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Abstract In this paper, we present three implementations of an online evolvable

hardware classifier of sonar signals on a 28 nm process technology FPGA, and com-

pare their features using the most relevant metrics in the design of hardware: area,

timing, power consumption, energy consumption, and performance. The three im-

plementations are: one full-hardware implementation in which all the modules of

the evolvable hardware system, the evaluation module and the Evolutionary Algo-

rithm have been implemented on the ZedBoard™ Zynq® Evaluation Kit (XC7-Z020

ELQ484-1); and two hardware/software implementations in which the Evolution-

ary Algorithm has been implemented in software and run on two different proces-

sors: Zynq® XC7-Z020 and MicroBlaze™. Additionally, each processor-based im-
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plementation has been tested at several processor speeds. The results prove that the

full-hardware implementation always performs better than the hardware/software

implementations by a considerable margin: up to ×7.74 faster that MicroBlaze, be-

tween ×1.39 and ×2.11 faster that Zynq, and ×0.198 lower power consumption.

However, the hardware/software implementations have the advantage of being

more flexible for testing different options during the design phase. These figures

can be used as a guideline to determine the best use for each kind of implementa-

tion.

Keywords Evolutionary algorithms, evolvable hardware, classifier system, field

programmable gate arrays

CR Subject Classification Evolvable hardware · Reconfigurable logic and FPGAs ·

Evolutionary Algorithms and Classification and regression trees

1 Introduction

Evolvable Hardware (EHW) arises from the combination of reconfigurable hard-

ware with Evolutionary Algorithms (EA) [28,37,25]. In EHW, the EAs can be used

to design the reconfigurable hardware in two distinctive ways:

– During the design phase, EAs can be used as heuristics to explore the design

space of the target system, for example in [24,33]. In this case, either intrinsic

evolution, in which new designs are run on actual hardware, or extrinsic evolu-

tion, in which new designs are simulated on a computer, are possible [14].

– During circuit operation, EAs can be used as a heuristic to find the best circuit

configuration at runtime. This new configuration will modify the circuit behav-

ior and, in this way, it will adapt the circuit to an environment that has departed
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(a) Hardware/software implementation. (b) Full-hardware implementation.

Fig. 1 EHW approaches.

from the specifications that were defined during the design phase. An example

can be found in [9]. In this case, hardware adaptation is exclusively run online

while the actual hardware operates in a real physical environment [14].

If we restrict our study of the EHW to the latter approach, it has the following

features: (1) the EA runs onchip, that is, on the same chip as the EHW target sys-

tem; (2) the EHW adapts itself online, i.e. the EA modifies some design features in

runtime; and (3) it applies the notion of intrinsic evolution, i.e. the evaluation of

a potential candidate is performed on the actual hardware. It can be implemented

with EA running in software or being implemented in hardware, as illustrated in

Fig. 1(a) and Fig. 1(b) respectively.

Commercial FPGAs are a good technology candidate for this kind of system

thanks to their availability at low cost and their reconfiguration capabilities. Conse-

quently, they have been used as a development platform for this kind of system in

almost all earlier implementations.

Most of the papers in the literature use the above approaches, but there is no

a systematic comparison between them using the same testbench. The aim of this

article is to compare different hardware approaches to the implementation of an

online EHW system using modern Intellectual Property (IP) processors and current
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process technology FPGAs, and draw some conclusions about the most appropriate

hardware implementation for each use case.

The online EHW testbench is a classifier system applied to a sonar target recog-

nition task. Glette et al. [10] implemented this system using the hardware/software

implementation and a PowerPC 405 hard processor core on a Xilinx XC2VP30 FPGA.

Nevertheless, we are targeting the evaluation of the different hardware approaches

to implement the evolutive system and not the accuracy of the system itself, that

was covered in [9,11,16]. So, we have used the classifier as a soft IP core and syn-

thesized it to work on the Zynq® XC7-Z020 target FPGA to obtain a fair comparison

on a cutting-edge 28 nm process technology FPGA. We also have implemented the

EHW system using three alternatives. Two implementations have been designed

using a SoC with two different processors: Zynq® XC7-Z020 PS7 5.4 built-in dual-

core ARM® Cortex™-A9 processor system and MicroBlaze™ 9.3 soft-core proces-

sor. In the third implementation, an IP hardware module implements the EA, in-

cluding a hardware random number generator. Also, we compare the key metrics

in the design of hardware: area, timing, power consumption, energy consumption,

and execution time.

This paper is structured as follows. Section 2 presents the previous work on EA

implementation of EHW. Section 3 introduces the target application and Section 4

describes the EA. Section 5 presents the EHW architecture. In Section 6 we describe

the methodology, in Section 7 we present the experimental results, and finally Sec-

tion 8 is devoted to the paper’s conclusions.
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2 Previous work

As stated in Section 1 there are two alternative architectures to implementing the EA

of an EHW on FPGAs. On the one hand, the software architecture uses a processor

(ARM, MicroBlaze, Zynq, PowerPC, etc.) to execute the EA software. On the other

hand, the hardware alternative uses a custom hardware module responsible for

running the EA.

There are also two main approaches to implementing the reconfigurable capa-

bilities of the EHW on a FPGA [21]. On the one hand, the use of Virtual Reconfig-

urable Circuits (VRC) in which a virtual circuit is defined on top of the reconfig-

urable FPGA structures. The virtual circuit configuration can change without dy-

namically reconfiguring the FPGA. Usually, this approach uses the Cartesian Ge-

netic Programming (CGP) to find the virtual circuit configuration that maximizes

the value of a fitness function. Numerous studies combine this approach with any of

the EA architectures to design medium-high complexity circuits. Among the most

recent examples are [8] than runs the EA in a MicroBlaze processor, [35,34] in a

custom hardware, or [32] in a PowerPC.

