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Abstract—With advancing technologies, robotic manipulators
and visual environment sensors are becoming cheaper and more
widespread. However, robot control can be still a limiting factor
for better adaptation of these technologies. Robotic manipulators
are performing very well in structured workspaces, but do
not adapt well to unexpected changes, like people entering
the workspace. We present a method combining 3D Camera
based workspace mapping, and a predictive and reflexive robot
manipulator trajectory estimation to allow more efficient and
safer operation in dynamic workspaces. In experiments on a
real UR5 robot our method has proven to provide shorter and
smoother trajectories compared to a reactive trajectory planner
in the same conditions. Furthermore, the robot has successfully
avoided any contact by initialising the reflexive movement even
when an obstacle got unexpectedly close to the robot. The main
goal of our work is to make the operation more flexible in
unstructured dynamic workspaces and not just avoid obstacles,
but also adapt when performing collaborative tasks with humans
in the near future.

I. INTRODUCTION

In many practical applications, industrial robot manipulators
are still working ”blind” with hard-coded trajectories. This
results in the workspace for robots and humans being strictly
divided in order to avoid any accidents, which, unfortunately,
sometimes still occur. It is often more common to have
collision detection systems, which do not always work as ex-
pected, rather than collision prevention methods [1]. However,
environment-aware robots [2] [3] are becoming more common,
both developed in research and by robot manufacturers them-
selves (e.g. Baxter by Rethink Robotics) [4].

The theme of shared workspace has been researched for
many years, however it is still a highly relevant research
topic today [5] [6]. Workspace sharing can be classified
as robot-robot and human-robot systems for task sharing,
collaborative or supportive tasks. Normally, in robot-robot
sharing, controllers of all involved robot systems have direct
communication and can coordinate moves easier by knowing
the planned trajectories for all the manipulators. We will be
focusing on human-robot shared workspaces, where sensors
are used to observe the environment and adapt the manipulator
behaviour according to movements in the workspace, normally
caused by human motion.

There have been a number of systems proposed addressing
the issue of robot trajectory planning in shared workspaces.
One system runs a genetic algorithm using fuzzy logic and
defines all obstacles as static while the new trajectory is

found [7]. However, it is not suitable for obstacles moving at
higher velocities. Another work provides an analysis of non-
verbal cues given by humans and robots, and shows that move-
ment understanding plays an important role in the usability of
a system and the human-robot interaction (HRI) [8].

Some of the systems for human-robot interaction assign the
robot arm as a light manipulator, thus, reducing a possible
collision force and then using inertia reduction, passivity and
parametric path planning [9]. However, this method leads to
light collisions, which, ideally, should be avoided.

With camera systems, especially 3D cameras, becoming
more affordable, obstacle detection in the robot workspace
becomes easier. Sophisticated methods based on robot ma-
nipulator modeling and obstacle motion estimation allow a
rapid recalculation of robot trajectories to avoid collision with
moving obstacles [2]. Another system uses multiple Kinect
cameras observing the same workspace from different viewing
points to avoid collisions, but no definite planning approach
was proposed [10]. Furthermore, a system was proposed using
the historical data of obstacle positions in the workspace of
the robot. It avoids the areas which are commonly occluded
by a human and plan movement trajectories around them [11].
However, there is a high risk of a collision if the obstacle
appears right in front of the manipulator and is not modeled
yet. Such situations can occur, when the obstacle was not seen
by the camera before it got too close to the robot, for example
due to an occlusion or a blind spot of the camera.

Most of the presented approaches rely on one method,
commonly a reactive trajectory re-planning to an unexpected
obstacle. We propose a method combining a two layered tra-
jectory planner for a manipulator working in a shared human-
robot workspace. Multiple 3D cameras are used to observe the
workspace from different viewpoints to reduce the chance of
occlusions. At the same time, a danger map of the workspace is
created indicating the areas which are commonly entered by an
obstacle, e.g. person’s arm. The system contains two behaviour
models. Reflexive behaviour immediately reacts to unexpected
obstacles appearing close to the robot. Predictive behaviour
uses the danger map information to predict the probability
of an obstacle entering areas of the manipulator workspace
and avoids it in advance. The most optimum trajectories are
estimated considering the probability of a collision with the
obstacle as well as the distance traveled by the end effector
of the robot. Collision prevention is done not just for the end



effector, but for the whole body of the robot.
One of the possible applications of our proposed method

is a surgery assistive robot in an operating theater, where
simple tasks like holding a probe or handling surgical tools
will be automated. This requires a guaranteed safety with no
unexpected impact with a patient or staff around, as well as
surrounding equipment. In some cases, there might be multiple
robots working in collaboration, for example a robot with a C-
arm mounted fluoroscopy scanner working in parallel. Direct
communication and motion planning are not always possible,
so our proposed method provides an appropriate alternative
solution.

