the decentralized swarm con-
cept, but moving all control algorithms to the on-board
computer each drone carries. For debugging purposes during
experiments, a single laptop is used that may connect to
any of the drones available in the swarm. However, for
the experiments in this paper the laptop was only used to
launch the swarm behavior and could be omitted in another
suitable method of synchronizing launch was implemented.
The swarm behavior takes control of the Drone by setting the
Drone into a special guided mode. In this mode the Drone
will accept command from the Odroid and the Odroid only.
The behavior can be overridden by sending a fly command
from the manual remote, again placing the Drone back
in manual control. For swarm experiments, this behavior
was found to be very useful, as it allows for stopping
the experiment on a moments notice should circumstances
required it.

IV. SYSTEM TESTING AND DATA SHARING

This section addresses the initial testing of the developed
system followed by a discussion of telemetry data access. It
ends with presenting a fleet of network-capable drones and
a simple illustration how networking enables collision free
operations of multiple UAS.

A. Initial Testing
The initial ground test of the assembled system should

be conducted with no propellers installed. Before the

WIFI
Router

GCS

(a) (b)

Fig. 9. Communication architecture (a); and WiFi router (b).

test, the launch file for MAVROS (/opt/ros/kinetic/share/-
mavros/launch/apm2.launch) should be edited from

<arg name=fcu_url \
default=/dev/ttyACM0:57600 />
<arg name="fcu_protocol" \
default="v2.0" />

to

<arg name=fcu_url \
default=/dev/ttyS1:57600 />
<arg name="fcu_protocol" \
default="v1.0" />

With the launch file updated, MAVROS can be started with

roslaunch mavros apm2.launch

At this point, the Drone should be connected to the
MAVROS software stack through the UART/serial connec-
tion. If everything is functioning properly, the console run-
ning MAVROS should report received heartbeat. If the Drone
is indoors, it will likely report missing a 3D fix. If software
crashes, there may be an issue with Drone configuration.
Otherwise, the system is ready for the flight test.

With propellers installed and MAVROS running, the com-
mands can now be sent to the Drone the hardware serial
connection and MAVROS. For example, this sequence below
should arm, launch and move the Drone 5 meters in the east
direction

rosrun mavros mavsafety arm
sleep 1
rosrun mavros mavcmd takeoffcur 0 0 5.0
sleep 5
rosrun mavros mavsys mode -c GUIDED
rosrun mavros mavsetp local
\--position 5 0 0 0

The first command will arm the Drone, i.e. start the
propellers. This may take a second to take effect, as such
it is advisable to wait a second before issuing further
commands. Line 3 of the above sequence will make the
Drone takeoff to an altitude of 5m above current position.
This command will normally take a few seconds to complete,
as the Drone needs to increase throttle and gain altitude
before the sequence should be continued. In order to enable

0 2 4 6 8 10
0

20

A
lt
u
tu

d
e
 (

m
)

0 2 4 6 8 10

2

4

6

8

S
p
e
e
d
 (

m
/s

)

0 2 4 6 8 10

Time (min)

50

100

150

 (
o
/s

)

Fig. 10. Time histories of altitude, speed and angular speed.

programmatic control of the Drone, the Drone has to be
in custom mode ”GUIDED”. Line 5 sets the Drone into
”GUIDED” mode, this is more or less instantaneous. With
the Drone in ”GUIDED” mode, the Drone will no longer
respond to manual remote controller input, to retake control
of the Drone press the ”Fly” button. This returns the Drone
to GPS guided manual controlled mode. Finally, Line 6 sets
a position setpoint for the autopilot in the local coordinate
frame. In the example above the Drone should move 5 meters
in the east direction. For more information and a more
complete overview of available MAVROS functionality, refer
to MAVROS documentation [18].

