
Motion Control for a Planetary Exploration Rover
with Six Steerable Wheels

Kyrre Glette

July 29, 2004

ii

Abstract

IARES is a highly flexible planetary exploration demonstration rover developed
mainly for autonomous navigation and locomotion studies. It has 19 degrees of
freedom, including six active, steerable wheels. The rover has software for au-
tonomous navigation, including stereo camera perception, path planning and mo-
tion control. It is complemented by a visual simulator that can substitute the real
rover for practical purposes.

The goal of this MSc thesis, carried out at CNES in Toulouse, has been to make
the most of the locomotion capabilities of this rover.

Given the hardware platform and and the software environment, the partly devel-
oped motion control system had to be studied. It was decided to improve parts of
the existing motion control system by fixing smaller problems and doing adjust-
ments to the behaviour.

Extensions in form of so-called crab-like movements were also studied and devel-
oped. This includes using the steering capabilities of all six wheels of the rover in
order to obtain a translational movement. The extensions were implemented into
the existing control algorithm.

The studies were conducted on a Solaris platform. Code was developed in C.

The new performance was tested in the simulator and the results were analysed.
The six-wheel steering extensions provided more flexibility to the motion control,
by allowing position and heading deviations to be corrected independently. The
rover managed to correct its position deviations more quickly, and to increase its
locomotion speed.

iii

iv

Foreword

This document reports the master thesis work of a student at the Department of
Computer Science and Information Technology at the Norwegian University of
Science and Technology (NTNU), Trondheim, Norway.

The master thesis counts 30 study points and concludes the 5-year long engineering
education which leads to a Master of Science degree.

The work was carried out at the Centre National d’Etudes Spatiales / French space
agency (CNES) in Toulouse, France. An agreement between NTNU and CNES
made this possible.

I would like to thank the people who assisted me in reaching my goals, especially
Laurent Rastel, my supervisor at CNES, and Morten Hartmann, my supervisor at
NTNU, for providing useful information, inputs, and feedback.

Toulouse, July 29, 2004

Kyrre Glette

v

vi

Contents

1 Introduction 1

1.1 Setting . 1

1.2 Goals and motivation . 2

2 Mars surface exploration 4

2.1 Mars surface exploration considerations 4

2.2 Planetary rovers . 5

2.2.1 The EVE rover . 5

2.2.2 The Exomader/ExoMars rover 7

2.2.3 The Mars Exploration Rovers 8

3 The IARES development platform 11

3.1 Hardware platform . 12

3.1.1 Mechanical properties 12

3.1.2 Processing unit . 14

3.1.3 Perception . 14

3.2 IARES Software platform . 15

3.2.1 Software system principles 15

3.2.2 Rover simulator . 17

3.2.3 Autonomous navigation 18

4 The motion control system 22

4.1 Locomotion configurations . 23

vii

viii CONTENTS

4.1.1 Turning . 23

4.1.2 Rotation in place . 25

4.1.3 Crab configuration . 26

4.1.4 Wheel-walking mode . 26

4.2 Motion control algorithm . 28

4.2.1 General line following control system 28

4.2.2 Corridor exit test . 29

4.2.3 Recenter inside corridor and return to corridor 31

4.2.4 Transition to a new segment 31

4.2.5 Slope compensation . 31

4.2.6 Implementation . 32

5 Analysis and design choices 34

5.1 IARES platform development and testing conditions 34

5.2 Functional analysis of locomotion capabilities 35

5.2.1 Turning by difference of wheel speeds 35

5.2.2 Turning by four-wheel steering 35

5.2.3 Six-wheel steering . 35

5.2.4 Advanced locomotion 36

5.3 Performance analysis . 36

5.3.1 General line following control 37

5.3.2 Segment transition problem 37

5.3.3 Braking between segments 38

5.4 Discussion . 38

5.5 Choices . 39

6 General improvements 41

6.1 Turn around a point by 4-wheel steering 41

6.1.1 Inverse kinematic model 41

6.2 Segment transition rotation problem 44

CONTENTS ix

6.3 Implementation . 44

7 Six-wheel steering 46

7.1 First method proposed . 46

7.1.1 Principle . 46

7.1.2 Inverse kinematic model for wheel angles 47

7.1.3 Direct kinematic model 48

7.1.4 Clipping . 48

7.1.5 Wheel speeds . 50

7.1.6 Implementation . 50

7.2 Second method proposed . 51

7.2.1 Principle . 51

7.2.2 Inverse kinematic model 52

7.2.3 Clipping . 54

7.2.4 Implementation . 55

8 Tests and results 56

8.1 Test conditions . 56

8.2 Functional observations . 57

8.3 General performance tests . 57

8.3.1 Test setup . 57

8.3.2 Results . 59

8.4 Deviation and control analysis 62

8.4.1 Test setup . 62

8.4.2 Results . 62

9 Discussion 67

9.1 Results . 67

9.1.1 General improvements 67

9.1.2 Six-wheel steering modes 67

x CONTENTS

9.2 Implementation assessment . 68

9.3 Future improvements . 68

9.3.1 Clipping for second six-wheel steering method 68

9.3.2 Smoother segment transitions 69

9.3.3 Line following control algorithm 69

9.4 Problems . 69

9.5 Conclusion . 70

Bibliography 71

List of Figures

1.1 System overview . 2

2.1 The EVE rover . 6

2.2 The ExoMars rover . 7

2.3 The FIDO rover . 9

3.1 The IARES rover . 11

3.2 Complex obstacle negotiation . 13

3.3 Left view of the IARES rover . 13

3.4 Front view of the IARES rover 14

3.5 Software system overview . 16

3.6 Software system overview, symbols 17

3.7 Rover simulator screenshot . 17

3.8 Rover control panel in rover simulator 18

3.9 Navigation map . 19

3.10 Navigation planning . 20

3.11 Example path . 21

3.12 Screenshot from Autonomous Navigation Workshop 21

4.1 The motion control layered architecture 23

4.2 Turning around a point . 24

4.3 Rotation in place by envelope configuration 25

4.4 The crab configuration . 26

xi

xii LIST OF FIGURES

4.5 Wheel walking . 27

4.6 General line following algorithm 29

4.7 Corridor exit test . 30

4.8 Rover control states . 32

4.9 Rotation in place states using envelope mode 33

6.1 Angle calculation for turning around a point 42

6.2 Calculation of wheel speeds for middle axle wheels 43

6.3 Calculation of wheel speeds for front and rear wheels 43

7.1 Turn and crab combination . 47

7.2 Turn and crab combination, second method 51

7.3 Wheel angle determination, second method 52

7.4 Determination of wheel speeds for method 2 54

8.1 Snapshot of turn around a point mode 57

8.2 Snapshot of six-wheel steering, method 1 58

8.3 Snapshot of six-wheel steering, method 2 58

8.4 Path trace of turning by difference of wheel speeds 59

8.5 Path trace of turning by four-wheel steering 60

8.6 Path trace of turning by six-wheel steering, method 1 61

8.7 Path trace of turning by six-wheel steering, method 2 61

8.8 Difference of speeds control and deviation 63

8.9 Four-wheel steering control and deviation 64

8.10 Six-wheel steering method 1 control and deviation 65

8.11 Six-wheel steering method 2 control and deviation 66

List of Tables

2.1 EVE characteristics . 6

2.2 ExoMars rover characteristics 8

2.3 Mars Exploration Rover characteristics 9

3.1 IARES characteristics . 13

7.1 Critical clipping angle . 49

8.1 Test results . 59

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

The report is organized as follows:

• Chapter 1 presents the project and states goals and motivation.

• Chapter 2 gives background information about the subject of planetary ex-
ploration.

• Chapter 3 presents the IARES rover and its associated software environment.

• Chapter 4 studies the rover’s motion control system.

• Chapter 5 analyzes the current system’s performance and proposes improve-
ments.

• Chapter 6 describes general improvements made to the control system.

• Chapter 7 proposes a new locomotion mode and describes its details and
implementation.

• Chapter 8 describes performance tests and their results.

• Chapter 9 discusses the results obtained and gives an evaluation of the work.
Problems are discussed and future improvements suggested.

1.1 Setting

The Space robotics lab at the Centre National d’Etudes Spatiales (CNES) concen-
trates its work on planetary exploration rovers. In particular, their field of interest
lies in autonomous navigation systems. This includes stereo vision, localization,
path planning and locomotion. They currently have two rover prototypes (IARES

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: System overview. The autonomous navigation system is given a goal
from an operator. Communication with the rover chassis provides the system with
perception and localization data. Commands are sent from the navigation system
to the chassis locomotion system.

and COMARO) for experiments, however, none of them are operational at the mo-
ment. The lab has also developed a simulator which is useful for designing, soft-
ware development, and testing. There is an ongoing cooperation with the European
Space Agency (ESA) about the future ExoMars Mars mission.

1.2 Goals and motivation

Given the initial subject title, “Coordinated motion control for the IARES rover”,
the project has been somewhat open. The overall goal has been to study the existing
motion control part of the CNES autonomous navigation system and find out how
to improve it.

An general overview of the autonomous navigation system can be seen in figure
1.1. This system consists of three main subsystems: Perception, path planning,
and path execution. The focus for this subject is the path execution subsystem.
This subsystem receives a path to execute from the path planning subsystem. It
also communicates with the rover chassis to receive localization data. Commands
are sent to the chassis locomotion system (motors) in order to move the rover.

It was hoped that the rover, at the time being situated on an indoor test rack, would
become testable on the outdoor Mars-like environment test site. This was however
dependent on other projects and could not be accomplished by this project alone.

An operational rover would be a good way to demonstrate the performance of the
autonomous navigation, including the motion control. However, even without an

1.2. GOALS AND MOTIVATION 3

operational rover, the rover simulator serves as an effective demonstration plat-
form.

Improving the motion control system can lead to benefits in areas such as flexibility,
speed, energy use and reliability, as well as improved localization.

Investigating new ways of locomotion by utilizing some of the IARES rover’s me-
chanical capabilities can provide useful information for the design of possible fu-
ture planetary missions.

Chapter 2

Mars surface exploration

Mars exploration has been interesting to mankind for a long time. The Americans,
Russians and now also the Europeans have all had missions to Mars, more or less
successful. (In fact, 22 out of 35 missions to Mars have been lost [7].) There
are several risks and problems connected to such missions, and this places high
demands to the mission equipment. This chapter presents some aspects to be con-
sidered for Mars exploration missions and then introduces some actual Mars rover
models.

2.1 Mars surface exploration considerations

Mars’ surface is in general dusty with a more or less even distribution of rocks.
Rover dimensions have to be designed according to rock size and distribution. They
have to have locomotion systems capable of overcoming difficult terrain. As dust
storms are common on Mars, it is important that the science equipment is well
protected and the mechanical parts are designed accordingly [7, 1].

Power consumption is an important area of concern. Given the cold nights on Mars
(down to -135◦C), energy is required to heat the electronics. Solar panels can only
be used during daytime, and the solar flux received by solar panels on Mars is less
than half the amount received on Earth. In addition, there are problems with dust
gathering on the solar panels. Therefore, additional power sources are needed, like
batteries or radioisotope thermal generators [9, 7].

Communication with Earth can be done by a direct rover-Earth link or via a satellite
orbiting the planet. A direct link from the rover could transmit up to a few kilobits
per second, but it requires to point the antenna, and would cost up to a few tens
of Watts for the transmission. A less energy-consuming way of communication
would be via a satellite orbiting the planet or via the the surface descent module.

4

2.2. PLANETARY ROVERS 5

This would increase the transmission rate too, however, a new point of failure is
added (the ExoMars report estimates the chance of mission loss due to orbiter
failure is 4 out of 10) [7, 9].

The transmission delays are long, usually around a few tens of minutes, because
of the long propagation time of the signal. This makes direct telecommanding of a
vehicle very slow and practically impossible for difficult terrain. Some degree of
rover autonomy makes the exploration more efficient and increases the maximum
distance a rover can travel each day. As mentioned, the power sources are limited
and will only last a certain number of days, so efficient exploration is of utmost
concern [9].

