Online Evolution for a High-Speed Image Recognition System Implemented On
a Virtex-II Pro FPGA

Kyrre Glette and Jim Torresen
University of Oslo
Department of Informatics

P.O. Box 1080 Blindern, 0316 Oslo, Norway

{kyrrehg,jimtoer} @ifi.uio.no

Abstract

Online incremental evolution for a complex high-speed
pattern recognition architecture has been implemented on
a Xilinx Virtex-1I Pro FPGA. The fitness evaluation module
is entirely hardware-based in order to increase the speed of
the circuit evaluation which uses a large training set (360
images/23040 bytes). The fitness evaluation time for 1000
generations consisting of 16 individuals is 623ms, twice as
fast as software fitness evaluation performed on a work-
station running at a 30 times higher clock frequency. The
rest of the genetic algorithm (GA) runs in software on a
PowerPC 405 processor core on the FPGA. The total evo-
lution time for 1000 generations is 1313ms, equivalent to
the total time used by the workstation. Resource utilization
for the fitness evaluation module is 1393 slices (10%) of a
XC2VP30 device.

1 Introduction

Hardware implementation could be important for image
recognition systems requiring a low recognition latency or
high throughput. Furthermore, if the systems are applied in
time-varying environments, and thus need adaptability, on-
line evolvable hardware (EHW) would seem to be a promis-
ing approach [10].

One approach to online reconfigurability is the virtual
reconfigurable circuit (VRC) method proposed by Sekanina
in [7]. This method does not change the bitstream to the
FPGA itself, rather it changes the register values of a circuit
already implemented on the FPGA, and obtains virtual re-
configurability. This approach has a speed advantage over
reconfiguring the FPGA itself, and it is also more feasible
because of proprietary formats preventing direct FPGA bit-
stream manipulation. However, the method requires much

Moritoshi Yasunaga
University of Tsukuba
Graduate School of Systems
and Information Engineering
1-1-1 Ten-ou-dai, Tsukuba, Ibaraki, Japan
yasunaga@cs.tsukuba.ac.jp

logic resources.

Experiments on image recognition by EHW were first
reported by Iwata et al in [5]. A field programmable logic
array (FPLA) device was utilized for recognition of three
different patterns from black and white input images of 8x8
pixels. An EHW road image recognition system has been
proposed in [8]. A gate array structure was used for cate-
gorizing black and white input images with a resolution of
8x4 pixels. Incremental evolution was applied in order to
increase the evolvability.

A speed limit sign recognition system has been proposed
in [9]. The architecture employed a column of AND gates
followed by a column of OR gates, and then a selector
unit. A maximum detector then made it possible to de-
cide a speed limit from 6 categories. Incremental evolution
was applied in two ways: each subsystem was first evolved
separately, and then in a second step the subsystems were
assembled and the selector units were evolved. The input
images were black and white and had a resolution of 7x5
pixels.

An EHW face image classifier system, logic design us-
ing evolved truth tables (LoDETT), has been presented by
Yasunaga et al. [13]. This system is capable of classifying
large input vectors into several categories. For a face im-
age recognition task, the input images had a resolution of
8x8 pixels of 8-bit gray scale values, belonging to 40 dif-
ferent categories. In this architecture, the classifier function
is directly coded in large AND gates. The classification is
based on detecting the category with the highest number of
activated AND gates. Incremental evolution is utilized for
this system too, where each module for detecting a category
is evolved separately. The average recognition accuracy is
94.7% However, evolution is performed offfine and the final
system is synthesized. This approach gives rapid classifica-
tion in a compact circuit, but lacks run-time reconfigurabil-

1ty.

A system we have developed earlier [3] addresses the re-
configurability by employing a VRC-like array of high-level
functions. Online/on-chip evolution is attained, and there-
fore the system seems suited to applications with changes
in the training set. However, the system is limited to rec-
ognizing one category out of ten possible input categories.
The system uses the same image database as [13] with the
same input resolution.

The authors then proposed a novel system in [2] which
expands to categorization of all 40 categories from the im-
age database used in [13], while maintaining the on-line
evolution features from [3]. A change in the architecture
was undertaken to accommodate for the recognition of mul-
tiple categories. In LODETT a large number of inputs to the
AND gates could be optimized away offline, during circuit
synthesis, and thus save space on the FPGA implementa-
tion of the final circuit. The online, run-time reconfigura-
tion aspect of the described architecture led to a different
approach, employing fewer, but more flexible, elements. A
higher recognition accuracy (96.25%) than the previously
described systems was also obtained.