B. Data Sharing

The developed architecture allows developing and up-
loading GNC code onto Odroid through common SCP and
SSH protocols. These GNC algorithms can utilize all data
available, both from any sensors connected to the Odroid
and internal data from the PX4 autopilot. This includes
battery parameters, data coming from inertial measurement
unit, global positioning system receiver, both raw data and
preprocessed data. This data can be stored on-board each
vehicle for later processing, but also shared amongst the
swarm through the joint swarm network.. As an example,
Figures 10-15 illustrate some of these parameters at 2Hz rate
for an 11-minute flight. After takeoff the Drone was brought
to about 20m height and primarily stayed at this altitude
all the time executing a series of horizontal maneuvers.
Specifically, Fig. 10 shows time histories of the height (above
initial launch position), absolute ground speed and angular
velocity. Figure 11 illustrates the battery state parameters
during this flight. Figures 12 and 13 present time histories
of acceleration and velocity vector components (Fig. 12 and
Fig. 13, respectively), angular rates (Fig. 14) and computed
(via parameters of quaternion) Euler angles (Fig. 15).

Odroids eMMC storage allows storing GNC-related pa-
rameters for further analysis.

0 2 4 6 8 10

40

60

80

C
a
p
a
c
it
y
 (

%
)

0 2 4 6 8 10

-30

-20

-10

C
u
rr

e
n
t
(m

A
)

0 2 4 6 8 10

Time (min)

15

15.5

16

V
o
lt
a
g
e
 (

V
)

Fig. 11. Time histories of battery parameters.

0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

a
x
 (

m
/s

2
)

0 2 4 6 8 10

-1

0

1

a
y
 (

m
/s

2
)

0 2 4 6 8 10

Time (min)

6

8

10

12

14

a
z
 (

m
/s

2
)

Fig. 12. Time histories of the acceleration vector.

0 2 4 6 8 10

-4

-2

0

2

4

V
x
 (

m
/s

)

0 2 4 6 8 10

-5

0

5

V
y
 (

m
/s

)

0 2 4 6 8 10

Time (min)

-4

-2

0

2

V
z
 (

m
/s

)

Fig. 13. Time histories of the linear velocity vector components

0 2 4 6 8 10

-100

0

100
p
 (

o
/s

)

0 2 4 6 8 10

-100

0

100

q
 (

o
/s

)

0 2 4 6 8 10

Time (min)

-20

0

20

r
(o

/s
)

Fig. 14. Time histories of angular velocity vector components

0 2 4 6 8 10

-20

0

20

 (
o
)

0 2 4 6 8 10

-10

-5

0

5

 (
o
)

0 2 4 6 8 10

Time (min)

5

10

 (
o
)

Fig. 15. Time histories of Euler angles

C. Swarm Operations Enabled UAS Fleet

Figure 16b demonstrates a fleet of 20 enhanced 3DR
Solo drones ready to fly a swarm mission programmed
and uploaded to all vehicles. As mentioned in Section 2,
while flying such missions collision avoidance is an absolute
necessity. The final testing of the developed system included
testing this particular capability.

In a series of tests multiple UAS were operating in a close
vicinity to each other, sharing ID and position information.
The goal of these tests was to see if the developed and
implemented collision-avoidance algorithms that utilize this
information assure safe operations. The results of one of
such tests with four UAS flying at the same altitude within
horizontally bounded airspace set to collide with each other
are shown in Fig. 17. This figure shows relative position
of three drones with respect to another drones. Clearly, the
collision-avoidance algorithms do work preventing from two
UAS being closer than 15m to each other (this distance was
predefined).

(a) (b)

Fig. 16. Individual network-capable 3DR Solo drone (a); and a fleet of 20
networking UAS (b)

-40 -20 0 20 40 60

Relative Easting (m)

-50

-40

-30

-20

-10

0

10

20

30

40

R
e

la
ti
v
e
 N

o
rt

h
in

g
 (

m
)

Drone 1

Drone 2

Drone 2

Drone 4

Fig. 17. Birds-eye view of relative positions of four drones operating in
close formation

The 3DR Solo COTS Drone uses a standard 2.4Ghz
WiFi link for manual control. To eliminate dropout when
transmitting large amounts of data between the agents in
the swarm, a disjoint network scheme was adopted. In this
case, the individual manual control link for each agent is
still 2.4Ghz WiFi, while the joint swarm network operates
on 5Ghz. Initial experiment with 2.4Ghz allowed for the
use of ad-hoc or mesh network, where there was no central
router to mediate communication between the swarm agents.
Obviously, this is the ideal situation, where each agent can
communicate with any other agents in range, without relying
on centralized infrastructure. Unfortunately, when switching
to 5Ghz, this is no longer possible, as 5Ghz does not seem
to support mesh network in the same way. Currently, this is
the only limitation of the developed swarm. However, this is
an issue of regulation rather than technical difficulties, as the
use of the 5Ghz baseband is limited and requires transceivers
to adapt a non-interference policy. Implementation of mesh
network on 5Ghz might require additions to the mainstream
WiFi driver in order to avoid interfering with other systems.

