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Abstract. An evolvable hardware (EHW) architecture for high-speed
pattern recognition has been proposed. For a complex face image recogni-
tion task, the system demonstrates (in simulation) an accuracy of 96.25%
which is better than previously proposed EHW architectures. In contrast
to previous approaches, this architecture is designed for online evolution.
Incremental evolution and high level modules have been utilized in order
to make the evolution feasible.

1 Introduction

Image recognition systems requiring a low recognition latency or high through-
put could benefit from a hardware implementation. Furthermore, if the systems
are applied in time-varying environments, and thus need adaptability, online
evolvable hardware (EHW) would seem to be a promising approach [1].

One approach to online reconfigurability is the Virtual Reconfigurable Circuit
(VRC) method proposed by Sekanina in [2]. This method does not change the
bitstream to the FPGA itself, rather it changes the register values of a circuit
already implemented on the FPGA, and obtains virtual reconfigurability. This
approach has a speed advantage over reconfiguring the FPGA itself, and it is also
more feasible because of proprietary formats preventing direct FPGA bitstream
manipulation. However, the method requires much logic resources.

Experiments on image recognition by EHW were first reported by Iwata
et al in [3]. A field programmable logic array (FPLA) device was utilized for
recognition of three different patterns from black and white input images of 8x8
pixels. An EHW road image recognition system has been proposed in [4]. A gate
array structure was used for categorizing black and white input images with a
resolution of 8x4 pixels. Incremental evolution was applied in order to increase
the evolvabiliy.

A speed limit sign recognition system has been proposed in [5]. The archi-
tecture employed a column of AND gates followed by a column of OR gates,
and then a selector unit. A maximum detector then made it possible to decide



a speed limit from 6 categories. Incremental evolution was applied in two ways:
each subsystem was first evolved separately, and then in a second step the sub-
systems were assembled and the selector units were evolved. The input images
were black and white and had a resolution of 7x5 pixels.

An EHW face image classifier system, LoDETT, has been presented by Ya-
sunaga et al. [6]. This system is capable of classifying large input vectors into
several categories. For a face image recognition task, the input images had a reso-
lution of 8x8 pixels of 8-bit grayscale values, belonging to 40 different categories.
In this architecture, the classifier function is directly coded in large AND gates.
The classification is based on detecting the category with the highest number
of activated AND gates. Incremental evolution is utilized for this system too,
where each module for detecting a category is evolved separately. The average
recognition accuracy is 94.7% However, evolution is performed offline and the
final system is synthesized. This approach gives rapid classification in a compact
circuit, but lacks run-time reconfigurability.

The system we have developed earlier [7] addresses the reconfigurability by
employing a VRC-like array of high-level functions. Online/on-chip evolution is
attained, and therefore the system seems suited to applications with changes in
the training set. However, the system is limited to recognizing one category out
of ten possible input categories. The system uses the same image database as [6]
with the same input resolution.

The architecture proposed in this paper expands to categorization of all 40
categories from the image database used in [6], while maintaining the on-line
evolution features from [7]. A change in the architecture has been undertaken
to accomodate for the recognition of multiple categories. While in LoDETT a
large number of inputs to the AND gates could be optimized away during circuit
synthesis, the run-time reconfiguration aspect of the following architecture has
led to a different approach employing fewer elements.

A large amount of litterature exists on conventional face image recognition.
A comprehensive survey can be found in [8]. Work on conventional hardware
face recognition has been undertaken, based on the modular PCA method [9].
However, the recognition speed (11 ms) is still inferior to the LoDETT system.

The next section introduces the architecture of the evolvable hardware sys-
tem. Aspects of evolution are discussed in section 3. Results from the experiments
are given and discussed in sections 4. Finally, section 5 concludes the paper.

2 The EHW Architecture

The EHW architecture is implemented as a circuit whose behaviour and connec-
tions can be controlled through configuration registers. By writing the genome
bitstream from the genetic algorithm to these registers, one obtains the pheno-
type circuit which can then be evaluated. This approach is related to the VRC
technique, as well as to the architectures in our previous works [10,7].



