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Abstract. We present a study on morphological traits of evolved modu-
lar robots. We note that the evolutionary search space —the set of obtain-
able morphologies— depends on the given representation and reproduc-
tion operators and we propose a framework to assess morphological traits
in this search space regardless of a specific environment and/or task. To
this end, we present eight quantifiable morphological descriptors and a
generic novelty search algorithm to produce a diverse set of morpholo-
gies for any given representation. With this machinery, we perform a
comparison between a direct encoding and a generative encoding. The
results demonstrate that our framework permits to find a very diverse
set of bodies, allowing a morphological diversity investigation. Further-
more, the analysis showed that despite the high levels of diversity, a bias
to certain traits in the population was detected. Surprisingly, the two
encoding methods showed no significant difference in the diversity levels
of the evolved morphologies or their morphological traits.

Keywords: modular robots, evolutionary robotics, morphology, generative en-
coding, novelty search

1 Introduction

Evolutionary Robotics (ER) [1-4] is a field that “aims to apply evolutionary
computation techniques to evolve the overall design or controllers, or both, for
real and simulated autonomous robots” [3]. Traditionally, the emphasis lies on
evolving controllers for fixed robot bodies, but there is a growing interest in
evolving the morphologies as well [5-9]. For instance, a generic architecture for
a system of embodied on-line evolution of robots in real time and real space
was proposed in [10]. However, the current technology of rapid prototyping (3D-
printing) and automated assembly is a limiting factor, and studies in simulations
remain important.

In this paper we address the issue of morphological diversity in an evolution-
ary robotic system. In general, there are three essential factors that determine the
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course of evolution in such a system, 1) the encoding, including the phenotypes
(the set of possible morphologies), the genotypes (the syntactical representation
of these phenotypes), and the mapping from genotypes to phenotypes, 2) the
reproduction operators that generate new genotypes from existing ones, and 3)
the selection operators that depend on the environment and the task at hand.
For the sake of this study we distinguish the search space and the application
space of an evolutionary robotic system. The search space consists of the en-
coding and the reproduction operators, while the application space is formed by
the environment and the given task. Besides the impact of the environment [11],
clearly, the properties of the search space also have a paramount impact of what
evolution can achieve. The main research question we address here is: How to
investigate the effect of the search space on the set of evolvable morphologies?
This question will be broken down into two subquestions:

Q1: How to quantify and measure morphological properties?
Q2: How to isolate the effects of the encoding and the reproduction from the
effects of selection?

The measures and the methodology we propose to answer these questions will
be applied to compare a direct encoding and an indirect encoding scheme for the
morphological space we work with in our research programme towards physically
evolvable modular robots.

2 Morphology Space and Morphological Descriptors

Our robot bodies are composed of modules® as shown in Fig. 1, based on Robo-
Gen [12]. For this study, the bodies are flat, constructed in 2D, i.e., the modules
do not permit attachment on the top or bottom slots, only the lateral ones. Each
module type is represented by a letter in the genotype and by a colored block in
the visualized phenotype (color indicating the type of block), and any module
can be attached to any other through its attachment slots. An arrow inside the
block points to the parent module to which the module is attached.

For quantitatively assessing a given modular body we designed and utilized
eight morphological descriptors. The maximum number of modules in a robot is
limited to M ,q.. Given an m,,q., each descriptor can assume a discrete number
of values, and the calculation for these numbers can be found in the accompany-
ing documentation®. Each morphological descriptor was normalized to a range
between 0 and 1, as explained below.

Branching. This descriptor captures how the attachments of the modules are
grouped together in the body, and envisions to measure whether the components
of the body are more spread or agglomerated. It is defined with Eq. (1):

b if =5
B{b e (1)

0 otherwise

3 http://robogen.org/docs/robot-body-parts/
* https://tinyurl.com/y9s8ssuc



(a) modules (b) simulated robot

Fig.1. (a) Modules of robots: core-component C holds a controller board; brick B
is a cubic module; active hinge A is a joint moved by a servo motor. C and B have
attachment slots on its four lateral faces, and A has attachment slots on its two opposite
lateral faces; (b) example of a simulated robot.

where m is the total number of modules in the body, b the number of modules
that are attached on all four faces, and bpa, = [(m — 2)/3| — the maximum
possible number of modules that can be attached on four faces in a body of m
modules. See Fig. 2 for a few illustrative examples.