V. CONCLUDING REMARKS

Extending a COTS platform with on-board processing
capabilities enables a variety of novel drone applications.
Technically there is no requirement for these drones to be
connected to a remote controller (for manual control) or

even the swarm network. Each of these drones could operate
independently, allowing for autonomous missions execution.
However, this would be contrary to the ideals of a swarm
system. This paper presented a method of integrating an
on-board companion computer with autopilot of a COTS
multi-rotor drone, enabling each drone to be connected to
a swarm network, and run local, distributed controller or
behaviors. This is of paramount importance to the concept
of swarm system. A swarm derives its core attributes of
scalability, fault tolerance and distribution, through enabling
each agent or platform to make independent decisions while
still interacting with the rest of the swarm. Within the
developed prototype swarm, it is possible to program behav-
iors, on-board each drone that can adapt and react to new
environments or changing conditions. In light of classical
control theory, this can be considered a higher-level control
or an outer loop, enabling complex interactions amongst
agents.

As is, the integration to the autopilot breaks gimbal sup-
port on the 3DR Solo drone. The cause for this is unknown,
but it likely has to do with enabling the SER2 port which
interferes with the serial port used to control the 3DR Solo
gimbal. This is likely a software problem, but even though
the 3DR Solo is a very open platform, some of the source
code for instance for how the remote controller interacts
with the Drone is not open-sourced. This makes it hard to
try to pinpoint the exact issue of where the gimbal breaks.
Unfortunately, 3DR has decided to discontinue the Solo as a
consumer product, and as such it is not likely that there will
be a fix released for this issue. In addition, newest firmware
implements a block that does not allow SER2 to be used at
all, as such newer drones will need to be downgraded (to
firmware 2.3.0-1) in order to implement the enhancements
described in this paper.

Further, the approach suggested in this paper, uses a fixed
central WiFi router to enable the joint swarm network. This
is a compromise in order to get a more stable network, by
transitioning from 2.4Ghz to 5Ghz WiFi to avoid interference
with the manual remote controller links, but the ability to
do a fully decentralized mesh network is lost. It is believed
that the issue of constructing a mesh network over 5Ghz
mainly a regulatory problem, in that transceivers on 5Ghz
are required to adopt a strict non-interference policy. As
such, it is possible that in the future 5Ghz mesh WiFi could
be achieved. This would be a significant step towards a
fully decentralized swarm of UASs. One might argue that
there are several smaller transceivers available intended for
instance for Internet-of-Things systems, that might be used.
However, these are currently designed around low bandwidth
applications which are not suitable for the proposed UAS
swarm prototype.

Finally, the challenge of managing not one or two plat-
forms but tens of them have led to new hurdles in de-
ployment and maintenance of the UAS swarm. As such,
extending the platforms outlined in this paper with a robust
software framework for deployment of new code, self-tests
and communication, may be highly desired in order to ease

development and allow for more rapid prototyping of new
swarm systems and behaviors.

ACKNOWLEDGMENT

The authors would like to acknowledge the Norwe-
gian Defense Research Establishment, the Naval Postgrad-
uate Schools Naval Research Program and Consortium for
Robotics and Unmanned Systems Education and Research
along with Fulbright Scholar Program for the support of this
research. They would also like to thank Jørgen Nordmoen
for his contributions to the initial integration efforts.

REFERENCES

[1] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair,
I. L. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully
autonomous UAV: Research platform for indoor and outdoor urban
search and rescue,” IEEE Robotics & Automation Magazine, vol. 19,
no. 3, pp. 46–56, 2012.

[2] J. N. Weaver, D. Z. Frank, E. M. Schwartz, and A. A. Arroyo, “UAV
performing autonomous landing on USV utilizing the robot operating
system,” in Proc. of the ASME District F-Early Career Technical
Conference, Citeseer, 2013.

[3] “DJI drones.” http://www.dji.com/products. Accessed:
11.2.2018.