2.2 Planetary rovers

This section presents some different Mars exploration rover models. The IARES
rover will be presented later, in chapter 3. Although somewhat different in style,
these rovers are all six-wheeled and have the same basic concepts. Although other
locomotion concepts have been studied, only wheeled designs have been chosen
for missions so far because of complexity and energy issues. Tracked designs have
been considered, but this introduces difficulties with localization and energy con-
sumption. Legged designs have not received much attention, because of increased
mechanical and control complexity, as well as high energy consumption compared
to a wheel-based design [7, 6].

Six-wheeled rovers offer a good compromise between weight/energy and mobility.
Six wheels offer considerably better obstacle clearing capabilities than four wheels,
and there is an increased robustness to motor breakdown. However, eight wheels
or more becomes costly in terms of weight and energy consumption, compared to
what it offers in increased mobility [7, 6].

2.2.1 The EVE rover

The EVE rover was used at CNES before the IARES rover[9]. It was developed
for studying different remote control and autonomous navigation modes suitable
for Moon and Mars missions. See table 2.1 for characteristics.

The rover featured a pair of stereoscopic cameras for perception. The onboard
computer was a VME Rack with a PowerPC 601 CPU board at 100 MHz. It ran
a LynxOS operating system. Much of the CNES autonomous navigation and tele-
operating software was tested out with this rover, however, the navigation was not
calculated on the onboard computer.

6 CHAPTER 2. MARS SURFACE EXPLORATION

Figure 2.1: The EVE rover on CNES test site. Image: CNES

Total Weight 120 kg
Length 120 cm
Width 90 cm

Max. speed 15 cm/s
Max. step size 25 cm

Max. slope 20◦

Table 2.1: EVE characteristics. The max. step size indicates the maximum height
of an obstacle the rover is able to overcome. Max. slope is the maximum slope
inclination the rover is able to climb.

2.2. PLANETARY ROVERS 7

Figure 2.2: Artist’s conception of the ExoMars rover. Image: ESA

The chassis was developed by VNII Transmash1, a Russian company with long
experience in rover construction. The chassis is of the Marsokhod family, which
has also been used by NASA and LAAS [6].

The EVE chassis was designed with difficult terrain in mind. It has six wheels
which have a conical shape for easier obstacle clearing, as it reduces the chance
of the rover getting stuck on rocks below its body. All wheels have independently
adjustable speeds, but no angular steering. The axles have free rotation around
the roll axis. Deformation of the chassis is possible, which allows for a so-called
wheel-walking, or peristaltic movement. See section 4.1.4.

A disadvantage to this design, with a possible Mars mission in mind, is the chassis’
modular shape, which makes it hard to find place for a payload, as well as solar
cell panels. Another problem is the lack of steering on the wheels. All turning
movements will cause skidding and will therefore not be optimal in terms of energy
use.

2.2.2 The Exomader/ExoMars rover

The ExoMaDeR (ExoMars Demonstration Rover) is a rover developed by ESA
for investigating a possible mission to mars in 2009 (ExoMars09). The ExoMars
mission is part of the ESA Aurora programme for exploring the Solar system [4].

The Exomader chassis is also developed by VNII Transmash, and is a scaled pro-
totype of the planned ExoMars rover. Exomader will be tested at ESTEC in the
Netherlands. See table 2.2 for characteristics. The navigation system for the Exo-

1Now called Rover Company Limited (RCL) [14].

8 CHAPTER 2. MARS SURFACE EXPLORATION

Weight 190 kg
Length 130 cm
Width 114 cm

Max. speed 3.3 cm/s
Max. step size 30 cm

Max. slope 25◦

Table 2.2: ExoMars rover characteristics

Mars rover will build on CNES’ work in this field. CNES has therefore integrated
a model of this rover into its rover simulator (see 3.2.2) to be able to take this into
consideration when developing. The ExoMars rover is expected to be highly au-
tonomous and therefore able to cover long distances, as much as 500m in 5 hours
[7].

In contrast to the EVE and IARES rovers this rover does not have a system of three
independent axles. A bogie system has been developed that keeps the main plat-
form very stable and upright, while still having good mobility on uneven terrain.
This big central platform makes it very practical for distribution of the payload,
and so this design can be said to be more mission-oriented.

Of the six wheels, the front and rear wheels have independent steering, which
allows the rover to turn in place and drive in gradual arcs. See section 4.1 for
more details. However, as the specifications are not completely fixed yet, there
may be changes in the configuration according to mission priorities. For instance
it could be decided to implement steering on all 6 wheels in order to have extended
locomotion capabilities.

2.2.3 The Mars Exploration Rovers

The NASA Mars Exploration Rovers (MER), Spirit and Opportunity, were launched
in June and July 2003 and landed on Mars in January 2004. The landings were
successful, and they are, at the time of writing, still exploring the Martian surface.
Originally planned to explore the surface for only three months, this time has now
been almost doubled [8, 12].

The FIDO and Athena SDM rovers are corresponding prototype rovers. Developed
at the Jet Propulsion Laboratory (JPL), they have served as platforms for develop-
ing navigation and mobility algorithms [3].

The MERs are powered by one Rad 6000 32-bit radiation-hardened PowerPC CPU
each, running at 20Mhz. They have 128MB of RAM and additional an 256MB
Flash RAM, which is a considerable improvement over the Sojourner rover. Soft-
ware runs on a VxWorks operating system [3, 12].

2.2. PLANETARY ROVERS 9

Figure 2.3: The FIDO rover. Image: JPL

Total Weight 174 kg
Length 160 cm
Width 230 cm

Max. speed 5 cm/s
Max. step size NA

Max. slope >25◦

Table 2.3: Mars Exploration Rover characteristics

In addition to the pair of stereo navigation cameras mounted on the mast, they
also have two stereo pairs of hazard-identification cameras mounted at front and
back. These cameras are an extra aid to the navigation, spotting possible immediate
dangers.

The rovers have 6 wheels, with independent steering of the front and rear wheels.
This allows them to turn in place or drive in gradual arcs, like the current config-
uration for the ExoMars rover. The mechanical wheel suspension system uses the
JPL-patented Rocker-Bogie principle, which gives the capability to climb obstacles
up to at least one and a half the size of the wheel diameter [2].

The rover design is a result of trade-offs made for a real exploratory mission. Ob-
stacle clearing capability is somewhat limited compared to the IARES or EVE
rovers, however this rover has more room for its payload and an area for its solar
cell panels (1.3 m2), necessary for energy supply. Characteristics can be found in
table 2.3.

Although the MER landings have been successful, the MERs are quite slow in

10 CHAPTER 2. MARS SURFACE EXPLORATION

exploring the Martian surface. Only 20 meters are covered per day. There is
no autonomous navigation (path planning) system on board these vehicles, only
monitoring of path execution. This means that a high degree of monitoring and
command from Earth is necessary. As discussed in section 2.1, this reduces the
efficiency and thus the return on the mission investment [12].

Chapter 3

The IARES development
platform

This chapter presents the IARES rover and goes into detail about its mechanical
properties, its hardware system, and its software system and environment.

The IARES (Illustrateur Autonome de Robotique d’Exploration Spatiale, or Space
Exploration Rover Autonomous Illustrator) vehicle is CNES’ current planetary
rover prototype. See figure 3.1. It is the successor to the EVE (see section 2.2.1)
rover and has some improvements over this, notably in mechanical flexibility, lo-
cation systems, perception, computing power, and navigation.

As the name indicates this is a demonstrator rover and is not intended for a real
mars mission. Emphasis has not been on chassis weight, energy consumption or
place for payload (including energy sources), but rather on a very high degree
of chassis flexibility. This gives the possibility to experiment with new types of

Figure 3.1: The IARES rover on CNES test site. Image: CNES

11

12 CHAPTER 3. THE IARES DEVELOPMENT PLATFORM

locomotion control, including advanced obstacle clearing [9].

3.1 Hardware platform

This section describes the IARES chassis and its mechanical properties. It also
describes the computer hardware on board.

The information for this section has been found in [11, 10] and from personal
communication with L. Rastel.

3.1.1 Mechanical properties

The IARES chassis was delivered to CNES in 1996 by St. Petersburg-based VNII
Transmash. In order to make thorough locomotion experimentation possible, the
IARES chassis has a high degree of flexibility. This is provided by its 19 degrees
of freedom, of which 17 are active. It results in the following highlights:

• Independent speed and steering on all six wheels. This allows for advanced
steering modes, as will be discussed in section 4.1.

• Deformation of chassis. The inter-axle distance can be adjusted, and the
wheels on one axle can be lifted from the ground. This makes peristaltic
locomotion (see section 4.1.4) and climbing of obstacles possible. See figure
3.2.

• Sideways and backwards/forwards tilting. Tilting can be useful when the
rover drives on slopes, as the chassis can tilt in a way such that the mast and
payload still lies horizontally. This allows for better stability and improved
perception. Tilting can also be used in combination with chassis deformation
for obstacle negotiation.

The chassis body is divided in three sections, each containing one axle. They are
connected with motorized levers that can change the inter-axle distance. See figure
3.3. The middle axle has a motor that controls the sideways tilting, and the front
and back axles have passive joints. This lets the rover adjust itself automatically
corresponding to the terrain features.

A pair of “obstacle rollers” are mounted on each axle, see figure 3.4. They are con-
nected to the wheel motors and are rolling at the same linear speed as the wheels.
This helps the rover overcome obstacles on which it might otherwise get stuck,
like rocks coming between its wheels. The Marsokhod chassis (see section 2.2.1)
overcomes such problems by its conical wheels. However, as IARES uses steering
on the wheels, the roller solution was proposed.

3.1. HARDWARE PLATFORM 13

Figure 3.2: Complex obstacle negotiation. The chassis deforms to overcome diffi-
cult situations. Figure: VNII Transmash

Figure 3.3: Left view of the IARES rover, in its contracted state. The different
sections are clearly visible. The levers (10) and (11) can be extended to make
the body longer. The perception mast mount can be seen at (27). Figure: VNII
Transmash

Weight 170 kg
Length 85-135 cm
Width 120 cm

Max. speed 35 cm/s
Max. step size 50 cm

Max. slope 40◦

Table 3.1: IARES characteristics

14 CHAPTER 3. THE IARES DEVELOPMENT PLATFORM

Figure 3.4: Front view of the IARES rover. The obstacle rollers can be seen at (23)
and (24). Figure: VNII Transmash

As a result of the high chassis flexibility, the IARES vehicle has very good locomo-
tion capabilities compared to the other rovers studied. See table 3.1. Much of the
high step mounting capability can be credited to the chassis deformation ability.
The front wheels can be lifted while the other wheels are on the ground, in order
to get a grip on the obstacle. The high slope angle can also be explained from the
deformation ability. In particular, a method referred to as peristaltic locomotion, or
wheel-walking, is used. See section 4.1.4.

3.1.2 Processing unit

In 1996 the IARES was equipped with a Transputer, with software delivered from
KFKI, Hungary. The Transputer is a node computer. It has several high-speed
links to connect to other nodes. In addition to the Transputer, there was one control
module on each section, and each of these modules was supposed to take care of
local control. However, this made development complicated and unpractical. After
a while it became clear that this system was outdated and it was decided to replace
it with one central Motorola PowerPC 755 CPU fitted on a VME board. It is a
low power processor running at 400 MHz. This processor is now responsible for
running all on-board software. It runs a WindRiver VxWorks real-time operating
system.

3.1.3 Perception

The IARES perception system consists of a pair of stereo cameras, mounted on a
mast in front of the middle section (see figure 3.3). The cameras have a focal length

3.2. IARES SOFTWARE PLATFORM 15

of 5 mm, 90 degrees field of view and 512x512 resolution. An effective depth of
field of 8 m is obtained. The camera pair, also called stereo bench, is mounted on
a platform with motorized azimuth and pitch angle control. This makes it possible
to take panoramas.

3.2 IARES Software platform

The IARES software system is a collection of several modules/libraries, and makes
in total a quite big system with its more than 300 000 lines of code. Among the
most important modules are the rover module, the simulator module and the nav-
igation module. In addition there are several smaller modules. There are for in-
stance smaller programs for testing locomotion abilities and for manually plotting
navigation paths.

All code is written in ANSI C. This language was chosen because of the availability
of compilers on all platforms involved. Although a higher-level language, like for
instance ADA, could have been more appropriate for minimizing error risks, the
platform constraints did not allow this.

