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Abstract—In a recent study we have encountered an unex-
pected result regarding the evolutionary exploration of robot
morphology spaces. Specifically, we found that an algorithm
driven by selection based on morphological novelty explored fewer
spots in the space of morphologies than another algorithm based
on a combination of morphological novelty and some behavioral
criterion (speed of movement). Here we revisit these results,
perform new analyses, and obtain new insights. These insights
clarify the exploration behavior of these algorithms and provide
guidelines for designing selection mechanisms for evolutionary
robotics.

Index Terms—evolutionary robotics, morphological evolution,
search space exploration, diversity, novelty search

I. INTRODUCTION

In this paper we consider evolutionary robot systems where
both the bodies (morphologies) and the brains (controllers) of
the robots are evolvable, with a special interest in the evolved
bodies. Our long term research goal is to understand how
evolutionary search traverses spaces of robot morphologies.
This issue is relevant for fundamental reasons as well as for
practical purposes. Knowledge about possible search biases
or regions of attraction in the morphology space can help
design appropriate evolutionary operators for selection and
reproduction.

To this end, we have identified several morphological prop-
erties, e.g., size, symmetry, branching, that together span a
multidimensional search space for evolution in [1]. In a follow-
up study we have investigated how these evolved morpho-
logical properties change when using different criteria for
selection, cf. [2]. In particular, we specified selection mecha-
nisms based on morphological properties (novelty of the body

w.r.t. existing robots), robot behavior (speed of movement),
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and the combination of these. And, when examining what
proportions of the search space were explored under each of
these regimes, the results were counter-intuitive. The selection
mechanism based purely on morphological diversity exhibited
inferior capacity of exploring the space than the one that
combined this same criterion (diversity) with a behavioral
criterion (speed). Thus, in this paper we investigate this effect
further to understand what caused this unexpected system
behavior.

This is paper is organized as follows. Section II introduces
a background for this study. Section III elucidates the de-
sign space of the robots, regarding their morphologies and
controllers. Section IV explains the encoding, evolutionary
operators, evolutionary algorithm, and fitness function used
in the experiments. Section V describes how the data was
obtained and how the analysis was conducted. Section VI
exposes and discusses the results. Finally, Section VII presents

our conclusions.

II. RELATED WORK

Novelty search was introduced in [3], [4], as a method
for overcoming the deception of local optimum. They com-
pared the use of fitness-based search (selecting for behavioral
quality) with behavioral novelty search, and obtained much
higher behavioral quality in a maze navigation task when
using novelty. Furthermore, they utilized behavioral novelty
in a bipedal locomotion task, one more time achieving better
results for behavioral quality [5].

In [6] they applied and compared morphological novelty
search for evolving virtual creatures that locomote. The perfor-

mance of novelty search alone at the task was worse than the
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Fig. 1: Robot modules: Core-component with controller board
(C); Structural brick (B); Active hinges with servo motor joints
in the vertical (A1) and horizontal (A2) axes; Touch sensor (T).
C and B have attachment slots on their four lateral faces, and
Al and A2 have slots on their two opposite lateral faces; T
has a single slot which can be attached to any slot of C or B.
The sequence of letters (T or n) in C and B indicate if there is
a sensor on the laterals left, front, right and back (for C only),
in this order.

fitness-based search, and this is reasonable, once the concept
of novelty was purely morphological, not taking the behavior
into consideration. The combination of morphological novelty
search with a fitness-based search was also experimented as
multiobjectivization, achieving a better performance at the task
than the individual searches. Nevertheless, the best levels of
diversity were, as expected, achieved by novelty alone.
Other studies have discussed the benefits and also the
challenges of using novelty search, alone, or in combination
with other fitness functions [7]-[9], and there still are open
questions concerning when the use of novelty search is worth
it. For instance, in [10] it was argued that “novelty search alone
does not scale to large search spaces, but, when combined with
fitness-based selection, it can be a useful diversity sustaining

mechanism.”