In this paper the architecture proposed and simulated in
[2] has been subject for hardware implementation. In par-
ticular, the evolutionary part of the system, consisting of a
processor core running a GA and a fitness evaluation hard-
ware module, has been implemented to run as a system-on-
a-chip (SoC) on an FPGA.

A large amount of literature exists on conventional face
image recognition. A comprehensive survey can be found
in [14]. Work on conventional hardware face recognition
has been undertaken, based on the modular PCA method
[6]. However, the recognition speed (11 ms) is still inferior
to the LoDETT system.

The next section introduces the architecture of the evolv-
able hardware system. Then, the image recognition-specific
implementation is presented in section 3. Aspects of evolu-
tion are discussed in section 4. Results from the experi-
ments are given and discussed in section 5. Finally, section
6 concludes the paper.

2 The Online EHW Architecture

The EHW architecture is implemented as a circuit whose
behaviour and connections can be controlled through con-
figuration registers. By writing the genome bitstream from
the genetic algorithm to these registers, one obtains the phe-
notype circuit which can then be evaluated. This approach
is related to the VRC technique, as well as to the architec-
tures in our previous works [1, 3].

ONLINE EVOLVABLE SYSTEM TOP-LEVEL VIEW

I

|

|

I

I

|

configuration EVALUATION |
& MODULE [
|

I

I

I

|

|

|

training fitness

|
I
I
I
I
I
|
|
|
| patterns
I
|
|
|
I
|
I
I
|
|

configuration

CLASSIFICATION
MODULE

input category
pattern classification

Figure 1. High level system view.

2.1 System Overview

A high-level view of the system can be seen in figure 1.
The system consists of three main parts — the classification
module, the evaluation module, and the CPU. The classi-
fication module operates stand-alone except for its recon-
figuration which is carried out by the CPU. In a real-world
application one would imagine some preprocessing module
providing the input pattern and possibly some software in-
terpretation of the classification result. The evaluation mod-
ule, which will be detailed in section 3.3, operates in close
cooperation with the CPU for the evolution of new configu-
rations. The evaluation module accepts a configuration bit-
string, also called genome, and calculates its fitness value.
This information is in turn used by the CPU for running the
rest of the GA.

2.2 Classification Module Overview

The classifier system consists of K category detection
modules (CDMs), one for each category C; to be classified
—see figure 2. The input data to be classified is presented to
each CDM concurrently on a common input bus. The CDM
with the highest output value will be detected by a maxi-
mum detector, and the identifying number of this category
will be output from the system. Alternatively, the system
could also state the degree of certainty of a certain cate-
gory by taking the output of the corresponding CDM and
dividing by the maximum possible output. In this way, the
system could also propose alternative categories in case of
doubt.

CLASSIFICATION SYSTEM TOP-LEVEL MODULE

CATEGORY DETECTION MODULE

i
|
input ! I
pattern: CDM;, —~— M |
| A :
| X. |
' |
: CDM, D |
| E '
| T /!
: . E I category
| . '(I': : classification
|
| o) :
| R |
| CDMy 7 |
|
' |
I I

Figure 2. EHW classification module view.
The pattern to be classified is input to all of
the category detection modules.

2.3 Category Detection Module

Each CDM consists of M rules” or functional unit (FU)
rows — see figure 3. Each FU row consists of NV FUs. The
inputs to the circuit are passed on to the inputs of each FU.
The 1-bit outputs from the FUs in a row are fed into an
N-input AND gate. This means that all outputs from the
FUs must be 1 in order for a rule to be activated. The out-
puts from the AND gates are connected to an input counter
which counts the number of activated FU rows.