2.1 System Overview

The classifier system consists of K category detection modules (CDMs), one for
each category Ci to be classified – see figure 1. The input data to be classified are
presented to each CDM concurrently on a common input bus. The CDM with
the highest output will be detected by a maximum detector, and the number of
this category will be output from the system. Alternatively, the system could
also state the degree of certainty of a certain category by taking the output of
the corresponding CDM and dividing by the maximum possible output. In this
way, the system could also propose alternative categories in case of doubt.
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Fig. 1. EHW classifier system view.
The pattern to be classified is input to
all of the category detection modules.
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Fig. 2. Category detection module. N
functional units are connected to an N -
input AND gate.

2.2 Category Detection Module

Each CDM consists of M ”rules” or functional unit (FU) rows. See figure 2. Each
FU row consists of N FUs. The inputs to the circuit are passed on to the inputs
of each FU. The 1-bit outputs from the FUs in a row are fed into an N -input
AND gate. This means that all outputs from the FUs must be 1 in order for a
rule to be activated. The outputs from the AND gates are connected to an input
counter which counts the number of activated FU rows.

2.3 Functional Unit

The FUs are the reconfigurable elements of the architecture. As seen in figure
3, each FU behavior is controlled by configuration lines connected to the con-
figuration registers. Each FU has all input bits to the system available at its
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Fig. 3. Functional unit. The configuration lines are shown in gray. The data
MUX selects which of the input data to feed to the functions f1 and f2. The
constant C is given by the configuration lines. Finally, the f MUX selects which
of the function results to output.

inputs, but only one data element (e.g. one byte) of these bits is chosen. One
data element is thus selected from the input bits, depending on the configuration
lines. This data is then fed to the available functions. The choice of functions for
this application will be detailed in section 2.4. In addition, the unit is configured
with a constant value, C. This value and the input byte are used by the function
to compute the output from the unit.

The advantage of selecting which inputs to use, is that one is not required
to connect to all inputs. A direct implementation of the LoDETT system [6]
would have required, in the image recognition case, N = 64 FUs in a row. Our
system typically uses N = 6 units. The rationale is that not all of the inputs are
necessary for the pattern recognition. This is reflected in the don’t cares evolved
in [6].

2.4 Face Image Recognition

The pattern recognition system has been applied to face image recognition. The
fitness of the face recognition system is based on the system’s ability to recognize
the correct person from a range of different face images. The images are taken
from the AT&T Database of Faces (formerly ”The ORL Database of Faces”)3

which contains 400 images divided into 40 people with 10 images each. For
each person, images are taken with variations such as different facial expressions
and head tilt. The original resolutions of the images were 92x112 pixels, 8-bit
grayscale. In our experiment the images were preprocessed by a downsampling
to 8x8 pixels, 8-bit grayscale. This was done to reduce noise and the number of
inputs to the system. The input pattern to the system is then 64 pixels of 8 bits
each (512 bits in total).

Based on the data elements of the input being 8-bit pixels, the functions
available to the FU elements have been chosen to greater than and less than.
Through experiments these functions have shown to work well, and intuitively

3 http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html



this allows for detecting dark and bright spots. Combined use of these functions
for the same pixel makes it possibe to define an intensity range. The constant
is also 8 bits, and the input is then compared to this value to give true or false
as output. This can be summarized as follows, with I being the selected input
value, O the output, and C the constant value:

f Description Function
0 Greater than O = 1 if I > C, else 0
1 Less than O = 1 if I < C, else 0

3 Evolution

This section describes the evolutionary process. The genetic algorithm (GA)
implemented for the experiments follows the Simple GA style [11]. The algorithm
is written to be run on an embedded processor, such as the PowerPC 405 core in
Xilinx Virtex-II Pro or better FPGAs [10]. Allowing the GA to run in software
instead of implementing it in hardware gives an increased flexibility compared
to a hardware implementation.

The GA associates a bit string (genome) with each individual in the popu-
lation. For each individual, the EHW circuit is configured with the associated
bit string, and training vectors are applied on the inputs. By reading back the
outputs from the circuit, a fitness value can be calculated.

