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Abstract— Percutaneous needle insertion guided by ultra-
sound (US) imaging is routinely performed in hospitals today.
Automating these procedures could increase placement accu-
racy and lower time usage of health care personnel to perform
these procedures. Estimation of the needle orientation and
position in the ultrasound image is important when automating
these procedures. One approach for estimating the needle
orientation and position is to have the needle aligned with the
image plane of the ultrasound probe. Aligning the needle with
the plane is difficult, even with accurate measurements and
calibration of both needle and probe. In this paper we propose
a visual servoing method to move the ultrasound probe using a
robot to align the image plane of the probe with the needle. The
method segments the needle and updates a set of visual features
based on a model of the needle. A state machine is used to keep
track of the alignment process, and different visual features
are used to control the probe in the different states. Both
simulation using simple synthetic images and experiments in a
water tank are conducted to validate the proposed method. The
simulation shows that the proposed method manages to align
the probe plane with the needle. In the real robot experiment
the alignment process is slower, but still aligns the probe plane
with the needle. The method is shown to work under simplified
conditions, and is a step towards a method that could be used
in a clinical setting.

I. INTRODUCTION

Percutaneous needle insertion guided by ultrasound (US)
imaging is routinely performed in hospitals today. Percuta-
neous needle insertion can be used for nerve blockades, fluid
drainage, or to obtain a biopsy of a suspected malignant
lesion. Another needle insertion procedure is percutaneous
tumor ablation, which is a minimally invasive strategy for
treatment of malignant tumors [1]. The aim is to destroy the
tumors through the application of energy or chemicals. The
advantages compared with surgical resection are the potential
to destroy only a minimal amount of normal tissue [2] and
lower cost [1]. US guidance is the most commonly used
modality for thermal ablation [1].

Automation of these procedures by using robots could cut
health care cost, by increasing the accuracy and decreasing
the execution time of the procedure [3], [4]. Even a small
decrease in time or personnel usage would have a large
impact, as the procedures are very frequently performed.
The automation could also lead to higher accuracy of the
placement of the needle, which could lead to a higher success
rate and lower mortality. When automating these procedures
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it is of paramount importance that the needle is tracked while
it is inserted, both to verify that the needle is placed correctly
and to detect if the needle is approaching sensitive structures
(e.g. major vessels, bones, other organs). Accurate tracking
of a needle has been shown in [5], but one drawback with
this method is that the needle must be in the plane imaged
by the US probe. Therefore a method for aligning the image
plane with the needle is needed.

One of the first reported systems for visual servoing
control of a US probe was in [6] where a US probe was
mounted on a specially made robotic system, tracking the
carotid artery. The robot was controlled in 3 degrees of
freedom (DoF) using visual feedback.

Extensive contributions on visual servoing of US probes
have come from IRISA, INRIA Rennes-Bretagne Atlantique
in France. In [7] visual servoing is performed on an egg
shaped object where the robot moves the probe to view a
specific cross-section of the object. This shape is common in
tumors and the method could be used to hold a specific view
of a tumor. A drawback with this method is that it requires
a pre-operative model of the tumor. In [8], [9], [10] image
moments are used to find the cross-section of an object of
interest. This work solves the previous drawback as it is a
model free method. An approach to have the probe stable
at one view even if the patient is moving is given in [11],
[12]. Here speckle information if used to track both out-of-
plane and in-plane motion of the probe. In [13] the image
intensities are used directly to control the probe to track
a desired organ by compensating for rigid motion. All the
above methods control the probe in 6 DoF.

All the previous mentioned methods are using an eye-in-
hand configuration, i.e. a US probe is held by a robot and
moved. In [14], [15] an eye-to-hand configuration is used,
i.e. another object is moved in the US image. Here a 2 DoF
robot inserts a needle into the gallbladder in order to take
a biopsy. The gallbladder is tracked using an active contour
model and Hough transform was used to track the needle.
The robot inserting the needle is rigidly attached to the US
probe, thus out-of-plane motion is avoided.

The tip of a flexible needle is tracked in [16] by having
the US plane perpendicular to the needle. The visual servoing
tracks the needle tip by moving the probe 2 DoF, by always
keeping the tip in the image. A major drawback with this
approach is that the sensitive structures in the needle path
are not imaged.

