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Abstract. An evolvable hardware (EHW) system for high-speed sonar
return classification has been proposed. The system demonstrates an av-
erage accuracy of 91.4% on a sonar spectrum data set. This is better than a
feed-forward neural network and previously proposed EHW architectures.
Furthermore, this system is designed for online evolution. Incremental evo-
lution, data buses and high level modules have been utilized in order to
make the evolution of the 480 bit-input classifier feasible. The classifica-
tion has been implemented for a Xilinx XC2VP30 FPGA with a resource
utilization of 81% and a classification time of 0.5µs.

1 Introduction

High-speed pattern recognition systems applied in time-varying environments,
and thus needing adaptability, could benefit from an online evolvable hardware
(EHW) approach [1]. One EHW approach to online reconfigurability is the Virtual
Reconfigurable Circuit (VRC) method proposed by Sekanina in [2]. This method
does not change the bitstream to the FPGA itself, rather it changes the register
values of a circuit already implemented on the FPGA, and obtains virtual recon-
figurability. This approach has a speed advantage over reconfiguring the FPGA
itself, and it is also more feasible because of proprietary formats preventing di-
rect FPGA bitstream manipulation. However, the method requires much logic
resources.

An EHW pattern recognition system, Logic Design using Evolved Truth Tables
(LoDETT), has been presented by Yasunaga et al. Applications include face image
and sonar target recognition [3,4]. This architecture is capable of classifying large
input vectors (512 bits) into several categories. The classifier function is directly
coded in large AND gates. The category module with the highest number of ac-
tivated AND gates determines the classification. Incremental evolution is utilized
such that each category is evolved separately. The average recognition accuracy
for this system, applied to the sonar target task, is 83.0%. However, evolution is
performed offline and the final system is synthesized. This approach gives rapid
(< 150ns) classification in a compact circuit, but lacks run-time reconfigurability.



A system proposed earlier by the authors addresses the reconfigurability by
employing a VRC-like array of high-level functions [5]. Online/on-chip evolution
is attained, and therefore the system seems suited to applications with changes in
the training set. However, the system is limited to recognizing one category out
of ten possible input categories.

A new architecture was then proposed by the authors to allow for the high
classification capabilities of the LoDETT system, while maintaining the online
evolution features from [5]. This was applied to multiple-category face image
recognition and a slightly higher recognition accuracy than the LoDETT sys-
tem was achieved [6]. While in LoDETT a large number of inputs to the AND
gates can be optimized away during circuit synthesis, the run-time reconfigura-
tion aspect of the online architecture has led to a different approach employing
fewer elements. The evolution part of this system has been implemented on an
FPGA in [7]. Fitness evaluation is carried out in hardware, while the evolutionary
algorithm runs on an on-chip processor.

In this paper the architecture, previously applied to face image recognition,
has been applied to the sonar target recognition task. The nature of this applica-
tion has led to differences in the architecture parameters. Changes in the fitness
function were necessary to deal with the higher difficulty of this problem.

The sonar target dataset was presented by Gorman and Sejnowski in [8]. A
feed-forward neural network was presented, which contained 12 hidden units and
was trained using the back-propagation algorithm. A classification accuracy of
90.4% was reported. Later, better results have been achieved on the same data
set, using variants of the Support Vector Machine (SVM) method. An accuracy
of 95.2% was obtained in a software implementation presented in [9]. There also
exists some hardware implementations of SVMs, such as [10], which performs
biometric classification in 0.66ms using an FPGA.

The next section introduces the architecture of the evolvable hardware system.
Then, the sonar return-specific implementation is detailed in section 3. Aspects of
evolution are discussed in section 4. Results from the experiments are given and
discussed in sections 5. Finally, section 6 concludes the paper.

2 The Online EHW Architecture

The EHW architecture is implemented as a circuit whose behaviour and connec-
tions can be controlled through configuration registers. By writing the genome
bitstream from the genetic algorithm (GA) to these registers, one obtains the
phenotype circuit which can then be evaluated. This approach is related to the
VRC technique, as well as to the architectures in our previous works [11,5].

