On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition

Kyrre Glette and Jim Torresen Moritoshi Yasunaga and Yoshiki Yamaguchi
University of Oslo University of Tsukuba
Department of Informatics Graduate School of
P.O. Box 1080 Blindern, 0316 Oslo, Norway Systems and Information Engineering
{kyrrehg,jimtoe} @ifi.uio.no 1-1-1 Ten-ou-dai, Tsukuba, Ibaraki, Japan

{yasunaga,yoshiki@cs.tsukuba.ac.jp

Abstract an approach is the evolution speed but the problem is lack
of flexibility. This would be important since there are often
To increase the flexibility of single-chip evolvable hard- many degrees of freedom when evolving hardware systems.
ware systems, we explore possibilities of systems with the Implementing complete evolution in an FPGA has been
evolutionary algorithm implemented in software on an on- proposed by Tufte and Haddow in [16]. The evolving de-
chip processor. This gives higher flexibility compared to im- sign is here implemented in the same device as the evo-
plementing an evolutionary algorithm directly in hardware, lutionary algorithm. A similar approach is proposed by
since the parameters and behaviour of the algorithm can Perkins et al in[[9]. Significant speedup is achieved for non-
easily be changed, and complex operators are more feasibldinear filtering compared to conventional processing. Sev-
to implement. In this paper a Xilinx MicroBlaze soft core eral custom accelerators in FPGA for solving a protein fold-
processor is used, and the system is implemented in a Xilinxng problem have been introduced by Shackleford étal [12].
FPGA. A suitable hardware architecture for image recogni- On-chip evolution using a prototype of the VLSI (Very
tion has been proposed, and it is applied to a face recogni- Large-Scale Integration) POEtic chip has also been reported
tion task. Data buses and higher level functions have been[10]. A robot controller and logic functions were evolved.
utilized in order to reduce the search space for the evolu- The architecture, specialized for the implementation of bio-
tionary algorithm. Experiments have been performed on inspired mechanisms, contains an on-chip custom proces-
the physical device, with software running in parallel with sor, and a bio-inspired array of building blocks.
fitness computation in digital logic. Results show that the Running complete evolution of image filters within an
MicroBlaze system evolves at half the speed of a PentiumFGA has been reported by Martinek and Sekariina [7]. In
M system running at 17 times the FPGA clock frequency. this work the evolution (mutation only) is implemented in
The distinction of a certain face from others is performed reconfigurable logic. Image filters were evolved in a few
at 94.9% accuracy. In addition, the possibilities for evo- seconds from corrupted and original pictures. This design
lutionary adaptation over time are explored by introducing employs data buses, earlier proposedin [11] and [13], and
changes in the training set. The system shows ability tofunction-level building blocks, first proposed [[8].
adapt to these changes. The authors have earlier demonstrated System-On-Chip
evolution using an embedded hard processor core in an
FPGA [1]. This is accomplished by integrating an evolu-
1 Introduction tionary algorithm running as software on a hard processor
IP core with the target EHW implemented in reconfigurable
Evolvable hardware (EHW) seems useful for systems logic. In this paper an alternative approach is explored by
submitted to unpredictable, time-varying environmelnts$ [20, using a soft processor core. This allows for portability to a
14]. Such systems will also often be part of embedded ap-greater range of FPGAs, including cheaper devices.
plications, and therefore compact, on-chip solutions will be In our system, all parts of the evolution (except the eval-
preferred. uation of individuals which is implemented in digital logic)
There have been undertaken some implementations ofare undertaken in software, providing a flexible system for
single-chip evolution earlier. Kajitani et al have introduced later modifications. This is slower than implementing the
several LSI (Large-Scale Integrated Circuits) devices with evolution in dedicated hardware, but it is expected that the
evolution performed in hardwarel[5, 6]. The benefit of such fitness evaluation time will still be the most time consum-