The information for this section has been found in [9, 7] and from personal commu-
nication with L. Rastel, as well as own experience with the software environment
and the source code.

3.2.1 Software system principles

The IARES software system builds on the principle of UNIX instruments. The
localization part is one instrument, the locomotion part is one instrument, and the
perception part is one instrument. The rover control loop can then connect to these
instruments. The man-machine interface (MMI) also communicates with the rover
in this way.

These instruments can run on different machines in a network. Remote proce-
dure call (RPC) functionality is obtained by using TCP/IP sockets, servers, and the
External Data Representation (XDR) protocol. This makes it possible to run simu-
lated parts along with the rest of the system with full transparency. The navigation
module, for instance, is unaware about whether it is sending its commands to a real
or a simulated rover.

An example configuration of the software system can be seen in figures 3.5 and
3.6. This demonstrates a typical setup where the rover is controlled from ground
via the autonomous navigation workshop (see section 3.2.3). Another typical setup
would be where the simulator (see section 3.2.2) substitutes the real rover. The use
of instruments and RPCs make this change transparent to the ground software.

16 CHAPTER 3. THE IARES DEVELOPMENT PLATFORM

Autonomous navigation workshop

Perception

Server

Localisation

Server

Locomotion

Server

Locomotion Perception Local isation

LocomotionPerception Local isation

TCP/ IP + XDR

GROUND
Software

BOARD

Robot
configuration
& Local i zation

Perception
Requests
& Answers

Locomotion + Turret
 Requests & Answers

Direct L ink
(sam e binary code)

Stereo Cameras Attitude sensors
Solar sensor
...

BOARD

PERCEPTION
SUB−SY STEM

Image acquisition
Stereo algorithms

 Localisation
Sub−system

 Motion control
−> path
−> motors coordination

CONTROL LOOP

ROV ER (IARES, ...)

Motors interface
Locomotion sensors

Perception Locomotion (Low Level)Local isation sensors

Direct L ink
(sam e binary code)

CHASSIS

Figure 3.5: Example software system overview. The meanings of the symbols
can be found in figure 3.6. Notice how the communication between the ground
software and the rover on-board systems is made through the instrument interfaces.
The control loop process is the active part of the rover system. It takes care of
executing paths commanded by the ground software. Chassis sensors are interfaced
and motors are commanded. Figure: CNES

3.2. IARES SOFTWARE PLATFORM 17

Internal data structure (variable)

Data f low

Process / Task

Instruments Interface Library

Device (sensor, actuator, ...)

Figure 3.6: Symbols for software system overview (figure 3.5). Figure: CNES

Figure 3.7: Rover simulator screenshot. This is the main simulator visualization
display. The rover’s movements and placement on the ground can be observed.
Grey wheels or rollers indicate ground contact, while purple means absence of
contact.

3.2.2 Rover simulator

The rover simulator (see figure 3.7) has been developed from scratch at CNES.
Such a simulator has been found completely necessary for efficient software de-
velopment. The simulator currently runs on Sun workstations with Solaris 9 OS.
It also runs on a Linux platform. OpenGL is used for visualization. The simulator
can use different digital terrain models (DTM) and also different rovers. Currently
there is support for the IARES and Exomader rovers.

The simulator features a kinematic simulation model. The rover’s placement on
the ground is determined from a set of defined contact points on the wheels and the
DTM. From the possible interactions between these, and by simulating the effect
of gravity, a valid geometric configuration for the rover (height, tilt on each axle,

18 CHAPTER 3. THE IARES DEVELOPMENT PLATFORM

Figure 3.8: Rover control panel. This is one of several control panels available in
the rover simulator. The rover position, as well as the heading (azimuth) can be
controlled. There are also options for controlling the simulation accuracy, and for
manipulating the rover parts.

and other parameters) is found.

From the graphical user interface (see figure 3.8), several parameters can be con-
trolled. The rover can be placed at any position and with any heading. The viewer
parameters can be adjusted, and also different technical parameters like refresh
rate and simulation resolution. The graphical interface gives easily interpretable
feedback when using navigation or locomotion test programs. There are also pos-
sibilities for some basic keyboard control of the rover in the simulator.

3.2.3 Autonomous navigation

The autonomous navigation subsystem is given a main objective, ie. a goal position
or a direction, from the operator. Information about the surrounding terrain is
obtained by stereo perception. From these informations, a path towards the goal is
planned. Of this path, a short-term path is sent to the motion control subsystem.
When this has been executed, the path planning is restarted.

Autonomous navigation process

An iteration of the autonomous navigation process can be summarized in the fol-
lowing way [9, 7]:

3.2. IARES SOFTWARE PLATFORM 19

Figure 3.9: Example of a navigation map constructed from a DTM. According to
the elevations in the terrain the different zones are classified for navigation plan-
ning. The navigable region is safe for path planning, while the other regions are
more or less unsafe because of slope or discontinuity parameters. Figure: CNES

1. Construction of a local DTM from stereo perception

2. Translation of the DTM into a simplified local navigation map

3. Merging of the local map with previous data

4. Planning of a two-dimensional path over the navigation map

5. Planning of perception in order to make navigation continuous

Construction of a local DTM from stereo perception A correlation algorithm
is run on the stereo pair of images taken by the cameras. Disparities between
points in the images makes it possible to map points on to a grid in order to obtain
a DTM. The cameras rotate and take several images in order to get a map of the
rover’s surroundings.

Translation of the DTM into a simplified local navigation map This step con-
sists of analyzing the DTM in terms of navigability. Two factors are considered:
slope and discontinuity. Discontinuity describes shorter obstacles like an isolated
rock, while slope describes slopes in the terrain. This information is then coded
into cells in a local navigation map. See figure 3.9.

Merging of the local map with previous data The local navigation map calcu-
lated in the previous step is now merged into the global navigation map obtained
from previous perception.

20 CHAPTER 3. THE IARES DEVELOPMENT PLATFORM

Figure 3.10: Navigation planning. The local sub-goal has been found on the edge
of the local navigation map. The primitive long-term path can be seen, as well as
the more refined short-term path. Figure: CNES

Planning of a two-dimensional path over the navigation map The planning
method used is a so-called “continuous planning” method. The method does not
guarantee an optimal solution, but it is often the case. Good results have been
obtained in tests.

First, a local sub-goal is found, and a simple path solution from the rover to this
point is calculated. See figure 3.10. The sub-goal is supposed to be a point on the
edge of the local navigation map that approaches the rover to the global goal. The
path to the sub-goal is not necessarily optimal.

Secondly, a short-term optimal path from the rover in the direction of the first path
is planned, and this is the path that will be sent to the locomotion system. When
the rover arrives at the end of this short-term path, the whole process is repeated,
with perception of a new local map and planning of new paths.

Planning of perception in order to make navigation continuous This is a step
that tries to perform the perception while the rover is moving. This avoids that the
rover has to stop at the end of each short-term path for a panorama perception.

Resulting path for locomotion system

The short-term path that is sent to the locomotion system is in the form of a set
of waypoints, which then connects to form line segments. See figure 3.11. Each
segment has properties associated to it, like speed and security margin. This margin

3.2. IARES SOFTWARE PLATFORM 21

Figure 3.11: Example planned path with waypoints, line segments and associ-
ated margins (corridors). This path, however, has fewer waypoints than the paths
planned by the path planning algorithm.

Figure 3.12: Screenshot from Autonomous Navigation Workshop

can be interpreted as a kind of corridor that the rover has to keep inside of.

Autonomous Navigation Workshop

The Autonomous Navigation Workshop is a program with a graphical user inter-
face that lets the user control the autonomous navigation process. See figure 3.12.
One has access to camera views, various image processing stage views and the re-
sulting navigation map. It is possible to adjust various navigation parameters (like
slope thresholds), to set goals, and to execute path planning. Different stages of
the navigation process can be tested and executed manually, like for instance the
building of a DTM model out of a stereo snapshot.

Chapter 4

The motion control system

This chapter studies the already existing motion control system. The goal for this
is to know the system in order to be able to propose improvements.

The motion control system takes as input a path from the navigation system. Its
task is to make the rover follow this path, as closely as possible. Inputs are also
taken continuously from the rover localization subsystem. Outputs from the motion
control system are wheel speed and steering angle commands, and possibly also
commands to other chassis control parameters. The low-level motor control system
reads these parameters and takes care of controlling the motors.

A view of the architecture of the system can be seen in figure 4.1. It is divided into
three layers. The bottommost level takes care of low-level control of the motors on
the rover chassis, and is beyond the scope of this subject. The middle layer coordi-
nates the speeds and the steering of the six wheels (and possibly other elements), in
order to make one coordinated movement, for example a turn in place movement.
The topmost layer takes care of controlling the coordinated movements, in such a
way that a path can be executed.

The current locomotion control system was originally developed for the EVE ve-
hicle (see section 2.2.1), ie. a vehicle with no individual steering capability for
the wheels. Later the system has been extended to also use steering of wheels on
front and rear axles, in order to benefit from some of IARES’ extended locomotion
capabilities. This also makes the system convenient for controlling the Exomader
rover (see section 2.2.2).

The information for this chapter has been found in [11] and [5], as well as some
personal communication with L. Rastel, but also very much from reading and in-
terpreting the source code.

22

4.1. LOCOMOTION CONFIGURATIONS 23

Figure 4.1: The motion control layered architecture. A path and localization data
are available to the path control layer.

4.1 Locomotion configurations

This section presents the currently known locomotion configurations. Not all of
the configurations are used in the motion control algorithms, but they are at least
testable in teleoperated mode.

4.1.1 Turning

Every type of turning, at a given instance, can be seen as a movement of rotation
about a point. This point is called the instantaneous center of rotation (C), and the
distance from this point to the rover is the turning radius (r). An alternative way
of expressing the turning amount is by curvature (c = 1/r). Both types of turning
presented here haveC on a line extending the center axle of the rover.

Apart from going straight forward or backward, turning is the most usual move-
ment for the rover. And straight motion can actually be seen as a special case of
turning, where the turning radius is infinitely large.

Turning by difference of wheel speeds

The simplest form for turning is turning by difference of wheel speeds, the same
way as a tank turns. This is feasible for vehicles having no steering on wheels, and
tracked vehicles. The method works by turning the wheels on one side of the rover
(furthest away from the center of rotation) faster than the wheels on the other side.

24 CHAPTER 4. THE MOTION CONTROL SYSTEM

Figure 4.2: Turning around a point by wheel steering. All wheel axes meet in the
instantaneous center of rotation. Figure: VNII Transmash

This mode works for vehicles with any number of wheels, however, the more
wheels there are, the more skidding there will be. Actually, a theoretical rover
with only two wheels would be able to perform this type of turning without skid-
ding. Skidding arises since not all wheels are oriented around the same center of
rotation. The actual movement of each wheel is not the same as it would have been
if the wheel was not connected to the chassis.

This method is implemented in the motion control system.

Turning by wheel steering

By steering the wheels on the rover in such a way that the axes of all wheels meet
in the instantaneous center of rotation, skidding is avoided. The wheel speeds will
also have to be adjusted according to their distance from the center. See figure 4.2.
The minimum turning radius (ie. the maximum turning curvature),Rm, is limited
by the maximum steering angle on the innermost wheels.

This way of turning makes sense on four-wheeled and six-wheeled rovers, but can
also be applied to rovers with more wheels. However, four-wheeled rovers can
accomplish this turning by having steering only on two wheels, and six-wheeled
rovers need four steerable wheels. An eight-wheeled rover would need six steerable

4.1. LOCOMOTION CONFIGURATIONS 25

Figure 4.3: Rotation in place by envelope configuration. The wheel speeds are
indicated in with red vectors. Notice that the axes of all wheels meet in the center
of the rover.

wheels. This is based on the principle that the rotation centerC lies on an extension
of one of the vehicle axles. Otherwise, all wheels would have to be steerable. When
this principle applied to four-wheeled vehicles, it is called Ackerman steering [13],
and is the same principle as used on normal cars. Here the center of rotation lies
on a line extending the car’s rear axle.

This method is implemented in the motion control system. However, it does not
work correctly. This will be discussed in chapter 5.

4.1.2 Rotation in place

Rotation in place is a practical movement for reorienting the rover. It can be seen
as a special case of turning, where the center of rotation is at the center of the rover.