This paper presents a novel visual servoing method for
first locating the needle and then keeping the needle in the
plane of a 2D US probe by moving the probe with a robot.
Segmenting the needle is necessary to extract features that
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Fig. 1. An overview of the visual servoing control loop. The “Image
Segmentation” block is described in Section II-A. The “Visual Servoing”
and “Feature Estimation” blocks are described in Section II-C and II-D,
respectively. Both these two blocks uses the visual features described in
Section II-B. The blocks “Robotic System” and “Ultrasound Machine”
represents physical devices, and are not a part of the algorithm.

will be used in the control. The main focus of the paper is
the control approach; therefore we have chosen to simplify
the segmentation step. The needle is put in a water tank,
instead of using a phantom that resembles real tissue, in order
to get a relatively simple segmentation problem. The main
innovations are the usage of a state machine to keep track
of the alignment process and to select which visual features
to use and a method for stochastically resolving ambiguities
in the estimated features. To our knowledge there are no
methods for aligning a needle with a 2D US image plane.
In this paper we use a 2D US system instead of a 3D US
system, as 2D US system are still the most commonly used
systems today.

Section II describes the proposed method. Section III
accounts for the experiments used to validate the proposed
method, while Section IV shows the results of the experi-
ments. Section V discusses the results of the experiments and
the limitations of the method. Final conclusions are drawn
in Section VI.

II. ALGORITHMS

The different parts of the visual servoing method are
shown in Fig. 1 and presented in this section.

A. Image segmentation

To segment the needle two filters are used. The filtered
images are thresholded and then they are combined. This is
shown in Fig. 2. The first filter enhances the needle. The
filter uses a quadratic kernel of 29x29 px with a circle in
the center, with a diameter equal to the needle diameter (19
px). The pixels in the circle have equal values and have a
sum of 2.25. The border pixels have equal value and a sum
of -2.25. The resulting image is thresholded at t1 = 50 (of
a maximum of 255). A fixed threshold is used to avoid a
high increase in the threshold value when there is nothing
of interest in the US image, and thus avoiding to segment
background noise. Then a morphological closing operation
with a circular structuring element with a diameter of 9 px
is used in four iterations in order to connect together the
segmented parts of the needle.

The second filter uses the image moment m11 on a region
around each pixel in the original image. The image moment
m11 emphasizes line structures that are angled in the image.
As the needle needs to be inserted from the surface which the
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Fig. 2. The original US image is shown to the left. Next are the two filtered
images where red represents positive values and blue negative values. In the
middle are the thresholded images. In the combined image blue is from the
needle enhancing filter, red is from the m11 filter and green is combined.
To the right is the segmented needle.

probe is in contact with, the needle will always be angled.
The filtered image is given below

Im(x, y) =
1

4(2s+ 1)2

s∑
i=−s

s∑
j=−s

xyI(x+ i, y + j) (1)

where (x, y) is a pixel position in the original image, s is
the size of filter kernel, 1

4(2s+1)2 is a scaling factor and the
double sum is the image moment m11. The above equation
has been implemented using dynamic programming, which
reduced the complexity from a fourth order to a third order
polynomial. In this paper we use s = 9, which means that
a 19x19 region is covered for each pixel. The filtered image
is thresholded at t2 = 50 (of a maximum of 255).

In the next step the two segmented images are combined
using a logical OR operation. In the combined image each
segmented area must have at least one pixel from each of the
segmented images, or that area will be dropped. After this
step the largest segmented area is selected as the needle.

B. Needle model

Two models have been derived in order to control the
robot. In the first model the needle intersects the image plane
of the US probe, and thus is unaligned with the plane. Then
a second model is used once the needle lies within the plane.

1) Unaligned: Fig. 3 shows the needle plane and the nee-
dle intersecting the plane. It is assumed that the segmented
image contains the cross-section of the needle, although this
is an approximation. The cross-section of the needle forms
an ellipse in the image plane. The parameter α is the angle
between the image plane and the needle axis. In order to
align the needle this value should be zero. While the probe
is moved to be aligned with the needle it should not disappear
from the image. This is ensured by also controlling the center
of the needle pc. The last parameter that should be controlled
is the insertion angle of the needle θ. Assuming that the
needle ellipse is segmented correctly one can calculate the
four above parameters by using the area of the ellipse.



