
Automatic Calibration of a Robot Manipulator
and Multi 3D Camera System

Justinas Mišeikis1, Kyrre Glette2, Ole Jakob Elle3, Jim Torresen4

Abstract— With 3D sensing becoming cheaper, environment-
aware and visually-guided robot arms capable of safely working
in collaboration with humans will become common. However,
a reliable calibration is needed, both for camera internal
calibration, as well as Eye-to-Hand calibration, to make sure
the whole system functions correctly. We present a framework,
using a novel combination of well proven methods, allowing
a quick automatic calibration for the integration of systems
consisting of the robot and a varying number of 3D cameras by
using a standard checkerboard calibration grid. Our approach
allows a quick camera-to-robot recalibration after any changes
to the setup, for example when cameras or robot have been
repositioned. Modular design of the system ensures flexibility
regarding a number of sensors used as well as different
hardware choices. The framework has been proven to work by
practical experiments to analyze the quality of the calibration
versus the number of positions of the checkerboard used for
each of the calibration procedures.

I. INTRODUCTION

In many practical applications, industrial robots are still
working ”blind” with hard-coded trajectories. This results
in the workspace for robots and humans being strictly
divided in order to avoid any accidents, which, unfortunately,
sometimes still occur. Furthermore, working in a dynamic
environment without a direct connection to other machinery
sharing the same workspace, might prove difficult. It is often
more common to have collision detection systems, which do
not always work as expected, rather than collision prevention
methods [1]. However, environment-aware robots [2] [3] are
becoming more common, both developed in research and
by robot manufacturers themselves, e.g. Baxter by Rethink
Robotics [4].

Low-cost and high-accuracy 3D cameras, also called
RGB-D sensors, like Kinect V1 and V2 [5], are already
available. They are suitable for a precise environment sensing
in the workspace of a robot, providing both color image
and depth information [6]. However, external sensors are
commonly used in fixed positions around the robot and are
normally not allowed to be moved. After any reconfiguration
in the setup, the whole system has to be calibrated, usually
by a skilled engineer. Camera calibration can be divided into
two main stages:

• Internal camera parameters, like lens distortion, focal
length, optical center, and for RGB-D cameras, color
and depth image offsets [7] [5].

1 2 3 4Justinas Mišeikis, Kyrre Glette, Ole Jakob Elle and Jim Torresen
are with the Department of Informatics, University of Oslo, Oslo, Norway

1 2 4 {justinm,kyrrehg,jimtoer}@ifi.uio.no
3Ole Jakob Elle has his main affiliation with The Intervention Centre,

Oslo University Hospital, Oslo, Norway oelle@ous-hf.no

• External camera parameters: the pose (position and
orientation) of a camera in a reference coordinate frame.
It is commonly called Eye-to-Hand calibration [8] [9].
The Eye-to-Hand calibration, or transformation from the
camera coordinate system to the robot base coordinate
system is shown in Figure 1.

Fig. 1. System Setup with two Kinect V2 depth sensors aimed at the robot
end effector at approximately 45◦ viewpoints and a Kinect V1 sensor placed
between them facing the robot. In the system, Eye-to-Hand calibration is
represented by the Affine transformation matrix TR

C , which transforms the
coordinate system of each camera to the coordinate system of the robot
base, making it common for the whole setup.

Normally, it is sufficient to perform an internal cam-
era parameter calibration only once per sensor unless the
lens or sensor itself will be changed or modified. Reli-
able calibration methods already exist, which are widely
used [10] [11] [12] [13].