On the other hand, Xilinx FPGAs have the feature of self-reconfiguring through

the Internal Configuration Access Port (ICAP) [2]. This feature allows Dynamic Par-

tial Reconfiguration (DPR) of the partitions in the design so that the circuit modules

can be evolved on-line and the result of the evolution can be implemented in the

circuit in real-time. Again this approach can be combined with any of the EA ar-

chitectures. For example, it has been used to modifying the structure of the nodes

of a VRC for small combinational circuits running the EA on a PowerPC [5,4], or
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for the reconfiguration of the category decision modules of a classifier using a Pow-

erPC [30].

In [21], Salvador presents a review of the most remarkable works in EHW design

up to date. He states that [20,7] are the more sophisticated and advanced applica-

tions. In [20], Mora et al. present the DPR implementation of an image filter using

a systolic array on a SoC. The system is implemented on a Xilinx Virtex-5 LX110T

FPGA and uses a software architecture with an Evolution Stratergy, (1 + 1)-ES, exe-

cuted for 32768 generations on a MicroBlaze processor. The implementation of the

system requires 2688 slices excluding the resources utilized by the MicroBlaze pro-

cessor.

Dobai et al. [7] present a low-level architecture that merges the virtual and native

reconfiguration approaches for the definition of a candidate solution. The system is

implemented on an XC7Z020 Zynq-7000 All Programmable SoC device card using a

software architecture and tested with an image filter. The design requires 3899 total

LUTs and employs a (1 + λ)-ES with λ being the number of offspring, λ ∈ [1, 8], that

runs on an ARM Cortex-A9 processor. The length of the chromosome is 388 bits,

and they run 105 generations.

In [6] the authors analyze the Zynq-7000 All Programmable SoC platform, which

contains an XC7Z020-1CLG484CES device, to design EHW. They tested the board

using an image filter and applying symbolic regression by CGP. They use an (1 +

4)-ES using VRC and DPR. The article is not focused on the area overhead nor the

power consumption of the different approaches but the time needed to evaluate a

given number of generations. The DPR implementation of the system requires 6650

slices while the VRC implementation requires 1290 slices and 1084 FF slices. They

run 100 generations, and the chromosome’s length is 384 bits.
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So, to our best knowledge, there is no earlier paper devoted to implementing the

same EHW using different architectures to run the EA on current FPGA technology

and compare them regarding the most relevant metrics in the design of hardware.

Our testbench is a classifier system used in several EHW applications [10,30,11,

29]. The system complexity1 is in line with the average complexity of EHW systems

presented above. The selected application is a sonar target recognition task widely

used as Neural Networks or classifier system benchmark [3,12,1]. The number of

generations, the types of mutation operators and the chromosome’s length are also

aligned with the average applications used in EHW as presented above. Applica-

tions that require more generations will not qualitative change the conclusions of

the comparisons because the number of generations affect at the features of the

three implementations in a similar way. Regarding the mutation operator, the us-

age of more complex operators is not very common in EHW and, even in that case,

they are entirely feasible in hardware at the clock frequencies we use in this work.

Again, this will not change the results significantly. On the other hand, neither real-

time constraints nor power and energy consumptions are an issue for the selected

application, but applications exist where classifier systems need to be fast and use

low power [18,17]. Furthermore, a fast evolution time is a requirement in most of

the EHW applications, and one of the niches of EHW are evolvable embedded sys-

tems where power and energy consumptions are relevant [25,14,18]. For such rea-

sons, we will measure these metrics. The fact that the sonar recognition is aimed

neither real-time nor low power and energy consumptions does not invalidate the

results because the paper focuses on comparing the architectural alternatives in the

implementation of the EA.

1 See Section 5 for a detailed description of the circuit.
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3 Classifier System

The system that we use as a testbench to compare the three implementation al-

ternatives is a Classifier System [10], applied to the sonar target recognition task

described in [12]. We used the sonar data set because it is a widely known and rela-

tively difficult benchmark, while being practical to test in the hardware configura-

tion. The focus in this paper has been to compare the efficiencies of hardware imple-

mentations, while the while suitability of the classification itself has been shown in

other papers [9,16]. The system consists of k Category Detection Modules (CDM),

one for each category to be classified, Ci. The CDM with the highest output value

will be detected by a maximum detector module, and the identifier of this category

will be outputted, see Fig. 2(a). Each single CDM implements m classification rules,

and every classification rule is implemented using n Functional Units (FU), one n-

input AND gate, and one counter, see Fig. 2(b). Each FU receives all system input

bits at its inputs, and produces a 1-bit output that drives one of the inputs of the

AND gate. Finally, the AND gate output drives a counter that counts the number

of asserted rules for the input pattern.

The FUs are the reconfigurable elements of the architecture, see Fig. 3. Each

FU is formed by (1) a multiplexer which selects one field in the input data vector,

a.k.a data element, I; (2) two functions, f1 and f2, that have been selected based on

previous experiments, see Table 1, and whose behavior depends on the value of a

constant C; and (3) an output multiplexer that selects which of the two functions

is used in the FU. Any number and type of functions could be imagined, but in

earlier works [10,12] two functions have found to be appropriate. In addition, each
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(a) Classification module. (b) Block diagram of the CDM [10].

Fig. 2 Block diagrams of the classifier system.

Function Functionality

f1 o = 1 if I > C else 0

f2 o = 1 if I ≤ C else 0

Table 1 Functionality of f1 and f2.

Fig. 3 Block diagram of a functional unit.

FU is configured with a different constant value, C. This value, along with the data

element I, is used by the function to compute the output.

FU behavior is managed by a configuration bitstring. The bitstring consists of

three fields as shown in Fig. 4: the 6-bit field “address” selects an element in the

input vector, the 1-bit field “fun” selects which of the two functions f1 and f2 will
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Fig. 4 Configuration bitstring of a functional unit.

be used, see Table 1, and the 8-bit field “constant” sets the value of the constant to

be used by f1 and f2.