Furthermore, with classification of obstacle types, reflexive
behaviour model can be adapted for collaborative tasks, where
a person can hand over objects to the robot or use it for
support.

This paper is organized as follows. We present the system
setup in Section II. Then, we explain the proposed method
in Section III. We provide experimental results in Section IV,
followed by relevant conclusions and future work in Section V.

II. SYSTEM SETUP

Fig. 1. Overview of our proposed method. Green ovals represent sensing
part, blue rectangles - processing part, yellow hexagons - motion planning
and gray rectangle (dashed borders) - motion execution. Reflexive motion
planning marked as yellow hexagon (dashed borders) overrides the predictive
motion planning when an unexpected obstacle gets close to the robot. There
can be a variable number of 3D cameras included in the system.

A. Hardware

The robotic manipulator being used is UR5 from Universal
Robots with 6 degrees of freedom, a working radius of 850
mm and a maximum payload of 5 kg. The repeatability of the
robot movements is 0.1 mm.

In our research we include a low-cost Kinect V2 sensor [12].
It has been shown to achieve a significantly higher accuracy
compared to its predecessor Kinect V1 [13]. Kinect V2 uses a
time-of-flight (ToF) approach, using a different modulation fre-
quency for each camera, thus, allowing multiple ToF cameras
to observe the same object without any interference [14]. For
short-range sensing, an Intel F200 3D camera was mounted
on the end-effector to detect any obstacles, which are in close
proximity of the end effector [15]. Also one Kinect V1 sensor
is included in our setup. In general, any 3D camera, with ROS
support, can be used with the system.

Fig. 2. Our system setup with overhead Kinect V1, two Kinect V2 cameras
placed at different angles observing the front of the robot and an Intel F200
camera mounted on the end effector of the UR5.

B. Software

The system software runs on the Robot Operating System
(ROS) running on Ubuntu 14.04 [16]. The main advantage of
using ROS is its modular design allowing the algorithm to
be divided into separate smaller modules performing separate
tasks and sharing the results over the network. The workload
in our setup was divided over multiple machines.

Kinect V2 is not officially supported on Ubuntu, however,
open-source drivers including a bridge to ROS were found to
function well, including the GPU utilisation to improve the
processing speed of the large amounts of data produced by
the sensors [17]. Well tested OpenNI 2 drivers were used to
integrate Kinect V1 and Intel F200 into the system.

III. METHOD

A. System Overview

Our system contains a number of processes working both
in series and in parallel as seen in Fig. 1. Below we present
each part of the algorithm in more detail.



B. Calibrating 3D Cameras to the Robot

The first step of the system setup is to place the 3D cameras
around the robot. The goal is to observe the complete robot
workspace and to avoid any occlusions. In our case, two
Kinect V2 cameras facing the robot were placed, angled at
45◦ relative to the robot base, one Kinect V1 overlooking the
system from the top and the Intel F200 camera mounted on
the end effector of the robot, as shown in Fig. 2. However,
many different combinations can be used and selection should
be made depending on the application.

With fixed camera positions the Eye-To-Hand calibration
can be performed to map all the 3D camera coordinate systems
to match the robot base coordinate system [18] [19]. This
can be done automatically by placing a calibration board on
the robot’s end effector and using the proposed automatic
calibration procedure [20]. It uses the estimated checkerboard
position and robot joint encoder information to guide the robot
movements and cover the field-of-view (FoV) of each of the
cameras as much as possible for an accurate Eye-to-Hand
calibration.

(a) Point cloud (b) Octomap representing the input
point cloud

Fig. 3. Octomap created from the Kinect V2 point cloud data of the robot
scene. Colorscheme represents the distance of objects from the 3D camera.