_ (c) Branching:0.5
(a) Branching: 0 B MM (b) Branching: 1 —»>

Fig. 2. Morphology (a) has no module with its four faces attached, (b) has one module
with its four faces attached, which is the maximum possible given the size of the body,
and (c) has one module with its four faces attached, but could have two, if using the
modules indicated by pink arrows to be attached to the one indicated by the orange
arrow.

Limbs. This describes the number of extremities of a body:

I #, if lypar >0
o otherwise

(2)

2*L@J+(m—6) (mod 3) +4, ifm>=6
lmax - .
m—1 otherwise

where m is the total number of modules in the body, ! the number of mod-
ules which have only one face attached to another module (except for the core-
component) and l,,4, is the maximum amount of modules with one face attached
that a body with m modules could have, if containing the same amount of mod-
ules arranged in a different way (Fig.3).



(a) Limbs: 0.5 “ (b) Limbs: 1 .5

Fig. 3. Morphology (a) has four modules that could be extremities (considering the
limit determined by the size of the body), but only the two indicated by green arrows
are; (b) has the maximum number of extremities it could have.

Length of Limbs. Describes how extensive the limbs of the body are and is

defined with Eq. (3):
e 1 —
E:{emaz, ifm>=3 (3)

0 otherwise

where m is the total number of modules of the body, e is the number of modules
which have two of its faces attached to other modules (except for the core-
component), and €,,,, = m — 2 — the maximum amount of modules that a body
with m modules could have with two of its faces attached to other modules, if
containing the same amount of modules arranged in a different way® (Fig.4).

(a) Length of limbs: 0.67 -i? (b) Length of limbs: 1 [ ININE

Fig. 4. While in morphology (b) the maximum possible quantity of modules was used
as the extension of a limb, in (a), the module indicated by an orange arrow was used
as an extra limb.

Coverage. Describes how full is the rectangular envelope around the body. The
greater this number, the less empty space there is between neighbor modules. It
is defined as Eq. (4):

m

C= (4)
where m is the total number of modules of the body, and mgreq = My * My, —
the supported number of modules in the area of the body, with m; being the
number of modules that would fit in a column as long as the length of the body,

and m,, the number of modules that would fit in a row as long as the width of
the body (Fig.5).

marea

(a) Coverage: 1 Il Ml (b) Coverage: 0.78 F
Fig. 5. While in morphology (a) all the area created by the body contains modules, in
(b), there is space for two more modules.

5 The types of modules would not have to be necessarily the same, as long as the body
had the same amount of modules.



Joints. This describes how movable the body is and is defined with Eq. (5):

J_ifm >=3
J:{Jw s (5)

0 otherwise

where m is the total number of modules of the body, j is the number of effective
joints, i.e., joints which have both of its opposite faces attached to the core-
component or a brick, and jnes = |[(m — 1)/2] — the maximum amount of
modules with two opposite faces attached that a body with m modules could
have, in an optimal arrangement (Fig.6).

(@) Joints: 1 N[N (b) Joints: 0.5 q

Fig. 6. Although both morphologies have two joints, in (b) the second joint is not
effective, and would be only if the module indicated by the green arrow was switched
with the one indicated by the orange arrow.

Proportion. This describes the 2D ratio of the body and is defined with Eq.(6):

Ps
P=— 6
b (6)

where p; is the shortest side of the body, and p; is the longest side, after mea-
suring both dimensions of length and width of the body (Fig.7).

(a) Proportion: 0.2 [ MM (b) Proportion: 1 ﬂ

Fig. 7. Morphology (a) is disproportional and (b) is proportional.