The input data to be classified is simultaneously presented to each CDM using

a common input bus. So, all the bits of the input data are presented to all the FU

although only one field of these bits, the data element, is chosen (i.e. one byte for

each FU). This data element, I, is then fed to the two functions in each FU.

The application data set is in the CMU Neural Networks Benchmark Collec-

tion [23] and was first used by Gorman and Sejnowski in [13]. This real-world data

set consists of sonar returns from underwater targets of either a metal cylinder or a

similarly shaped rock. There are 208 returns which have been divided into equally

sized training and test sets of 104 returns. Each return feature vector contains 60

input data elements. The resolution of the data elements has been scaled to an 8-bit

binary representation, which has been demonstrated by earlier experimentation to

give adequate results [10]. This gives a total of 60 × 8 = 480 bits to input to the

system for each return. For the sonar application we use a classifier configuration

of k = 2, m = 8, and n = 6.

Evolving the whole classification system in one run would give a very long

genome resulting in slow evolution, so an incremental approach has been chosen.

Each CDM is evolved separately since there is no interdependence between the

different categories. This is also true for the FU rows each CDM consists of. Al-

though the fitness function changes between the CDMs, as detailed in [10], the evo-
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lution can be performed on every single row at a time. This significantly reduces

the genome size down to 15 bits
FU × 6 FU

row = 90 bits.

4 Evolutionary Algorithms

In the EHW arena, the mutation-based Evolutionary Algorithms are one of the

most widely used EA because experiments demonstrate good results with this ap-

proach [10]. In particular, we use a (µ+ λ) mutation-based EA in which the current

population consists of µ individuals that are used as a source of parents to pro-

duce λ offspring, and generate a pool of µ + λ individuals. In this paper, survival

is performed using the elitist “truncation selection” in which the fittest of the µ+ λ

individuals (those with the highest fitness) are selected to be the µ parents for the

next offspring generation. We choose that the reproduction is asexual, with each

offspring coming from one single parent by mutating one or more of the parent’s

gene values at random (uniformly) [15]. We represent genes in two ways: as binary

or integer numbers. In the binary representation, the mutation operator toggles the

gene’s value whereas in the integer representation the mutation operator generates

an integer number within the range of gene’s values and performs a XOR operation

with the gene.

In this paper (1) we have selected (1 + 8)-mutation-based EA; (2) each individ-

ual encodes the structure of a bitstring as described in Section 3, that is, the chro-

mosome comprises 90 genes, each one encoded as a single bit; and (3) the number

of genes being modified in every generation is different for each experiment.

The fitness function is calculated as follow [10]. Each row of FUs is fed with

the training vectors (v ∈ V ), and the fitness is based on the row’s ability to give
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a positive (1) output for vectors v belonging to its own category (Cv = Ci), while

giving a negative (0) output for the rest (Cv 6= Ci). In the case of a positive output

when Cv = Ci, the value A is added to the fitness sum. When Cv 6= Ci and the row

gives a negative output (value 0), 1 is added to the fitness sum. The other cases do

not contribute to the fitness value. The basic fitness function F for a row can then

be expressed in the following way, where o is the output of the FU row:

F =
∑
v∈V

xv where xv =


A · o : Cv = Ci

1− o : Cv 6= Ci

(1)

For the experiments, a value of A = 0x40 has been used.

5 EHW System

Our EHW system has been designed following the two approaches introduced in

Section 1, and illustrated in Fig. 1. In the hardware/software approach, the system

is typically implemented on a single chip and comprises the following elements:

– A processor (ARM, MicroBlaze, PowerPC, etc.) is responsible for executing the

EA software. So, the EA is embedded software, typically in C, that implements

all the tasks involved in an EA except the evaluation of candidate solutions.

The processor executes the EA software and reconfigures the evaluation module

every time a fitness value is to be computed. After EA completion it will send

the best individual, i.e. the best configuration, to the target circuit.

– An evaluation module responsible for evaluating each solution that appears

during the execution of the EA. This module receives the individuals in the pop-

ulation from the processor, and they are evaluated using the training inputs. It
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acts as a coprocessor, and it is a copy of the target circuit but with modifications

to allow the evaluation of the individuals proposed by the EA.

– The target circuit containing the previous best configuration. This circuit always

processes the system inputs using the configuration parameters defined during

the EA search. The parameters of this module are sent from the processor after

completion of each execution of the EA.

– A communication bus that connects the processor with the evaluation module,

and the target circuit. Typically, the processor acts as the master in the commu-

nications. Some examples are APB or AXI buses.

In the full-hardware implementation, the system comprises three modules but

the evaluation module and the target circuit have the same functionality as in the

previous approach. So, the differences with respect to the hardware/software ap-

proach are:

– An EA module responsible for running the EA. The EA will be implemented

as a custom digital circuit that replaces the processor in the previous approach.

This module is responsible for maintaining and updating the population of in-

dividuals in the EA. It will send the individuals to the evaluation module to be

evaluated, and after EA completion it will send the best individual, i.e. the best

configuration, to the target circuit.

– The communication interface between the EA module and the evaluation mod-

ule is typically through point-to-point connections.

In particular, we have designed three different implementations of the evolvable

classifier:
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1. A full-hardware implementation in which both the EA and the evaluation mod-

ule, that is the classifier system, have been implemented in hardware.

2. A hardware/software implementation in which the EA has been implemented

in C and run on a Zynq® XC7-Z020 PS7 5.4 hard built-in dual-core ARM®

Cortex™-A9 processor, while the evaluation module has been implemented in

hardware as an external co-processor.

3. A hardware/software implementation in which the EA has been implemented

in C and run on a MicroBlaze™ 9.3 soft-core processor, while the evaluation

module has been implemented in hardware as an external co-processor.