ing part. This balanced software-hardware approach will al- FPGA

low for a low implementation effort while still being able to ey
have a single-chip design, suitable for embedded real-world VB
applications.
The EHW system is applied to a face image recognition MicroBlaze|
task. Experiments on image recognition by EHW were first processor| |"ERITERA

reported by Iwata et al in [4]. An FPLA device was utlized |
for recognition of black and white images. An EHW face OPB |
image classifier system has been developed by Yasunaga et
al in [21], in which the classifier function is directly coded UART PERIPHERAL] | Somoven
in large AND gates. Evolution is performed offline and the
final system is synthesized. This approach gives rapid clas-
sification in a compact circuit, but lacks the run-time recon-
figurability. Another classifying system has been proposed)))
in [15], also employing AND gates, in combination with Figure 1. Example hardware architecture in-
OR gates. These systems have in common the selection of cluding our target EHW.
one category from a set of candidate categories.

The image recognition task proposed in this paper will
be restricted to recognizing one face out of a set of candi-
dates. That is, the system reports an input as either a posi- The bus system is a part of IBM’s CoreConnect archi-
tive match to the trained face category, or a negative matchtecture [19]. The On-chip Peripheral Bus (OPB), with a
Such an application could be imagined for an image-baseddata width of 32 bits, is used to connect the processor and
lock for mobile devices, or cameras trained to recognize onethe peripherals. The Processor is connected to dual-port
particular person. SRAM, called Block RAM (BRAM), using a dedicated Lo-

The next section introduces the architecture and the im-cal Memory Bus (LMB). This bus features separate 32-bit
plementation of the on-chip EHW system, including both wide channels for program instructions and program data,
hardware and software aspects. Results from the imple-using the dual-port feature of the BRAM. The LMB makes
mentation are given and discussed in Section 3. Finally, single-cycle access of BRAM possible.

Section 4 concludes the paper. The target evolvable hardware is at the moment con-
nected to the OPB. This will be detailed in secfiod 2.2. Var-
2 The On-Chip Evolution System ious on-chip peripherals are also connected to the OPB, in-

cluding a UART for RS-232 serial communications. An

This section details the hardware and software architec-SPRAM controller can also be connected to the OPB
ture of the evolvable hardware system. The evolvable hard-Should more memory be needed. N
ware system is entirely implemented on one FPGA chip. The on-chip system is built using the Xilinx Embedded
The core modules are the processor, the RAM and the targeP€velopment Kit (EDK)I[17]. EDK is a collection of Intel-

EHW module. The evolutionary algorithm, stored in RAM, lectual Property (IP) cores and tools for building embedded
runs on the embedded processor, and the target EHW modsystems on FPGAs. The hardware and software parts of the

ule is used for fitness evaluation. This module is built as a System can be specified parametrically through various con-
reconfigurable hardware module which accepts a bit S,tringﬁguration files, and net lists and libraries are automatically
as configuration. generated.

2.1 System Overview 2.2 Target Evolvable Hardware

The architecture consists of a set of modules intercon- The target EHW is implemented as an OPB slave pe-
nected with buses, as seen in fipy. 1. The MicroBlaze softripheral module — see Fif] 2. Interfacing with the OPB bus
processor core provided by Xilinx is central in the system. has been simplified by the use of a Xilinx IP Interface core
It employs a 32-bit, 3-pipeline stage RISC architecture and (IPIF). This provides a simpler interface standard, the Xil-
is optimized for implementation in the Xilinx FPGAs. It inx IPIC, for the user module.
is user configurable, allowing for use of various interfaces Control and configuration of this module are undertaken
and functionality according to system needs and constraintsthrough register write operations. Genome values are writ-
Amongst others, hardware division and multiplication, and ten to registers which are again connected to the configura-
a floating point unit (FPU), are supported[18]. tion inputs of the functional unit array. Registers are also

OoPB TARGET EHW MODULE FUNCTIONAL UNIT ARRAY
OPB — f; — f; — — f; —
IPIF
FUNCTIONAL
UNIT ARRAY — | — —
=k f i —
IPIC Input Config Output | | |
interface 1 fij f,'j — 7 f,‘j 1
Input Output
CONTROL LOGIC