2.1 System Overview

A high-level view of the system can be seen in figure 1. The system consists of
three main parts – the classification module, the evaluation module, and the CPU.
The classification module operates stand-alone except for its reconfiguration which
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Fig. 1. High level system view.
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Fig. 2. EHW classification module
view.

is carried out by the CPU. In a real-world application one would imagine some
preprocessing module providing the input pattern and possibly some software
interpretation of the classification result. The evaluation module operates in close
cooperation with the CPU for the evolution of new configurations. The evaluation
module accepts a configuration bitstring, also called genome, and calculates its
fitness value. This information is in turn used by the CPU for running the rest of
the GA. The evaluation module has been implemented and described in detail in
[7].

2.2 Classification Module Overview

The classifier system consists of K category detection modules (CDMs), one for
each category Ci to be classified – see figure 2. The input data to be classified is
presented to each CDM concurrently on a common input bus. The CDM with the
highest output value will be detected by a maximum detector, and the identifying
number of this category will be output from the system. Alternatively, the system
could also state the degree of certainty of a certain category by taking the output
of the corresponding CDM and dividing by the maximum possible output. In this
way, the system could also propose alternative categories in case of doubt.

2.3 Category Detection Module

Each CDM consists of M ”rules” or functional unit (FU) rows – see figure 3. Each
FU row consists of N FUs. The inputs to the circuit are passed on to the inputs
of each FU. The 1-bit outputs from the FUs in a row are fed into an N -input
AND gate. This means that all outputs from the FUs must be 1 in order for a
rule to be activated. The 1-bit outputs from the AND gates are connected to an
input counter which counts the number of activated FU rows.



As the number of FU rows is increased, so is the output resolution from each
CDM. Each FU row is evolved from an initial random bitstream, which ensures a
variation in the evolved FU rows. To draw a parallel to the LoDETT system, each
FU row represents a kernel function. More FU rows give more kernel functions
(with different centers) that the unknown pattern can fall into.
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Fig. 3. Category detection module.
N functional units are connected to
an N -input AND gate.
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2.4 Functional Unit

The FUs are the reconfigurable elements of the architecture. This section describes
the FU in a general way, and section 3.2 will describe the application-specific im-
plementation. As seen in figure 4, each FU behavior is controlled by configuration
lines connected to the configuration registers. Each FU has all input bits to the
system available at its inputs, but only one data element (e.g. one byte) of these
bits is chosen. One data element is thus selected from the input bits, depending
on the configuration lines. This data is then fed to the available functions. Any
number and type of functions could be imagined, but for clarity, in figure 4 only
two functions are illustrated. The choice of functions for the sonar classification
application will be detailed in section 3.1. In addition, the unit is configured with a
constant value, C. This value and the input data element are used by the function
to compute the output from the unit.

The advantage of selecting which inputs to use, is that connection to all inputs
is not required. A direct implementation of the LoDETT system [4] would have
required, in the sonar case, N = 60 FUs in a row. Our system typically uses



N = 6 units. The rationale is that not all of the inputs are necessary for the
pattern recognition. This is reflected in the don’t cares evolved in [4].

3 Implementation

This section describes the sonar return classification application and the following
application-specific implementation of the FU module. The evaluation module,
which contains one FU row and calculates fitness based on the training vectors,
is in principle equal to the description in [7] and will not be further described in
this paper.

3.1 Sonar Return Classification

The application data set has been found in the CMU Neural Networks Benchmark
Collection3, and was first used by Gorman and Sejnowski in [8]. This is a real-
world data set consisting of sonar returns from underwater targets of either a
metal cylinder or a similarly shaped rock. The number of CDMs in the system
then becomes K = 2. The returns have been collected from different aspect angles
and preprocessed based on experiments with human listeners, such that the input
signals are spectral envelopes containing 60 samples, normalized to values between
0.0 and 1.0 – see figure 5. There are 208 returns in total which have been divided
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Fig. 5. The sonar return spectral envelope, which is already a preprocessed signal,
has its 60 samples scaled to 8-bit values before they are input to the CDMs.

into equally sized training and test sets of 104 returns. The samples have been
scaled by the authors to 8-bit values ranging between 0 and 255. This gives a total
of 60× 8 = 480 bits to input to the system for each return.