Thus, the evaluation module is the same for all the implementations. Next, we

will describe each of these implementations. We will only describe the EA and eval-

uation modules, excluding the target circuit, which has been described in Section 3.

5.1 Full-Hardware Implementation

In this approach, the EA has been implemented in hardware. Fig. 5 shows the block

diagram that comprises the EA module, and the evaluation module. Both have

been described in VHDL and the complete system has been implemented on the

ZedBoard™ Zynq® Evaluation Kit (XC7-Z020 ELQ484-1).

The evaluation module has been implemented with the structure described

in Section 3 but with two modifications in its interface to achieve a significant re-

duction in communication overheads between the evaluation module and the

EA module. Hence, the communications, in both directions, only require one clock

cycle with the following modifications:
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Fig. 5 Block diagram of the full-hardware evolvable classifier. For the sake of clarity, the system

inputs have not been drawn.

– Because the communications between the EA module, which generates the off-

spring, and the evaluation module are point to point, the width of the con-

figuration port, individual, is equal to the number of bits of an individual.

That is 90 bits. On the other hand, the select individual port is used to in-

dicate which of the eight individuals in the population is being written in the

individual port.

– The evaluation module evaluates eight individuals simultaneously, and the

eight fitness values, every fitness value being a 16-bit number, are provided si-

multaneously to the EA module using the fitnesses port which is 8 × 16 =

128 bits wide.

Fig. 5 also illustrates the block diagram of the EA module and its sub-modules.

It has been implemented as an IP block which is fully parametrizable using three

generics that define the λ value in the mutation-based EA, (1 + λ)-EA, the number

of bits per chromosome, and the number of bits of the fitness value.
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The EA module has the classical structure of an Algorithmic State Machine

with a datapath, EA datapath, and a control unit, EA controller. The EA datapath

consists of:

1. A module to generate pseudo-random numbers, random generator. It has

been implemented according to [19]. We have designed a configurable IP block

with a parametrizable number of LFSRs which are initialized by a true random

number generator, TRNG, based on sampling the ring oscillator phase jitter as

described in [22]. The number and width of the LFSRs are configurable at syn-

thesis. In this paper, we have used ten 45-stage Galois LFSR with taps at posi-

tions 45, 44, 42 and 41, and cycle size 245 − 1 [36].

2. The mutation module that implements the mutation operator. It calculates

the mutations of the parent chromosome when provided with a random number

by random generator. This module has a fixed interface, and, in this study, it

has been designed twice, with two different architectures. In the first implemen-

tation, the random generator provides one number that indicates the position

of the gene to be toggled. Only one gene mutates. The experimental results, see

Section 7, show that a high number of mutations provides better solutions than

a low number. Therefore, we design a second mutation module in the full-

hardware implementation to provide a greater number of mutations from par-

ent to offspring. In order to (1) preserve the control unit of the first mutation

module, and (2) not to modify the clock frequency, this operator should oper-

ate in just one clock cycle and with a critical path equal to or less than the one

in the very simple scheme used in the first implementation. It utilizes a 90-bit

vector, generated by the pseudo-random number generator, and xors it with the
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parent chromosome. This mutation operator has these features: (1) the number

of mutations, n, is random; (2) the number of mutations follows a binomial dis-

tribution, n ∼ B(90, 0.5), with a mean value 〈n〉 = 0.5 · 90 = 45 mutations 2; and

(3) this operator requires 90 XOR gates in parallel, 1 per chromosome bit, and

its implementation does not change the critical path. This implementation can

be scaled-up to provide any length of the random vector, either widening the

number of LFSR or using the clock cycles devoted to evaluating the population

to concatenate 90-bit vectors. In the case that a fixed number of mutations is re-

quired, we can split the 90-bit vector into 7-bit fields and decode them to select

the genes to be toggled.

3. A register file, offspring regfile, that stores the offspring. There are eight

registers to store the eight individuals in the population.

4. A module, selector, that selects the individual with the best fitness among

offspring. It receives the fitness values from evaluation module and selects

the individual with the highest value of fitness.

The EA controller consists of nine states: three states for the generation of

the offspring, two states for the communications with the evaluation module,

one state to store the fitness values coming from the evaluation module, and

two extra states to select the best offspring and become the new parent. In the

simulations, the generation and sending of a new population to the evaluation

module takes 11 clock cycles; the reading of the results and the selection of the new

parent take 4 cycles.

2 When p = 0.5 and n is very large, usually n ≥ 30, as in this case, the binomial distribution

can be approximated by the normal distribution. So, in this case the number of mutations, n ∼

N(B · p,B · p · q) = N (45, 27.5)
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The system has been implemented on a ZedBoard™ Zynq® Evaluation Kit (XC7-

Z020 ELQ484-1) although it does not use the built-in Zynq® XC7-Z020 processor.

5.2 Hardware/Software Implementations

In these implementations, the EA has been implemented in software, using C lan-

guage, and is responsible for maintaining and updating, generation after genera-

tion, the population in the EA. It is executed on a processor running without an

operating system. On the other hand, the evaluation of the individuals is carried

out in the classifier that operates as an external co-processor of the main processor.

We have used two different processors: Zynq® XC7-Z020 PS7 5.4 built-in dual-core

ARM® Cortex™-A9 processor system3 and MicroBlaze™ 9.3 soft-core processor4.

Both are defined as IP modules in the library of components that Xilinx provides for

their FPGAs. Communications between the processors and the evaluation module

are performed via an AXI Lite IP configured in slave mode with fourteen 32-bit reg-

isters. The global timer of the processor is used to initialize the seed of the pseudo-

random number generator that provides the positions of the bits to be mutated in

the parent chromosome. The registers are:

– Eight read-only (RO) registers, denoted as R FITNESS <0:7>, used by the pro-

cessor to read the fitness value for each of the eight individuals in the popula-

tion.