3.1 Genome

The encoding of each FU in the genome string is as follows:

Pixel address (6 bit) Function (1 bit) Constant (8 bit)

This gives a total of Bunit = 15 bits for each unit. The genome for one FU row
is encoded as follows:

FU1(15b) FU2(15b) ... FUN (15b)

The total amount of bits in the genome for one FU row is then, with N = 8,
Btot = Bunit ×N = 15× 8 = 120.

3.2 Incremental Evolution of the Category Detectors

Evolving the whole system in one run would give a very long genome, therefore
an incremental approach is chosen. Each category detector CDMi is evolved
separately, since there is no interdependency between the different categories.
This is also true for the FU rows each CDM consists of. Thus, the evolution can
be performed on one FU row at a time. This significally reduces the genome size.

One then has the possibility of evolving CDMi in M steps before proceeding
to CDMi+1. However, we evolve only one FU row in CDMi before proceeding
to CDMi+1. This makes it possible to have a working system in K evolution
runs (that is, 1/M of the total evolution time). While the recognition accuracy
is reduced with only one FU row for each CDM, the system is operational and
improves gradually as more FU rows are added for each CDM.



3.3 Fitness Function

A certain set of the available vectors, Vt, are used for training of the system,
while the remaining, Vv, are used for verification after the evolution run.

Each row of FUs is fed with the training vectors (v ∈ Vt), and fitness is based
on the row’s ability to give a positive (1) output for vectors v belonging to its
own category (Cv = Ci), while giving a negative (0) output for the rest of the
vectors (Cv 6= Ci).

In the case of a positive output when Cv = Ci, the value A is added to the
fitness sum. When Cv 6= Ci and the row gives a negative output (value 0), 1 is
added to the fitness sum. The other cases do not contribute to the fitness value.
The fitness function F for a row can then be expressed in the following way,
where o is the output of the FU row:

F =
∑
v∈Vt

xv where xv =
{

A× o if Cv = Ci

1− o if Cv 6= Ci
(1)

For the experiments, a value of A = 64 has been used. This emphasis on the
positive matches for Ci has shown to speed up the evolution.

3.4 Evolution Parameters

For the evolution, a population size of 30 is used. Elitism is used, thus, the best
individual from each generation is carried over to the next generation. The (single
point) crossover rate is 0.9, thus the cloning rate is 0.1. A roulette wheel selection
scheme is applied. Linear fitness scaling is used, with 6 expected copies of the
best individual. The mutation rate is expressed as a probability for a certain
number, n, of mutations on each genome. The probabilities are as follows:

n 1 2 3 4
p(n) 7

10
1
10

1
10

1
10

4 Results

This section presents the results of the experiments undertaken. The results are
based on a software simulation of the EHW architecture.

4.1 Architecture parameters

The architecture parameters N and M , that is, the number of FUs in an FU
row and the number of FU rows in a CDM, respectively, have been evaluated.
As can be seen in figure 4, the number of generations required to evolve an FU
row is dependent of the number of FUs in such a row.

Too few FUs makes it difficult for the FU row to distinguish between the
right and wrong categories. Too many FUs give the same problem, as well as
having the problem of a longer genome and thus a larger search space. We have
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Fig. 4. Generations required to evolve rows of different number of FUs. Average
over 5 evolution runs.

not seen any discernable connection between the number of FUs in an FU row
and the recognition accuracy, as long as the row could be evolved to a maximum
fitness value.

However, increasing the number of FU rows for a category leads to an increase
in the recognition accuracy, as seen in figure 5. As the number of FU rows
increases, so does the output resolution from each CDM. Each FU row is evolved
from an initial random bitstream, which ensures a variation in the evolved FU
rows. To draw a parallel to the system in [6], each FU row represents a kernel
function. More FU rows give more kernel functions (with different centers) that
the unknown pattern can fall into.
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Fig. 6. Accuracy obtained for vary-
ing the number of training vectors per
category, with N = 6 and M = 10.