Fig. 3. A needle cross-section for modeling the unaligned needle. pc

is the center of the needle. v1 and v2 are the directions of the minor
and major semi-axis, while 2

√
λ1 and 2

√
λ2 are the length of the minor

and major semi-axis, respectively. n is the needle direction in space and
v2 corresponds to the needle direction in the image plane. θ is the angle
between the x-axis and the needle direction in the image plane, and α is the
angle between the image plane and the needle direction n. r is the needle
radius. pt is the location where the major semi-axis intersects the ellipse,
and is used in the Aligned model as an estimate for the needle tip location.

The position of the center of the needle pc = [xc yc]
T

can be found by calculating the centroid of the ellipse, using
image moments [8]

xc = m10

m00
yc = m01

m00
(2)

where mij are image moments. The image moments are
calculated for the segmented area selected in the previous
section. The eigenvalues of the covariance matrix

cov(I) =

[ m20

m00
− x2

c
m11

m00
− xcyc

m11

m00
− xcyc m02

m00
− y2

c

]
(3)

are proportional to the major and minor axis of the ellipse.
The orientation of the ellipse (which corresponds to the
insertion angle) is given by

θ = 1
2 arctan

(
2µ11

µ20−µ02

)
(4)

where µ11 is the off-diagonal elements of cov(I) and µ20

and µ02 are the diagonal elements of cov(I).
The major and minor semi-axis of the ellipse in Fig. 3

are equal to 2
√
λ2 and 2

√
λ1, respectively, where λ1 and λ2

are the eigenvalues of cov(I). The directions of the major
and minor semi-axis are given by v1 and v2, which are
the eigenvectors of cov(I) and have unit length. The minor
semi-axis (2

√
λ1) corresponds to the radius of the needle.

The major semi-axis (2
√
λ2) equals the distance between

the points pc and pt. By using the triangle formed by v2, r
and n in Fig. 3 we get α as

α = arcsin
√

λ1

λ2
(5)

Fig. 4. A needle cross-section for model of the aligned needle. r is the
radius of the needle, l is the length from the needle center to the image
plane and w is width of the needle in the image plane.

2) Aligned: When the needle is aligned to the image
plane, a new model is needed. The visual feature θ is kept,
as we still wanted to control the insertion angle. Now with
the needle aligned to the plane, we would like to control the
z-direction of the US image to ensure that the needle lies in
the middle of the plane. To do this the offset l in Fig. 4 is
modeled by using the radius r of the needle and the width
w of the needle in the US image. This yields

l =

√
r2 − w2

4 (6)

where r is assumed to be known. The segmented needle is
approximated to be an ellipse. The parameter w is estimated
as the area of the segmented needle (m00) divided by the
approximated length of the needle, which is 4

√
λ2 as this is

the length of the major axis. This yields

w = m00

4
√
λ2

(7)

The above formula yields more stable results than using
4
√
λ1, which is the length of the minor axis.

The last visual feature is the position of the needle tip.
The tip position is approximated to be

pt = pc + 2
√
λ2v2 (8)

where pc is the centroid of the segmented needle, 2
√
λ2 is

the length of major axis and v2 is the direction of the major
axis.

C. Visual servoing

In order to control the probe using a visual servoing
scheme the interaction matrices for the states are needed [17].
The interaction matrix describes the relationship between
the visual features s and the velocity of the US probe
v = [vT ωT ]T with v being the linear and ω angular
velocity of the probe. The relationship is given by ṡ = Lv.

The set of visual features which are controlled depend on
the state of the controller. The control state machine is given
in Fig. 5, and this section describes all the states. All the
states use the control law [17]

v = −KL+(s− s∗) (9)

where s∗ is the desired visual feature and K is the gain
matrix, specifying a gain for each feature on its diagonal.

First we will find the interaction matrices for the visual
features, and in the later section we will modify the in-
teraction matrices to obtain the wanted behavior in each
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Fig. 5. Control state machine showing the visual servoing features and matrices used for controlling the features in each state. Which features that are
measured in each state are also shown by the z1 and z2 vectors, where z1 is used as a measurement update for an extended Kalman filter.