3 2.5 DMIPS/MHz per CPU, up to 667 MHz, with L1 and L2 caches, and single and double

precision floating point units.
4 This processor can be instantiated in any Xilinx FPGA in any number, provided that there are

enough resources in the FPGA.
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– Three write-only (WO) registers, R INDIVIDUAL LSB, R INDIVIDUAL MID, R INDIVIDUAL MSB,

for sending one individual of the population to the evaluation module. The

three registers total 3 × 32 = 96 bits. However, the individuals in the popu-

lation have 90 bits, so the remaining 6 bits, located in the most significant bits of

R INDIVIDUAL MSB, are padded with 0.

– One WO register, R SELECT INDIVIDUAL, to indicate which individual is be-

ing written in the registers R INDIVIDUAL *. This register receives one 1-hot

byte.

– One WO control register, R START EVALUATION. This register has two fields:

bit 0 is used to start the evaluation of the population, that is the evaluation

module starts the evaluation of the offspring when this bit is asserted by the

processor; bit 1 is used to reset bit 0 of the R END EVALUATION register.

– One RO status register, R END EVALUATION. This register has a single field in

bit 0. This bit is asserted to 1 by the evaluation module to indicate that it has

completed the evaluation of the eight individuals. This bit is set to 0 by asserting

bit 1 in the R START EVALUATION register.

Because AXI transfers are 32 bits wide, we have been forced to redesign the

interface of the classifier. Hence, the individual port is now 32-bit, not 90-bit as

in the hardware implementation, and the writing of a new configuration requires

three write operations of the processor into R INDIVIDUAL * registers plus one

additional writing of the R SELECT INDIVIDUAL register that stores the value of

the select individual port. Likewise, the reading of the fitness values requires

eight read operations, one per R FITNESS <0:7> register.
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Alg. 1 presents the pseudo-code of the C program. The individual’s chromo-

some is represented as an array of 18 genes (3 genes
row × 6 FU

row ), each gene being rep-

resented by a pointer to integer, and the population being represented as a pointer

to an array of such data. The range of values that any gene can take depends on

the field of the bitstring represented by the specific gene: integers representing the

“address” field can take values in the range [0, 63], those representing the “fun”

field can take values in the range [0, 1], and so on. These data structures have been

chosen to speed up the software performance as much as possible. The software is

responsible for:

1. Generating offspring (lines 3 to 7). The evaluation module operates on a binary

representation of the chromosomes but, as stated above, the software operates

on an integer representation. Line 7 translates from 18-integer representation to

90-bit binary representation.

2. Sending them to the co-processor (lines 8 to 11).

3. Waiting for the classifier to end the evaluation of the λ individuals in the popu-

lation by actively polling register R END EVALUATION (lines 12 to 13).

4. Reading the fitness values and selecting the best offspring, based on the fitness

calculated by the classifier, to become the progenitor of the next generation (lines

15 to 18).

The software has been compiled using the options -O2 -g3 and run in bare metal

mode on the chosen processor.
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Algorithm 1: Pseudo-code of the software implementations.

1 while generation < maxGens do

2 for i = 1; i < λ; i++ do

3 if i==1 then

4 offspring(i)← parent;

5 else

6 offspring(i)← mutate(parent);

7 offspring bin← int2bin(offspring(i));

8 writeIP(R INDIVIDUAL LSB, offspring bin [31:0]);

9 writeIP(R INDIVIDUAL MID, offspring bin [63:32]);

10 writeIP(R INDIVIDUAL MSB, offspring bin [89:64]);

11 writeIP(R SELECT INDIVIDUAL, one-hot(i));

12 writeIP (R START EVALUATION, 0x1);

13 while readIP(R END EVALUATION) 6= 0x1 do

14 writeIP (R START EVALUATION, 0x20);

15 initialize(best fitness);

16 for i = 1; i < λ; i++ do

17 new fitness← readIP(R FITNESS <i>) ;

18 if new fitness ≥ best fitness then

19 parent← offspring(i);

20 best fitness← new fitness

6 Methodology

We have implemented the three designs presented in Section 5 on a ZedBoard™

Zynq® Evaluation Kit (XC7-Z020 ELQ484-1) using Xilinx Vivado® Design Suite

2014.2. In the comparison, we have avoided introducing any bias towards any of

the alternatives. For example, the full-hardware implementation could work at 388
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MHz if the EA module had been pipelined, or even at higher frequencies using

deep pipelining in the EA and Evaluation modules. Similarly, its power consump-

tion could be reduced using clock-gating techniques. These techniques would have

biased the results for the full-hardware implementation.

We have evaluated the implementations for a set of different configurations

of the EA. Each one is defined by (1) the implementation approach, either full-

hardware or hardware/software, and (2) the mutation operator. We have denoted

each configuration with a different tag which contains four characters: the first char-

acter can be either h or s, and indicates whether the configuration has been imple-

mented in full-hardware or hardware/software, respectively; the second character

is the number of mutations, N ; the third can be either r or f, and indicates whether

the number of mutations has been chosen randomly in the range [1, N ] or is fixed

at N ; finally, the fourth character can be either b or i and indicates whether the mu-

tations are performed on the binary or integer representations of the chromosome.

For example, h1fb is the tag for the hardware implementation of an EA where only

one bit of the parent chromosome changes to generate a new offspring. Similarly,

s4ri denotes the EA in which the mutation operator mutates a random number of

integers in the range [1, 4]. For this case, the chromosome is formed by 18 genes,

and each one is represented by an integer in the hardware/software implementa-

tion that is compacted to a 90-bit number when it is sent to the classifier.