The robot automatically performs a number of moves until
a precise calibration is achieved. Using the newly calculated
transformation matrix describing the positions of the 3D
cameras relative to the robot, all the point clouds can be
mapped onto a common coordinate frame originating at the
robot base.

C. Merging Point Cloud Data

In order to map the whole workspace of the robot, point
clouds from each of the 3D cameras have to be merged. The
calibration provides a good estimation of the transformation
matrices for accurate merging, but additionally, an Iterative
Closest Point (ICP) method is used for fine alignment of all
the point clouds [21]. The process is performed for each of
the cameras. Once the precise transformation matrices have
been calculated using the ICP method, they are applied for
transformations of all the incoming point clouds. Camera
calibration and the ICP method do not need to be repeated
unless the cameras or the robot base are moved in relation of
each other.

Start
Pos

Goal
Pos

Reactive Planning

Obstacle
Stop and 

replan point

(a) Reactive Behaviour Planning: When the obstacle is present,
the robot stops and recalculates the path. Occupied workspace
is never crossed.
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(b) Our method: the trajectory fully avoids, but gets close to
the medium risk area in the danger map. If detour is not large,
a safe path is chosen over a risky one.
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(c) Our method: the trajectory crosses the low risk area in the
danger map.

Start
Pos

Goal
Pos

Danger Map

Obstacle

Predictive + Reflexive Planning

(d) Our method: Predictive and Reflexive Planning. The obstacle
gets very close to the robot resulting in the reflexive behaviour
being initialised and a new alternative trajectory calculated.

Fig. 4. Comparison of our proposed joint predictive and reflexive trajectory
planning versus a traditional reactive trajectory planning. In danger maps, the
scale of risk is from the lowest risk (light green) to the highest risk (red).

D. Point Cloud Pre-processing

In order to increase the processing speed and filter out un-
wanted noise, a number of pre-processing steps are performed
on the input data from each of the 3D cameras.

The first step is to filter out any points in the point cloud data
that are too far away from the robot workspace. Knowing that
the workspace radius is 850mm from the base of the robot,
any points that are further than 1500mm from the robot base
are removed as they are not important in our application. This
significantly downsizes the point cloud.

Then, any outliers in the point cloud are removed using a
Statistical Outlier Removal algorithm [22]. After noisy data
has been removed, point clouds can be simplified by down-
sampling using a voxel grid filter, which normally reduces the
number of points with a minimal loss of information. The



voxel grid filter performs a smart down-sampling by sub-
diving the space containing point cloud data into a set of
volumetric pixels (voxels) and all the points inside each voxel
are approximated with the coordinates of their centroid.

E. Removing the Robot Model

After merging the point clouds, Eye-To-Hand calibrations
together with the precise model of the robot arm and its current
configuration in space are used to remove the underlying
points of the 3D robotic arm model. This step is necessary
to avoid false positives on self-collision, as some parts of the
robot, seen by the 3D cameras would be interpreted as an
obstacle.

It is done by fitting simple shapes, in this case cylinder
models on known robot links by taking current angles of all
the joint encoders. Cylindrical models are expanded to be
5mm larger than the actual robot links to compensate for any
noisy point cloud measurements. Once the model is fitted, any
points lying inside the cylinder models are removed under
the assumption that the robot itself is represented by these
measurements. In order to reduce the computational costs, the
shape fitting process is re-done only when the robot moves
from the previously fixed position.
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Fig. 5. Reflexive Behaviour. The planned robot trajectory (green solid line) is
blocked by a moving obstacle (marked in red). The first option is to backtrack
on the executed trajectory(pink dotted line) until the collision risk is over.
If backtracking still results in a collision, the second option is to use the
alternative avoidance move and move to the direction opposite from where the
obstacle is approaching (dotted orange line). In the meantime, an alternative
collision-free trajectory to the goal position is calculated and executed (blue
dashed line).

F. Mapping

An octomap was chosen as an efficient 3D mapping method
of the robot workspace. It is combined of octrees, which are
hierarchical data structures for spatial subdivision in 3D. Each
node in the octree represents the space contained in a cubic
volume, called a voxel. This volume is recursively subdivided
into eight sub-volumes until a given minimum voxel size is
reached. The minimum voxel size determines the resolution of
the octree. The resolution can be dynamically adjusted, both
for the whole map, or just parts of it, as each octree branch can
be sub-divided into smaller parts [23]. This approach enables
us to use a simple structure to represent occupied, free and

unknown areas in the map. The conversion from the point
cloud into an octomap can be seen in Fig. 3.