Eye-to-Hand calibration, on the other hand, is more appli-
cation specific and crucial for precise environment sensing
by the robot or vision guided robot control (visual servo-
ing) [14]. Some work has been successful in calibrating
multiple cameras and a robot using a custom-made target
object placed in a common field of view for all the sensors
in the workspace [15]. Another method calibrated multiple
cameras fixed on a rig using structure-of-motion method
to estimate relative positions between the cameras [16]. A
similar approach was used for calibrating a network of Kinect
sensors aimed at robotic inspection of large work-spaces,
where sensors are in fixed positions [17]. Robot arm mounted
camera, also known as Eye-in-Hand, calibration by moving
it to the points of the calibration grid, which is in a fixed
position was also proposed [18] [19]. However, most of the
presented work is either aimed at the very specific setup or
requires a large amount of manual placement of calibration
grids, making it time-consuming.

This paper presents a framework to be used for an au-
tomatic combined internal camera parameter and Eye-to-
Hand calibration by utilizing a robot arm manipulator to
actively move around a standard checkerboard calibration
grid. The framework is using existing and reliable calibration
approaches, but is based on a novel combination of methods
to make the calibration process fully automatic and adaptable
to as few or as many external 3D cameras as needed. Further-
more, an end-effector to the checkerboard offset is estimated,
so a variety of end-effector attachments can be used. It is
a time saving and flexible process without requiring any
additional equipment for preparing the setup, just a slightly
modified A4 size printed checkerboard.

The whole framework is based on the Robot Operating
System (ROS) and making use of the modular design and
available integration for a large amount of robot and sensor
types [20]. Each part of the algorithm is split into a number
of separate modules communicating in between each other
using pre-defined message formats. The benefits of this
approach is the ability to easily modify parts of the process
without affecting the rest of processing as well as to include
additional processing steps if needed. Furthermore, each
framework module can be reused given that the input and
output inter-module message format matches.

This allows the actual hardware, robot and 3D cameras,
to be interchangeable by simply modifying the configuration
file, as long as they have ROS-supported drivers. Only
minimal supervision is required during the whole process.

This paper is organized as follows. We present the sys-
tem setup in Section II. Then, we explain the method in
Section III. We provide experimental results in Section IV,
followed by relevant conclusions and future work in Sec-
tion V.

II. SYSTEM SETUP

The system setup consists of two main hardware elements:
a robot arm manipulator and one or more depth 3D sensors
with a visual camera, in our case Kinect sensors.

With the main goal of achieving an environment-aware
robot arm manipulator, the robot is thought to be in the center
of the setup with sensors observing it from surrounding
angles. Positions of the sensors do not need to be fixed,
however, in case one of them is being repositioned, the Eye-
to-Hand part of the calibration process has to be repeated.

In the described setup, two Kinect V2 depth sensors
were used, observing the robot arm end effector from two
viewpoints, each angled at approximately 45◦ and one Kinect
V1 facing the robot directly. The setup can be seen in Figure
1. However, the number of sensors is flexible, and only one,
or as many as needed can be used as long as sufficient
computing power is provided.

A. Calibration Checkerboard

A custom end-effector mount to hold a checkerboard, with
an extension to reduce the number of robot self-collisions,
was 3D printed and attached to the end-effector, shown in
Figure 2(a). The checkerboard contains 7 by 5 squares, each

one of 30 mm by 30 mm size, printed on an A4 paper
sheet, which is mounted on hard plexiglass surface to prevent
any deformation. One of the side squares is modified to be
hollow, as shown in Figure 2(b), and is used to identify
correct orientation as described in Section III.

(a) A custom end-effector mount
with a rigid plexiglass base for hold-
ing a checkerboard.

(b) Detected square intersection
points are marked in red and a hol-
low square in the top-left corner, for
orientation detection.

Fig. 2. Checkerboard and a custom robot mount.

B. Robot

The robotic manipulator being used is UR5 from Universal
Robots with 6 degrees of freedom, a working radius of 850
mm and a maximum payload of 5 kg. The repeatability of
the robot movements is 0.1 mm.