2.4 Functional Unit

The FUs are the reconfigurable elements of the architec-
ture. This section describes the FU in a general way, and
section 3.2 will describe the application-specific implemen-
tation. As seen in figure 4, each FU behavior is controlled
by configuration lines connected to the configuration regis-
ters. Each FU has all input bits to the system available at its
inputs, but only one data element (e.g. one byte) of these
bits is chosen. One data element is thus selected from the
input bits, depending on the configuration lines. This data
is then fed to the available functions. Any number and type
of functions could be imagined, but for clarity, in figure 4
only two functions are illustrated. The choice of functions
for the image recognition application will be detailed in sec-
tion 3.1. In addition, the unit is configured with a constant
value, C'. This value and the input data element are used by
the function to compute the output from the unit.

input
pattern FU, | [FU, FU,,
)) 1
N-input AND
Lo l
FU,| [FUy | e« [FUon
¥ ¥)
N-input AND

}_,

AmMmH4zZcCcoOo0

1 |

FUui| [FUps| « ¢« [FUun
' ¥ '
N-input AND }—>

I
I
I
I
I
I
I
I
I
I
I
I
I
loutput

Figure 3. Category detection module. N func-
tional units are connected to an N-input AND

gate.

Input
pattern

FUNCTIONAL UNIT

Configuration

Output

Figure 4. Functional unit. The configuration
lines are shown in gray. The data MUX se-
lects which of the input data to feed to the
functions f; and f,. The constant C is given
by the configuration lines. Finally, the f MUX
selects which of the function results to out-

put.

Original

image ‘ '

Preprocessing * >

|

[
Resampled 6.4 I
image pixels — |

|

|

Figure 5. The original images are resampled
to a resolution of 8x8 pixels before being fed
to the inputs of the classification module.

The advantage of selecting which inputs to use, is that
one is not required to connect to all inputs. A direct imple-
mentation of the LODETT system [13] would have required,
in the image recognition case, N = 64 FUs in a row. Our
system typically uses N = 8 units. The rationale is that not
all of the inputs are necessary for the pattern recognition.
This is reflected in the don’t cares evolved in [13].

3 Implementation

This section describes the image recognition application,
and the following application-specific implementations of
the FU and the evaluation module.

3.1 Face Image Recognition

The pattern recognition system has been applied to face
image recognition. The fitness of the face recognition sys-
tem is based on the system’s ability to recognize the correct
person from a range of different face images. The images
are taken from the AT&T Database of Faces (formerly "The
ORL Database of Faces”)! which contains 400 images di-
vided into 40 people with 10 images each. For each person,
images are taken with variations such as different facial ex-
pressions and head tilt. The original resolutions of the im-
ages were 92x112 pixels, 8-bit gray scale. In our experi-
ment the images were preprocessed by a downsampling to
8x8 pixels, 8-bit gray scale. This was done to reduce noise
and the number of inputs to the system. The input pattern to
the system is then 64 pixels of 8 bits each (512 bits in total)
—see figure 5.

Based on the data elements of the input being 8-bit pix-
els, the functions available to the FU elements have been
chosen to greater than and less than or equal. Through
experiments these functions have shown to work well, and
intuitively this allows for detecting dark and bright spots.

Ihttp://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html

FUNCTIONAL UNIT IMPLEMENTATION

pixel
I address
»

t ‘s —
inpu
pixel

address

> OUTPUT
b REG.

|

|
input |
pixel |
|

I

|

|

value

Y

constant

‘funchom

configuration
input

Figure 6. Implementation of the FU for the im-
age recognition case.

Combined use of these functions for the same pixel makes
it possible to define an intensity range. The constant is also
8 bits, and the input is then compared to this value to give
true or false as output. This can be summarized as follows,
with I being the selected input value, O the output, and C
the constant value:

Function
O=1ifI >C,else0
O=1ifI <C,else0

f | Description
Greater than
1 | Less than or equal

3.2 Functional Unit Implementation

Based on the choice of input data elements and func-
tions above, the application-specific implementation of the
FU can be determined. See figure 6. As described in the
introduction, the VRC technique used for reconfiguration
of circuits has the disadvantage of requiring much logic re-
sources. This especially becomes the case when one needs
to select the input to a unit from many possible sources,
which is a common case for EHW. This is an even bigger
problem when one works with data buses as inputs instead
of bit signals.

Instead of using large amounts of multiplexer resources
for selecting one 8-bit pixel from 64 possible, we have opted
for a ”time multiplexing” scheme, where only one bit is pre-
sented to the unit at a time. The 64 pixels are presented
sequentially, one for each clock cycle, together with their
identifying image address. The FU checks the input pixel
address for a match with the pixel address stored in the con-
figuration register, and in the case of a match, the output
value of the FU is stored in a memory element. This method
thus requires a maximum of 64 clock cycles before an FU
has selected its input value, but saves the use of logic re-
sources for multiplexing.