Rotation by difference of wheel speeds

Rotation in place can be accomplished by using opposite wheel speeds on opposite
sides of the rover. However, as with turning using difference of wheel speeds, this
movement causes skidding, as long as the vehicle has more than two wheels.

This method is implemented in the motion control system.

26 CHAPTER 4. THE MOTION CONTROL SYSTEM

Figure 4.4: The crab configuration. All wheels have the same steering and speed,
and the locomotion direction makes an angle with the rover’s longitudinal axis.
Figure: VNII Transmash

Rotation by envelope configuration

By going into a special wheel steering configuration with front and back wheels,
the rover can turn in place very efficiently. See figure 4.3. The wheels are all
oriented so that their axes are meeting in the center of the rover. The left and right
wheels are rolling in opposite directions, and the middle wheels have different
speed than front and back wheels. There is no skidding when turning this way.

This method is implemented in the motion control system.

4.1.3 Crab configuration

The rover goes into the so-called crab configuration by simultaneously command-
ing the same steering to all 6 wheels. This permits the rover to perform a sideways
diagonal translational movement without changing its heading. See figure 4.4.

4.1.4 Wheel-walking mode

The IARES rover has the ability to perform so-called wheel-walking, or peristaltic,
movement. See figure 4.5. By only moving one wheel at a time, the rover can ad-
vance in difficult terrain with little friction, such as very sandy areas. This locomo-
tion mode also helps to avoid sliding down steep slopes, and very much explains
IARES’ exceptional slope climbing capabilities.

4.1. LOCOMOTION CONFIGURATIONS 27

Figure 4.5: Wheel walking. The dark points indicate moving joints. The rover
begins in a contracted state in step 1. Then, in step 2, the front section advances
together with the front wheel, rolling. After this, the front and rear wheels stay still
while the middle section advances in step 3. Finally, in step 4, the rear section and
wheel advances like the first did in step 2. The process then restarts. Figure: VNII
Transmash

28 CHAPTER 4. THE MOTION CONTROL SYSTEM

4.2 Motion control algorithm

This section describes the motion control algorithm currently implemented in the
software system. This algorithm can be divided into several different behaviours,
and these will be explained in detail.

When the control algorithm was designed, it had the following requirements [5]:

• To keep the rover as close as possible to the planned path, while at the same
time trying to avoid stopping for recenter operations.

• To keep the vehicle sufficiently stable during movement on slopes.

The first requirement is satisfied by the following three main behaviours:

• General line following control system

• Recenter inside corridor if an exit is inevitable (preventive mode)

• Return to corridor if the rover has exited (corrective mode)

The second requirement is satisfied by slope compensation actions, interwoven in
the general line following system.

4.2.1 General line following control system

The goal of this control process is to keep the rover as close to the line segment as
possible while advancing to the next waypoint.

The steering can be accomplished in two ways, either by using difference of wheel
speeds, or by steering the angles of the back and front pairs of wheels (see section
4.1.1). The advantage is that with both of these methods, the steering can be seen
as a turning movement with an instantaneous center of rotation, and the amount of
steering can thus be described with a radius (r) or a curvature (c).

The amount of steering to be commanded to the rover is found from the following
deviation parameters:

• The distance of the rover from the line segment (d)

• The angular deviation between the rover’s heading and the direction to the
waypoint (θ)

• The angular deviation between the rover’s heading and the direction vector
of the line segment (u)

4.2. MOTION CONTROL ALGORITHM 29

Figure 4.6: Rover following line segment. The rover, going fromA toB, is situated
at pointP . The different deviations considered for the line following algorithm are
marked.

These parameters can be seen in figure 4.6. The steering amount commanded from
the line control process is expressed in curvature (c). Mathematically, this can be
expressed in the following way:

c = f(d, u, θ) (4.1)

f is a regulation algorithm. Basically, the curvature to be used for steering is
found by adding the deviation components, multiplied by gains (coefficients). The
gain for u is static, while the other gains depend on the rover’s speed, and the
position gain also takes the remaining distance to the goal into account. This can
be expressed as

f(d, u, θ) = kp,d × d + kp,u × u + kp,θ × θ (4.2)

Where thekp’s are the gains.

This algorithm makes the rover arrive at its target, but it does not guarantee that the
rover stays inside the corridor [5]. Therefore, the line control is complemented by
a check to see if the robot has exited or is about to exit the corridor, and a possible
correction for getting back on track.

4.2.2 Corridor exit test

At all times there is a test to see if the rover has exited or is about to exit the
corridor. The exit test functions as a test for both the preventive and the corrective
mode. The preventive test detects whether the rover is about to exit in the near

30 CHAPTER 4. THE MOTION CONTROL SYSTEM

Figure 4.7: Corridor exit test. The rover, going fromA to B, is situated at pointP .
Its smallest possible turning radius isRm, which will, in this case, not be sufficient
to stay inside the corridor.

future, in order to allow for an avoidance of this by appropriate correcting actions.
However, should the rover despite of this wander outside the limits of the corridor
(sudden terrain change, obstacle), this is also detected.

For the corrective test, the robot’s distanced to the line segment is calculated.

d

‖AP‖
= sin α (4.3)

d

‖AP‖
=

‖AP×AB‖
‖AP‖‖AB‖

(4.4)

d =
‖AP×AB‖

‖AB‖
(4.5)

See figure 4.7.

If |d| > w, the robot is outside the corridor.

For the preventive test, the following assumption is made: The rover travels at a
constant speed, where the best possibility for steering away from the corridor edge
is by a circular movement. See figure 4.7. The maximal turning amount (or the
minimal circle radius) of this movement is limited by mechanical properties of the
rover. For instance will turning by wheel speed difference and turning by wheel
steering have different minimum radii.

The heading and the position of the robot, supplied by the localization system,

4.2. MOTION CONTROL ALGORITHM 31

allows finding the rotation centerCr (at distanceRm) for the sharpest turn possible.

If the distancel from the rotation center to the edge of the corridor is shorter than
Rm, an exit is imminent. That is, the rover will not be able to keep inside the
corridor by using the steering commanded by the general control algorithm. The
exit condition can be expressed as follows:

Rm > l (4.6)

Rm > Rm cos(u) + m (4.7)

Rm(1− cos(u)) > m (4.8)

wherem is the difference betweenw andd, andu is difference between the rover
heading and the line segment heading. This relation avoids passing by the calcula-
tion of the position ofCr.

4.2.3 Recenter inside corridor and return to corridor

When it is clear that the robot is outside or is about to exit the corridor, it is stopped
before performing a rotation in place. This is done to ensure an as quick return to
the line segment as possible. The goal angle for this rotation is determined by the
position of the “return point” on the line segment. The return point is decided by
first projecting the rover’s position down on the line segment and then adding a
certain return margin.

After having turned in place, the robot moves in a straight line back to the return
point. A new rotation in place, aligning the rover with the line segment direction,
has to be made before the rover can continue with the normal control algorithm.

4.2.4 Transition to a new segment

When the rover arrives at the end of a line segment, the robot brakes and stops com-
pletely. There it can perform a stationary rotation for aligning to the next segment,
depending on the waypoint properties. Then the new line segment parameters are
taken into account, and the rover continues with the general control algorithm.

4.2.5 Slope compensation

When travelling on sideways slopes, it is possible that the rover will loose its grip
and slide sidewards to some extent. This is solved by slope compensation in the
turning movements. The localization subsystem gives the control algorithm the
rover’s current inclination value. This is then used for adjusting the curvature com-
manded by the line following control system. When turning down/with the slope,

32 CHAPTER 4. THE MOTION CONTROL SYSTEM

normal operation

segment transition

recenter

general
line-

following
mode

brake for
segment
transition

approaching new segment

brake for
 recenter
rotation

outside corridor

stop
path completed/

manual stop

transition to new segment

rotation
in place

vehicle halted

desired orientation

recenter
rotation

vehicle halted
straight back

 to pathdesired orientation
axis

rotation

robot crosses path
desired orientation

idle/
waiting

vehicle halted

path received

Figure 4.8: Rover control states. The dashed lines represent an alternative state
transition. The dotted boxes represent general phases of the motion control be-
haviour.

the curvature amount is slightly reduced, according to the inclination amount of
the rover. When turning up/against the slope, the curvature amount is increased. In
addition to this, speed is decreased when it is detected that the rover moves on a
steep slope.

4.2.6 Implementation

Architecture-wise, The motion control algorithm and the general line following
system control belong in the path control layer (see figure 4.1). The calculation of
wheel angles and speeds, according to different locomotion configurations, belongs
to the coordinated commands layer.

The control algorithm can be seen as a state machine, illustrated in figure 4.8.
Starting in the idle state, the robot waits for a planned path consisting of several
path segments. When a path is received, the robot goes into the normal control
mode where the general line following system is applied. When the exit corridor
check succeeds, the robot enters a recenter phase. This starts with a brake state,
then recenter rotation, then a back to path state. The final part of the recenter phase
is the realignment rotation phase which is triggered once the robot reaches the line
segment.

There is also a segment transition phase at the end of each line segment, which
consists of a braking state and then a possible rotation state for aligning with the
next segment. When the rover has stopped completely, parameters for the new seg-
ment are taken into account. Then, depending on the parameters of the waypoint,
the rover either goes into a rotation state, or it passes directly on with the general
line control algorithm.

4.2. MOTION CONTROL ALGORITHM 33

normal
configuration

enter
envelope
config.

rotation in place ordered

rotation
in place

envelope configuration reached

exit
envelope
config.

rotation goal angle reached

normal configuration reached

Figure 4.9: Rotation in place states using envelope mode.

The rotation in place can be accomplished in two different ways. Either by using
the rotation by wheel speed difference method, or by using the envelope method
(see section 4.1.2). If the envelope mode is used, the rotation state is divided into
three states: enter envelope configuration (positioning of wheels), envelope ro-
tation (the actual turning) and exit envelope configuration (positioning of wheels
back to normal state). See figure 4.9.

Chapter 5

Analysis and design choices

This chapter analyses the functionality and performance of the autonomous motion
control system studied in the previous chapter. Based on this analysis, propositions
were made about changes to the system, including extended functionality and per-
formance improvements.

The analyses performed in this chapter are mostly of a qualitative nature. Quanti-
tative tests will be performed in chapter 8, when the current state of the system can
be compared with the new developments.

5.1 IARES platform development and testing conditions

At the moment, the IARES rover is still mounted on an indoor test rack. There
are plans to get it out on the outdoor test site, but it is still uncertain how long it
will take before this can be accomplished. The actuator level software will have
to be developed, and a localization module, as well as a general control loop, will
have to be integrated. This is being worked on by other people in parallel with this
locomotion development.

In the meantime, the simulator will have to be used. This offers a kinematic simu-
lation mode, so physics features like friction and skidding are not available. Such
factors will therefore be impossible to test before the rover is ready for the test
site. However, the simulator is very practical for development as it provides a clear
environment with good feedback and overview. Real-life noise on for instance lo-
calization input can be simulated, but it is practical to remove this at least for early
development stages.

All analysis of the current locomotion system performed in this chapter is based on
rover behaviour in the simulator. It cannot be excluded that real life performance
would be significantly different, however it is unlikely to believe that something

34

5.2. FUNCTIONAL ANALYSIS OF LOCOMOTION CAPABILITIES 35

which does not work in the simulator would work in real life. Making things work
in the simulator first will therefore be necessary in any case.

5.2 Functional analysis of locomotion capabilities

There IARES rover is a very flexible vehicle, giving several possibilities for car-
rying out the locomotion task. The features can be tried out from the teleoperated
mode. However, at the moment, for the autonomous motion control mode only
parts of them are utilized.

5.2.1 Turning by difference of wheel speeds

The most basic mode of turning, the so-called difference of speeds method, is fully
functional. This mode was already known from the previous rover model, EVE.

5.2.2 Turning by four-wheel steering

Turning by four-wheel steering was discovered to have been implemented in the
motion control system as well, contrary to what was known. The implementation,
however, was in an untested state, and it had errors. While turning to the right, the
wheels are steered to wrong angles. Inner and outer angles were swapped.