Figure 2. The architecture of the target EHW Figure 3. The architecture of the functional
system. unit array subsystem.
| Description Function
provided for feeding the EHW with inputs and for storing [0 | SaturatedAdd | O = A+ B, FE if (A+ B) > FF
the outputs. 1 | High Threshold| O = FFif A > C,, else0
2 | Range O=FFif C; < A< Cy,elsel
3 | Greater O =FFif A> B, else0
2.2.1 Functional unit array 4 | Bitwise AND O = AAND B
The functional unit array (FUA), see Fig] 3, is a general 2 i\l/tévrlzgeOR g ; ?A%_RBB) s 1
structure used for EHW. It is based on the principle that the 7 | Half O=A>>1

configuration of the FPGA itself is not changed, but a virtual
circuit which is implemented on top of it can be reconfig-
ured. Hence the names "Virtual FPGA" [3] or "Virtual Re- Table 1. Functions used by units in the image
configurable Circuit”[[11] have been proposed for circuits recognition task. Inputsare A and B, ouput is
building on the same principles. The behavior of the FUA O. C; and C, are constants available to each
is achieved by writing configuration data to registers which ynit.
in turn control the functionality of each unif; ; in the ar-
ray. A fixed set of functions and connections to other units’
outputs are available in each functional unit. The configu-
ration lines control multiplexers which select which inputs
and functions to use. The system bears resemblance to th&he FUA has been applied to an image recognition applica-
VRC in [11]. tion. For this, 8-bit wide databuses are used as inputs and
Our FUA consists of a fixed-size array of functional outputs of the units, which is also the data width of one pixel
units. The array consists @ columns of R units from from the input image. The array h&= 8 rows andC = 5
input to output. Each unit hakinputs, each of which can columns. There aré = 2 inputs and there arg = 8 func-
be connected to any output in the previous column. Thetions available for each unit. The functions are summarized
unit's output is a result of any df functions. The function in table[]. The specific functions are chosen because they
of each unit and its inputs are configurable. They are deter-are believed to be useful for an image recognition task. The
mined by evolution, in the way that each individual's binary threshold and range functions give a possibility to discrim-
genome is sent to the FUA and mapped to the configurationinate pixels based on their intensity value. Combined with
lines. Fitness is then calculated by feeding a number of in-the saturated adder, threshold element-like functionality, as
put vectors on the inputs of the first column, and reading seen in artificial neural networks, can be achieved. In addi-
the results from the outputs of the last column. The array tion, two global constant€;; andCs, are available to each
is constructed in a pipelined fashion, that is, registers areunit. These are coded in the genome for each individual as
connected to the outputs of each layer. Currently, this is not8-bit values.
exploited for fitness evaluation. Only one input vector is The input images have a resolution of 8x8 pixels, 64 in
evaluated at a time. total, while each column in the FUA consists of 8 units,

2.2.2 Image recognition application

Epood —N—
[] —_
n Nl — <
HENEEEERE — s
H— 2
| OH— g
BN RN —
I TN —
input image selector
column

Figure 4. The genome selects one pixel from
each row of the 64-pixel picture, giving 8 pix-
els for the first column of the FUA.

capable of selecting from 8 inputs. To save genome size ana
circuit space, as well as simplifying the design, a "selector
column” is introduced. Basically this imposes a restriction
of only letting the unit in one row select a pixel input from
the corresponding row of 8 pixels in the image. Thus, only
3 bits are needed code for a pixel from each row, which
gives a total of 24 bits of the genome for the entire selector
column. The selected pixels are then passed on to the input:
of the regular FUA. See Fif] 4.

This functionality could have been implemented in hard-
ware by having the first column of the FUA be populated
with special selector units, or hard-coded "Add0” units
(using already defined functionality in the standard units),
each of them connected to a corresponding row of image
pixels. However, in the current implementation, this selec-
tion is done in software on the MicroBlaze, as this lets us
transfer only 8 instead of 64 pixels over the data bus for
each vector. Depending on the source of the data vectors
this can be moved to hardware in future versions.