We have measured the following metrics for each of the three designs:

– The size has been measured as the FPGA slices required by each implemen-

tation. These comprise the resources used by the custom-designed logic, the

memories and the processor in the design.
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– The timing has been measured, using static timing analysis, as the maximum

clock frequency the design can work. The designs have only one clock, and

we define its frequency in the User Constraint File. Primary-input-to-register

and register-to-primary-output delays have been constrained so that input and

output paths have to fit into a half period. No combinational paths exist from

primary inputs to primary outputs. All paths have positive slack after timing

closure. Nevertheless, in this paper, the training vectors are provided within the

FPGA so that there are not any timing-critical input or output ports. In those

designs that contain a processor, the frequency of the EHW is defined by the

maximum speed of the AXI Lite interface.

– The power consumption has been estimated using the built-in power estimator

in Vivado 2014.2 Suite, assuming typical process and working conditions, and a

toggle rate of 0.125 with 50% of the time high for the logic.

– The speed of operation has been measured as the execution time of the actual

circuit on the ZedBoard. The time has been measured using the global timer

of the processor for the hardware/software implementation and a hardware

counter for the hardware implementation. Every configuration has been run 20

times. We average the execution time for each configurationon task and perform

hypothesis test. First, we verify whether the 20 measurements follow a normal

distribution using the Lilliefors test. If so then we run the two-sample t-test for

every pair of configurations with the null hypothesis being that both samples

come from independent random samples from normal distributions with equal

means. If the null hypothesis is rejected, then the samples do not come from

distributions with equal mean. Additionally, we have estimated the confidence

interval for all the pairs and ranked the results. If the Lilliefors test rejects the
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sample normality, then we run a one-way balanced ANOVA test to determine if

the differences between samples are statistically significant.

Area, timing and power-consumption have been measured by comparing two

EA configurations: h1fb vs. s1fb. The speed of operation has been measured for up

to fifteen EA configurations.

7 Results

Table 2 presents the use of FPGA resources, and the timing for the three imple-

mentations for the implementation of h1fb and s1fb EA configurations. The full-

hardware implementation works at 116 MHz. The Zynq implementation has been

synthesized with a 667 MHz processor clock frequency, 500 MHz DDR clock fre-

quency, and 100 MHz for the Programmable Logic (PL). The clock frequency for the

PL in the Zynq implementation is constrained by the nearest operating frequency

of the AXI Lite interface below 115 MHz. The AXI Lite interface is used to connect

the processor with the evaluation module. Finally, the MicroBlaze implementation

has been synthesized at 100 MHz, the maximum clock frequency, and with support

for Debug + UART. There are two reasons to include Debug+UART support. On the

one hand, these two components are required for communication with the external

PC that monitors and logs the evolution. On the other hand, they do not slow down

the processor speed.

The MicroBlaze implementation has 256 KB data and instruction memories be-

cause the C elf file generated by the compiler does not fit into smaller memories.

The EA module module accounts for 2206 slices and most of them are devoted
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Feature Hw Sw-Zynq Sw-Blaze

Total Slices PL 3715 3669 (∗) 5412

Slice LUTs 1134 1229 (∗) 2132

Slice Regs 2467 1767 (∗) 2575

BRAM Tile 17 17 (∗) 81

Clock Processor (MHz) — 667 100

Clock PL (MHz) 116 100 100

µP No Yes Yes

Table 2 Resource utilization comparison. (∗) These figures do not account for the resources needed

to implement the Zynq® XC7-Z020.

to storing the population of eight 90-bit individuals. Again, AXI Lite interface has

been used to connect the processor with the evaluation module.

The full-hardware implementation requires the fewest resources in the FPGA:

101.25% of the total number of slices of the Zynq implementation, and the same

number of BRAMs in the PL. However, the figures for the Zynq implementation

do not take into account the resources required for the processor5, such as all the

memories required to implement L1 and L2 caches. Regarding the comparison with

MicroBlaze implementation, the full-hardware implementation requires 68.64% of

the total number of slices and 20.99% of the BRAMs. For the MicroBlaze processor,

data and instruction memories are implemented in the PL, and they account for the

high number of BRAMs.

Regarding power-consumption, full-hardware consumes 290 mW, MicroBlaze

consumes 490 mW, and Zynq between 1.233 W and 1.463 W. So, full-hardware

is the lowest power-consumption design: it consumes 72.5% of the power of the

MicroBlaze implementation –mainly because of the number of memories of the

5 These figures are not available in Vivado 2014.2.
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Fig. 6 Energy consumption of the different implementations. X axis labels represents the imple-

mentation followed by the processor clock frequency, and y-axis is the energy consumption in

joules.

MicroBlaze–, and between 19.82% and 24.62% of the power consumption of the

Zynq.

Fig. 6 shows the comparison of the three implementations in terms of their en-

ergy consumption to run 16K generations using h1fb and s1fb configurations. The

full-hardware implementation consumes the least energy, 0.226 J, and the MicroB-

laze the most, 2.839 J.

Fig. 7 presents the comparison between power-consumption and the averaged

execution time over 20 runs, and 16K generations each run, for the h1fb and s1fb

configurations. The number of generations in these experiments is fixed, so the ex-

ecution time is practically the same in the 20 runs of each configuration. The full-

hardware implementation has been executed using a 116 MHz clock, the MicroB-

laze implementation using a 100 MHz clock for the processor and 100 MHz clock

for the PL. The Zynq implementation has been studied for a 100 MHz PL clock, and

different clock frequencies for the processor and DDR. Hence, the dots in the right

lower corner have been measured for 500 MHz DDR and processor frequencies of
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Fig. 7 Execution time vs Power consumption.

100 (the lowest power consumption), 200, 300, 400, 500, and 667 MHz (the highest

power consumption).

The full-hardware implementation is the fastest: between×1.39 and×2.11 faster

than Zynq, and ×7.74 faster than MicroBlaze. There are two reasons: firstly, it runs

at a higher clock frequency; secondly, it requires a lower number of clock cycles

than the hardware/software implementations to run the EA and to send and re-

ceive the individuals from the evaluation module. The hardware’s inherent paral-

lelism allows implementing EA operators that perform operations in just one cycle

while the same process requires many clock cycles to be executed by the proces-

sors. Similarly, Zynq implementation performs better than MicroBlazeas much in

performance as in energy consumption. For this reason, from now on, we focus our

analysis of the performance on the two best implementations.