III. DESIGN SPACE
A. Robot Morphology

The phenotypes of the morphologies (‘“bodies”) are com-
posed of modules [11] as shown in Fig. 1. The morphologies
(Fig. 2) are flat, i.e., the modules do not allow attachment on
the top or bottom slots, but only the lateral ones. And, any
module can be attached to any other through its attachable
slots, except for the sensors, which can not be attached to
joints. Each module type is represented by a distinct letter in
the genotype and by a different color in the phenotype.

For analyzing the morphological properties of the robots,
we used a framework proposed in our previous work [1], [2]
containing nine morphological descriptors. The descriptors,
for which a more detailed explanation can be found in our

previous work, range from 0 to 1 and are named: Branching,

Fig. 2: Examples of evolved robots.

Number of Limbs, Length of Limbs, Coverage, Joints, Pro-

portion, Symmetry, Size, and Sensors.

B. Robot Controller

The phenotype of the controller (“brain”) is a multilayer
Artificial Neural Network, not necessarily fully connected
(Fig. 3, right). For every joint in the morphology, there exists
an equivalent Oscillator neuron in the network, and every
sensor is reflected as an input of the network. The intermediate
topology may vary for each robot and is composed of neurons
which might have Linear or Sigmoid transfer functions. The
weights of the connections range from —1 to 1. In this paper,
the neurons are also referred to as nodes and the connections

as edges.

IV. EVOLUTION
A. Generative Encoding

The generative encoding to represent the genotypes of
the robots is a grammatical parallel rewriting system called
Lindenmayer-System [12], and conjointly includes elements
relative to both morphology and controller, as in [13]. The
grammar of an L-System is defined as a tuple G = (V, w, P),

where

« V, the alphabet, is a set of symbols containing replaceable
and non-replaceable elements.
¢ w, the axiom, is a symbol from which the system starts.

e P isa set of production-rules for the replaceable symbols.

The following didactic example depicts the process of
iterative-rewriting of an L-System. For a determined number
of iterations each replaceable symbol is simultaneously re-
placed by the elements of its production-rule. Given w = C,
V={C,B,T}and P={C:{C,B},B:{T},T:{C,T}},

the rewriting follows as:

Iteration 0: C
Iteration 1: C B
Iteration 2: CB T
Iteration 3: CBTCT
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Fig. 3: Process of decoding an early-developed phenotype into
a late-developed phenotype with morphology and controller.

Each genotype is a distinct grammar, making use of the
same alphabet (Tab. I), and the alphabet is formed by types of
morphology modules and commands to attach them together,
as well as commands for defining the structure of the con-
troller. To construct a robot, firstly (early development), the
axiom of the grammar is rewritten into a more complex string
of elements, according to the production-rules of the grammar
(the parameter of number of iterations was set 3). Secondly
(late development), this string is decoded into a phenotype.
The decoding process of the phenotype of morphology and
controller is illustrated in Fig. 3. During this construction
phase, two references are always maintained in the phenotype,
one for the morphology (pointing to the current module) and
one for the controller (pointing to the current edge). The
application of the commands to the phenotype happens in the
current module for the morphology and in the current edge
for the controller.

B. Evolutionary Operators

For all the experiments, the same evolutionary operators and
parameters were applied. The population size was p = 100,
being evolved for 100 generations. In each generation: an
offspring A = 50 was created by producing 1 individual from
each of 50 binary tournaments for parent selection and mu-
tating the new individual. From the resulting population of p
parents and X offspring, 100 individuals were selected for sur-
vival, also using binary tournaments. For each fitness function,
the experiments were repeated 10 times. The genotypes were
initialized by adding four elements to each production-rule,
one of each of the categories, Controller-moving, Morphology-
mounting, Morphology-moving and Modules, and, each ele-
ment of the categories was chosen randomly. The maximum
amount m of modules allowed in a morphology was 100. So,
during the phase of decoding the genotype into the phenotype,

after reaching the maximum, the succeeding modules were

Modules

C core-component
B brick
Al vertical joint
A2 horizontal joint
T touch sensor
Morphology-mounting commands

addr add the next module to the right
addf add the next module to the front
addl add the next module to the left