C. Sensors

In our research we include the novel low-cost Kinect V2
sensor [5]. It has been shown to achieve a significantly
higher accuracy compared to its predecessor Kinect V1 [13].
Kinect V2 is based on time-of-flight (ToF) approach, using
a different modulation frequency for each camera, thus
allowing multiple ToF cameras to observe the same object
without any interference [12]. For comparison reasons, and
to demonstrate the flexibility of the system, one Kinect V1
sensor is also included in our setup. Table I summarises
technical specifications of Kinect V1 and V2 sensors. Despite
both sensors being named Kinect, they are significantly
different, requiring separate drivers and, as it was mentioned,
are based on different sensing approaches. In general, any 3D
camera, with ROS support, can be used with our system.

TABLE I. Kinect V1 and V2 Technical Specifications.

Kinect V1 Kinect V2
Sensor type Structured Light Time-of-Flight
RGB Cam Resolution 640x480 1920x1080
IR Cam Resolution 320x240 512x424
Refresh Rate 30 Hz 30 Hz
Depth Range 0.4 to 4.5 meters 0.5 to 4.5 meters
Field of View Horizontal 57◦ 70◦

Field of View Vertical 43◦ 60◦

D. Software

The whole system software is based on the Robot Oper-
ating System (ROS), an open-source meta-operating system
running on top of Ubuntu 14.04 [20]. The main advantage of
using ROS is its modular design allowing the algorithm to
be divided into separate smaller modules performing separate
tasks and sharing the results over the network. The workload

Fig. 3. Picture of the setup. A checkerboard with a hollow square to allow
the detection of its orientation is attached to the robot.

in our setup was divided over multiple machines, one for
each of the 3D cameras and a central one coordinating all
the modules and controlling the robot.

Kinect V2 is not officially supported on Linux, however,
open-source drivers including a bridge to ROS were found
to function well, including the GPU utilisation to improve
the processing speed of large amounts of data produced by
sensors [11]. Well tested OpenNI 2 drivers were used to
integrate Kinect V1 into the system.

The modular design allows for interchanging any of the
modules without the need to make any modifications to
the rest of the system. For example, any of the depth
sensors can be exchanged to another model, or another
robotic manipulator can be used, as long as the inter-modular
message format is kept the same. Furthermore, addition of
extra depth sensors to the system only requires adding an
extra message topic for the coordinating module to listen to.

III. METHOD

Our proposed automatic calibration approach consists of a
number of modules working together to achieve the desired
accuracy of calibration. The calibration can be divided into
two main parts:

1) Sensor internal parameter calibration
2) Eye-to-Hand calibration
We first present the general overview of the system func-

tionality and then go into details of each of the processes.

A. Overview of the Whole System Functionality

The structure of the whole calibration framework is shown
in Figure 4. A specific processing is performed by each mod-
ule and the information between modules is exchanged using
custom messages. Instead of having one central unit, each
module publishes messages on defined topics to which other
modules can subscribe to, resulting in an asynchronous direct
peer-to-peer communication. Each message has a time-stamp
to allow synchronization and ignoring out-of-date messages.
Updating or interchanging modules can be done even at
run time as long as the message format is kept identical.
Additional sensors can be added in a similar manner, with
the new sensor’s message topics, which stream IR and RGB
images, added to the configuration file, so that it is seen by
the rest of the system. It has to be made sure that each camera
uses unique message topic names. An overview of the whole
calibration process is presented below. Algorithm 1 describes
a step-by-step process performed for each camera after the

Cam
Drivers

Cam
Drivers

Cam
Drivers

Detect
Checkerboard

Calibration
Move Planner

Robot
Trajectory
Planner

Camera Internal
Calibration

Eye-to-Hand
Calibration

Robot
Drivers

Store
Calibration

Images

color and
depth images

color and
depth images

color and
depth images

checker
board
pos

pos
in image

coordinates
pos in robot
coordinates

target pos in robot
coordinates

current
robot pos

calibration
images

calibration
images

camera
images

robot move
completion

Fig. 4. The whole framework overview including all the modules and the
sequence of the processes. Drivers are marked in blue, image analysis and
move planning modules are marked in green and actual calibration modules
are marked in yellow. A possibility to add additional 3D cameras to the
system is represented by the objects in dashed lines.

system is launched and 360◦ initialization movement is
performed.