Turning by wheel steering is in general preferred over the difference of speeds
method for at least two reasons. Firstly, since skidding is avoided, one has better
control over how the rover has travelled. The method of measuring the rover’s po-
sition by checking how much the wheels have turned, is called odometry. Skidding
introduces errors to this method and it is therefore more difficult to estimate the
rover’s position. Secondly, by eliminating skidding, the movement is also more
energy efficient. Energy saving is, as mentioned in chapter 2, a primary concern
for Mars rovers.

This turn mode uses the front and back wheels for steering, and will thus also be
compatible with other six-wheeled rovers having steering capabilities only on front
and back wheels.

5.2.3 Six-wheel steering

The crab mode, or in general, IARES’ capacity of steering all six wheels, is not
utilized. At the moment, crab steering is allowed only from telecommanded mode.

Crab steering, although not used by any mission rovers yet, could be useful for

36 CHAPTER 5. ANALYSIS AND DESIGN CHOICES

motion control. From the control algorithm point of view, it would permit to correct
independently the position and heading deviations. The diagonal movement would
allow for a correction in the rover’s position without needing a turn. Turning could
then be used only for correcting heading deviations. The problem with controlling
the rover using only a turning mode (as with the four-wheel steering turn around a
point mode) is that an attempt to correct a position deviation necessarily also leads
to a heading deviation, and vice versa.

The crab configuration could also be used for closing up on objects sideways, or
maneuvers in very tight conditions. Ideally, wheels with omnidirectional steering
(steering up to 90◦) would allow for a pure sideways movement, just like for a real
crab’s movement.

The downside about including six-wheel steering on a mission rover, is the extra
cost and complexity connected to this. Two more motors for steering will have to
be added, this adds extra weight and commplexity to the system.

5.2.4 Advanced locomotion

The peristaltic movement ability (see section 4.1.4), or more in general, defor-
mation of the rover chassis, is not used. This is related to the fact that it is a
complicated maneuver and difficult to plan automatically.

An application of the peristaltic mode could be “walking” in steep slopes and areas
with low friction, such as loose sand. However, the simulator does not provide
functionality for testing such factors yet. Testing and parts of development would
have to be carried out with the rover on the outdoor test field.

Another application for the chassis deformation possibilities would be complex
obstacle negotiation. This is a very complex task and would at least require some
extended sensoring possibilities.

In addition, the IARES has inclination abilities which are not used at the moment.
A typical application for this would be for stabilizing the rover while it is going up
or down a slope, and also for sideways stabilization. A horizontal payload increases
the wheel grip and facilitates perception, since the mast also moves accordingly to
the payload part.

5.3 Performance analysis

This part discusses the performance of the already existing locomotion systems.
A few smaller problems have been discovered, and will be discussed. The line
following control system will also be evaluated.

5.3. PERFORMANCE ANALYSIS 37

5.3.1 General line following control

The general line following control part seems to do its work, as the rover manages
to keep on track. It is however possible that this work could have been done in a
better way. Position deviation seems to be slowly corrected.

Wheel steering angle update is not instantaneous. The motors steering those an-
gles are limiting the update speed. The line following control algorithm does not
take this into account. In particular, at transitions between segments there are dis-
continuities in the commands. Such abrupt changes in the commands will not be
possible to follow by the motors.

The slope compensation part has not been analyzed. However, the source code
indicates that it could need some investigation. There is slope compensation in
the general control algorithm function and then an extra slope compensation in
another place, because the first compensation is believed to be insufficient. This
seems illogical and unstructured.

5.3.2 Segment transition problem

When making a transition from one segment to another, the rover seems to rotate
in place two times. First aligning to the new segment direction, then another time,
not changing azimuth. This became apparent when trying out the turn around a
point steering mode, as there is a phase of preparing the wheels before and after
rotating in place. This clearly seems very inefficient.

By analyzing the rover’s behaviour more closely, it becomes clear that this happens
only when the two segments are at an angle to each other. From debug output it
can be read that the rover thinks it is about to exit the corridor after having passed
on to the new point. This is true - however, the rover then passes on to the recenter
phase (See figure 4.8). An action which seems inappropriate, since the rover, after
passing on to the next segment, already is in the center of the corridor. The recenter
phase requires two rotations in place, while it would be sufficient with only one
rotation for aligning with the new segment.

Rotation in place can be forced though, by setting the control waypoint as a “stop
point” instead of a “waypoint”. However, there is no automation in controlling
which points should be what.

The system also has a bug in the rotation in place state transition. When switching
to rotation in place in the segment transition phase, the internal state goes directly
from normal mode to rotation in place (see figure 4.8). This causes the rover to
jump over the enter envelope configuration phase when in wheel steering mode.
The result is that the wheels start to rotate while they are being steered towards the
envelope configuration. This causes skidding and is clearly not wanted.

38 CHAPTER 5. ANALYSIS AND DESIGN CHOICES

5.3.3 Braking between segments

The current locomotion algorithm always brakes the rover to a halt when reaching
a new line segment, both for waypoints and stop points. This makes the move-
ment somewhat choppy and slow, especially if the path is composed of many short
line segments. This is often the case with the path planned from the navigation
algorithm. In addition, these segments often have a small angle against each other.
The navigation algorithm tries to fulfill the criterion of making as continuous paths
as possible, avoiding turning in place if possible. This indicates that it could be
possible to avoid braking between each waypoint.

Stopping between each line segment is in contradiction with the navigation algo-
rithm’s wish of keeping continuity in the rover movement. There is no need with
continuous perception (see section 3.2.3) if the rover stops many times between
each planning step anyway. Mission-wise it is an overall goal to minimize energy
consumption, and braking and acceleration does not help this. Frequent stopping
also reduces the rover’s daily traverse, and since the rover has a limited lifetime,
this should be avoided if possible.

5.4 Discussion

At the moment, the rover seems to perform OK with the current control systems.
Although the general line control system is not optimal, it keeps the rover on the
line. The segment transition and braking problems are, although minor, problems
that make the path execution inefficient.

Depending on the turning modes, the rover has more or less difficulties with keep-
ing inside the corridor. Turning by wheel steering performs better than the differ-
ence of speeds mode, even if it is not correctly implemented.

There are several possibilities for improving the current motion control system.
Some of them are listed below:

• Fine-tune and improve current general line following control algorithm in
order to make it perform better, with for instance better position correction,
or with motor speed compensation.

• Develop a new type of line-following control algorithm that works on other
principles than the regulation approach. This could for instance be a geo-
metrical/mathematical or a fuzzy logic approach.

• Extend the rover’s functionality by adding six-wheel (crab) steering. This
could be integrated in the current control system.

5.5. CHOICES 39

• Develop approaches for improving the general performance of the rover, no-
tably by fixing the problems with the line segment transitions. Fix bugs like
the rotation in place bug and implement a correct wheel steering mode.

• Redesign the motion control system by taking new approaches to the differ-
ent requirements.

5.5 Choices

In the beginning of the project it was not known that the wheel steering mode was
already partially implemented, and there was little knowledge about how the mo-
tion control algorithms worked in general. This is partly because of staff reductions
at the lab and unfinished and undocumented projects. While the expectations for
this project may have been oriented towards the control algorithm and implemen-
tation of the wheel steering mode, this should now be reconsidered.

Since the current motion control system seems to already work to a certain degree,
it is more interesting to try to to extend the current functionality. I have chosen to
investigate a way to include crab steering, or six-wheel steering in general, into the
motion control algorithm. As there are already a certain number of corridor exits
during the path following process, it is of interest to come up with a more powerful
and flexible way of correcting the rover’s motion.

Little literature has been found on six-wheel steering, and motion control in gen-
eral. Most rover-related publications concentrate on path-planning, localization, or
mechanical properties. This could very well be because these subjects are greater
challenges and thus more suitable for research and publication. In addition, few
rovers with six steerable wheels exist. JPL has six steerable wheel prototypes, but
no publications of interest have been found.

Since such a locomotion mode has not been explored very much, this is a interest-
ing area of investigation. It will be of interest to see if this extension can improve
the current motion control system. The results of this could then be used as a base
for considering whether it is worthwhile with steering capabilities for the middle
axle wheels.

In addition to this, since I have little knowledge of regulation techniques, an at-
tempt to try to improve the current line-following control algorithm seems rather
pointless. A new approach for the control algorithm could have been attempted,
but this would require knowledge about and analysis of both methods. As for a
new design of the whole system, this could be a challenging task, but probably a
bit too much. There is also at the moment little need for this, as the current system
seems to perform in an acceptable way except for the minor problems mentioned.

I have also decided to find solutions to some of the small problems discovered. This

40 CHAPTER 5. ANALYSIS AND DESIGN CHOICES

is anyway essential in order to appreciate the results of the functional extensions,
and can thus be seen as a preliminary stage to the crab extension part. For instance
will it be difficult to compare turning by wheel steering and crab-extended mode
if the wheel steering does not work correctly. The possible gains by these smaller
improvements seem to justify the amount of effort that needs to be put into the task.

Chapter 6

General improvements

This chapter considers general improvements made to the motion control system.
These are smaller improvements that were useful to get in place before starting
with the functional capability extensions.

6.1 Turn around a point by 4-wheel steering

This configuration has already been implemented in the motion control system.
However, it did not work as expected, and had probably not been tested. The func-
tional behaviour was not satisfying, and the code was unclear, making it difficult
to get an overview and point out errors. It was decided to rewrite this part.

6.1.1 Inverse kinematic model

A direct kinematic model goes from wheel speeds and angles and gives global
values like speed and rotation of the vehicle. The inverse kinematic model goes
from global values and gives local values. To calculate the rover’s wheel angles
and speeds from the curvature command (c) and rover global speed, an inverse
kinematic model is needed.

Wheel angles

The wheel angles that have to be calculated for the turn around a point configura-
tion areα1, α2, α5 andα6. See figure 6.1. The middle axle wheel angles (α3, α4)
are zero. For this calculation, the following variables are involved:

• The turning radiusr, derived from the curvature commanded (r = 1
c). The

41

42 CHAPTER 6. GENERAL IMPROVEMENTS

Figure 6.1: Angle calculation for turning around a point. The triangle used for
calculation ofα2 is marked in red. On the figure,r andα2 are negative, while the
other sizes are positive.

radius is counted from the center of the vehicle.

• The distance from the center to the middle left/right wheel of the vehicle,w.

• The distance from the middle axle to the front axle,a.

• The distance from the middle axle to the rear axle,b.

The relations are as follows:

α1 = arctan
a

r − w
α2 = arctan

a

r + w
(6.1)

α5 = arctan
−b

r − w
α6 = arctan

−b

r + w
(6.2)

Wheel speeds

The wheel speeds for the different wheels are calculated from the commanded
vehicle speedv from the line following algorithm. This is a linear translation speed
(not angular wheel rotation speed) an can be seen as a speed vector from the center
of the vehicle. See figure 6.2.

6.1. TURN AROUND A POINT BY 4-WHEEL STEERING 43

Figure 6.2: Calculation of wheel speeds for middle axle wheels.v3 andv4 are
calculated fromv by means of proportionality.

Figure 6.3: Calculation of wheel speeds for front and rear wheels. The triangle
used for calculatingv2 is shown in red.

Starting withv, in the center of the vehicle, one can find the speeds for the middle
axle wheelsv3 andv4. These are proportional tov, according to the turning radius
r. Thus, one has the following relations, wherew is the distance from the center of
the rover to the side:

v3 = v × r − w

r
v4 = v × r + w

r
(6.3)

The speeds for the front and rear wheels can then be derived. Another proportion-
ality relation can be used, this time between the radiuses of the actual wheel,ri,
and the middle wheel,rmiddle,side. These two radii can be seen as one side and the
hypotenuse of a right triangle, respectively. See figure 6.3. We therefore have:

vi =
ri

rmiddle
× vmiddle (6.4)

44 CHAPTER 6. GENERAL IMPROVEMENTS

rmiddle

ri
= cos αi (6.5)

This gives the following relations:

v1 =
v3

cos α1
v2 =

v4

cos α2
(6.6)

v5 =
v3

cos α5
v6 =

v4

cos α6
(6.7)

6.2 Segment transition rotation problem

Since the double rotation in place at segment transitions seems unnecessary, it
was decided to optimize this behaviour. The option about stop point types, as
explained in section 5.3.2, has been left aside. Since the point type is controlled by
the navigation algorithm, and apparently not much used, it has not been changed.
Manipulating the navigation algorithm could be risky because of lack of knowledge
about all factors involved.