Morphology-moving commands
moveb move reference to the module at the back
mover move reference to the module to the right
movef move reference to the module to the front
movel move reference to the module to the left

Controller-change commands
bnode add a new node to the neural network
bedge add a new edge to the neural network
bperturb| perturb the weight of an edge
bloop add a self-connection edge to the network
Controller-moving commands

bmvFTC| move current edge origin-reference to a child
bmvFTP | move cur. edge origin-reference to a parent
bmvFTS | move cur. edge origin-reference to a sibling
bmvITC| move cur. edge dest.-reference to a child
bmvTTP | move cur. edge dest.-reference to a parent
bmvTTS | move cur. edge dest.-reference to a sibling

TABLE I: Alphabet of the grammars. (cur.=current and
dest.=destination)

ignored. Additionally, morphologies without at least one joint
or with intersecting parts were considered invalid, and though
having been kept in the population, were not evaluated,
receiving a value of zero to the measurement of speed. The
crossovers were performed by taking the production-rules
randomly from the parents, and all individuals underwent mu-
tation by adding/deleting/swapping one random element from
a random production-rule/position. The crossover probability
was 100%, as it is possible that during the rewriting of the
L-System, only the rules of one single parent end up being
expressed. And, as it is not rare that one mutation happens for
non-expressed genes, thus, to minimize this effect the mutation
rate was 100%.

C. Fitness Functions

The fitness function for the diversity-oriented search is
defined as N = n, where n is a measure of novelty which is
calculated as the average distance to the k-nearest neighbors

of an individual, for which & = 1 and the distance is the



Euclidean distance regarding the nine morphological descrip-
tors. The set of neighbors for the comparison is formed by
the current population, plus an archive, to which every new
individual has a 10% probability of being added, with the
individuals added to the archive remaining in it until the end.
This fitness has a purely relative morphological property.
The behavior-oriented search is calculated as S = s, where
s is a measure of the speed (m/s) of the displacement of the
robot’s head from its initial position to its final position during
the evaluation time, having a purely behavioral character.
Finally, the combined search (SN) is calculated as SN =
s % n, combining behavioral and relative morphological char-

acters.

V. METHODS

The data analyzed in this paper was generated in a previous
study [2], on which distinct experiments were conducted
evolving robots for the behavior of undirected locomotion
on a plain terrain, using a different fitness function in each
experiment. The first was a diversity-oriented search, i.e.,
Novelty Search [3], the second was a behavior-oriented search,
and the third was a combination of the other ones. The study
left an open question regarding a counterintuitive observation
that, a combination of a search for behavior with a search for
morphological diversity had a greater capacity of exploring the
search space than a search for sole morphological diversity.
Therefore, grounded on these previous results, in this paper
we deepened this analysis to understand this phenomenon.

A search space can be seen as different layers which
build-up over each other. Those are, the design space, the
representation, and the reproduction operators. These layers
result in a set of phenotypes, to which we refer here as
morphological phenotypic search space.

In the previous study, the exploration of the search space
was examined by quantifying the sampling of points in the
space, which was defined through a measure called Number
of Sampled Cubes (NSC). The NSC is accumulated along the
full evolutionary run and accounts for the number of cubes
in the morphological multidimensional space discovered, that
is, the number of distinct morphologies (within a determined
granularity) ever found along the full course of evolution. The
grid of cubes has its dimensions composed of a number x
of morphological descriptors, having each one divided into y
bins of equal size. This way, the number of cubes in the space

is calculated as y*. Every new morphology is attributed to a

proper cube given its descriptors, and if the cube does not
contain any morphology yet, one more unit is summed to the
NSC.