Symmetry. This describes the reflexive symmetry of the body with Eq.(7):
(a) Symmetry: 1 -:ﬁ (b) Symmetry: 0 54_ (c) Symmetry: 0.67 !«

Fig. 8. Morphology (a) has the modules indicated by green arrows horizontally reflected
by the modules indicated by orange arrows; (b) has no modules reflected; (c) has the
module indicated by the orange arrow vertically reflected by the modules indicated by
the green arrow, but no reflection for the module indicated by the pink arrow.

Z = max (7)

ZyRh

where z, = oy, /qp — is the horizontal symmetry, and z, = 0,/¢, — the vertical
symmetry. For calculating each of these symmetry values, a referential center for



the body is defined as the core-component. For both horizontal h and vertical v
axes, a spine is determined as a line dividing the body into two parts according
to the center and this axis. Each value is the number o of modules that have a
mirrored module on the other side of the spine (each match of modules accounts
for two), divided by the total number ¢ of compared modules. The spine is not
accounted in the comparison (Fig.8).

Size. This describes the extent of the body in terms of number of modules and
is defined with Eq.(8):

g=_"

8

mmar ( )
where m is the total number of modules in the body and m,q, the maximum
number of modules permitted in any body (Fig.9).

(a) Size: 0.25 [ WM  (b) Size: 0.15 ﬂ

Fig. 9. Morphology (a) is bigger than (b). Example for mmqee = 20.

3 Exploring the Space of Morphologies

In the foregoing we have introduced eight morphological descriptors that can be
used to analyze any given set of robotic morphologies. For instance, they can
be measured and plotted during the evolutionary search process and/or applied
to assess the final population from a morphological perspective. In this section
we demonstrate how they can be used to compare two different representations.
To this end, we present a generic methodology for sampling the search space
(specified by the encoding and the reproduction operators) independently from
the application space (defined by the environment and the task).

The main idea is to create a set of sample morphologies through a generate-
and-test search process where the generate step uses the actual reproduction
operators, but the test step is based on morphological properties, not influenced
by its behavior. The code of our method and the experiments can be found on
GitHubb.

For these experiments the size of the morphologies, M, 4., was limited to 100
modules regardless of the genotype size. Thus, in the body construction phase,
after reaching the limit size, extra modules in the genotype were ignored and
not included in the phenotype. Additionally, modules which would overlap with
other modules were not included in the body. Any morphology generated via
crossover or mutation was allowed to lose any part of its genome, except for the
mandatory and unique core-component.

5 https://tinyurl.com/yc364pfe



3.1 Encodings

Generative Encoding: Our generative encoding represents the genotype of
a robot with a Lindenmayer-System (L-System) [9, 13|, which is a grammatical
parallel rewriting system. The grammar of an L-System is defined as a tuple
G = (V,w, P), where

— V, the alphabet, is a set of symbols containing replaceable and non-replaceable
elements

— w, the axiom, is a symbol from which the system starts

— P is a set of production rules for the replaceable symbols

In our design, the symbols of the grammar represent the modules of a robotic
body and the commands to assemble them together. The system starts as a
simple string of elements and grows to a more complex string iteratively during
the rewriting, which performs substitutions of elements through production rules
according to a grammar. The alphabet is formed by three letters and two groups
of commands as shown in Tab. 1. For every letter, there is a production rule
that might contain any letter or command, and this rule takes place in the
rewriting phase to replace its correspondent letter by all of its elements. This
representation functions as a developmental process for the genome. Initially,
the genome is turned into a single-component structure, the axiom, as the first
stage of the L-System. The axiom in this L-System is C (the core-component),
and the rewriting process, i.e, development of the genome, iteratively goes on
substituting each letter for the items of its production rule. The rewriting results
in a string of symbols that straightforwardly maps onto a morphology.