Octomaps can be either binary or full. In binary octomaps,
each of their voxels have a binary value, where 1 stands
for occupied and 0 for free space. They are suitable for
immediate reactions because of the quick processing. While
in full octomaps, float values between 1 and 0 are used to
describe the probability of voxels being occupied or free, and
probabilistic functions can be used to adjust them.

G. Danger Area Identification

Any obstacle (e.g. a person entering the workspace of the
robot) visible to 3D cameras at the time of the observation
is recorded in the octomap as an occupied voxel. As long
as the obstacle stays there, the respective voxels will remain
occupied. However, when the obstacle is not present anymore
in a previously occupied voxel, we do not want to mark it
as free immediately. Instead, we introduce a cost function to
produce a slow decay, which represents the probability of how
risky it is for the robot to enter the area.

1) Cost function: The time dependent cost decay function,
shown in Eq. (1), is based on an inverse logarithmic decay to
provide a slow decrease at first with an increasing decay the
longer the area was not occupied anymore. When the voxel is
occupied, its value Cvoxel,t is reset back to 0.999.

Cvoxel,t = Cvoxel,t−1 + ln(Cvoxel,t−1) ∗ (∆t ∗ α) (1)

Parameter α is used to adjust the decay speed and ∆t defines
the time difference between two calculations, normally deter-
mined by the rate of incoming data frames from the camera.
The cost function ensures that the areas in the workspace
where obstacles are commonly present and their presence is
recurring will be mapped as risky to enter for the robot, and
it will attempt to find alternative trajectories through the safe
areas to reach the next goal position.

H. Robot Motion Planning

Robot motion planning is based on a two-layered structure:
reflexive and predictive behaviour.

1) Reflexive Behavior: For any immediate danger, a reflex-
ive behaviour model is used. Inspired by human behaviour
of how we immediately move our hand away from anything
that is sharp or burning hot, and only then look at the object
and think what to do next. Similarly to this, the robot uses
the simplified binary octomap consisting only of currently ob-
served obstacles. If any obstacle is categorised as an immediate
danger, the reflexive movement is performed. Last couple of
already passed waypoints of the current trajectory are taken
as a new goal position, and if the path is free, the movement
is immediately executed. Otherwise, if moving back down the
previously executed trajectory still results in a collision, an
alternative avoidance move is initialised. The movement vector
is calculated by taking a vector from the end effector of the
robot to the closest point of the obstacle and inverting the
direction. The reflexive behaviour model is explained in Fig.
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Fig. 6. Visualisation of a two dimensional RRT-connect trajectory planning
algorithm. The method is based on growing Rapidly-exploring Random Trees
(marked in thin blue) from the start and goal positions until a connected path
is found (marked in pink and purple). Once one or more successful trajectories
are found, they are optimised and smoothed (green dashed lines) before they
are executed on the robot.

5. The risk of collision is determined by Eq. (2), inspired by
the braking distance calculations [24]:

Drisk(v,Deucl) =
|v2|
γDeucl

(2)

γ is a user set parameter, Deucl is the Euclidean distance
between the obstacle and the robot, v is the velocity vector
of the obstacle movement. The safe distance is determined
by a threshold T , which is normally set to 1 and instead the
parameter γ is adjusted. If Drisk exceeds the threshold T , a
reflexive motion planning overrides the predictive one.

behaviour =

{
reflexive if |Drisk| ≥ T
predictive otherwise

(3)

2) Predictive Behavior: Independently from the previously
described reflexive behaviour, a predictive re-planning con-
tinuously runs to find the safest and most optimum path
to the next goal position. The full octomap, including the
calculated danger areas is used for prediction. Each octomap
voxel contains the cost (danger) value described in Eq. (1).
The motion planner punishes the trajectories, which place any
part of the robot in the risky areas (voxels containing non-zero
cost). The measure being used for the trajectory evaluation is
the accumulated distance through each of the octomap voxels
and risk levels added as shown in Eq. (4). Ctraj is the total
cost of the trajectory, Dtraj is the Euclidean distance through
the octomap voxel and Cvoxel is from Eq. (1).