[4] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), pp. 6235–6240, IEEE, 2015.

[5] P. Bupe, R. Haddad, and F. Rios-Gutierrez, “Relief and emergency
communication network based on an autonomous decentralized uav
clustering network,” in SoutheastCon 2015, pp. 1–8, 2015.

[6] M. Asadpour, D. Giustiniano, K. A. Hummel, and S. Egli, “UAV
networks in rescue missions,” in Proceedings of the 8th ACM interna-
tional workshop on Wireless network testbeds, experimental evaluation
& characterization, pp. 91–92, ACM, 2013.

[7] J. Zelenka and T. Kasanickỳ, “Outdoor UAV control and coordination
system supported by biological inspired method,” in In proceedings
of Robotics in Alpe-Adria-Danube Region (RAAD), 23rd International
Conference on, pp. 1–7, 2014.

[8] “3DR: ”Proven Drone Meets Best-In-Class Sensor”.” http://3dr.
com/solo-drone. Accessed: 11.2.2018.

[9] J. P. Carvalho, M. A. Jucá, A. Menezes, L. R. Olivi, A. L. M. Marcato,
and A. B. dos Santos, “Autonomous UAV outdoor flight controlled by
an embedded system using Odroid and ROS,” in CONTROLO 2016,
pp. 423–437, Springer, 2017.

[10] S. A. Engebråten, K. Glette, and O. Yakimenko, “Field-Testing of
High-Level Controller for a Multi-Function Drone Swarm.” submitted
to the 14th IEEE International Conference on Control and Automation,
Anchorage, AK, June 12-15, 2018.

[11] “ODROID single board computer.” https://en.wikipedia.
org/wiki/ODROID. Accessed: 11.2.2018.

[12] “PX4 autopilot.” http://pixhawk.org. Accessed: 11.2.2018.
[13] “3DR Solo ardupilot firmware.” https://github.com/

3drobotics/ardupilot-solo. Accessed: 11.2.2018.
[14] “Ardupilot: Choosing a flight controller

.” http://ardupilot.org/ardupilot/index.html. Ac-
cessed: 11.2.2018.

[15] “DroneKit programming framework.” http://dronekit.io/.
Accessed: 11.2.2018.

[16] “3DR Solo dev guide.” http://dev.3dr.com/. Accessed:
24.6.2016.

[17] “MAVLink Micro Air Vehicle Communication Protocol.” http://
www.mavlink.org/mavlink/start. Accessed: 11.2.2018.

[18] “ROS package MAVROS.” http://wiki.ros.org/mavros.
Accessed: 11.2.2018.

[19] “Seeedstudio technology.” http://www.seeedstudio.com. Ac-
cessed: 11.2.2018.

[20] “Ubuntu Release End of Life.” http://www.ubuntu.com/
info/release-end-of-life. Accessed: 11.2.2018.

[21] “Installing ROS on Ubuntu ARM.” http://wiki.ros.org/
kinetic/Installation/UbuntuARM. Accessed: 11.2.2018.

http://www.dji.com/products
http://3dr.com/solo-drone
http://3dr.com/solo-drone
https://en.wikipedia.org/wiki/ODROID
https://en.wikipedia.org/wiki/ODROID
http://pixhawk.org
https://github.com/3drobotics/ardupilot-solo
https://github.com/3drobotics/ardupilot-solo
http://ardupilot.org/ardupilot/index.html
http://dronekit.io/
http://dev.3dr.com/
http://www.mavlink.org/mavlink/start
http://www.mavlink.org/mavlink/start
http://wiki.ros.org/mavros
http://www.seeedstudio.com
http://www.ubuntu.com/info/release-end-of-life
http://www.ubuntu.com/info/release-end-of-life
http://wiki.ros.org/kinetic/Installation/UbuntuARM
http://wiki.ros.org/kinetic/Installation/UbuntuARM

	Introduction
	Networking and On-Board Computing Requirements for Swarm Operations
	3DR Solo-Odroid Integration
	3DR Solo Drone
	Breakout Board Build-up
	Software Setup
	Completing Companion Computer Integration
	Ground Control Station

	System Testing and Data Sharing
	Initial Testing
	Data Sharing
	Swarm Operations Enabled UAS Fleet

	Concluding Remarks
	References