Table 1. Alphabet

Symbol Type Function

C module  core-component

B module  brick

A module  joint

addr command adds the next module to the right of the current one
addl command adds the next module to the left of the current one
addf command adds the next module to the front of the current one

mover command moves the reference to the module to the right of the current
movel command moves the reference to the module to the left of the current
movef  command moves the reference to the module in front of the current

moveb command moves the reference to the module behind the current




(a) Axiom: C (b)

Grammar:

C: C addf B moveb addl A
B: B addf B
A: A addf A

Iteration 0:
c—»

Iteration 1:
C_addf B moveb addl A

Iteration 2:
C_addf B_moveb addl A addf B addf B moveb addl A addf A

Fig. 10. Encoding methods: (a) generative encoding and (b) direct encoding.

The decoding of a simple genome is illustrated in Fig. 10.a. The genome starts
with the axiom C, and for 2 iterations the rewriting rules are performed using
the production rules for the replacements. During this construction, a turtle
reference is kept for the parser to be localized in the phenotype, which starts at
the bottom of the core-component. The turtle reference is updated according to
the direction of the new addition movement made. If the current module is a
joint, any addition command attaches the new module to the front of it. If all
left, front, and right faces of the core-component were occupied, any command
of attachment would place a new module to its back. After the replacements, it
is possible that some commands end up without a letter in front of it, and in
this case the command is a violation and is ignored. Additionally, it is possible
that a new module might be supposed to be added in a position where there is a
module already. This also generates a violation, and the module is ignored. These
violations, which result in ignoring elements of the genotype, can be thought of
as non-expressed genes.

Direct Encoding: The direct encoding (Fig.10.b) uses a tree-based structure
as proposed in [12], and it uses the same modules as the generative encoding.
The genotype is composed with one symbol in the tree directly representing each
part of the phenotype, and thus, there is a direct genotype-phenotype mapping.

3.2 Sampling Algorithm

Our algorithm to generate the set of morphology samples is, in fact, evolution-
ary. However, selection is based on robot structure, not on robot behavior. We



use Novelty Search [14] to maximize the morphological diversity of the sample
and to cover a large part of the search space, i.e., find as many different types
of morphologies as possible. The corresponding fitness measure is based on the
distance of an individual from the others in a multidimensional space defined
by the eight morphological descriptors proposed above. The novelty of an indi-
vidual z is calculated as the average distance to its k-nearest neighbors, where
k = 15 and the distance is the Euclidean distance [15] using the morphological
descriptors. The set of neighbors for the comparison is formed by the current
population, plus an archive, to which every new individual has a 5% probability
of being added. The individuals added to the archive remain in it until the end.

Using this novelty objective our evolutionary sampling algorithm was run
with a population size of u = 500 for 100 generations. In each generation pairs
of parents were selected by binary tournament selection, A = 250 offspring were
created, and survivors to remain in the population were selected from the set
of parents and offspring by 2-tournament selection again. The experiments with
each of the two encoding methods were repeated 10 times.

Reproduction Operators for the Generative Encoding The initial ran-
dom population was created by adding from 1 to 3 random triples of elements to
each production rule in the grammar of a genome. A triple was formed by one
addition command, one letter and one movement command (Fig.11.a). Crossover
of two parents generated one new individual by choosing the production rules
randomly from the parents (Fig.11.b). The mutation had 10% of chance of be-
ing performed, by choosing a random production rule and applying one of the
actions: delete one element in a random position, add one random element in a
random position or swap two elements at random positions (Fig.11.c). An ex-
ception is made for the production rule of C, which always contains C as its first
element, and C cannot be included again, ensuring that a robot has one unique
core-component.

(a) Initialisation

( b ) Crossover

B: addf B movef

A: addf Amovef

C: C addf Amoveb addl Amoveb

Parent 1
C: C addf Amoveb addl Amoveb

Offspring

B: addf B movef

A: addf Amovef

$ C: C addf Amoveb addl Amoveb
B: addl Amovef <

<

A: addf B movel

Parent 2
C: C addl B moveb addf B movef
B: addl Amovef
A: addf B movel

(C) Before mutation

After mutation

C: C addf Amoveb addl Amoveb
B: addf B movef
A: addf Amovef

C: C addf Amoveb addl Amoveb
B: addf B movef addf
A: addf Amovef

Fig.11. GE operators.