Ctraj =
∑
voxel

(Dtraj +Dtraj ∗ Cvoxel) (4)

This way, a longer trajectory through fully safe areas might
be preferred rather than a short and risky one. It has to be
noted, that any trajectory execution of the predictive planner

can be over-ridden by an reflexive behaviour planner whenever
a high risk obstacle is present. These two planners work in
parallel with the reflexive one having higher priority.
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Fig. 7. Danger map creation test. An object acting as the obstacle was
mounted on the end effector of the robot. Then the three indicated trajectories
were repeatedly executed in the workspace one after another while the danger
map was built up and updated. The average danger cost Cvoxel of each voxel
over the period of the whole experiment is shown with colors red, orange and
green indicating high, average and low risk accordingly. Transparent cubes
show voxels with zero cost, representing areas without danger.

3) Trajectory Planning and Execution: RRT-Connect mo-
tion planner implementation is used for the Cartesian trajectory
planning. It is one of the most efficient planners for the
UR5 manipulator. RRT-Connect stands for Rapidly-exploring
Random Trees (RRTs). The method works by incrementally
building two Rapidly-exploring Random Trees (RRTs) rooted
at the start and the goal configurations. The trees each explore
space around them and also advance towards each other
through the use of a simple greedy heuristic [25].

For the trajectory planner to work successfully, the obstacles
are precisely modeled in the environment. Then, the free
space is defined by calculating all the points, which can be
successfully reached given that no part of the robot collides
with the obstacles. Then, two the RRTs are initialised both,
at the start and goal positions and grown in the free space.
The exploration uses the randomly asssigned direction and
magnitude of vectors, but they are biased towards the goal
position as well as unexplored spaces. If the tree reaches the
goal position, or meets the other tree grown from the opposite
direction, the successful trajectory has been found. In our case,
the exploration is continued until the planning time limit is
reached, so more than one successful trajectory can be found.
When one or more successful trajectories are found, they are
smoothened to avoid choppy robot movements, and a total cost
considering the the distance and danger zone crossings (using
values from Eq. (4)) is calculated. The most efficient path is
executed for the robot to successfully reach the goal position.
A two dimensional example of RRT-Connect algorithm can be
seen in Fig. 6.



(a) Exp. 1: End-effector position during robot
movements between points A and B with reac-
tive behaviour trajectory planning and a static
obstacle. Static obstacle is indicated by the red
zone.

(b) Exp. 2: End-effector position during robot
movements between points A and B with a
reactive behaviour trajectory planning and a
dynamic obstacle. The obstacle was in the areas
marked in red, yellow and green with high,
medium and low frequency respectively.

(c) Exp. 3: End-effector position during robot
movements between points A and B with our
proposed method based on danger maps for
trajectory planning and a dynamic obstacle. The
obstacle was in the areas marked in red, yellow
and green with high, medium and low frequency
respectively.

Fig. 8. Comparison of our proposed method and reactive behaviour by tracking the end-effector trajectories under different conditions. The experiment
was executed using the presented setup containing one UR5 robot and four 3D cameras. Resulting end-effector trajectories show that our method results in
significantly shorter trajectories (compared to a reactive behaviour planning) by taking a calculated risk of crossing part of the danger zone when appropriate
instead of taking a long traversal around the areas where a dynamic obstacle might be present. Actual trajectories were planned in 3D, however, for easier
visualisation only a front view is shown here, where the difference between the presented methods is the most evident.

This method is suitable, because we can add our calculated
cost function to the search space of RRT-connect to punish
traversals passing through the risk areas calculated in Eq. (4).

Motion executions are performed using a new ROS imple-
mentation of a velocity based controller with rapid executions
and smooth joint accelerations making the robot motions even
more human-like. Robot control is done by calculating and
directly sending speed commands to each of the robot joints,
thus reducing the execution start time to 50-70 ms compared
to around 170 ms using the traditional ROS UR5 drivers. The
new controller is usable out-of-the-box and compatible with
traditional MoveIt! trajectory execution [26].