state. The in-plane motion of a point is given in [8], and
covers the relationship between ṗc and vx, vy and ωz . The
relationship between ṗc and vz is straightforward to find
using trigonometry. We use the needle direction n to derive
the relationships for remaining degrees of freedom. The
needle direction n is the first column vector of Rz(θ)Ry(α),
where Ry and Rz are simple rotation around the y and
z axes, respectively. This yields n = [cαcθ, cαsθ, −sα]T ,
where sx and cx denotes sinx and cosx. Then the n vector
is decomposed into the xz-plane and yz-plane, denoted nxz
and nxy . The angle φ is defined as the angle between the
x-axis and nxz while the angle ψ is the angle between the
y-axis and nyz . Using the dot and cross product on these
vectors yield

tanφ = − tanα
cos θ tanψ = tanα

sin θ (10)

Using the definition of angular velocity yields ωx =
vωz
yc

and

ωy =
vωz
xc

, where vωz is the velocity in the z-direction caused
by the rotation. Using the equation above, and the relations
tanφ =

vωz
vωx

and tanψ =
vωz
vωy

we find the relationships
between ṗb and ωx and ωy . This yields the interaction matrix

L?pc =

[
−1 0 cos θ

tanα −yc cos θ
tanα −yc cos θ

tanα yc
0 −1 sin θ

tanα
xc sin θ
tanα

xc sin θ
tanα −xc

]
(11)

To find the interaction matrix for θ and α with regards to
ωx and ωy we take the time derivative of (10) and solve for
θ̇ and α. Only θ is affected by ωz , and neither θ nor α is
affected by translations. This yields

L?α,θ =

[
0 0 0 c2αs

3
θ+s2α −c2αc3θ+s2α 0

0 0 0 − cθtα (s2θ+t2α) − sθtα (c2θ+t2α) −1

]
(12)

The last visual feature l is the displacement in the z-direction
when the needle is aligned, thus the interaction matrix is

L?l =
[

0 0 −1 0 0 0
]

(13)

1) Needle location unknown: In this initial state the probe
is moved back and forth in the z-direction to locate the
needle. The needle is detected when the needle mass m00 is
greater than zero, and then the state changes to the Estimate
direction state. This state is not visual servo controlled, as
there are no features in the image. If the needle is lost
(m00 = 0); the state machine returns to the initial state.

?Denotes that the matrix is an interaction matrix.

2) Estimate direction: When the needle is detected, an
initial estimate of the needle orientation is needed. This
state estimates the orientation by moving the probe in the
z-direction, and using the center of the needle in the image
pc as a visual feature. Equation (11) is modified to only
allow movement in the z-direction

Lz =

[
0 0 signα cos θ 0 0 0
0 0 signα sin θ 0 0 0

]
(14)

where signα returns the sign of α. Note that 1
tanα is

approximated by signα to avoid Lz becoming singular,
assuming α ∈ [−π2 ,

π
2 ].

When the center of the needle pc is close to the desired
location in the image p∗c the state changes to the Unaligned
state. The velocity in the z-direction is used as a measure for
closeness, as it is proportional to the position error. In the
estimation of α and θ it is required that the probe moves a
certain distance between the frames. Therefore the velocity
is used to trigger the state change, rather than the position.

3) Unaligned: As the orientation of the needle was found
in the previous state, the probe can be rotated towards the
needle. Although θ also has an initial estimate we choose to
only control pc and α in this state, because the angle between
the needle and the image plane is large. The large angle
makes the estimates of α and θ from (5) and (4) inaccurate.

The motion of pc is limited to in-plane motions,
yielding[8]

Lpc =

[
−1 0 0 0 0 yc
0 −1 0 0 0 −xc

]
(15)

For the visual feature α we choose to rotate around the
point pc and use the vector v1 as rotation axis (i.e. α̇ =
[(v×1 pc)

T vT1 ]v), rather than using (12). This yields

L′α =
[

0 0 −v1yxc + v1xyc v1x v1y 0
]

(16)

where v1x and v1y are the x- and y-component of v1. The
benefit from this approach is that the rotation only affects
the parameter α. The downside is that rotation around the
x-axis sometimes is unwanted. If only rotation around the
y-axis is wanted the following matrix may be used

Lα =
[

0 0 −xc cos θ 0 − cos θ 0
]

(17)

The above matrix will also affect θ, which is undesirable in
a control perspective.

The state changes to the Near aligned state when α is
small. This is determined by the ratio between λ2 and λ1,
and when the ratio is above rλ the state changes.



4) Near aligned: In this state α, θ and pc are controlled.
When the ratio between λ2 and λ1 is large the estimation
of both α and θ becomes more stable. This enables direct
estimation of all the controlled features in this state.