Reproduction Operators for the Direct Encoding The population was
initialized randomly, by adding between 2 and 10 modules to each genome.
Crossover was implemented by swapping random subtrees between parents as
is standard practice for tree-based genomes (for instance, in Genetic Program-
ming, [16]). Mutations were performed having 10% of chance of applying one of



the following the operators: removing a subtree, duplicating a subtree, swapping
subtrees, inserting a node or removing a node.

4 Results and Discussion

To analyze the morphologies obtained by our evolutionary sampling we use the
eight morphological descriptors. The full results are available on Drive”.

4.1 Individual Morphological Descriptors

In Fig. 12 we see that the search keeps finding new values for all morphological
descriptors along the generations. Regarding the distributions of the descriptors,
as depicted by Figure 13, for all of them, the distribution of the values is not
uniform, there being a concentration of phenotypes in some values, happening
consistently for all runs with both encoding methods. To compare the encoding
methods, the descriptors were divided into bins and the frequencies were cal-
culated for the results with both encodings. Table 2 shows correlations for the
descriptors (p < 0.001), indicating that the concentrations (high frequencies of
phenotypes) occur in the same values for both encoding methods. This seems to
indicate that there are common regions of attraction, i.e., morphological traits
that are more likely to occur, independent of the encoding. Nevertheless, there
are other encoding methods in the literature [7,17], for which we do not know if
this result would persist.

Table 2. Pearson correlations between the distributions of the descriptors using the two
encoding methods. M1=Branching, M2=Limbs, M3=Length of Limbs, M4=Coverage,
Mb5=Joints, M6=Proportion, M7=Symmetry, and M8=Size.

M1 M2 M3 M4 M5 M6 M7 M8

0.98 0.95 0.89 0.99 0.98 0.99 0.90 0.98

Some of the concentrations can be explained taking the nature of our system
into consideration, such as Branching, Joints, and Symmetry with concentrations
in the value 0. This outcome makes sense, because they measure constrained
aspects of a morphology. For instance, not all morphologies possess symmetry,
while any morphology has a size. The stronger a morphological constraint may
be, the harder it may also be for the evolution to find such cases. Coverage,
Length of Limbs and Proportion have a concentration in 1, and it is not clear
why this happens. By the concentrations of Limbs in 0.5 and Length of Limbs
in 1, we see that leg length wins in the tradeoff with the number of limbs.

" https://tinyurl.com/ybpcvdgp
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Fig. 12. The proportion (average of the runs) of the values discovered for the descrip-
tors, considering the number of all the possible values that the descriptors can assume.

4.2 Multidimensional Diversity

To observe the progress of the search for morphological diversity, we define a
new measure called Morphological Niche(MN). MN is the number of cubes in
the morphological space filled with at least one phenotype, accumulated along
the evolutionary run. The grid of cubes was constructed having its dimensions
composed of our eight morphological descriptors, each divided into 100 bins of
size 0.01 (1008 cubes in total). Each new phenotype was attributed to its suitable
cube, given its morphological descriptors. If the cube had not been filled by any
phenotype yet, it accumulated one more point in the MN, otherwise, the number
of phenotypes concentrated in that same cube was incremented. In Figure 14.a
we see the progression of the MN along the generations, where the values are
the averages of the runs. Both methods start with similar values, and the GE
surpasses the DE along the generations, but converges to similar values again in
the end, presenting no statistically significant difference for the averages of the
final MN values. The standard deviations grow along the generations, maybe
indicating that the more diverse the population, the more unpredictable the
level of diversity of the next generation might be. For both methods, all the
MN curves keep on growing linearly along the generations and present growth
trend (Mann-Kendall Trend Test p < 0.001), suggesting that a longer search
will continue to discover new cubes. Notably, the progressive discovery of new
cubes may be due not only to the discovery of new values for the individual
descriptors, as also to combinations of different discovered values.