Algorithm 1 Calibration process for each camera
Initial Eye-to-Hand calibration
Tilting motion to define max angles
Estimate the end-effector attachment offset
Generate the robot movement trajectory
loop

Move the robot to the next position
Detect checkerboard
if detected then

Save images
Calculate the accumulative Eye-to-Hand calibration
Apply this calibration
Recalculate the remaining robot movement trajectory

end if
end loop
All robot movements are finished
Calculate the internal calibration using saved images
Convert saved images using internal calibration
Calculate the full Eye-to-Hand calibration

B. Checkerboard Detection

Existing algorithms included in the OpenCV library were
used for checkerboard detection in both color and depth
data [21] [7]. Real-time performance is achieved with X and
Y coordinates of identified intersection points of squares on
the checkerboard, defined as corners, shown in Figure 2(b),
and depth value obtained from the depth data. Given the
noisy depth data, a normalized value from the surrounding
area of 10 pixels over 5 consecutive frames is taken and
a median value was calculated to reduce the effects of the
sensor noise.

Positions in 3D coordinates of the same checkerboard
corners are simultaneously calculated using the robot encoder
data, corrected with the estimated offset of the checker-

board mounting. Initially, the assumption is made that the
checkerboard center point matches the end-effector center
point. Then tilting motions of the end effector in place
are performed while observing changed positions of the
checkerboard corners. Calculation 3D affine transformation
and error minimization between expected corner positions
and real ones, provides an accurate offset of the end-effector
mount. The end-effector mount has to be rigid. Both the
data from 3D cameras and from robot encoders are fully
synchronised according to the timestamps of when it was
captured to reduce any accuracy issues.

Given the four possible orientations of the checkerboard,
the modified corner square of the checkerboard, seen in the
top left of the checkerboard in Figure 2(b), is detected using
binary thresholding method and the orientation is noted. With
the collected data, the corresponding checkerboard corner
data points can be matched.

C. Sensor Internal Parameter Calibration

RGB-D cameras are calibrated for internal parameters
using the method proposed by Zhang [22] in order to
compensate for the following systematic errors:

1) Color camera lens distortion
2) Infrared (IR) camera lens distortion
3) Reprojection error, or color to depth image offset
4) Depth distortion
Other non-systematic and random errors like amplitude-

related errors or temperature-related errors are not discussed
or analysed in this paper, because standard internal camera
parameter calibration procedure does not compensate for
them, and they are not crucial in current application [5] [6].

D. Eye-to-Hand Calibration

Using the corresponding 3D corner points of the cal-
ibration checkerboard, a 3D Affine transformation matrix
between the 3D camera and the robot end effector is es-
timated [7]. With some likelihood of imprecise detection of
checkerboard corners, the outlier detection based on Random
Sample Consensus (RANSAC) method is being used on the
inputs [23]. The outcome of the estimator is a 3x4 Affine
transformation matrix seen in Equation 1, where R is a 3x3
rotation matrix and t is 3x1 translation vector.

TR
C3

=

{
R3x3 t3x1
01x3 1

}
(1)

Using the calculated transformation matrix, the 3D points
detected in 3D camera color image and depth data can be
transformed from the camera coordinate system to the robot’s
base coordinate system.

E. Robot Motion Planning

Robot arm control in Cartesian coordinates is used in
the project, given the relatively simple movements, as well
as limited workspace. Multiple motion planning algorithms
included in the MoveIt! framework [24] were tested. The
RRT-connect approach [25], based on the Rapidly exploring
random tree, was found to be suitable for the task. We used

an implementation from the from the Open Motion Planning
Library (OMPL) [26].