Instead, a change was introduced at the motion control level. Simply, when transi-
tioning to a new segment, a check is performed. This checks the size of the angle
between the two line segments. If this angle exceeds a certain threshold, the rover
does one simple rotation in place for reorientation. Otherwise it just continues with
the general line following control algorithm.

This threshold angle can be adjusted according to which steering mode is em-
ployed. A too small threshold angle will make the rover do the rotation too often,
even if it could just have continued, and managed to follow the path with the gen-
eral line following algorithm. If the threshold angle is too big, the rover will not
reorientate when it is necessary. This means that its heading deviates too much
from the direction of the new line segment, and this causes the rover to sooner
or later detect a possible corridor exit. The whole “get back on track” recenter
operation will then have to be performed, which includes two rotations in place.

In addition, the rotation in place state transition bug was fixed. When going into a
recenter rotation phase at the beginning of a new line segment, the braking phase
is now the first phase entered. After this phase a transition to the enter envelope
configuration is done if the 4-wheel steering mode is activated.

6.3 Implementation

All implementation has been done by modifying existing functions. The modifica-
tions for the 4-wheel steering involved a remake of the existing code, reducing the

6.3. IMPLEMENTATION 45

number of different cases. The inverse kinematic model is implemented in the co-
ordinated commands layer. The segment transition improvements implementations
were straightforward, and implemented in the path control layer.

All code has been written in ANSI C. Makefiles were used as a compilation aid.
Emacs was used for code editing.

Chapter 7

Six-wheel steering

Previously the motion control algorithm did not use steering of wheels on the mid-
dle axle. As the IARES has the capability to steer all wheels, this feature can be
exploited. Intuitively the addition of steering of the middle axle wheels can be
seen as adding crab steering to the already existing four-wheel turn around a point
steering.

This could offer an easier and more effective way of motion control in the line-
following algorithm: As the crab steering allows for translation without rotation,
this steering can be used to correct the positional deviation from the path. The
heading deviation of the rover can be corrected by the turn around a point steering
mode. The current system uses the turning to correct for both types of deviation.

In this chapter, two different methods of doing six-wheel steering are proposed.
Development of the first method gave ideas to a second method that used a dif-
ferent approach. Both have been included, since both have their advantages and
disadvantages.

7.1 First method proposed

7.1.1 Principle

This method consists of superposing steering values from the turn around a point
configuration (see section 4.1.1) with crab (see section 4.1.3) steering values. See
figure 7.1. Intuitively this allows for a turning movement at the same time as a
diagonal translational movement. The turning part of the movement takes care of
correcting the azimuth (heading) deviation (u,θ) of the rover, while the crab part
corrects the position deviation (d). If the turn amount is expressed ast, and the

46

7.1. FIRST METHOD PROPOSED 47

Figure 7.1: Turn and crab combination. The turning and crab angles are added to
make a combined movement. Notice how the front right wheel angle gets a big
amplitude while the rear wheel angles are almost zeroed out.

crab amount asc, we have, in the line following algorithm:

t = f(u, θ) (7.1)

c = g(d) (7.2)

7.1.2 Inverse kinematic model for wheel angles

The inverse kinematic model for this mode is basically a superposition of the mod-
els for the turn around a point mode and the crab mode. The turn around a point
model can be found in section 6.1. The crab mode is straightforward, as it is suf-
ficient to set all wheels to the same angle and speed. The crab angle is controlled
directly from the line-following algorithm.

The individual wheel steering angles (αi,t) are found from the curvature com-
manded by the motion control algorithm, like in the normal turn around a point
mode. These angles are then added to the crab angle (αc) commanded. This gives,
for the inverse kinematic model:

αi = αi,t + αc (7.3)

where

αi,t = hi(t) (7.4)

αc = c (7.5)

Here,hi(t) corresponds to the functions for calculating the steering angles for the
turning mode (see section 6.1.1).

The inverse kinematic model for the wheel speeds will be explained in section
7.1.5.

48 CHAPTER 7. SIX-WHEEL STEERING

7.1.3 Direct kinematic model

For clipping purposes, it is of interest to be able to calculate a new center of rotation
based on a modified wheel steering angle. From the formulas established in section
6.1.1 the direct kinematic model is deduced:

r =
a

tanα1
+ w r =

a

tanα2
− w (7.6)

r =
b

tanα5
+ w r =

b

tanα6
− w (7.7)

These relations only take into account the turn around a point configuration. See
section 7.1.4.

7.1.4 Clipping

There is a risk of saturating the steering for the wheels when adding the values
from the turn and the crab mode. See figure 7.1. This will have to be controlled by
some sort of clipping of the wheel steering angles.

Principle

The clipping should take into account the wheel where the total steering amplitude
will be largest, clip here, and make this clip affect the steering on the other wheels.
This means that after clipping, the movement can still be decomposed into a crab
configuration and a turn configuration.

This can be understood by observing the instance in figure 7.1. The front right
wheel, when turning right in combination with crab to the right, will saturate more
quickly than the rear right wheel (here the two modes will tend to zero out the
movement). If only the front right wheel values would be clipped, the total steering
result for all wheels would no longer be a sum of a crab and a turn configuration.

Instead of allocating a maximum of half of the wheel steering limit angleαM to
each of the steering components, a dynamical method should be used.

Method

The following method is proposed:

1. Localize the critical angle wheel

7.1. FIRST METHOD PROPOSED 49

Turn, t Crab,c Wheel
< 0 < 0 2
< 0 > 0 6
> 0 < 0 5
> 0 > 0 1

Table 7.1: Critical clipping angle

2. Check if the sum of the turn and crab steering angles for this wheel exceed
the maximum steering angle

3. If necessary, clip/calculate new crab and steering anglesα′
c,α

′
t for this wheel

4. Calculate a new turning radiusr′ from the new steering angle

5. User′ for calculating wheel steering angles for other wheels, together with
new crab angle.

The critical angle wheel is the wheel that risks saturation for a given configuration
of turn and crab parameters. The possible configurations are summarized in 7.1.

For this critical angle wheel, the sum of the steering angles calculated from the
inverse kinematic model is checked against the maximum possible steering angle,
αM . In other words, clipping will have to be performed if the following is true:

αc + αt > αM (7.8)

If clipping is necessary, the following operations will be used to find the new steer-
ing angles:

α′
c = αc

αc+αt
× αM (7.9)

α′
t = αt

αc+αt
× αM (7.10)

Here,α′
c is the new clipped crab angle andα′

t the new clipped turn angle. These
have the propertyα′

c + α′
t = αM .

A new turning radius,r′, is then found from one of the relations established in
section 7.1.3. From this the new steering anglesα′

t,i for the other wheels can be
calculated. The clipped crab componentα′

c can be used directly for all wheels. The
final clipped steering angles for each wheel can then be expressed as:

α′
i = α′

i,t + α′
c (7.11)

50 CHAPTER 7. SIX-WHEEL STEERING

7.1.5 Wheel speeds

The wheel angle configuration of this combined mode does not make all the wheel
axes meet in a point, and some minor skidding is inevitable. This also means that
there is no ideal wheel speed configuration. The wheel speeds from both modes
cannot be added directly to each other, this would result in about double the wanted
speed. One could use either the wheel speeds set for the turn around a point mode,
or one could use the speed for the crab movement, ie. the same speed on all wheels.
It makes more sense, however, after the clipping model has been introduced, to use
a weighting system like the one in 7.1.4.

The following is proposed, for each wheel:

vi = a× vc + b× vt,i (7.12)

Here,a and b are the clipping factors calculated at the critical angle wheel like
explained in section 7.1.4.

a =
αc

αc + αt
(7.13)

b =
αt

αc + αt
(7.14)

Intuitively, this means that if the crab part uses a majority of the steering capability,
it would also dominate the wheel speeds, and vice versa.

7.1.6 Implementation

In the s_rs_carveldata structure, which contains the commands for motion con-
trol like curvature and speed, a new field has been added. This controls the crab
amount, in radians. This value is taken into account in the inverse kinematic calcu-
lation. There the wheel angles are taken directly from this angle and applied to all
wheels, in addition to the wheel angles calculated by the turn around a point mode.

Clipping is done during the inverse kinematic calculation. First the turn around a
point angles and crab angles are calculated normally and added. Then the critical
clipping wheel is localized according to table 7.1. Clipping is performed using
formulas 7.9 and 7.10, and new steering angles are calculated for every wheel.
Wheel speeds are then calculated out from these new clipped steering angles.

In the line-following control algorithm, the curvature command is now calculated
from azimuth deviation (u,θ), using the same coefficients as before. The crab com-
mand is calculated from position deviation. The crab amount commanded is di-
rectly proportional to the position deviation of the rover. The constant to go from
deviation in millimeters to crab value in radians, is set to9 rad

mm .

7.2. SECOND METHOD PROPOSED 51

Figure 7.2: Turn and crab combination, second method. Notice that the instan-
taneous center of rotation,C, is no longer on the line extending from the middle
wheel axle. All wheels steer in such a way that their axes meet inC.

No changes are done to the program architecture. Code is just added in existing
functions, with extensions of Ccasestatements.

7.2 Second method proposed

The second method does not add together two separately calculated angles for each
wheel. Instead it takes a more general approach by calculating the steering angles
from both the turning and crab commands at the same time.

7.2.1 Principle

The principle is to turn around a point, but this time the point does not have to
be on the line extended from the rover’s middle axle. See figure 7.2. By moving
this point up and down from this center line, intuitively one gets something that
resembles a crab movement in addition to the turning. The main difference from
the previous method is that the wheels are now still turning around the same point.

The “crab” part of this movement can be demonstrated by setting the turning radius
to a very large value. The wheel steering will be minimal. Then imagine the turn
center being translated vertically from the middle axle axis. As the turning radius
is large, all wheels will tend to steer in the same direction, like in the crab mode.

However, the translation of the rotation point from the middle axle, needed to per-
form a crab-like movement, will vary depending on the turning radius. This is
solved by determining the translation amount in function of the wanted crab an-

52 CHAPTER 7. SIX-WHEEL STEERING

Figure 7.3: Wheel angle determination for turn and crab combination, second
method. In this figure,α2 is taken as an example. The right triangle used for
the determination ofα2 is marked in red.h is determined fromαc, which is set to
the crab amount. On the figure,r, α2, αc, andh are negative values.

gle. This crab angle is set to an imaginary wheel at the center of the middle axle.
By using this value and the turning radius, the translation value can be calculated.
After this, the real wheel angles can be determined.

As all the wheels turn around the same point, this method produces no skidding.
Thus, this method is theoretically more “ideal” than the first method proposed.
However, it may seem less intuitive and poses some more problems with the im-
plementation, notably in the clipping part.

7.2.2 Inverse kinematic model

The inverse kinematic model for the second method is quite different from the first.
Although we still havet = f(u, θ) andc = g(d), as in the previous method, we
now haveαi = hi(t, c) instead ofαi = αi,t + αc. No steering values are summed.

7.2. SECOND METHOD PROPOSED 53

Wheel angles

The variables included in the calculations are the same as in 7.1.2, with one addi-
tion:

• The distance of the turning center from the line extending the rover’s middle
axle,h.

In this method all wheel steering angles have to be calculated, except the imaginary
crab angle,αc, in the center of the middle axle. This angle is set to the commanded
crab angle,c. See figure 7.3.αc then controls the “crab” heighth by the following
trigonometric relation:

h = −r arctanαc (7.15)

Whenh is found, one can calculate the wheel anglesαi. See figure 7.3. Trigono-
metric relations are used. By drawing a line between the rotation center and the
center of the wheel to be calculated, it becomes the hypotenuse in a right trian-
gle. The other sides lie in the the chassis side and in the line that is parallel to
the wheel axles and goes through the rotation center. An equality between angles
allows findingαi with a tan function. The wheel angle relations then become as
follows:

α1 = arctan
a− h

r − w
α2 = arctan

a− h

r + w
(7.16)

α3 = arctan
−h

r − w
α4 = arctan

−h

r + w
(7.17)

α5 = − arctan
b + h

r − w
α6 = − arctan

b + h

r + w
(7.18)

Wheel speeds

Like in the determination of wheel speeds for the four-wheel steered turn around
a point mode (see section 6.1.1), one begins with the calculation of the speeds in
the middle, here calledvL andvR. See figure 7.4. The difference here is that these
speeds cannot be applied directly to the middle wheel axle. The commanded speed
v is attributed to a point that lies on the line going perpendicularly from the rover
to C. vL andvR are then speeds for imaginary wheels on an axle situated at this
point.

vL = v × r − w

r
vR = v × r + w

r
(7.19)

54 CHAPTER 7. SIX-WHEEL STEERING

Figure 7.4: Determination of wheel speeds for method 2. Notice that thevL and
vR speeds are not on the middle axle. The triangle used for the calculation ofv2 is
shown in red.