IV. EXPERIMENTS AND RESULTS

To test our method, we split the experiments into two main
parts. First, we evaluate the danger map construction by using
a number of repetitive trajectories of an obstacle moving
through the workspace. Secondly, the full system is evaluated
by using both static and dynamic obstacles in the workspace.
All the experiments were conducted using real hardware: the
UR5 robot manipulator, two Kinect V2, one Kinect V1 and one
Intel F200 3D cameras, as shown in Fig. 2. All the processing
was done in real time two computers working in parallel
connected with 1000 Mbit/s internal network.

A. Parameter Values

Algorithm parameter values were found by trial-and-error
during the development of the presented method. They have
proven to provide good accuracy, while still keeping the
processing time low enough for fast and smooth execution of
the robot movements. One set of parameter values was used in
the current experiments and they are summarised in Table I.

TABLE I. Parameter values used in our experiments.

Parameter Value
Cost Function: α 0.3
Collision Risk Function: γ 1.5
Octomap Voxel Size 0.05 meters
Backtracking Move Magnitude 10% of the executed trajectory
Max Robot Joint Speed 50% of the maximum
Max Robot Joint Acceleration 60% of the maximum
Kinect V2 Refresh Rate 15 FPS
Kinect V1 Refresh Rate 15 FPS
Intel F200 Refresh Rate 30 FPS
RRT-Connect: Max Planning Time 1 sec
RRT-Connect: # Planning Attempts 3
RRT-Connect: Orientation Tolerance 0.1 rad
RRT-Connect: Position Tolerance 0.01 meter

B. Danger Map Construction

Danger map creation was tested separately by mounting
a 10 cm by 20 cm object acting as an obstacle on the end
effector of the robot and executing pre-defined trajectories in
the workspace as shown in Fig. 7. The trajectories were close
to a circular shape and executed in a continuous order one after
another. The whole process was repeated 20 times. Trajectory
1 had a radius of 20cm, trajectory 2 had a radius of 32cm and
trajectory 3 had a radius of 46cm. The execution time of each
trajectory was 9.1 sec, 14.69 sec and 21.06 sec respectively.
With the current cost function parameter α set to 0.3, the decay
time of the voxel from occupied to free is 24.48sec.

Throughout the process, the cost values Cvoxel of all the
voxels were tracked and averages calculated. This resulted in
a complete danger zone, which could be sub-divided into three
areas by the average costs representing the severity of possible
collisions. As expected, the outside circle, had the lowest risk
with values ranging between 0.0 and 0.2, the middle circle had



(a) Reactive behaviour: Planned trajectory
when the obstacle is determined as static
object blocking the direct path.

(b) Our method: Planned trajectory while
avoiding the danger zone caused by obsta-
cle occasionally entering the workspace.

(c) Our method: Planned trajectory while
avoiding the danger zone and reflexive be-
haviour initialised by an obstacle (in red).

Fig. 9. Visualisation of the executed movements on the UR5 robot. Octomaps use the data from 3D cameras and different trajectory planning approaches were
compared. Green robot shadow indicates the start position and yellow robot shadow indicates the goal position. Robot shadow trail indicates the trajectory.

a medium risk with values ranging between 0.2 and 0.5 and the
inner circle had the highest average risk with values ranging
between 0.5 and 1.0. The result was as expected, where the
voxels falling in the inner area were occluded by robot’s body
when executing the outer trajectory 3. Results can be seen
in Fig. 7 with all three trajectories marked and cube colors
indicating the different average risk levels.

C. Operation of The Whole System

Operation of the whole system was tested by planning and
executing the trajectory between the two pre-defined points A
and B in the workspace. Our proposed method was compared
against a simple reactive behaviour based on the same RRT-
Connect trajectory planner which is used as a baseline. In
the first experiment the reactive behaviour planner was used
with a static obstacle blocking a direct path between points A
and B. The second experiment the reactive behaviour planner
was used with a dynamic obstacle randomly moving (moved
manually by the operator) into the area blocking a direct path
between points A and B. And in the third experiment, our
proposed method, based on predictive and reflexive behaviour,
was tested by using identical dynamic obstacle randomly
moving into the area blocking a direct path between points
A and B. In total, 15 executions of return A-B-A trajectories
were executed in each of the experiments.

Because the RRT-Connect algorithm is based on random el-
ements and provides different solution every time, the planned
trajectories were different for every movement. In the experi-
ment 1, the reactive behaviour planner successfully traversed
around the static obstacle while keeping a safe margin between
the robot and the obstacle, as seen in Fig. 8(a).