The matrices for controlling α and pc are given in the
previous section. The matrix for controlling θ depends on
matrix used for controlling α. If L′α is used the matrix is
given as [8]

L′θ =
[

0 0 0 0 0 −1
]

(18)

If Lα is used, the rotation around the y-axis also affects θ.
Taking the time derivative of (10) and inserting for α̇ yields
an additional term, and the control matrix becomes

Lθ =
[

0 0 0 0 − tanα sin θ −1
]

(19)

When the α becomes close to zero, the state changes to the
Aligned state. If for some reason the ratio between λ2 and λ1

becomes lower than rλ, the state changes to the Unaligned
state in order to align the needle closer to image plane.

5) Aligned: In this state the needle is aligned with the
image plane, and the visual feature l from the aligned needle
model is used. The interaction matrix in (13) is modified to
handle changing directions of l. The new matrix is

Ll =
[

0 0 −dl 0 0 0
]

(20)

where dl is either 1 or −1, depending on the sign of l, and
is estimated along with the features.

The second new feature in this state is the position of the
needle tip pt. As this feature is based on pc by an offset,
the same interaction matrix is used, thus Lpc = Lpt . This is
an approximation, as the time derivative of the term 2

√
λ2v2

in (8) is not zero. The last controlled feature is θ, using the
interaction matrix from (18).

When the needle is aligned the segmented needle is always
touching at least one side of the US image. SI denotes how
many sides the needle is touching, and if this value drops to
zero the state changes to the Near aligned state.

D. Visual feature estimation

The visual features estimation is described in this section,
and an overview of the features estimated in each state is
given in Fig. 5.

1) Stochastic ambiguity resolver: Both α from (5) and
and l from (6) are ambiguous. α as both λ1 and λ2 are
always positive interdependently of the sign of α, and l as
the square root always yields a positive value, while l may
be both positive and negative. Therefore Bayesian inference
is used to find the sign of α and l, denoted dα and dl and
has either the value 1 or -1. We generalize the method by
using f as either α or l, d as the direction and the error
e = f − f∗. We approximate the Bayesian inference using
the following equation

P (d|ė) ≈ P (ė|d)P (d) +N∑
d P (ė|d)P (d) +N

(21)

where N is a small value added in order to even out the
probabilities for the two directions over time, if there is no

change in f . P (d) is modeled to be P (d|ė) from the previous
time step. If ė is negative, the feature error is decreasing and
it is likely that the direction is correct. Therefore P (ė|d) is
given a high probability PH if d equals the current direction
d̂, and a low probability PL if not. If ė is positive the situation
is reversed, and the feature error is increasing. Then if d = d̂,
P (ė|d) is given a low probability PL, and if not it is given
a high probability PH .

The probabilities PH and PL are modeled as

PH = 1− 1
2e
−k|ė| PL = 1

2e
−k|ė| (22)

A high change in the error e over time indicates a high
probability that the movement is either correct or incorrect.
With slower change the probability is less. With no change
it is impossible to know if the movement is in the correct
direction or not, and PH = PL.

The current direction d̂ changes when the probability
of the direction being wrong (P (d6=d̂|ė)) is greater than
0.6. This is to avoid the direction oscillating when the
probabilities become close to 0.5. The method is initialized
with the positive direction having a probability of 0.75 and
the negative direction a probability of 0.25.

2) Extended Kalman filter: For the states 2-4 an extended
Kalman filter is used, as it is not possible to extract all the
features from the image at all times. The extended Kalman
filter uses a matrix L depending on the control state as
control input, given as ŝk+1 = ŝk + TL(ŝk,vk)vk where
the state ŝk = [α̂k θ̂k p̂Tc ]T contains the estimated visual
features, and T is the period.

3) Estimate direction: In the Estimate direction state the
initial estimate of α and θ needs to be found. By using
the probe movement one can determine these features. The
movement in the z-direction of the probe is measured by
the robot, and the change in position is denoted ∆z. The
change in the in-plane center of the needle position pc is
denoted ∆x and ∆y. The position change is calculated using
the current position and the position five images ago, for
increased robustness. Using the position changes yields the
estimates

α̃1 = arctan ∆z√
∆x2+∆y2

θ̃1 = arctan ∆y
∆z (23)

Although arctan is used to find α, the sign is not necessarily
correct, as the denominator is always positive. Given our
definition of α multiplying α̃1 with − sign θ̃1 sign ∆y will
yield the correct sign.