Next, we measure two different execution times of the two implementations:

(1) the execution time to run 16K generations, and (2) the execution time to find a

solution within a 2.8% of the maximum fitness. The rationale of the second type

of experiments is that those mutation operators implemented in software having a

more complex mechanism may find better solutions in a shorter time than the full-
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hardware implementations. This approach to select the best solutions is widespread

in learning or adaptive real-time systems [26,31]. In these experiments, the max-

imum number of generations is 48K. The hardware/software implementation is

configured with 667 MHz and 500 MHz clocks for the processor and DDR, respec-

tively.

For these experiments, we compare fifteen EA configurations. Table 3 presents

the ranking of the configurations according to the mean execution time to run 16K

generations. The Lilliefors test indicates that the 20 samples of each configuration

follow a normal distribution and the confidence intervals reject the null hypothesis

in all except one case: the two full-hardware implementations that have the same

timing, as detailed in Section 5.1. For all the other experiments the differences are

statistically significant. The full-hardware implementations give the best results. In

the hardware/software configurations, the execution time increases with the num-

ber of mutations, either per bit or gene, and similarly for the experiments with a

random number of mutations. These results are due mainly to the fact that the num-

ber of clock cycles required by the hardware approach is much smaller (6521 clock

cycles per generation) than the number of clock cycles required by the software ap-

proaches. If eHW had been designed to work at high speed, then another source

of variation would be the different clock frequencies for the full-hardware and soft-

ware implementations, because in software the operating clock frequency is limited

by the AXI allowed frequencies.

Fig. 8(a) shows the boxplot for the values of fitness for the best individual in the

last generation – that is, the best individual so far – for 20 runs in each experiment.

The Lilliefors test indicates the best individual fitnesses do not follow a normal

distribution. Fig. 8(b) presents the results of the one-way balanced ANOVA. This
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Rank Configuration mean (s) ci (s)

1 h1fb 0.917 [0 , 0]

2 h90rb 0.917 [-0.3547, -0.3543]

3 s1fb 1.271 [-0.0009, -0.0005]

4 s1fi 1.273 [-0.0178, -0.0174]

5 s2fb 1.290 [-0.0149, -0.0146]

6 s2fi 1.305 [-0.0109, -0.0106]

7 s3fb 1.316 [-0.0158, -0.0154]

8 s4ri 1.331 [-0.0063, -0.0059]

9 s3fi 1.338 [-0.0343, -0.0340]

10 s4fi 1.372 [-0.0705, -0.0701]

11 s10rb 1.408 [-0.0842, -0.0836]

12 s10fb 1.492 [-0.2485, -0.2473]

13 s20fb 1.740 [-0.1907, -0.1879]

14 s90rb 1.929 [-0.3137, -0.3109]

15 s40fb 2.241

Table 3 Mean execution time and confidence intervals after running 16K generations for all con-

figurations. Each configuration has been run 20 times. mean stands for mean execution time and ci

for confidence interval, using the two sample t-test, of the difference between a configuration and

the next ranked configuration.

test determines that the differences are statistically significant (p < 0.05) between

those configurations that their intervals are disjoint.

The two EA configurations that mutate a single bit, h1fb and s1fb, produce the

worst results, and the fitness of the best solutions improves as the number of mu-

tations increases. However, the fact that both configurations perform so badly sug-

gests that the problem is not inherent to the hardware implementation, but to the

mutation operator chosen.
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(a) Boxplot (b) ANOVA

Fig. 8 (a) Boxplot graph of the fitness of the best individual after 16K generations for the training

set. Each experiment has been run 20 times. On each box, the central mark is the median, the edges

of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not

considered outliers, and outliers are plotted individually. (b) ANOVA analysis. Each group mean is

represented by a dot, and the interval is represented by a line extending out from the symbol. Two

group means are significantly different if their intervals are disjoint.

Fig. 9 shows the execution time to find the solutions within 2.8% of the max-

imum fitness. Fig. 9(a) shows the boxplot. The Lilliefors test indicates that each

configuration samples do not follow a normal distribution. The ANOVA test, in

Fig 9(b), determines the results of the configurations are statistically different (p <

0.05) if the intervals do not overlap. The mutation operators that mutate a higher

number of bits produce the best solutions in a lower number of generations, and

this happens both in the hardware and software implementations. In addition, the

mutation operator h90rb requires the same number of cycles per generation as h1fb,

since both operators require the same number of cycles to generate a new offspring,

but h90rb finds the solutions in much less time than h1fb. Again, these results are

because (1) the hardware approaches, h1fb and h90rb, work at a higher clock fre-

quency than the Zynq® XC7-Z020, (2) the number of clock cycles that is required for
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(a) Boxplot (b) ANOVA

Fig. 9 (a) Boxplot graph of the execution time to find the best solutions for both kinds of imple-

mentations and different EAs. Each experiment has been run 20 times. On each box, the central

mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend

to the most extreme data points not considered outliers, and outliers are plotted individually. (b)

ANOVA analysis. Each group mean is represented by a dot, and the interval is represented by a

line extending out from the symbol. Two group means are significantly different if their intervals

are disjoint.