The last column of the array gives 8 8-bit outputs. How-
ever, only the 8-bit output of the topmost functional unit is
used for the classification of the image.

The encoding of each functional unit in the genome
string is as follows:

Figure 5. The prototype board with the Virtex-
I Pro FPGA. Source: Xilinx

3-3 The Hardware Platform

The design is synthesized for a Xilinx Virtex-1l Pro
(XC2VP30) - see Fig.|5. This device contains 30,816 logic
cells, 2,448 Kbit BRAM, and two PowerPC 405 (PPC) em-
bedded processors. The FPGA is situated on a Xilinx XUP
Virtex-1I Pro development board, which also contains a con-
figuration PROM and various useful interfaces.

2.4 The Genetic Algorithm Implementation on
the MicroBlaze

A Genetic Algorithm (GA) was implemented to run on
the MicroBlaze processor. 64KB of BRAM was used as a
combined instruction and data memory. The program was
written in C and compiled and linked using the MicroB-
laze version of the GNU GCC compiler tools. However, the
limited amount of RAM makes it necessary to omit the use
of most standard C library functions. The code was devel-

| Function (3 bit)[Input 1 (3 bit) | Input 2 (3 bit) | oped with verification and simulation on a PC workstation

in mind. It is therefore possible to compile the program
This gives a total ot/ = log, F' + I x log, R =9 bitsfor poth for the MicroBlaze using GCC and for a PC worksta-

each unit. The entire genome is encoded as follows: tion using Microsoft Visual C, with code differences only
for low-level functionality.
| C1,C5(16b) [Sel. col.(24b)] fo,0(9b) | ... | f4.7(9D) | As the MicroBlaze can be configured with a FPU, some
of the code uses floating point. However, if FPGA resource
The total amount of bits in the genome is thHex 8 + usage is critical, the FPU should be removed. This im-

R xlogo R+ C x R x U = 400. plies software emulation of floating point, which should be

avoided in order to reduce code size and execution speed. Resource Used | Available | Percent
Conversion to fixed point arithmetic could then be consid- Slices 2990 | 13696 21
ered. Dynamic memory management is not supported for Slice Flip Flops| 1037 | 27392 3

the MicroBlaze. Allocation of memory for data structures 4 input LUTs 5488 | 27392 20

such as population and individuals is handled manually.
The GA implemented for this experiment follows the
Simple GA style, given by Goldberg![2]. Fitness scaling
has been implemented, including linear scaling. A fitness-
proportionate selection scheme is implemented through the
use of a roulette wheel mechanism. The individuals are
sorted with the gsort algorithm. For mutation, instead of
having one probability of mutation for every bit in the negative () then 1 is added to the fitness function. On the
genome, a quicker solution has been adopted. The num®ther hand, if they equal and the value is equal to one, 4
ber of mutationsy, for the whole genome is calculated by is added. In this way, an emphasize is given to the outputs
a random lookup in a 10-position array. Thenrandom being positive. This has shown to be important for getting
places are mutated (bit-flipped) in the genome. This is morefaster evolution of well performing circuits. The function

efficient than performing a check for every bit if a mutation SUMS these values for the training image vectoes)(
should occur or not. For the evolution, a population size of 30 is used. Elitism

is used, thus, the best individuals from each generation
are carried over to the next generation. The (single point)
crossover rate is 0.9, thus the cloning rate is 0.1. A roulette

, " . heel selecti h i li li ling i
The fitness of the face recognition system is based ontheW eel selection scheme is applied, and linear scaling is

. : : used. The mutation rate is expressed as a probability for
system’s ability to recognize one face from a range of differ- a certain numbery, of mutations on each genome. The
ent faces. The images are taken from the "Olivetti Research o ' . '

. . - probabilities are as follows:

Laboratory Database of FacEs The original resolutions
of the images were 92x112 and there were 400 faces di- n o 1| 2| 3
vided over 40 people, giving 10 face images per person. In pm) [0l G151 %
our experiment the images were downsampled to 8x8 pixels
and 10 categories were used, giving a total of 100 64-pixel3 Results
vectors. These are stored in BRAM.