The extended Kalman filter is using L = [0T2×6 LTz ]T

where 02×6 is a 2×6 matrix of zeros and Lz is from (14).
The Kalman filter is updated using α̃1, θ̃1 and pc from (2).

4) Unaligned: In this state the extended Kalman filter
uses the interaction matrix L = [LTα LTθ LTpc ]

T , and the
measurement update is pc. Note that in this state both α and
θ are estimated solely based on the extended Kalman filter,
and not updated based on the images.

5) Near aligned: The method in Section II-D.1 is in this
state used to resolve the ambiguity of α. The method needs
α̇, which is estimated as α̇ = α̂k−α̂k−1

T . Using the current
direction d̂α one gets the estimated angle α̃2 = d̂αα.



Fig. 6. The experimental setup consists of a water tank with a biopsy
needle. The robot is holding the US probe in the water tank.

The extended Kalman filter uses the same L matrix as in
the Unaligned state, but the update is using α̃2, θ from (4)
and pc. If the segmented needle is touching one or more
of the image borders the needle model is invalid, and no
measurement updates are done.

6) Aligned: In order to solve the ambiguity of l, l̇ is
needed. Taking the time derivative of (6) yields l̇ = − 1

4
wẇ
l

where w is obtained from (7), l from (6) and ẇ is estimated
as wk−wk−1

T . Using the current direction d̂l the estimate of l
is l̃ = d̂ll

The estimated visual features l̃, θ and pt (from (8)) are
used directly in this state, as they are extracted from the
image at all times. They are given in z2 in Fig. 5 to indicate
which features that are obtained from the US image, although
they are not used in any stochastic filter.

III. EXPERIMENTS

A. Simulation using synthetic images

In the simulation 332x502 8-bit gray scale synthetic US
images were created, using a pixel size of 0.1 mm/px. The
position in the image that intersects the center of the needle
was given the value 255. The gray value was scaled down
depending on the distance from the needle center. The needle
was modeled to have a radius of 1 mm, and the pixel value
at the needle border was set to 15. The rest of the image was
black (i.e. having a value of zero). The image and needle size
resembles the ones used in the experiment using a physical
robot, presented in the next section. The desired visual
features s∗ were α∗ = 0◦, θ∗ = 35◦, p∗c = [150 350]T px,
l∗ = 0 and p∗t = [200 400]T px. The gains used were
0.5, [0.2 1 1], [0.2 0.2 0.4 0.4] and 0.3 for the states
Estimate direction, Unaligned, Near aligned and Aligned,
respectively. The vectors represent the diagonal elements of
the gain matrix K.

In the simulation ten initial needle poses were used, and
the image delay were ranging from no delay to four frames
delay. The gain was multiplied by the vales 1, 2, 4, 8 and
16 compared to the values used in the physical experiment.

B. Experiments using a physical robot

The proposed control approach was verified using a robot;
the experimental setup is shown in Fig. 6. The robot holds
an ultrasound probe, and a biopsy needle was fixed to the
tank with the needle submerged. The probe was positioned
close to the needle, and the proposed method was started.
The desired visual features and gains were the same as in
the simulation.

The robot used was an UR5 from Universal Robots
(Denmark). The US Machine was a System Five from GE
Vingmed (Norway). The US image stream was acquired
using a video VGA2Ethernet frame grabber from Epiphan
(USA) at a rate of 20 frames per second. An Angiotech
ProMag 14 GA x 10 cm biopsy needle from Medical Device
Technologies Inc. (USA) was used. The needle was sanded
using a sanding paper for better visibility.

The images acquired from the US machine were 332x502
8-bit gray scale images. A FLA 1A probe was used with
the RF program. The US machine settings were: frequency
10.0 MHz, depth 6 cm, compression 16, dynamic range 6,
rejection 0, power -2 dB and fps 32.7.

IV. RESULTS

A. Simulation using synthetic images

The errors of the visual features are shown in Fig. 7. All
the feature errors approaches zero, except α which has an
offset of -0.87◦. Different controller gain and image delay is
explored in Fig. 9, and it shows the average time used from
the moment the method enters the Estimate direction state
until the needle is 1 mm from the target location.