4.2 Recognition Accuracy

10 evolution runs were conducted, each with a different selection of test vectors.
That is, the 10% of the images which were used as test vectors were chosen
differently in each evolution run. For K = 40, M = 8 and N = 6, an average
recognition accuracy of 96.25% has been achieved. This result is slightly better
than the average accuracy of 94.7% reported from the LoDETT system [6].



An experiment varying the number of training vectors has also been under-
taken. 1 to 9 training vectors were used for each category. The rest were used
as test vectors for calculating the accuracy. The results can be seen in figure 6.
The results are competitive to traditional image recognition algorithms’ results
on the same dataset, such as Eigenfaces (around 90.0% for 8 training vectors
per category) [12], or Fisherfaces (around 95.0% for 8 training vectors) [12], but
other methods, such as SVM (98%) [13], perform better.

4.3 Evolution Speed

For K = 40, M = 6 and N = 10, the average number of generations (over 10
runs) required for each evolution run (that is, one FU row) is 219, thus an average
of 52560 generations is required for the entire system. The average evolution time
for the system is 140s on an Intel Xeon 5160 processor using 1 core. This gives
an average of 0.6s for one FU row, or 23.3s for 40 rows (the time before the
system is operational). It is expected that a hardware implementation will yield
lower training times, as the evaluation time for each individual will be reduced.

4.4 Hardware Implementation

A preliminary implementation of an FU row has been synthesized for an FPGA
in order to achieve an impression of resource usage. When synthesized for a Xilinx
XC2VP30, 8 FU rows of 6 FUs (for one CDM) uses 328 slices, that is, 2% of the
device. In this case, the data selector MUX in the FU is implemented by using
time multiplexing, since directly implementing a 64x8-bit multiplexer for each
FU requires many resources in the FPGA. The downside of time multiplexing is
that each of the 64 pixels must be present on the inputs for a clock cycle before
the classification can be made. With an estimate of maximum 10 cycles needed
for the bit counter and the maximum detector, the system would require 74 clock
cycles in order to classify a pattern. For a 100MHz system this would give more
than 1M classifications per second, that is, less than 1µs for one image.

4.5 Discussion

The main improvement of this system over the LoDETT system is the aspect of
on-line evolution. This is achieved by adapting a VRC-like architecture, allowing
for quick reconfiguration. By selecting a subset of the input pixels for each image,
the size of the circuit can be kept down. The drawback of this method is the extra
time or resources needed for implementing the pixel selector MUXes. A positive
side effect of the on-line adaptation is the increased recognition accuracy.

Real-time adaptation could be achieved by having evolution running on one
separate FU row implemented on the same chip as the operational image recog-
nition system. Thus, when there are changes in the training set (e.g. new samples
are added), the FU rows can be re-evolved, one at a time, while the main system
is operational using the currently best configuration. Since one FU row requires
little hardware resources compared to the full system, little overhead is added.



A full system-on-chip hardware implementation is planned. The GA will
run on an embedded processor in a Xilinx FPGA. Evolution speed as well as
recognition speed should be measured. Furthermore, it would be interesting to
improve the architecture in ways of dynamically adjusting the number of FUs and
rows for each CDM, depending on its evolvability. Other architectural changes
could also be considered, e.g. some kind of hierachical approaches, for increased
recognition accuracy or improved resource usage.

Secondly, variations of the architecture should be tested on other pattern
recognition problems. Since the main advantage of this architecture is its very
high recognition speed, applications requiring high throughput should be suit-
able. The LoDETT system has been successfully applied to genome informatics
and other applications [14,15]. It is expected that the proposed architecture also
could perform well on similar problems, if suitable functions for the FUs are
found.

5 Conclusions

An EHW architecture for a complex pattern recognition task has been proposed.
The architecture supports run-time reconfiguration and is thus suitable for im-
plementation in an on-chip evolution system. The architecture proposed utilizes
data buses and higher level functions in order to reduce the search space. In
addition, evolution of the system follows an incremental approach. Short evo-
lution time is needed for a basic working system to be operational. Increased
generalisation can then be added. The classification accuracy has been shown
to slightly better than earlier offline EHW approaches. The system seems suit-
able for applications requiring high speed and online adaptation to a changing
training set.
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