In this study, additionally to the NSC, we propose and use
a measure called Average Spread (AS), targeting to quantify
how distant from each other the points in space are. The
calculation is done by, firstly, averaging the Euclidean distance
(regarding = morphological descriptors - dimensions) from
each individual to every other, and secondly, averaging these
values across all individuals. The measure is calculated in four
different versions, using both median and mean in the first
and second level of aggregation, to make sure that from all
averaging-perspectives possible differences can be observed.

VI. RESULTS AND DISCUSSION

In the previous study, the granularity used to observe the
sampling of the search space was high, with x = 9 descriptors
and y = 100 bins. We consider this level of granularity as
high because it uses all of the nine descriptors as dimensions,
divided in y = 100 bins, which in practice, is equivalent
to almost all' of the robots set individually into one bin.
In the current study, we investigated how the NSC changes
when reducing this granularity. Thus, when considering fewer
dimensions (descriptors) and/or fewer bins.

Our first step was reducing the bins-granularity to the lowest
possible 2 value, i.e., y = 3. Figure 4 shows the progression
of the average NSC with x = 9 (all dimensions) of all
fitness functions for two different bins-granularity scenarios,
i.e., y = 100 bins and y = 3 bins. The black vertical bars
indicate the generation on which the differences in average
among all functions become significant (Wilcoxon p < 0.05).
As expected given the selection pressure of S being purely
towards a behavior, in both scenarios its NSC is much lower
than for the functions that include diversity preferences. Ad-
ditionally, as it was known from the previous study, when
having y = 100 bins, NV, that searches only for diversity,
curiously presents a lower NSC than SN, which combines
diversity with behavior. This is counterintuitive, as one would
initially expect that the later one, for including behavior as
part of its preferences, would suffer the effect of the selection
pressure for certain traits that are suitable for the task, being

' Among thousands of individuals of all experiments, only two individuals
of one same bin did not present precisely the same values for their descriptors.

>The granularity 29, that is, ¥y = 2 bins when = = 9 (all dimensions), is
lower then the total number of individuals of one full evolution (5.050), and
it would make no sense to use a granularity level that leaves any individuals
out of the calculation.
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Fig. 4: Progression of NSC with z = 9 (all dimensions),
throughout the generations of all fitness functions for two bins-
granularity scenarios, i.e., y = 100 bins and y = 3 bins. Values
are the mean of all runs.

less diverse than when searching purely for diversity. However,
when having y = 3 bins, the situation is inverted, with N
surpassing SN.

Our second step was reducing the dimensions-granularity
(descriptors), measuring the progression of the NSC for all
the groups of descriptors, considering both low and high bins-
granularity. The groups were formed by making all possible
combinations of descriptors, for every size (number of de-
scriptors included) of a group, going from size 1 to size 9.
Figure 5 shows the proportions of groups for which each
fitness function presented a significantly (Wilcoxon p < 0.05)
higher (superior) NSC than the other functions®. We see that
by having y = 100 bins (Fig. 5, left), N is always superior
when the number of dimensions is x = 1. And, the frequency
of cases on which N is superior decreases as the number of
dimensions increases. Furthermore, by having y = 3 (Fig. 5,
right), N is superior in all cases. This shows that N is superior
to SN when the granularity is low, and inferior when it is high.

Having these new insights in mind, we drew down into
the distribution of the discovered points throughout the search
space. And assessing how spread the points in space are, we
obtained a much clearer understanding of the phenomenon.
Figure 6 shows the AS (with x = 9, i.e., all dimensions) for
each fitness function®. In all cases we see an evident difference
in the average distances. As expected, the points of S present
the lowest average distances. But when comparing SN with
N, the later presents higher distances amongst the points.