the hardware approach is much smaller than for the software approaches, and (3)

the number of generations of the new hardware approach is as low as the best soft-

ware approaches. The number of mutations in the configurations s90rb and h90rb

follows a normal distribution with average value 45. So, in average, the effective

mutation rate of these two configurations is 0.5. Keeping the number of genes that

are modified high has been proved to be beneficial in this kind of problems char-

acterized by a strong epistasis in which improvements in the fitness require simul-

taneous mutations in multiple genes. Additionally, the elitist truncation selection,

that preserves the best solutions found so far, is a high-pressure selection mecha-

nism, and the use of an aggressive mutation rate balances such a strong selection

operator. Finally, this result is in line with previous results in the literature [27].
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Finally, we are going to estimate the performance of both types of configuration

in the case that the number of vectors or generations were several orders of mag-

nitude greater. A single generation is the execution of the EA, that comprises the

communication between EA and Evaluation modules, followed by the execution

of the evaluation module. Eq. (2) estimates the execution time, L, for g generations

where tea is the execution time of the EA, and tev is the execution time of the eval-

uation. tea = 0.1292 µs for the full-hardware implementation and tea = 13.1771 µs

for the Zynq implementation at 667 MHz. In both implementations tev = cycles
fclk

where cycles is the number of clock cycles to complete the evaluation of 8 individ-

ual, fclk = 116 MHz for the full-hardware implementation and fclk = 100 Mhz for

the hardware/software implementation. Eq. (3) defines the speedup, S, of execution

time, where LHw and LZynq are the execution times for the full-hardware and Zynq

implementations, respectively. Fig. 10 plots Eq. (3) for a different number of cycles

in the evaluation phase. The number of cycles is related to the number of training

vectors, so this figure illustrates how the speedup changes with a higher number

of training vectors. According to this graph, the full-hardware implementation is

×1.17 faster than Zynq implementation even when the number of training vector

increases ×100.

L = g · (tea + tev) (2)

S =
LHw

LZynq
(3)

Applications with more generations will not change the comparisons because

S does not depend on g. Regarding the mutation, the implementation of a more

complex operator working at 116 MHz will operate using the same number of clock
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Fig. 10 Speedup full-hardware vs Zynq implementations for a different number of cycles in the

execution of the evaluation.

cycles because this operator is not in the critical path of the design. So, this will not

change the results significantly. For much more complex operators, the EA module

can be deep-pipelined at much higher clock frequency.

To summarize, in all the metrics related to the characteristics and performance

of a digital circuit, the full-hardware implementation equals or overcomes the hard-

ware/software implementations.

8 Conclusions

In this paper, we present three implementations of an online EHW and compare

their features using the most relevant metrics in the design of hardware: area, tim-

ing, power consumption, energy consumption, and performance.

To our best knowledge, there is no earlier paper devoted to implementing and

comparing different implementations of an EHW system on a current 28 nm process

technology FPGA using two different modern processors, Zynq® XC7-Z020 PS7 5.4

built-in dual-core ARM® Cortex™-A9 and MicroBlaze™ 9.3 soft-core processors,

and one full-hardware implementation. These comparisons illustrate the expected
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achievements of the different alternatives using modern IP processors on current

FPGA technologies.

The full-hardware implementation requires the fewest resources in the FPGA:

101.25% of the total number of slices of the Zynq implementation, and the same

number of BRAMs in the PL. However, the figures for the Zynq implementation

do not take into account the resources required for the processor. Regarding the

comparison with MicroBlaze implementation, the full-hardware implementation

requires 68.64% of the total number of slices and 20.99% of the BRAMs.

Regarding power consumption, the full-hardware implementation consumes

×0.725 of the power of the MicroBlaze implementation and ×0.198 of the power

of the Zynq implementation. The power consumption of the hardware/software

implementations is high because of the presence of the processors.

The energy consumption of the full-hardware implementation is the lowest as

a result of its high performance and low power consumption when compared to

hardware/software implementations. Similarly, the full-hardware implementation

requires the lowest number of resources in the FPGA because of the lack of a pro-

cessor.

The full-hardware implementation gives the highest performance: up to ×7.74

faster than the hardware/software implementation with the worst performance,

and×1.39 faster than the hardware/software implementation using embedded pro-

cessors running at 667 MHz. There are two reasons. First, it runs at a higher clock

frequency: 116 MH vs. 100 MHz of the hardware/software implementation. Sec-

ond, it requires a lower number of clock cycles than the hardware/software imple-

mentations (1) to run the EA and (2) to send and receive the individuals from the

evaluation module. The hardware’s inherent parallelism allows it to implement EA
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operators that perform operations in just one clock cycle, while the same operation

requires many clock cycles to be executed by the processor.

Therefore, the overall achievement of the full-hardware implementation is bet-

ter, provided that the evolutionary operators do not have a convoluted hardware

implementation that impacts in the circuit timing. However, the hardware/software

implementations are more flexible because of its ease to test different implementa-

tion alternatives before choosing the final version.

As a result of the previous comparisons, the hardware/software implementa-

tion is recommended, principally:

1. When flexibility is mandatory in the evolutionary algorithm. Full-hardware im-

plementation cannot be modified easily once the system has been designed and

deployed.

2. In non-high-performance applications (using Zynq® XC7-Z020), regardless of

the power consumption and resource utilization.

3. For low-power consumption, regardless of the performance and the resources.

In any other cases,the full-hardware implementation is superior. That is:

1. Very high-frequency EHW, such as deep-pipelined circuits. Software solutions

cannot take advantage of the performance of these designs because of the lim-

itations of the AXI interface that cannot work at frequencies higher than 250

MHz.

2. Systems with low power consumption and high-performance. Full-hardware

implementation is the only alternative to achieve both goals simultaneously.

3. Complex systems with a high gate count, so there are tight constraints on re-

source utilization of the subsystems, which simultaneously require high perfor-
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mance. Again, full-hardware implementation is the only alternative to achieve

both goals simultaneously.

We have established the previous conclusions using an application with fea-

tures similar to those of the most typical applications in current EHW. Nowadays,

new applications based on bio-inspired systems implemented on FPGA are being

presented, such as deep machine learning. The comparison of the five metrics for

this class of systems will require of new experiments using entirely different imple-

mentations from those presented in this work, with new types of processors located

outside the FPGA and different communication architectures. We will devote future

works to studying these applications.
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