B. Experiment using a physical robot

The errors of the visual features during the experiment
are shown in Fig. 8. It is worth noting that α changed to a
negative value twice. First between 6.9 s and 7.4 s, and then
also between 10.2 s and 21.1 s. Between 32.2 s and 57.1 s
the method uses only the extended Kalman filter to predict
the visual features. At 57.1 s the state machine enters the
Aligned state, and the visual features are again extracted from
the image. The median time used for each control iteration
was 45.15 ms, where 45 ms was used on the segmentation
and 0.15 ms on the visual servoing control.

V. DISCUSSION

A. Simulation using synthetic images

The simulation creates a very simplified synthetic US
image, and the simulation is only meant to validate the
theoretical framework of the control scheme. Fig. 7 shows
the ideal execution of the visual servoing method.

We have explored the effect of higher gains and image
delay using simulations (see Fig. 9). Increasing the image
acquisition delay caused a slight increase of the completion
time. Multiplying the gain by two approximately halves the
completion time. Increasing both the gain and the image
delay makes the method unstable, and unable to complete
the task. For instance, with the gain multiplied by two and
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Fig. 7. The figures show the visual feature errors during one simulation.
pc and pt share graph and are drawn by solid and dotted line, respectively.
For α and θ the true values are shown as gray dotted lines. The states
are shown in color in the background, and the same colors as in the state
diagram are used.

a four image delay only two of ten initial poses find the
needle tip. With a gain multiplier of 16 the average time for
completing the task is 3.0 s and 4.3 s for zero and one image
delay, respectively. With more delay the method is unable to
complete the task. This shows that the gain could be set
much higher if the image acquisition delay was reduced.

B. Experiment using a physical robot

The experiment for validating the proposed method is not
as challenging as using the method on a real tissue. The
water makes the needle stand out in the US image, and
the segmentation of the needle is not very difficult. Another
advantage of using water is that there are almost no cases
where the segmentation step finds something that is not the
needle. The focus of this paper is to validate the control
approach, not the segmentation of the needle. And the aim
of the experiment is to show that the control approach is
feasible under fairly ideal conditions. As the segmentation
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Fig. 8. The figures show the visual feature errors during the experiment.
pc and pt share graph and are drawn by solid and dotted line, respectively.
The states are shown in color in the background, and the same colors as in
the state diagram are used.

and control are two separate steps, the segmentation step
should be improved when using a more challenging phantom.

The experiment uses almost 60 s to align the needle,
which is too long. In the experiment the frame grabber
introduced a delay of approximately four frames (200 ms).
This delay deteriorates the performance of the control, and
it is necessary to have a low gain to avoid unstable control.
If the delay in the image acquisition can be reduced, higher
gains may be used. Simulations indicate that the gain could
be multiplied by between 8 and 16, thus reducing the time
to between approximately five to ten seconds.

In the video attachment one can see an appearing and
disappearing artifact on the needle. The appearance and
disappearance and of the artifact causes the ratio between
λ2 and λ1 to change rapidly, and is one likely cause for the
oscillation between Unaligned and Near aligned states.

One shortcoming with the method is that it is not possible
to update the estimated α in the Unaligned state and in the
Near aligned state when the needle is touching one of the
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image borders. In the Unaligned state α is not extracted
from the images as the angle is too large to get accurate
measurements based on the needle model. This is generally
not a problem as the feature was estimated in the Estimate
direction before entering the Unaligned state. For the Near
aligned state the needle model is not valid when some parts
of the needle are outside the image. This typically occurs
when the needle and image plane is close to being aligned.

The method may process an image stream with a frame
rate of up to 22 frames per second. Nearly all of the time is
used on segmentation of the US image, and if a higher frame
rate is required the segmentation should be optimized.

VI. CONCLUSION

This paper has demonstrated a method for visual servoing
of a US probe to align the image plane with a needle.
Simulation has shown that the theoretical framework and
state machine function as intended under ideal conditions.
An experiment using a robot showed that the method works,
although less optimally than in the simulation. Especially
the state changes between the Unaligned and Near aligned
states leave room for improvement, as the probe rotates in
the wrong direction for some period of time. Even though
the method has some drawbacks, we have shown that the
method potentially could solve the problem of aligning an
image plane with a needle.

Future work includes conducting experiments where the
conditions are closer to a clinical setting and having the
needle move slightly during the visual servoing. In addition
a faster image acquisition is required for faster convergence
of the visual features.
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