After this, the calculation of the rest of the wheel angles can follow the same pro-
portion rules as explained in section 6.1.1. This gives the following relations:

v1 =
vL

cos α1
v2 =

vR

cos α2
(7.20)

v3 =
vL

cos α3
v4 =

vR

cos α4
(7.21)

v5 =
vL

cos α5
v6 =

vR

cos α6
(7.22)

7.2.3 Clipping

As the inverse kinematic model now isαi = hi(t, c), the clipping is not as straight-
forward as in the first method. A direct kinematic model of this will have to be
solved for eithert or c. Since both of these variables are supposed to be updated
with a new clipped value, the clipping cannot be done at theα level.

An alternative is to do the clipping at thec, t level. However,hi is not linear This
implies that there cannot be any defined max to clip against as there is on theα

7.2. SECOND METHOD PROPOSED 55

level. Clipping can therefore not be accurate. An approximate is found by using

ac + bt ≤ Max (7.23)

wherea andb are constants adjusting for the different units.

7.2.4 Implementation

The implementation of the second method is done much like the first method (see
section 7.1.6). What differs in the inverse kinematic calculation is first the calcu-
lation of h. Secondly, there is no clipping in this section, except a final individual
saturation clipping for each wheel. This is done just in case the clipping in the line
control algorithm should be inaccurate, and should normally not be activated. This
makes the inverse kinematic calculation for the second method less complex than
for the first method.

In the line-following control algorithm, the commands are calculated just in the
same way as in the first method. After this, the command values are clipped, like
described in section 7.2.3. The clipped values are then sent to the inverse kine-
matic calculation. Thea andb constants are set to a default value of1/0.7 and1,
respectively. This gives values between0 and1 for the commands. This gives an
adequate, although not completely optimized, clipping in most cases.

Chapter 8

Tests and results

This chapter concerns the testing of the improvements made to the motion control
system. Tests are proposed and results are presented. The tests are performed in
order to prove the functionality of the implementation, and to analyze its perfor-
mance.

The tests do not perform exhaustive verification of the software. The software sys-
tem should be seen as a research product and not a mission-ready system. However,
it is not unlikely that the CNES software once will be used more or less heavily as
inspiration for mission software. When this day comes, thorough verification will
have to be performed in order to ensure safe operation. In any case, it cannot be
guaranteed that the whole system will work in every situation, since it is dealing
with real-world inputs. These cannot be precisely predicted and reproduced in a
testing situation.

8.1 Test conditions

The rover’s performance can only be tested in the simulator, as the rover is not
operational on the outdoor test site. This makes it difficult to measure factors such
as energy consumption and performance on different terrain types. Skidding cannot
be measured either, as the simulator has no model for this.

However, the simulator still offers possibility for some evaluation. An overview of
the performance of the different locomotion methods can be had by measuring the
speed and deviation amounts of each. By observing the rover’s behaviour during
path execution a general impression can be made.

56

8.2. FUNCTIONAL OBSERVATIONS 57

Figure 8.1: Snapshot of four-wheel steering. Notice how the middle axle wheels
are not steered.

8.2 Functional observations

The implemented locomotion modes were observed in the rover simulator. They all
seem to perform correctly for different situations (turning more or less in different
directions, with more or less crab command). Snapshots were taken of the different
modes. The four-wheel steering mode now worked correctly when turning both
ways. See figure 8.1.

The two six-wheel steering modes worked as expected. Both modes look quite
similar. See figures 8.2 and 8.3. They can be distinguished however, by looking
at the middle axle wheels. For method 1, it can be seen that these have the same
turning angle, while for method 2, they are oriented in a way that their axes meet
in a common center of rotation.

This means that it is actually possible to see that the first method will introduce
some skidding, as was expected. However, the amount is quite small, far less than
in the difference of wheel speeds turning mode (see section 4.1.1).

8.3 General performance tests

8.3.1 Test setup

To have an assessment of the performance of the different steering modes, they
were tested on a specially constructed test path. This path was input in the remote
operation GUI. The corridor margin was 200mm. The test terrain waspakua900, a
fairly bumpy terrain. Its height was scaled with a factor of 0.3.

58 CHAPTER 8. TESTS AND RESULTS

Figure 8.2: Snapshot of six-wheel steering, method 1. Notice how the steering for
the middle axle wheels is the same for both wheels. This comes from the “pure”
crab part.

Figure 8.3: Snapshot of six-wheel steering, method 2. All wheels have different
steering and their axes meet in the same point.

8.3. GENERAL PERFORMANCE TESTS 59

Steering mode Time used Corridor exits
Difference of speeds 3m 22s 3

4-wheel 2m 26s 1
6-wheel method 1 1m 52s 0
6-wheel method 2 1m 40s 0

Table 8.1: Test results

Figure 8.4: Path trace of turning by difference of wheel speeds. The 3 corridor
recenter operations can be spotted where the path trace has “bumps”, close to the
corridor margin.

Each of the four different steering modes for the motion control algorithm were
tested: The difference of wheel speeds mode, the turn around a point mode, and
the two six-wheel steering modes.

It was measured how much time each mode used for the path, as well as how
many unavoidable corridor exits that were produced. In addition to this an overall
assessment was made by looking at the rover’s actual path trace compared to the
ideal line segment path. The automatic rotation in place at line segment transitions
(see section 6.2) was disabled. This was done in order to better observe the different
modes’ capability of deviation correction.

8.3.2 Results

The measurable results are compared in table 8.1. The path traces can be found in
figures 8.4, 8.5, 8.6, and 8.7.

60 CHAPTER 8. TESTS AND RESULTS

Figure 8.5: Path trace of turning by four-wheel steering. The recenter operation
can be spotted close to the 7th waypoint.

Difference of wheel speeds

The difference of wheel speeds turning mode performed worst. It ran into 3 un-
avoidable corridor exits. It does not manage to do sharp turns and therefore quickly
gets problems with a curved path. See figure 8.4. The slowness of this mode can be
explained by two factors: Firstly, since there are considerable amounts of skidding,
the energy is not used in an efficient way. This makes the rover slower. Secondly,
since the rover several times is unable to avoid corridor exits, the control algorithm
enters the recenter phase. It takes time to get back on the track with two rotations
in place and a return speed that is lower than the normal speed.

Four-wheel steering

The four-wheel steering mode works better than the difference of speeds mode.
Only one unavoidable corridor exit was encountered. A considerable time differ-
ence between this mode and the previous mode indicates that this mode is much
more efficient. By observing the trace in figure 8.5 one can see that it can handle
sharper turns without exiting from the corridor. The command sent from the line
following algorithm is calculated in exactly the same way for these two modes.
This means that it is clear that the wheel steering introduces new flexibility.

Six-wheel steering, method 1

Compared to the previous modes, this mode performs very well. There were no
corridor exits detected, and the rover sticks very close to the path. See figure 8.6.
The position deviation is corrected very quickly. However, as the crab amount com-
manded is controlled by the position deviation (see section 7.1), the line following

8.3. GENERAL PERFORMANCE TESTS 61

Figure 8.6: Path trace of turning by six-wheel steering, method 1. The rover man-
ages to stick close to the line segments between the waypoints.

Figure 8.7: Path trace of turning by six-wheel steering, method 2. Little difference
can be spotted from the first method.

algorithm has changed. This means that a direct comparison with the previous
mode would be incorrect. Although this solution works better than the previous
ones, it is possible that the line control algorithm could be tuned to give the four-
wheel steering better performance than it currently has. However, as it is now,
the six-wheel mode offers vastly increased flexibility over the previous mode. The
corridor width could have been decreased. This mode also offers a speed increase,
although some of it can be due to the fact that there were no corridor exits detected.

Six-wheel steering, method 2

This mode has little visible difference from the first six-wheel steering mode. See
figure 8.7. Speed-wise, it is a bit quicker. Inaccuracies in time-taking and some
minor waypoint position changes cannot be excluded, but it is not unlikely that this
mode is slightly quicker. This could come from the fact that skidding is, to a high

62 CHAPTER 8. TESTS AND RESULTS

degree, removed with this mode, and therefore this locomotion is more effective
than the first six-wheel steering method.

8.4 Deviation and control analysis

8.4.1 Test setup

The setup for this test is the same as in section 8.3.1. In addition, the line-following
algorithm was modified to dump position and heading deviation, as well as the
corresponding commanded correction amounts, to a file.

8.4.2 Results

The deviation and command data were gathered and plotted in figures 8.8, 8.9,
8.10, and 8.11. A general observation on all of the plots is that there are sudden
discontinuities in the position and heading deviations. With this follows disconti-
nuities in commands too, trying to compensate. These discontinuities are caused
by transitions to new line segments. As the new point can be taken into account
within a certain range of the endpoint of the previous segment, such discontinuities
are bound to appear.

Difference of wheel speeds

The difference of wheel speeds mode plot shows that there is much position de-
viation, but little heading deviation. See figure 8.8. Heading deviation is quickly
corrected, while position deviation is not.

Four-wheel steering

The four-wheel steering mode plot shows that correction is more effective. See
figure 8.9. Especially heading deviation is corrected more quickly than in the pre-
vious mode. Position deviation is also somewhat decreased, but still a problem.
The better heading correction can be explained by the increased steering flexibility
the wheel steering gives.

Six-wheel steering, method 1

The first six-wheel mode shows the same amount of heading deviation as the pre-
vious mode. See figure 8.10. This is logical, as the curvature component of the

8.4. DEVIATION AND CONTROL ANALYSIS 63

-2

-1

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000

position deviation (mm, scaled 1/40)
heading deviation (rad, scaled 1/20)
curvature commanded (normalized)

Figure 8.8: Difference of speeds control and deviation. Sudden discontinuities are
due to segment transitions or recenter operations.

64 CHAPTER 8. TESTS AND RESULTS

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000

position deviation (mm, scaled 1/40)
heading deviation (rad, scaled 1/20)
curvature commanded (normalized)

Figure 8.9: Four-wheel steering control and deviation. Notice the change in scale
on the y axis.

8.4. DEVIATION AND CONTROL ANALYSIS 65

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000

position deviation (mm, scaled 1/40)
heading deviation (rad, scaled 1/20)
curvature commanded (normalized)

crab amount commanded (normalized)

Figure 8.10: Six-wheel steering method 1 control and deviation. Notice the change
in scale on the y axis.

66 CHAPTER 8. TESTS AND RESULTS

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000

position deviation (mm, scaled 1/40)
heading deviation (rad, scaled 1/20)
curvature commanded (normalized)

crab amount commanded (normalized)

Figure 8.11: Six-wheel steering method 2 control and deviation.

control algorithm is the same, as well as the part of the wheel configuration that
takes care of the turning. When it comes to position deviation, great improvements
can be observed. The deviation is corrected quite quickly, and never reaches the
same amounts as in the two previous modes.

Six-wheel steering, method 2

The second six-wheel mode does not differ much from the first. See figure 8.11.
This indicates that the method of commanding the “crab” part separately from the
turn part in this mode works as well as the first method. The position deviation is
actually a little bit smaller here than in the previous mode, which indicates that this
mode could be slightly more efficient.

Chapter 9

Discussion

This chapter discusses the performance and significance of the changes made to
the system. Future improvements are proposed, and problems encountered during
the project are described. Lastly, a final conclusion is made.

9.1 Results

This section discusses the performance of the motion control system after the gen-
eral improvements and the six-wheel steering has been implemented.

9.1.1 General improvements

The correction of the four-wheel steering mode (see section 6.1) made this mode
perform correctly in all cases. This mode presents a considerable improvement
over the steering by difference of wheel speeds mode, in terms of flexibility, ac-
curacy and energy efficiency. The segment transition rotation modification (see
section 6.2) made transitions to new segments more efficient, especially when the
envelope configuration is used for rotation in place.