FITNESS EVALUATION MODULE

|
| IMAGE)
| RAM pixel
I image/pixel
I u address ixel number
Q ADDR. GEN. 2
{2 o » &CONTROL v
@ LOGIC
=
Zz

»| CONFIG.
REGISTER

configuratio

l ANDed output

, | HEADER
RAM

image info FITNESS

COUNTER

|
|
|
|
|
|
FU ROW :
|
|
|
|
|

fitness value

Figure 7. Evaluation module. For clarity, only
one FU row is illustrated. The CPU has
access to the various registers and RAMs
through the on-chip bus and the bus inter-
face.

The pixel input value is then used for comparison with
the constant value C' stored in the configuration. Since
the two functions greater than and less than or equal are
opposite, only a greater than-comparator is implemented,
and the function bit in the configuration decides whether to
choose the direct or the negated output.

3.3 Evaluation Module

The evaluation module computes the fitness for an FU
row, which is the phenotype for an individual in the evolu-
tion. The reason for this will be explained in section 4.2.
After being configured through the configuration register
— see figure 7, the FU row needs to be fed with all train-
ing vectors in the training set, in this case all the training
face images of all categories. When using 9 face images
for training in each of the 40 categories, this equals 360 im-
ages of 64 pixels. In this implementation these images are
preloaded into the image RAM, which consists of Xilinx
Block RAM (BRAM), local to the evaluation module. This
is done in order to facilitate the bursting of pixels to the FU
row. An extra BRAM block, the header RAM, contains im-
age header info, i.e. which category the current image be-
longs to. One could also put the training images in external
RAM as long as the throughput is guaranteed.

When the configuration register has been written to by
the CPU, the evaluation can be started. The address gen-
erator generates addresses for the image and header RAM
blocks. The control logic tells the fitness counter when to
sample the output of the FU row for fitness calculation. This

happens each time after the 64 pixels in one image have
been cycled. Finally, when all of the images have been cy-
cled through, an interrupt is sent to the CPU and the calcu-
lated fitness value is presented for readback. The details of
the fitness calculation will be presented in section 4.3.

Note that the FU row can be duplicated in order to
achieve parallel fitness evaluation of different individuals in
a generation. This requires a separate configuration register
and fitness counter for each FU row, but the pixels are being
fed simultaneously to all of the rows. In our implementation
we have implemented 8 FU rows in parallel, thus allowing
for simultaneous fitness evaluation of 8 individuals.

4 Evolution

This section describes the evolutionary process. The GA
implemented for the experiments follows the Simple GA
style [4]. The algorithm is written to be run on the PowerPC
405 core in the Xilinx Virtex-II Pro (or better) FPGAs [1].
Allowing the GA to run in software instead of implementing
it in hardware gives an increased flexibility compared to a
hardware implementation.

The GA associates a bit string (genome) with each in-
dividual in the population. For each individual, the fit-
ness evaluation circuit is configured with the associated bit
string, and training vectors are applied on the inputs. By
reading back the fitness value from the circuit, the individu-
als can be ranked and used in selection for a new generation.
When an individual with a maximum possible fitness value
has been created, the evolution run is over and the bit string
can be used to configure the operational classification cir-
cuit.

4.1 Genome

The encoding of each FU in the genome string is as fol-
lows:

| Pixel address (6 bit) | Function (1 bit) | Constant (8 bit) |

This gives a total of B,,;+ = 15 bits for each unit. The
genome for one FU row is encoded as follows:

[FUL(15b) | FU(15b) [... | FUN(I5D) |

The total amount of bits in the genome for one FU row is
then, with N = 8, Byt = Bynit X N =15 x 8 =120. In
the implementation this is rounded up to 128 bits (4 words).

4.2 Incremental Evolution of the Cate-
gory Detectors

Evolving the whole classification system in one run
would give a very long genome, therefore an incremen-
tal approach is chosen. Each category detector C'DM; is

evolved separately, since there is no interdependency be-
tween the different categories. This is also true for the FU
rows each CDM consists of. Thus, the evolution can be per-
formed on one FU row at a time. This significantly reduces
the genome size.