90 of the vectors were used for training of the system, Thjs section presents and discusses the results of our im-
while the remaining 10 were used for verification after the yiementation and experiments.
evolution run. Each configuration of the hardware is fed
with the 90 training vectorsvgc), and fitness is based on - 3.1 pevice utilization and clock speed
the system’s ability to give a positive output for the 9 image
vectors belonging to the right person, and a negative output The total resource usage for the system, including the
for the rest. Output values from the system are comparedarget EHW, the MicroBlaze, bus structure and peripherals,
to target valuesi, which are positived = 1) for vectors s 5113 slices, equalling 38% of the XC2VP30. The sys-
belonging to the right person, and negative for all other vec- tem was implemented to run at 100MHz. It is possible that
tors (@ = 0). An output value off"F'(hexadecimal) from higher frequencies are attainable, up to a limit of around
the topmost functional unit in the last column is considered 150MHz. The MicroBlaze has a maximum frequency of
a positive outputd = 1), while anything else is considered 150MHz on the Virtex-1l Pro, and the target EHW has

Table 2. Post-synthesis device utilization
for the EHW module implemented on the
XC2VP30.

2.5 Fitness Function and GA Parameters

a negative outputo(= 0). a post-synthesis maximum estimate of 148MHz. Téble 2

The fitness function can be expressed in the following shows the amount of logic used for the target EHW mod-

way. ule. A maximum of 21% of the FPGA's total resources are
0 ifortd used by this module. The post-synthesis resource usage of

the MicroBlaze processor is 1731 slices, of which 33% is

F=) v wherer={ 1 ifo=d=0 (D used for the FPU.

vec 4 If 0= d =1
For each input image vector the computed outpistcom- 3.2 Evolution speed

ared to the target valué If these equal and the value is . .
P g g The speed of an evolution run of 1000 generations was

Lhitp://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html measured for the on-chip EHW system and a Pentium M PC

EHW | PC %\/ fitness determination of each individual. This is because
Clock speed(MHz) | 100 1700 | 17 pixel selection and transfer over the system bus, as well as
Evolution speed(ms) 10914 | 4993 | 0.46 the readback of the FUA output and comparison with the
target value, is done for each training vector. Thus, the low
program execution speed and bus transfer rate contribute to
Table 3. Evolution speeds on the on-chip making the fitness overhead much slower than the hardware
EHW and PC systems. The last column indi- fithess evaluation.
cates the ratio between the first and second
columns. 3.3 Image Recognition Performance
Individuals with maximal fithess values were evolved af-
12000 . .
O Finoss caloutation ter an average of 1133 generations over 20 evolution runs.
10000 1 ingividual evaluation A solution with maximal fitness value was found in every
5 GA wio fitness run. The average evolution time is then 12.4 seconds. For
8000 verification, the last vector in each category was used. This
2 means that there were 10 vectors to test the accuracy, where
g 6000 the evolved system would need to produce a '1’ for one of
4000 | these, and '0’ for the others. Due to the lack of more verifi-
cation vectors, the position of the vector within the category
2000 was changed, and the remaining vectors were used for train-
ing vectors for a new evolution run. This was repeated 10
0 , i times, until all of the vectors in a category had served as a
Pentium M 1.7GHz MicroBlaze EHW 100MHz

verification vector. The accuracy over all the outputs from
all the evolution runs is 94.9% correct outputs. Also, 7 of
these 10 evolution runs produced individuals which gave
correct outputs for all vectors.