After all, although SN has a greater capacity for sampling
the search space, the points sampled by N are much more

different from each other. Therefore, while /N is superior in

3Cases of insignificant differences were not included.
4This includes individuals of all evolutionary runs.
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Fig. 5: For all sizes of group of descriptors, proportions
of cases on which each fitness function was significantly
(Wilcoxon p < 0.05) superior than the others in sampling
the search space.
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Fig. 6: Comparison of AS among fitness functions. Differences
among outer means are significant (Wilcoxon p < 0.001). N
= Novelty, S = Speed, SN = Speed & Novelty

discovering novelty for a global search, SN is superior in
finding novelty for a local search.

To illustrate this difference in the spreading of the points
in space, we plotted the points for the pairs of dimensions
(2 descriptors) with which any fitness function significantly
(Wilcoxon p < 0.05) surpassed all the others in sampling the
search space (NSC). A higher number of dimensions would not
be feasible to visualize, but two dimensions elucidate enough
the effect of the differences in distance verified previously.
Figure 8 depicts the pairs for which N is superior regarding
NSC, while figure 9 depicts the cases for which SN is superior
(S was not superior in any case). For all displayed pairs, the

plots show two distinct perspectives, the centroids; and all



the individuals. For both cases, the results of the 10 repeated
experiments were merged in each generation. The centroids
were calculated as the mean values of the descriptors among
all individuals of each generation within the 9 morphological
descriptors (dimensions). For all cases, regardless of the fitness
function that is superior in sampling the search space (NSC),
N always finds centroids more spread in space than SN. When
considering individuals instead of centroids, this difference is
visually less obvious, but it still exists.

Through these observations we conclude that N is able to
find more novelty in terms of distance among points (AS),
when SN finds more novelty in the sense of distinct points.
This corroborates with the previous observation that when
using a lower granularity, NV surpasses SN regarding NSC. If
SN discovers a superior number of points in space, but these
points are very close to each other, and N discovers fewer
points in space, but these points are much further from each
other, this difference could only be observable by reducing the
size of the cubes when measuring the space.

The reason for N discovering fewer cubes in space than
SN is that N revisits the same cubes more often than SN.
Figure 7 shows the frequency of visitation of the cubes in the
space for all fitness functions. The cause of this revisitation
is still unclear, but it could perhaps be related to parameters
for the archive of the Novelty Search, or even the metric
of distance used, given that other studies have argued the
Euclidean distance is not always the best option [14].

In summary, the observed anomalous effect of SN (com-
bination of a preference for morphological diversity with a
preference for a given behavior), makes sense, once it included
two contradictory pressures. On one side, the pressure for
diversity, and on the other side, the pressure to the traits that
better fit the task. This resulted in a level of exploration that
surpasses N from one perspective (quantity) but falls behind

N from another perspective (magnitude).

VII. CONCLUSION AND FUTURE WORK

In this paper we performed further analyses to understand
an unexpected system behavior encountered in a previous
study. We examined the effect of reducing the granularity
with which one divides a search space into small cubes,
and learned that it has a great impact on observed levels
of space exploration. Through this we have gained a better
understanding of how different fitness functions explore a

robot morphological search space. The results showed that

search driven solely by morphological novelty discovers fewer
points in space than search that combines preferences for
morphological novelty and behavior. However, the former
discovers points which are further from each other. This
illustrates two possible definitions of diversity throughout the
evolutionary process: exploring more points or exploring more
different points. If the users priority is to encounter solutions
as different from each other as possible (global search), then
the novelty-driven search is appropriate. If encountering as
many solutions as possible, even though they might be more
similar (local search), then the combination of novelty with
behavior is more suitable.

As future work, the reason why N revisits more cubes in the
space than SN could be investigated. Interesting experiments
would be the use of different parameters to build the archive,

and the test of distinct metrics of distance.
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Fig. 9: Points in space of pairs of descriptors for which SN had a significantly greater NSC than the other fitness functions.

Novelty, S = Speed, and SN = Speed & Novelty.
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