Uncalibrated CalibratedError
Offset

Fig. 5. Reprojection error shown in the color image and depth point cloud
overlay. The offset in the left image is caused by imprecisely defined relative
positions between the color and infrared cameras in the 3D camera. Internal
camera calibration compensates for this error. The result is seen in the image
on the right side, where the offset is reduced.

In order to achieve a high-quality 3D camera internal
calibration, the samples should include the checkerboard po-
sitioned in the majority of the camera’s field of view and for
least at two distances. Furthermore, tilting the checkerboard
at different angles in relation to the camera increases the
calibration accuracy [11]. Knowing the calibration pattern
parameters, tilting motion allows for more accurate mapping
from 3D world coordinates to the 2D image sensor coordi-
nates, based on the projection lines of the known calibration
pattern [22].

In order to simplify the internal calibration, it was decided
to collect all the data at once and then the calibration using
the whole dataset was calculated. However, this meant that
lens distortion was still present during the data collection.
Furthermore, a reprojection error occurs, which is an offset
between the color image and depth data, shown in Figure 5.
These issues caused the Eye-to-Hand transformation to be
imprecise, especially for points closer to the edge of the
camera image, where lens distortion is more significant.

Camera Frame

First Stage Second Stage

Initial Checkerboard
Position

Fig. 6. Robot movement trajectory as seen in the 3D camera image. It is
split into multiple stages by the positions calculated at increasing distance
from the center point of the image. Movements are done stage-by-stage,
while improving the Eye-to-Hand transformation accuracy at each step. This
figure shows just a two stage example.

A robot movement trajectory was chosen with small
offsets from the starting point. It can be split into multiple
stages by the positions calculated at increasing distance from
the center point of the image. The number of stages depend

on the overlap level of the checkerboard positions in the
camera image, size of the checkerboard, reach-ability of the
robot arm as well as the size of the area covered by the
camera. At each new position, the detected checkerboard
intersection points are accumulated and Eye-to-Hand cali-
bration was recalculated to continually improve the accuracy.
The example two-stage robot movement trajectory is shown
in Figure 6. However, this data is not considered for the final
Eye-to-Hand calibration, because the 3D camera sensor itself
is still not calibrated at this point.

This approach has shown to reduce the robot movement
error and by the time positions close to the image edges are
chosen, the transformation is accurate enough not to exit the
camera’s field of view, where checkerboard corners cannot
be detected anymore.

During the calibration movements, the checkerboard is
tilted by defining changing roll, pitch and yaw of the
end effector. During the initialisation of the calibration,
a checkerboard is turned to face the 3D sensor directly
and then tilted to each direction at 5 degree increments,
both positive and negative rotation direction, while trying
to detect the checkerboard. Once the detection fails, the
tilting is backtracked and the angle is saved as a maximum
allowed tilting. The same process is performed for roll,
pitch and yaw to positive and negative angle limits. Roll
angle is limited to ±45◦. This angle can vary significantly
depending on the type of 3D camera as well as lighting
conditions. Reflections caused by the room lights can affect
the checkerboard detection.

At each position, images and detected 3D corner positions
in color and infrared camera images are saved at each pose.
If the desired point is outside the robot workspace, it is auto-
matically identified by the planning algorithm and skipped.
Given the positions are reachable, the same trajectory is
performed with a 20% higher depth offset away from the
camera in order to have data at different distances from the
sensor calibrated, while the checkerboard still appears large
enough in the image to be detected.

Once the planned movement trajectory is completed, inter-
nal 3D camera calibration is performed using the collected
data.

F. Repeated Eye-to-Hand Calibration

After the internal calibration of each 3D camera, the ac-
curacy of the Eye-to-Hand calibration is not precise because
of compensated lens distortion and adjustments to reduce the
reprojection error. The simplified move sequence, without
the tilting, is repeated with the robot moving to previously
visited positions by reusing the same coordinates and just
Eye-to-Hand calibration recalculated. Once this process is
finished, the sensor in the system is fully calibrated.