As a next step, for each encoding method, we evaluated the density of each
point in the multidimensional morphological space, i.e., how many phenotypes
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Fig. 14. (a) Progression of the Morphological Niche along the generations; (b) and (c)
Quantity of phenotypes fit in each discovered point of the morphological space over all
runs (the graphs were scaled).

found during the search fit the same cube, considering the phenotypes of all runs
(Fig.14.b and Fig.14.c). For both encoding methods, we see that occurrences of
phenotypes in the same cube of the morphological space are concentrated. The
frequencies of phenotypes in the cubes for the individual runs were correlated
with each other, showing a significant relation, with Pearson strengths ranging
from 0.72 to 0.92 (p < 0.01) for all pairs of cases. This shows that for both
encoding mechanisms, there is a tendency in discovering certain types of mor-
phologies.

Furthermore, we compared the encoding methods, considering the frequen-
cies of phenotypes in the cubes discovered by them, verifying that there is also
correlation (Pearson 0.81, p < 0.01). This implies that some types of morpholo-
gies are more likely to be found, i.e., there seems to be a bias in morphological
traits even without regarding the robot behaviors. Figure 15 shows the most
common morphologies, ranked in order from left to right, of each of the runs
with both encoding methods. The most common bodies are very similar in all
runs, for both encoding methods. These bodies are composed of few modules,
mostly from one to four, having frequently one or two limbs, using the extra
modules to make limbs a little longer.

This observation could be interesting when analyzing morphological traits of
genuinely evolved populations, where robot behavior is taken into account. For
instance, one might wonder if the evolved morphological traits are due to the
given environment and the nature of the task being performed, or they simply
occur because they are more likely to be generated within the used design space.
The random initialization and mutations that the system performs could have
a tendency to generate some specific types of morphologies, and being aware
about it would help one to understand the results of the experiments better.

On the other hand, despite this bias, the morphological diversity of the pop-
ulation is vast, according to the previously mentioned results regarding the MN
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Fig. 15. For 10 different runs, the most common discovered morphologies. From left
to right, the most common to the least common.

and values of the descriptors. Fig. 16 shows a sample with ten very diverse
morphologies found after one evolutionary run.

el 4B i kWi

Fig. 16. Sample of diverse morphologies found after one evolutionary run.

4.3 Relations Between Morphological Descriptors

The correlations between the morphological descriptors are shown in Figures
17.a and 17.b. The data show that most descriptors are not correlated, indicating
that morphologies with a wide range of combinations of the values are possible.
The exceptions are cases for which the nature of the descriptors is competitive,
not permitting some combinations of values. For instance, Limbs and Length of
Limbs are negatively correlated because the longer the limbs are, the less there
are modules available for new limbs. Size and Coverage are also correlated, as
the more modules a body has, there is a higher chance of the extents forming a
large rectangular envelope which is hard to fill, thus giving a low coverage score.

5 Conclusion and Further Work

This paper presented a framework for assessing the space of possible morpholo-
gies within a system of evolving modular robots. The main question was: How
to study the properties of (and possible biases in) the search space as defined by
the representation and the reproduction operators? To this end we defined eight
morphological descriptors and an evolutionary algorithm that sampled the space
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Fig. 17. Correlations between descriptors

of possible robots by considering only morphological properties and disregard-
ing behavior. We used Novelty Search and conducted two sets of experiments,
each one based on a different representation. The first encoding method was
a benchmark direct encoding and the second method was an L-System-based
representation, proposed for the purpose of this study.

Our results showed that it is possible to assess morphological diversity uti-
lizing the proposed framework. The resulting morphologies with both encoding
methods display a wide range of values for all descriptors. However, we did not
observe significant differences in the achieved morphological diversity using each
encoding. Furthermore, despite the high diversity achieved, with both methods
there are morphological traits that are more commonly found. This indicates
that in the utilized design space, a search process is more likely to find some
types of morphologies than others. Being aware of such tendencies within a de-
sign space could help understand issues related to the morphological traits of
evolved populations of robots.

As further work we will add a locomotion task to the fitness of the robots and
analyze the impact it will have on the morphological features of the population.
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