9.1.2 Six-wheel steering modes

The new six-wheel steering modes increase the flexibility of the rover’s motion
capabilities. This is accomplished by a combination of two elements: Firstly, the
possibility to more quickly correct position deviations, due to the six-wheel modes’
increased use of the rover’s steering capabilities. Secondly, the separation of the
position correction in the line following control algorithm. This makes it possible
to independently correct heading and position deviations. Earlier, a correction in

67

68 CHAPTER 9. DISCUSSION

position deviation led to a new heading deviation. This is now avoided by letting
the crab mode use a translational movement to take care of the position deviation.

Both modes perform well, although the second mode has some advantages over the
first since it avoids much skidding and is slightly faster. Although the clipping of
this second mode is not completely straightforward, it shows that, in practice, the
approximate method works well. For the second mode, skidding is not completely
removed. As the wheel angles are constantly changing due to different commands
in steering, intermediate non-perfect configurations may occur. This is however
applicable for the other modes too.

In terms of computation time, the new modes produce no significant penalty com-
pared to the other modes. The resources used on the onboard computer would be
minimal compared to perception and path planning algorithms.

The integration of these new modes into the motion control system opens for new
possibilities. The increased flexibility can be used to either reduce the corridor
width, which allows for more flexible path planning, or to allow the rover to drive
on more challenging terrain.

The performance could not be tested with the real rover on the test field. It is
however possible that the new six-wheel steering modes could prove to be useful
for driving on sideways slopes. A sideways sliding could be compensated by the
crab part of the movement. Real-life testing could also make new issues appear,
and this could be a base for further fine-tuning of the modes.

9.2 Implementation assessment

The implementation of the general improvements as well as the new steering modes
is straightforward. Changes are only made in already existing functions, so the pro-
gram architecture remains the same. The reconstruction of the four-wheel steering
mode led to less and simpler code.

9.3 Future improvements

There are still some aspects of the motion control system that can be improved.

9.3.1 Clipping for second six-wheel steering method

The clipping for the second six-wheel steering method is not yet perfect. The
multipliers for the approximate method could be adjusted in order to offer a more
optimized division of the steering budget between the crab and the turn parts. Then,

9.4. PROBLEMS 69

for example, to ensure a maximal use of the budget, a clipping approach like the
one used in the first steering method could be introduced as a second pass. It could
clip at angle level while locking one of the components to the amount found in the
approximate pass.

9.3.2 Smoother segment transitions

The motion control algorithm causes the rover to brake up between each segment
transition. If a rotation in place is not needed in the transition, this braking seems
unnecessary, as it slows down the rover quite much. This is especially valid when
the line segments are short, as is the case for the paths planned by the autonomous
navigation algorithm. A system for trying to keep up the rover’s speed during
segment transitions, as long as it is possible, could be implemented. The disconti-
nuities in deviations when passing to a new segment, as seen in section 8.4, could
also be attempted removed.

9.3.3 Line following control algorithm

The line following control algorithm has not been thoroughly analyzed. Its perfor-
mance could probably be improved, as the tests indicate. For the first two steering
modes, only curvature is commanded. It seems like this command is efficient for
correcting heading deviation but inefficient for correcting position deviation. For
the second two steering modes, the position correction has been isolated with the
crab command. This command is now directly proportional to the position devia-
tion, and could possibly be regulated in a more sophisticated way. A small amount
of oscillating behaviour could be observed from the traces and the plots in the tests.

It could also be useful to extend the control algorithm to take into account the time
used by the motors for steering the wheels to their position. This is not instanta-
neous, and too quick changes in commands from the control algorithm will result
in the motors not being able to follow the pace.

9.4 Problems

Some problems were encountered during the project, that slowed down the progress.
In the beginning, much time had to be spent on getting to know the huge software
system. The architecture of the system made it difficult and time-consuming to get
an overview. The lack of documentation meant that most behaviour had to be ana-
lyzed and understood from the source code, which was also sparsely commented.

Setting up a local development version of the system, for only compiling specific
modules, also proved to produce some problems. The makefiles were complex and

70 CHAPTER 9. DISCUSSION

several problems arose with dependencies and linking.

Originally it was thought that the current motion control system was less devel-
oped. It was not known that the four-wheel steering mode was already under con-
struction, and that the line following control system worked with this mode. The
focus was changed over to six-wheel steering. Although this made it take some
time to find the focus for the project, it was a necessary process for getting an
overview of the system.

9.5 Conclusion

The performance of the current motion control system has been improved at some
points. New functionality has been developed and implemented, in the form of
six-wheel steering. This new mode of locomotion proved to be flexible and well-
performing. A fine-tuning of the line following control system is needed to max-
imize performance, especially in the aspects of deviation regulation and segment
transitions.

The new six-wheel locomotion modes will be used in demonstrating CNES’ au-
tonomous navigation system. With these new locomotion modes available and the
four-wheel steering mode fixed, it will be possible to demonstrate the performance
gains by using four or six steerable wheels. This could be useful in designing
specifications for rover missions. Hopefully it could be useful in the design and
development processes for ESA’s planned ExoMars mission.

This report will hopefully be useful for future work on the motion control system,
by both giving a documentation of the system and by pointing out things that could
be improved in the future.

Bibliography

[1] M. Alexander. Mars transportation environment definition document.
Technical report, NASA/Marshall Space Flight Center, March 2001.
Available from: ftp://ftp.estec.esa.nl/pub/aurora/Rover/
mars_transp_env_def_nasa_tm210935.pdf [cited 15 July 2004].

[2] D.B. Bickler. The new family of jpl planetary surface vehi-
cles. In CNES, Missions, Technologies, and Design of Plane-
tary Mobile Vehicles, pages 301–306. January 1993. Abstract at
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?
bibcode=1993dpmv.book..301B&db_key=INST .

[3] J. Biesiadecki, M. Maimone, and J. Morrison. The athena sdm rover: A
testbed for mars rover mobility. InISAIRAS 2001: 6th International Sympo-
sium on Artificial Intelligence, Robotics, and Automation in Space, Montreal,
Canada, June 2001. Available from:http://robotics.jpl.nasa.
gov/people/mwm/sdm-mobility/ [cited 26 July 2004].

[4] R-M. Bonnet and J.P. Swings. The aurora programme. Technical report, ESA,
February 2004. Available from:http://esamultimedia.esa.int/
docs/Aurora/Aurora625_2.pdf [cited 2004-07-05].

[5] M. Delpech.Asservissement sur trajectoire. CNES, Toulouse, January 1999.
Internal technical document.

[6] A. Ellery. Elastic loop mobility/traction system study for mars micro-
rovers, final report. Technical report, ESA, March 2003. Available
from: ftp://ftp.estec.esa.nl/pub/aurora/Rover/ELMS%
20STUDY%20FINAL%20REPORT.pdf[cited 15 July 2004].

[7] K. Fletcher. Exomars09 cdf study report. Technical report, ESA, August
2002. Available from: ftp://ftp.estec.esa.nl/pub/aurora/
Rover/CDF-14%28A%29%20final.pdf [cited 15 July 2004].

[8] JPL. Mars exploration rover mission [online]. July 2004 [cited 5
July 2004]. Available from:http://marsrovers.jpl.nasa.gov/
home/index.html .

71

ftp://ftp.estec.esa.nl/pub/aurora/Rover/mars_transp_env_def_nasa_tm210935.pdf
ftp://ftp.estec.esa.nl/pub/aurora/Rover/mars_transp_env_def_nasa_tm210935.pdf
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1993dpmv.book..301B&db_key=INST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1993dpmv.book..301B&db_key=INST
http://robotics.jpl.nasa.gov/people/mwm/sdm-mobility/
http://robotics.jpl.nasa.gov/people/mwm/sdm-mobility/
http://esamultimedia.esa.int/docs/Aurora/Aurora625_2.pdf
http://esamultimedia.esa.int/docs/Aurora/Aurora625_2.pdf
ftp://ftp.estec.esa.nl/pub/aurora/Rover/ELMS%20STUDY%20FINAL%20REPORT.pdf
ftp://ftp.estec.esa.nl/pub/aurora/Rover/ELMS%20STUDY%20FINAL%20REPORT.pdf
ftp://ftp.estec.esa.nl/pub/aurora/Rover/CDF-14%28A%29%20final.pdf
ftp://ftp.estec.esa.nl/pub/aurora/Rover/CDF-14%28A%29%20final.pdf
http://marsrovers.jpl.nasa.gov/home/index.html
http://marsrovers.jpl.nasa.gov/home/index.html

72 BIBLIOGRAPHY

[9] M. Maurette and L. Rastel. Planetary exploration. Technical report, CNES,
2004.

[10] V. Michkiniouk, S. Medvedev, and G. Kozlov. Chassis of iares-l planet rover
demonstrator with a broad range of functional opportunities. InI-SAIRAS ’97,
International Symposium on Artificial Intelligence, Robotics and Automation
in Space, pages 95–103, Tokyo, Japan, July 1997.

[11] A.V. Mitskevich, V.K. Michkiniouk, G.V. Kozlov, and M.I Malenkov.IARES-
L demonstrator chassis description and operating instruction. VNIITRANS-
MASH, Sankt-Petersburg, 1996.

[12] NASA. Mars exploration rover landings press kit, January 2004.
Available from: http://marsrovers.jpl.nasa.gov/newsroom/
merlandings.pdf [cited 1 March 2004].

[13] S. Nortman, A. Arroyo, M. Nechyba, and E. Schwartz. Pneuman: A hu-
manoid robot implementation. Florida Conference on Recent Advances
in Robotics (FCRAR), May 2002. Available from:http://www.mil.
ufl.edu/publications/fcrar02/sdn_fcrar_02.pdf [cited 8
July 2004].

[14] RCL. Science and technology rover company limited (rcl) [online]. July 2004
[cited 5 July 2004]. Available from:http://private.peterlink.
ru/rcl/ .

http://marsrovers.jpl.nasa.gov/newsroom/merlandings.pdf
http://marsrovers.jpl.nasa.gov/newsroom/merlandings.pdf
http://www.mil.ufl.edu/publications/fcrar02/sdn_fcrar_02.pdf
http://www.mil.ufl.edu/publications/fcrar02/sdn_fcrar_02.pdf
http://private.peterlink.ru/rcl/
http://private.peterlink.ru/rcl/

	Introduction
	Setting
	Goals and motivation

	Mars surface exploration
	Mars surface exploration considerations
	Planetary rovers
	The EVE rover
	The Exomader/ExoMars rover
	The Mars Exploration Rovers

	The IARES development platform
	Hardware platform
	Mechanical properties
	Processing unit
	Perception

	IARES Software platform
	Software system principles
	Rover simulator
	Autonomous navigation

	The motion control system
	Locomotion configurations
	Turning
	Rotation in place
	Crab configuration
	Wheel-walking mode

	Motion control algorithm
	General line following control system
	Corridor exit test
	Recenter inside corridor and return to corridor
	Transition to a new segment
	Slope compensation
	Implementation

	Analysis and design choices
	IARES platform development and testing conditions
	Functional analysis of locomotion capabilities
	Turning by difference of wheel speeds
	Turning by four-wheel steering
	Six-wheel steering
	Advanced locomotion

	Performance analysis
	General line following control
	Segment transition problem
	Braking between segments

	Discussion
	Choices

	General improvements
	Turn around a point by 4-wheel steering
	Inverse kinematic model

	Segment transition rotation problem
	Implementation

	Six-wheel steering
	First method proposed
	Principle
	Inverse kinematic model for wheel angles
	Direct kinematic model
	Clipping
	Wheel speeds
	Implementation

	Second method proposed
	Principle
	Inverse kinematic model
	Clipping
	Implementation

	Tests and results
	Test conditions
	Functional observations
	General performance tests
	Test setup
	Results

	Deviation and control analysis
	Test setup
	Results

	Discussion
	Results
	General improvements
	Six-wheel steering modes

	Implementation assessment
	Future improvements
	Clipping for second six-wheel steering method
	Smoother segment transitions
	Line following control algorithm

	Problems
	Conclusion

	Bibliography