One then has the possibility of evolving CDM,; in M
steps before proceeding to C' DM, ;. However, we evolve
only one FU row in C' D M; before proceeding to CDM; 1.
This makes it possible to have a working system in K evo-
lution runs (that is, 1 /M of the total evolution time). While
the recognition accuracy is lower with only one FU row for
each CDM, the system is operational and improves gradu-
ally as more FU rows are added for each CDM.

4.3 Fitness Function

A certain set of the available vectors, V;, are used for
training of the system, while the remaining, V,,, are used for
verification after the evolution run. Each row of FUs is fed
with the training vectors (v € V}), and fitness is based on
the row’s ability to give a positive (1) output for vectors v
belonging to its own category (C, = C;), while giving a
negative (0) output for the rest of the vectors (C, # C;).

In the case of a positive output when C,, = C}, the value
A is added to the fitness sum. When C,, # C; and the row
gives a negative output (value 0), 1 is added to the fitness
sum. The other cases do not contribute to the fitness value.
The fitness function F' for a row can then be expressed in
the following way, where o is the output of the FU row:

F:va

veV;

{ AXxo ifCU = Cl
where z,, =

1—0 ifC, #C;
(1

For the experiments, a value of A = 64 has been used. This
emphasis on the positive matches for C; has shown to speed
up the evolution.

4.4 Genetic Algorithm Implementation

Since the fitness evaluation is performed by the hardware
evaluation module, one can save time by letting the evalua-
tion module do fitness evaluation of some individuals while
other individuals are created by the CPU. When one new
individual has been created, the CPU can send it to the eval-
uation module, and continue creating the next individual.
The evaluation module will then send an interrupt when the
evaluation is done, and a new individual can be sent for eval-
uation.

5 Results

This section presents the results of the experiments un-
dertaken. A complete software simulation and details about

Resource Used | Available | Percent
Slices 1393 | 13696 10
Slice Flip Flops | 1419 | 27392 5

4 input LUTSs 1571 | 27392 5

18Kb BRAMs 17 136 12

Table 1. Post-synthesis device utilization for
the 8-row evaluation module (except the IPIF
bus interface) implemented on the XC2VP30.

Resource Used | Available | Percent
Slices 145 13696 1.1
Slice Flip Flops | 170 | 27392 0.6
4 input LUTSs 115 27392 0.4

Table 2. Post-synthesis device utilization for
one 8-FU row (including configuration regis-
ters and fitness counter).

the recognition accuracy and architecture parameters have
been reported in [2]. The following results concentrate on
the implementation of the online evolution system. The
hardware implementation was verified by feeding the evalu-
ation module and the software simulator the same genome,
and reading back the fitness value. An evolution run was
also performed on the online system, with a maximum fit-
ness value individual as the result. In the experiments a
population size of 16 was used.

5.1 Device Utilization and Clock Speed

The evaluation module, with 8 FU row instances for par-
allel evaluation of individuals, each with N = 8 units, was
implemented on a Virtex-II Pro XC2VP30 device. The de-
vice utilization can be seen in table 1. These numbers do
not include the device utilization of the Xilinx IPIF bus in-
terface, used to simplify the connection to the on-chip bus.
The device utilization of one single FU row was also mea-
sured, see table 2. From these numbers one can deduct the
resources required for any increase or decrease in fitness
evaluation parallelism. If one wants to sacrifice evaluation
speed for smaller size, the resource usage for a minimal
evaluation module (containing one FU row) is 371 slices,
that is, 2% of the device.

Synthesis of the evaluation module reports a maximum
clock frequency of 131MHz. On the evaluation board the
PowerPC core runs at 300MHz, while the rest of the system
on the FPGA runs at I00MHz.

5.2 Evolution Speed

Xeon
EHW | Xeon EAW

GA clock freq.(MHz) | 300 3000 | 10
Fit. clock freq.(MHz) | 100 3000 | 30

GA time(ms) 926 9 0.01
Fit. eval. time(ms) 623 1323 | 2.12
Total time(ms)* 1313 | 1323 | 1.01

Table 3. Speed comparison of the online EHW
and Xeon 5160 workstation systems. GA time
indicates the evolution time except the time
used for fithess evaluation. The last column
indicates the ratio between the second and
first columns.