In the experiment 2, the obstacle randomly entered the
indicated workspace with different frequency. Trajectories cre-
ated by the reactive behaviour planner were significantly more
random and spread all around the workspace. It was caused
by some attempts of moving more or less directly between the
two points and then reacting to a blocked path by the dynamic
obstacle. In such cases, the robot stopped and quickly re-
planned the trajectory. However, due to very limited planning
time, the new trajectory was often not optimum and took a

long and unnecessary detour with high safety margins. Longer
allowed re-planning times would make new trajectories more
optimal, however, the whole execution time would be likely
to be even longer. Resulting trajectories of the experiment 2
can be seen in Fig. 8(b).

In the experiment 3, the dynamic obstacle was acting in
an identical manner as in the experiment 2. Our proposed
trajectory planner was constructing a danger map and using
it to plan the trajectories between the points A and B, and
the planned paths were significantly shorter and smoother
compared to the results using the reactive behaviour. Low
risk areas were often crossed with occasional crossings of
the medium risk areas and a few crossings of the high risk
areas. The reflexive behaviour was initialised only in two
instances, both times the robot successfully moving away
from the obstacle and avoiding the collision. On average,
our proposed method provided the smoothest and shortest
trajectories compared to the other two experiments. Resulting
trajectories of the experiment 3 can be seen in Fig. 8(c).

Another evaluation criteria can be trajectory planning, op-
timisation and execution time. Our method demonstrated in
the experiment 3 has over three times faster average trajectory
execution time compared to the reactive behaviour (experiment
2) when the dynamic obstacle was present. The big difference
mainly appears due to multiple stops by the reactive behaviour
planner to replan the motion when the obstacle blocks the
trajectory being executed. Normally it moves in the most direct
free trajectory without considering the historical data, which
in our method is considered by looking at the danger map.
Furthermore, our proposed method is close to 20% quicker
than the experiment 1, where the trajectory planning was per-
formed to avoid the static obstacle. No significant differences
were observed in planning and trajectory optimisation times
between the three experiments, however our proposed method
has the shortest time by a small margin. Timing results of all
three experiments and a comparison against the obstacle-free
direct trajectory can be found in Table II.

Some selected example trajectories of each method with
the full UR5 body visualised are shown in Fig. 9 for easier



TABLE II. Trajectory planning and execution timing results containing aver-
ages and standard deviations of the path planning time, the path optimisation
(smoothing) time and the path execution time. Results are compared against
direct trajectory, which had no obstacles present.

Exp. 1 Exp. 2 Exp. 3 Direct

Planning time (s) 0.0183
±0.0099

0.0217
±0.0095

0.0141
±0.0072

0.0145
±0.0057

Optim. time (s) 0.0178
±0.0102

0.0130
±0.0089

0.0129
±0.0077

0.0006
±0.0002

Execution time (s) 10.6085
±4.0766

26.6663
±14.7546

8.2952
±4.3454

4.994
±0.5421

visualisation of how the execution looks on the real system.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the predictive and reflexive
trajectory planning method for a robot manipulator based on
a danger map constructed using a multi 3D camera system.
It is designed to function better in the workspaces where
unknown dynamic obstacles are present. In the experiments,
it has proven to be more effective than the traditional reactive
trajectory planner, and still being able to avoid collisions with
unexpected obstacles getting close to the robot body.

Our proposed system contains a combination of many
methods working in parallel, each one of them having a set
of tunable parameters, affecting the performance of the whole
system. In our tests, a trial-and-error method was used to find a
good combination of parameter values. However, in the future
work, we plan to use AI systems, like evolutionary algorithms,
to automatically compute the best parameter value set for
case and make the system even more adaptive to changing
conditions by learning over time.

Additionally, obstacle classification will allow the robot to
react differently depending whether a person is approaching
the robot, or some other object. Also, making a difference
between bare hand or somebody holding a tool, especially a
sharp one, a different size safety zone should be used and the
robot should engage in different behaviour.

For collaborative tasks, the contact between the robot and
human might be beneficial. With modeling and understanding
the behaviour of a person sharing the workspace, joint tasks
for object handover or robot working as a support as well as
directing certain tools to a required area will become possible.
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