Based on the data elements of the input being 8-bit scalars, the functions
available to the FU elements have been chosen to greater than and less than
or equal. Through experiments these functions have shown to work well, and
intuitively this allows for detecting the presence or absence of frequencies in the
signal, and their amplitude. The constant is also 8 bits, and the input is then
compared to this value to give true or false as output. This can be summarized as
follows, with I being the selected input value, O the output, and C the constant
value:
3 http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu/



f Description Function
0 Greater than O = 1 if I > C, else 0
1 Less than or equal O = 1 if I ≤ C, else 0

3.2 Functional Unit Implementation

Based on the choice of data elements and functions above, the application-specific
implementation of the FU can be determined. As described in the introduction,
the VRC technique used for reconfiguration of circuits has the disadvantage of
requiring much logic resources. This especially becomes the case when one needs
to select the input to a unit from many possible sources, which is a common case
for EHW. This is an even bigger problem when working with data buses as inputs
instead of bit signals.
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Fig. 6. Implementation of the FU for the sonar spectrum recognition case.

Instead of using a large amount of multiplexer resources for selecting one 8-bit
sample from 60 possible, we have opted for a ”time multiplexing” scheme, where
only one bit is presented to the unit at a time. See figure 6. The 60 samples are
presented sequentially, one for each clock cycle, together with their identifying
sample number. The FU checks the input sample number for a match with the
sample number stored in the configuration register, and in the case of a match,
the output value of the FU is stored in a memory element. This method thus
requires a maximum of 60 clock cycles before an FU has selected its input value.

The sample input value is used for comparison with the constant value C stored
in the configuration. Since the two functions greater than and less than or equal
are opposite, only a greater than-comparator is implemented, and the function bit
in the configuration decides whether to choose the direct or the negated output.

4 Evolution

This section describes the evolutionary process. Although the base mechanisms
are the same as in [6], there are important changes to the fitness function.

The GA implemented for the experiments follows the Simple GA style [12].
The algorithm is written to be run on the PowerPC 405 hard processor core in
the Xilinx Virtex-II Pro (or better) FPGAs [11], or the MicroBlaze soft processor



core available for a greater number of FPGA devices [5]. Allowing the GA to run
in software instead of implementing it in hardware gives an increased flexibility
compared to a hardware implementation.

The GA associates a bit string (genome) with each individual in the popu-
lation. For each individual, the fitness evaluation circuit is configured with the
associated bit string, and training vectors are applied on the inputs. By reading
back the fitness value from the circuit, the individuals can be ranked and used
in selection for a new generation. When an individual with a maximum possible
fitness value has been created (or the maximum limit of generations has been
reached), the evolution run is over and the bit string can be used to configure a
part of the operational classification circuit.

4.1 Genome

The encoding of each FU in the genome string is as follows:

Spectrum sample address (6 bit) Function (1 bit) Constant (8 bit)

This gives a total of Bunit = 15 bits for each unit. The genome for one FU row is
encoded as follows:

FU1(15b) FU2(15b) ... FUN (15b)

The total amount of bits in the genome for one FU row is then, with N = 6,
Btot = Bunit ×N = 15× 6 = 90. In the implementation this is rounded up to 96
bits (3 words).

4.2 Incremental Evolution of the Category Detectors

Evolving the whole classification system in one run would give a very long genome,
therefore an incremental approach is chosen. Each category detector CDMi can
be evolved separately, since there is no interdependency between the different
categories. This is also true for the FU rows each CDM consists of. Although the
fitness function changes between the rows, as will be detailed in the next section,
the evolution can be performed on one FU row at a time. This significantly reduces
the genome size.