Figure 6. Evolution speeds.

for speed comparison. As can be seen in Thble 3, the evo3-4 Real-time adaptation

lution runs faster on the PC. However, although the evolu-

tion runs 2.2 times faster, the processor runs at 17 times the To explore possibilities for using the system with appli-
clock frequency of the MicroBlaze system. This is mainly cations where the environment is changing over time, an
due to the fact that the evaluation of individuals is carried adaptation experiment was carried out. In a real-world ap-
out in hardware on the on-chip EHW system whereas it is plication one would imagine the training set changes, by
simulated in the PC system. In order to better analyze theintroducing new face images of either the target face cate-
speed of different parts of the evolution process, three dif- gory or the other category. It could also be imagined that
ferent measures were made. The first measure indicates theome training vectors would have to be removed, based on
time used by the GA without any form of fitness evalua- timestamps for example.

tion, ie. all the fitness values were set directly to 0 in the We simulated such a change in the training set by re-
program. The second measure indicates the time spent omoving one vector and adding another vector from the tar-
evaluationof the individuals. That is, the time used for cal- get face category every 500 generations. However, as there
culating outputs from inputs to the FUA. The third measure were only 9 images available for training in each category,
is the time used for fitness calculation. This consists of the 8 images were used for the training set and 1 image cycled
calculation of a fitness value based on the training vectorsas the not used image. To introduce some more change, all
and outputs of the FUA, as well as pixel selection and trans-the pixels in the added vector were multiplied by four.

fer to the FUA. The results are summarized in Fig. 6. Itis ~ The experiment was run for 5000 generations. The re-
clear that the sum of the operations related to fithess are thesults can be seen in Fig] 7. By observing the fitness value
most time-consuming parts for both of the systems. The of the best individual of each population, one can get an
bottleneck in the PC program is clearly the evaluation of impression of the system’s adaptability. Some of the train-
individuals, which is simulated in software. The execution ing set changes are clearly observable by a drop in fithess,
time for this part is greatly reduced in the on-chip system. If while other changes do not affect the fitness value. The re-
the target EHW module increases in size or complexity, this cover time from the fitness value drops seems to vary from
difference will become even more significant. The hard- around 50 to 500 generations, which is equivalent to 0.5 to
ware system’s bottleneck is the overhead associated to thé.5 seconds of run time on the MicroBlaze system.

F' o | | "
ol .,

Q0 -
85 -
Best fitness
‘ Avg. fitness
80 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Figure 7. Population fitness over generations, showing the fitness of the best indiviudal and the
population average fitness. Temporary drops in fithess can be observed when the training set is
modified. Notice that the y-axis only shows fitness values from 80 to 105. 104 is the maximum
possible fitness value.

3.5 Discussion evolution would tend towards the execution time used by
only the GA. In such a case the on-chip system could per-
The FPGA resource usage of the system is not a prob-form at twice the speed, or better, than the PC system. How-
lem with the FPGA used in our experiments. But for low- ever, an increased degree of hardware specialization comes
cost applications, it would be desirable to use a smaller, lessat the prize of a higher implementation effort and increased
expensive FPGA device. As [111] points out, the disadvan- resource usage. In general, performance needs for the ap-
tage of a virtual circuit approach is the high implementation plication should be considered up against implementation
cost. Much of this cost comes from interconnect between costs. A speed performance comparison with the system
the units and multiplexers for selecting the inputs to each described in[[l] should be the subject of future work.
unit. Other connection schemes should be explored. At the
expense of a slight speed loss, a possibility could be to usebu

a kind of addressing or broadcasting scheme for sendin . .
. : ormance. Since only one category of faces is to be recog-
the data to the next layer of units. The MicroBlaze proces- . o . :
nized, more verification vectors for this category are desir-

sor can be configured to take up less resources by FeMOV e ble. This would give a clearer picture of the accuracy of the
ing some functionality. A removal of the FPU would give) 9 b Y

the most significant decrease in resource usage. This doegystem. In future work, it could also be explored_ how this
. : . System would perform when expanded to a multi-category
not necessarily have to imply a performance penalty if the

roqaram code is written to avoid the use of floating point classification system, like the ones seenlin [21] and [15].
ipnstgr]uctions ap In that case, the current FUA would be duplicated to the