The speed of an evolution run of 1000 generations was
measured for the online EHW system and a state-of-the-art
Intel Xeon 5160 workstation for speed comparison. The re-
sults can be seen in table 3. The total evolution time for the
two systems is almost equal, even though the Xeon work-
station runs at 10 to 30 times the clock speed of the online
system. Time is spent on different tasks in the two sys-
tems. This is illustrated in figure 8. Almost all of the time
is spent on fitness evaluation in the workstation, while the
time needed for this is lower for the online system, because
of the hardware implementation. The online system on the
other hand spends a large portion of the time running the
rest of the GA, since this part is not hardware optimized.
This is much slower than the workstation due not only to the
PowerPC’s lower clock frequency, but also slower caches
(100MHz) and in general a less powerful processor archi-
tecture. In addition the GA is not fully optimized for the
integer-only PowerPC.

It is interesting to note from table 3 that the total evolu-
tion time of the online system is lower than the sum of the
time spent on fitness evaluation and the time spent on the
rest of the evolution. This is because some of the fitness
evaluation is performed in the hardware module in parallel
with the software GA running on the processor.

5.3 Discussion

By implementing the time multiplexing scheme for deal-
ing with the high number of inputs to each FU, we have
saved a large amount of multiplexer resources on the FPGA.
The main drawback of the time multiplexing scheme is the
number of cycles required, in this case 64, before each FU
has the desired input. This is compensated for by adding
several FU rows in parallel. In our experiment, having a
parallelism of 8 FU rows made the system evolve solutions

@ GA w/o fitness eval. B Remaining fitness time

1400
1200 -
1000 7

800
600

400

Time (ms)/1000 gens.

200

0

SoC EHW
300/100MHz

Xeon 5160
3000 MHz

Figure 8. Evolution speeds. The fithess time
for the online system only reflects the time
the CPU had to wait for the evaluation mod-
ule.

as fast as a state-of-the-art workstation, running at much
higher frequencies and having a much higher power con-
sumption. This implies that a system has an average total
evolution time of 140s for an entire system [2], although
the system would be operational (with a lower accuracy) in
a much shorter time.

Having 8 rows in parallel for fitness evaluation does not
require very much resources on the FPGA used in our ex-
periments, but it could be desirable to move the design to
smaller devices, or achieve even higher evolution speeds.
One approach which could increase the evaluation speed
further would be to add a smaller local memory to each FU
row in the evaluation module, containing the current image
used for fitness training. The FUs could then, in turn, look
up the desired pixels in this memory. This would take, in the
case of 8 FUs, only 8 cycles, which is 8 times faster than 64
cycles. This would however require a constant refill of this
local memory so that the next image is always ready, which
means that the memory needs to be dual-ported and have a
bandwidth of 64 bits. In Xilinx Virtex-II Pro FPGAs this
could be accomplished by using two 32-bit wide BRAM
blocks per row. Applying this to the entire classification
system may require much RAM resources, but it could be
possible using this solution only for the fitness evaluation
module, and it should therefore be investigated.

The analysis of the evolution speed of the online sys-
tem reveals that much time is spent on the GA algorithm
in software. Fitness sorting, selection and scaling should
be optimized, and it is expected that this would result in an
important speed increase. Moreover, further tuning of the

software/hardware parallelism should be applied.

Although the classifier module has not yet been fully im-
plemented in hardware, the results of the implementation so
far indicate that the classification time estimate of less than
1us for one image, suggested in [2], will hold given that
there are enough resources on the target device.

Future work includes completion of the classification
module and the entire on-chip adapting system, as well as
investigating the above-mentioned alternative for faster fit-
ness evaluation. In addition, other applications for the sys-
tem should be investigated. Suitable applications should
be pattern recognition problems requiring high recognition
speed. The LoDETT system has been successfully applied
to genome informatics and other applications [11, 12]. It is
expected that the architecture described in this paper could
perform well on similar problems, if suitable functions for
the FUs are found.

6 Conclusions

Online evolution has been implemented on an FPGA for
a complex and high-speed pattern recognition system. Still,
as the evolution follows an incremental scheme, few FPGA
resources are needed for evolution compared to the size of
the entire system. The functionality has been verified and
the evolution speed is equivalent to a software implementa-
tion on a high-end workstation. The degree of parallelism
of fitness evaluations, and thus evolution speed, can be ad-
justed at the cost of more resources. Further optimization
of the software is possible and needed. On-chip evolution
makes the system suitable for continuous adaptation in an
embedded application where power consumption and size
requirements are important.