4.3 Fitness Function

The basic fitness function, applied in [6], can be described as follows: A certain
set of the available vectors, Vt, are used for training of the system, while the
remaining, Vv, are used for verification after the evolution run. Each row of FUs
is fed with the training vectors (v ∈ Vt), and the fitness is based on the row’s
ability to give a positive (1) output for vectors v belonging to its own category
(Cv = Ci), while giving a negative (0) output for the rest (Cv 6= Ci).

In the case of a positive output when Cv = Ci, the value 1 is added to the
fitness sum. When Cv 6= Ci and the row gives a negative output (value 0), 1 is



added to the fitness sum. The other cases do not contribute to the fitness value.
The basic fitness function FB for a row can then be expressed in the following
way, where o is the output of the FU row:

FB =
∑
v∈Vt

xv where xv =
{

o if Cv = Ci

1− o if Cv 6= Ci
(1)

While in the face image application each FU row within the same category
was evolved with the same fitness function, the increased variation of the training
set in the current application made it sensible to divide the training set between
different FU rows. Each FU row within the same category is evolved separately,
but by changing the fitness function between the evolution runs one can make
different FU rows react to different parts of the training set. The extended fitness
function FE can then be expressed as follows:

FE =
∑
v∈Vt

xv where xv =
{

o if Cv = Ci and v ∈ Vf,m

1− o if Cv 6= Ci
(2)

Where Vf,m is the part of the training set FU row m will be trained to react
positively to. For instance, if the training set of 104 vectors is divided into 4
equally sized parts, FU row 1 of the CDM would receive an increase in fitness
for the first 26 vectors, if the output is positive for vectors belonging to the row’s
category (i.e. ”rock” or ”metal”). In addition, the fitness is increased for giving a
negative output to vectors not belonging to the row’s category, for all vectors of
the training set.

5 Results

This section presents the results of the implementation and experiments under-
taken. The classification results are based on a software simulation of the EHW
architecture, with has identical functionality to the hardware proposed. Results
from a hardware implementation of the classifier module are also presented.

5.1 Architecture and Evolution Parameters

The architecture parameters N and M , that is, the number of FUs in an FU row
and the number of FU rows in a CDM, respectively, have been evaluated. From
experiments, a value of N = 6 has shown to work well. Increasing the number of
FU rows for a category leads to an increase in the recognition accuracy, as seen
in figure 7. However, few FU rows are required before the system classifies with a
relatively good accuracy, thus the system could be considered operational before
the full number of FU rows are evolved. It is worth noting that the training set
classification accuracy relatively quickly rises to a high value, and then has slow
growth, compared to the test set accuracy which has a more steady increase as
more FU rows are added.
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For the evolution experiments, a population size of 32 is used. The crossover
rate is 0.9. Linear fitness scaling is used, with 4 expected copies of the best in-
dividual. In addition, elitism is applied. The maximum number of generations
allowed for one evolution run is 1000. By observing figure 7 one can see that this
produces better results than having a limit of 20000 generations, even though this
implies that fewer FU rows are evolved to a maximum fitness value.

The classification accuracies obtained by using the basic fitness function FB ,
and the extended fitness function FE with the training set partitioned into 4 parts
of equal size, have been compared – see figure 8. The use of FE allows for a higher
classification accuracy on both the training and the test set.

5.2 Classification Accuracy

10 evolution runs were conducted, each with the same training and test set as
described in section 3.1, but with different randomized initialization values for
the genomes. The extended fitness function FE is used. The results can be seen

FU rows (M) training set test set

20 97.3% 87.8%
58 99.6% 91.4%

Table 1. Average classification accuracy.

in table 1. The highest average classification accuracy, 91.4%, was obtained at
M = 58 rows. The best system evolved presented an accuracy of 97.1% at M = 66
rows (however, the average value was only 91.2%). The results for M = 20, a
configuration requiring less resources, are also shown. These values are higher
than the average and maximum values of 83.0% and 91.7% respectively obtained



in [4], although different training and test sets have been used. The classification
performance is also better than the average value of 90.4% obtained from the
original neural network implementation in [8], but lower than the results obtained
by SVM methods (95.2%) [9].