Using 12.4 seconds on average to evolve a svstem Withamount of categories desired, and the amount of high out-
maximugm fiiness the speed of ?he on-chip syst)(/am is cur-Put values from the last column in each FUA could be used

rently acceptable. It should also be noted that systems with®> input to a max detector for determination of a category.
relatively high fitness values are available earlier inthe evo- Real-time adaptation to a changing environment is a
lution runs, which are usable until a better solution has beengoal for our on-chip evolutionary systems. The initial ex-
found. However, as future tasks may be more complex toperiments of introducing changes to the training set seem
evolve, a speed increase would be desirable. As pointedpromising, as the system seems to regain a high fitness in
out in sectiorj 32, there is a large overhead associated witrshort time. But in order to explore adaptation further, a
fithess calculation in software. If feeding of the training larger training set is desirable for the face recognition appli-
vectors to the FUA and fitness value calculation would be cation. In a real-world application, one target EHW module
moved to hardware, a significant speed increase would beconfigured with the best individual could be used as an op-
possible. The FUA would achieve a much higher through- erational circuit, while a second target EHW module is used
put, and the pipelined nature of the design could be ex-for fithess evaluation for the evolving population. One ex-
ploited. In this case the total execution time for the on-chip ample of an adapting application could be a camera with an

A face recognition performance of 94.9% is acceptable,
t the accuracy measure might not reflect real-world per-

integrated chip, assigned to detect a certain person. Over [7] T. Martinek and L. Sekanina.
time the system could receive new images of the person, or
images of other persons which should not be detected, to be

added to the training set.

4 Conclusions

We have presented a system-on-chip EHW system using
a soft IP core processor for running the evolutionary algo-
rithm. This has shown reasonable performance combined

with flexibility for experimentation. The configurability of

the MicroBlaze core makes such a combination interesting

for applications in low-cost systems. The EHW architec-
ture proposed utilizes data buses and higher level functions[10]
in order to reduce the search space. The inputs of the FUA
and the functions available to the units are adapted to the
image recognition task. These measures make it possible

to use evolution for a relatively complex task. The experi-
mental results indicate that the system is suitable for further
experiments and development of real-time on-chip adapta-

tion.

Acknowledgments

The research is funded by the Research Council of

Norway through the projedBiological-Inspired Design of
Systems for Complex Real-World Applicatidpsoject no
160308/Vv30).

References

(1]

(2]
(3]

(4]

(5]

(6]

K. Glette and J. Torresen. A flexible on-chip evolution
system implemented on a Xilinx Virtex-1l Pro device. In
Evolvable Systems: From Biology to Hardware. Sixth Inter-
national Conference, ICES 200%olume 3637 ofLecture
Notes in Computer Sciencpages 66—75. Springer-Verlag,
2005.

D. Goldberg. Genetic Algorithms in search, optimization,
and machine learningAddison-Wesley, 1989.

P. Haddow and G. Tufte. Bridging the genotype-phenotype [17]

mapping for digital fpga. IfProc. of the Second NASA/DoD
Workshop on Evolvable Hardwar2001.
M. Iwata, I. Kajitani, H. Yamada, H. lba, and T. Higuchi.

[18] Xilinx Inc.

An evolvable image fil-
ter: Experimental evaluation of a complete hardware im-
plementation in fpga.Lecture Notes in Computer Science

2005(3637):76-85, 2005.
M. Murakawa, S. Yoshizawa, |. Kajitani, T. Furuya,

M. Iwata, and T. Higuchi. Hardware evolution at function
level. InProc. of Parallel Problem Solving from Nature IV
(PPSN IV) volume 1141 ot.ecture Notes in Computer Sci-

ence pages 62-71. Springer-Verlag, September 1996.