Acknowledgment

The research is funded by the Research Council of
Norway through the project Biological-Inspired Design of
Systems for Complex Real-World Applications (proj. no.
160308/V30).

References

[1] K. Glette and J. Torresen. A flexible on-chip evolution
system implemented on a Xilinx Virtex-II Pro device. In
Evolvable Systems: From Biology to Hardware. Sixth Inter-
national Conference, ICES 2005, volume 3637 of Lecture
Notes in Computer Science, pages 66-75. Springer-Verlag,
2005.

[2] K. Glette, J. Torresen, and M. Yasunaga. An online ehw
pattern recognition system applied to face image recogni-
tion. In M. G. et al., editor, Applications of Evolutionary
Computing, EvoWorkshops2007: EvoCOMNET, EvoFIN,

(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

EvoIASP, Evolnteraction, EvoMUSART, EvoSTOC, Evo-
TransLog, volume 4448 of Lecture Notes in Computer Sci-
ence, pages 271-280. Springer-Verlag, 2007.

K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. On-
chip evolution using a soft processor core applied to image
recognition. In Proc. of the First NASA /ESA Conference on
Adaptive Hardware and Systems (AHS 2006), pages 373—
380, Los Alamitos, CA, USA, 2006. IEEE Computer Soci-
ety.

D.y Goldberg. Genetic Algorithms in search, optimization,
and machine learning. Addison—Wesley, 1989.

M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi.
A pattern recognition system using evolvable hardware. In
Proc. of Parallel Problem Solving from Nature IV (PPSN
1V), volume 1141 of Lecture Notes in Computer Science,
pages 761-770. Springer-Verlag, September 1996.

H. Ngo, R. Gottumukkal, and V. Asari. A flexible and ef-
ficient hardware architecture for real-time face recognition
based on eigenface. In Proc. of IEEE Computer Society An-
nual Symposium on VLSI, pages 280-281. IEEE, 2005.

L. Sekanina and R. Ruzicka. Design of the special fast re-
configurable chip using common F PGA. In Proc. of Design
and Diagnostics of Electronic Circuits and Sy stems - IEEE

DDECS’ 2000, pages 161-168, 2000.

J. Torresen. Scalable evolvable hardware applied to road
image recognition. In J. L. et al., editor, Proc. of the 2nd
NASA/DoD Workshop on Evolvable Hardware, pages 245—
252. IEEE Computer Society, Silicon Valley, USA, July
2000.

J. Torresen, W. J. Bakke, and L. Sekanina. Recognizing
speed limit sign numbers by evolvable hardware. In Parallel
Problem Solving from Nature, volume 2004, pages 682—691.
Springer Verlag, 2004.

X. Yao and T. Higuchi. Promises and challenges of evolv-
able hardware. In T. Higuchi et al., editors, Evolvable Sys-
tems: From Biology to Hardware. First International Con-
ference, ICES 96, volume 1259 of Lecture Notes in Com-

puter Science, pages 55-78. Springer-Verlag, 1997.
M. Yasunaga et al. Gene finding using evolvable reason-

ing hardware. In P. H. A. Tyrrel and J. Torresen, edi-
tors, Evolvable Systems: From Biology to Hardware. Fifth
International Conference, ICES’03, volume 2606 of Lec-
ture Notes in Computer Science, pages 228-237. Springer-

Verlag, 2003.

M. Yasunaga, J. H. Kim, and I. Yoshihara. The applica-
tion of genetic algorithms to the design of reconfigurable
reasoning vlsi chips. In FPGA ’00: Proceedings of the
2000 ACM/SIGDA eighth international symposium on Field
programmable gate arrays, pages 116—-125, New York, NY,
USA, 2000. ACM Press.

M. Yasunaga, T. Nakamura, I. Yoshihara, and J. Kim.
Genetic algorithm-based design methodology for pattern
recognition hardware. In J. Miller et al., editors, Evolvable
Systems: From Biology to Hardware. Third International
Conference, ICES 2000, volume 1801 of Lecture Notes in
Computer Science, pages 264-273. Springer-Verlag, 2000.
W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld.
Face recognition: A literature survey. ACM Comput. Surv.,
35(4):399-458, 2003.