5.3 Evolution Speed

In the experiments, several rows did not achieve maximum fitness before reaching
the limit of 1000 generations per evolution run. The average number of generations
required for each evolution run (that is, one FU row) was 853. This gives an
average of 98948 generations for the entire system. The average evolution time
for the system is 63s on an Intel Xeon 5160 processor using 1 core. This gives an
average of 0.54s for one FU row, or 4.3s for 8 rows (the time before the system
has evolved 4 FU rows for each category and thus is operational).

A hardware implementation of the evaluation module has been reported in [7].
This was reported to use 10% of the resources of a Xilinx XC2VP30 FPGA, and,
together with the GA running on an on-chip processor, the evolution time was
equivalent to the time used by the Xeon workstation. Similar results, or better
because of software optimization, are expected for the evolution in the sonar case.

5.4 Hardware Implementation

An implementation of the classifier module has been synthesized for a Xilinx
XC2VP30 FPGA in order to achieve an impression of speed and resource usage.
The resources used for two configurations of the system can be seen in table
2. While the M = 58 configuration uses 81% of the FPGA slices, the M = 20

Resource M = 20 M = 58 Available

Slices 3866 11189 13696
Slice Flip Flops 4094 11846 27392
4 input LUTs 3041 8793 27392

Table 2. Post-synthesis device utilization for two configurations of the 2-category
classification module implemented on an XC2VP30.

configuration only uses 28% of the slices. Both of the configurations classify at the
same speed, due to the parallel implementation. Given the post-synthesis clock
frequency estimate of 118MHz, and the delay of 63 cycles before one pattern is
classified, one has a classification time of 0.5µs.

5.5 Discussion

Although a good classification accuracy was achieved, it became apparent that
there were larger variations within each category in this data set than in the face
image recognition data set applied in [6]. The fitness function was therefore ex-
tended such that each row would be evolved with emphasis on a specific part of



the training set. This led to increased classification accuracy due to the possi-
bility for each row to specialize on certain features of the training set. However,
the partitioning of the training set was fixed, and further investigation into the
partitioning could be useful.

The experiments also showed that by increasing the number of FU rows per
category, better generalization abilities were obtained. The fact that the general-
ization became better when the evolution was cut off at an earlier stage, could
indicate that a CDM consisting of less ”perfect” FU rows has a higher diversity
and is thus less sensible to noise in the input patterns.

The main improvement of this system over the LoDETT system is the aspect
of on-line evolution. As a bonus the classification accuracies are also higher. The
drawback is the slower classification speed, 63 cycles, whereas LoDETT only uses 3
cycles for one pattern. It can be argued that this slower speed is negligeable in the
case of the sonar return application, since the time used for preprocessing the input
data in a real-world system would be higher than 63 cycles. In this case, even an
SVM-based hardware system such as the one reported in [10] could be fast enough.
Although the speed is not directly comparable since the application differs, this
system has a classification time of 0.66ms, roughly 1000 times slower than our
proposed architecture. Therefore, the architecture would be more ideal applied
to pattern recognition problems requiring very high throughput. The LoDETT
system has been successfully applied to genome informatics and other applications
[13,14]. It is expected that the proposed architecture also could perform well on
similar problems, if suitable functions for the FUs are found.

6 Conclusions

The online EHW architecture proposed has so far proven to perform well on a face
image recognition task and a sonar return classification task. Incremental evolu-
tion and high level building blocks are applied in order to handle the complex
inputs. The architecture benefits from good classification accuracy at a very high
throughput. The classification accuracy has been shown to be higher than an ear-
lier offline EHW approach. Little evolution time is needed to get a basic working
system operational. Increased generalisation can then be added through further
evolution. Further, if the training set changes over time, it would be possible to
evolve better configurations in parallel with a constantly operational classification
module.
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