S. Perkins, P. Porter, and N. Harvey. Self-contained
spatially-structured genetic algorithm for signal processing.
In J. Miller et al., editorsEvolvable Systems: From Biology
to Hardware. Third International Conference, ICES 2000
volume 1801 ofLecture Notes in Computer Sciengages
165-174. Springer-Verlag, 2000.

D. Roggen, Y. Thoma, and E. Sanchez. An evolving and de-
veloping cellular electronic circuit. In J. Pollack, M. Bedau,
P. Husbands, T. Ikegami, and R. A. Watson, edit8isfe9:
Proceedings of the Ninth International Conference on Arti-

ficial Life, pages 33—-38, Boston, MA, 2004. MIT Press.

L. Sekanina. Virtual reconfigurable circuits for real-world
applications of evolvable hardwaréecture Notes in Com-
puter Science2003(2606):186—197, 2003.

B. Shackleford et al. A high-performance, pipelined, FPGA-
based genetic algorithm machindournal of Genetic Pro-
gramming and Evolvable Machine®(1):33-60, 2001.

J. Torresen. Exploring knowledge schemes for efficient evo-
lution of hardware. IrProc. of the 2004 NASA/DoD Confer-
ence on Evolvable Hardware

J. Torresen. Possibilities and limitations of applying evolv-
able hardware to real-world application. In R. Harten-
stein et al., editorskield-Programmable Logic and Appli-
cations: 10th International Conference on Field Program-
mable Logic and Applications (FPL-20Q0yolume 1896

of Lecture Notes in Computer Scienceages 230-239.
Springer-Verlag, 2000.

J. Torresen. Two-step incremental evolution of a digital logic
gate based prosthetic hand controllerElolvable Systems:
From Biology to Hardware. Fourth International Confer-
ence, (ICES’01)volume 2210 of ecture Notes in Computer
Sciencepages 1-13. Springer-Verlag, 2001.

G. Tufte and P. C. Haddow. Prototyping a ga pipeline for
complete hardware evolution. Irst NASA / DoD Workshop
on Evolvable Hardware (EH '99pages 18-25, 1999.

Xilinx Inc. Embedded System Tools Reference Marie-
ruary 2005.

MicroBlaze Processor Reference Guidday
2005.

A pattern recognition system using evolvable hardware. In [19] Xilinx Inc. Processor IP Reference Guidéebruary 2005.

Proc. of Parallel Problem Solving from Nature IV (PPSN
1IV), volume 1141 ofLecture Notes in Computer Science
pages 761-770. Springer-Verlag, September 1996.

I. Kajitani et al. A myoelectric controlled prosthetic hand
with an evolvable hardware Isi chiplechnology and Dis-
ability, 15(2):129-143, 2003.

I. Kajitani, T. Hoshino, N. Kajihara, M. lwata, and
T. Higuchi. An evolvable hardware chip and its application
as a multi-function prosthetic hand controller. Pmoc. of
16th National Conference on Artificial Intelligence (AAAI-
99), pages 182-187, 1999.

[20] X. Yao and T. Higuchi. Promises and challenges of evolv-

able hardware. In T. Higuchi et al., editoEyolvable Sys-
tems: From Biology to Hardware. First International Con-
ference, ICES 96volume 1259 ofLecture Notes in Com-

puter Sciencgpages 55-78. Springer-Verlag, 1997.
M. Yasunaga, T. Nakamura, |. Yoshihara, and J. Kim.

Genetic algorithm-based design methodology for pattern
recognition hardware. In J. Miller et al., editoEyolvable
Systems: From Biology to Hardware. Third International
Conference, ICES 200®@olume 1801 ofLecture Notes in
Computer Sciencgages 264—273. Springer-Verlag, 2000.

	Introduction
	The On-Chip Evolution System
	System Overview
	Target Evolvable Hardware
	Functional unit array
	Image recognition application

	The Hardware Platform
	The Genetic Algorithm Implementation on the MicroBlaze
	Fitness Function and GA Parameters

	Results
	Device utilization and clock speed
	Evolution speed
	Image Recognition Performance
	Real-time adaptation
	Discussion

	Conclusions