G. Checkerboard Observation

As mentioned previously, a flexible number of 3D cameras
can be calibrated with the system. Inclusion of the additional
sensor into the system is done by defining a configuration
file containing the topic names the camera is publishing on.

While one 3D camera is being calibrated, any other sensors
included in the system are passively observing the robot and
running the simplified checkerboard detection algorithm. If
the checkerboard is detected, the pose of the checkerboard
and the pose of the robot, which is being streamed on the
network by the robot controlling node, are recorded. In any
subsequent checkerboard detection instances, the position is
compared to the position of the previous detection, and if
the current one is closer to the center of the color image, the
poses are updated in order to have a more reliable starting
position. Once the current calibration of a 3D camera is
completed, the request is sent to the robot to move to the
detected position and start the calibration procedure for the
other sensor.

IV. EXPERIMENTS AND RESULTS

The presented calibration process was successfully per-
formed provided that the checkerboard was detected by the
3D camera to be calibrated. Initially, the robot was placed in
an upside-down ”L” shaped joint configuration and turned
360◦ to increase the chances of the checkerboard being
detected by the 3D sensors. However, this movement has
to be supervised by a human operator to avoid hitting any
obstacles. In other cases, the robot was repositioned manually
to make sure that the checkerboard was within the field of
view of the camera.

Given a close to autonomous operation of our framework,
we conducted experiments to analyze the number of checker-
board positions recorded versus the achieved calibration
accuracy. As the process for the internal sensor calibration is
identical for each of the 3D cameras, for easier comparison,
the results from one Kinect V2 camera is presented in the
experiments section. Meanwhile, the Eye-to-Hand calibration
results have been acquired using the setup described in
Section II. Results are divided into two sections according to
the calibration type, each one requiring an independent set
of robot moves and data collection:

1) Internal camera calibration
2) Eye-to-Hand calibration

A. Internal Camera Calibration

The first iteration of movements was made in order to
calibrate the 3D camera internally, using the robot trajectory
explained in Figure 6. Because the field of view of the color
camera and the infrared camera in the sensor are different, the
checkerboard was not always visible or successfully detected
in both cameras at the same time. This explains the varying
number of detections in each of the sensor’s cameras, as well
as simultaneously in both, which we refer to as combined.
There were 9 experiments conducted in total. Experiments
1-2 had large overlap in checkerboard positions and tilting,
experiments 3-6 had no overlap anymore and experiments 7-
9, no more tilting. Experiment data is summarized in Table II.

Figure 7 shows the calibration results by analyzing the
average error in pixels of each of the sensor’s cameras and
the reprojection error for each of the experiments. Errors
were calculated using the known geometry and size of the

TABLE II. Experiment data for internal Kinect V2 sensor calibration.

Exp # Color
Frames

IR
Frames

Combined
Frames

Overlap Tilting Time
(sec)

Exp 1 234 215 158 Yes Yes 613
Exp 2 120 109 81 Yes Yes 338
Exp 3 78 72 55 No Yes 218
Exp 4 57 54 45 No Yes 176
Exp 5 44 41 33 No Yes 142
Exp 6 39 35 26 No Yes 128
Exp 7 15 14 14 No No 57
Exp 8 10 9 7 No No 45
Exp 9 5 5 5 No No 36

checkerboard and comparing the calibrated sensor estimation
of the checkerboard dimensions according to the square
intersection points to the known geometry. The higher the
error, the lower the calibration accuracy.

Fig. 7. Calibration accuracy results by showing the errors of internal 3D
camera calibration. Color camera, IR errors define averages of each sensor’s
cameras. Reprojection error defines the average error of the offset in the
images between the color image and the depth information, seen in Figure 5.
It has to be noted that right Y axis for error rates is in log scale.

B. Eye-to-Hand Calibration

TABLE III. Experiment data for Eye-to-Hand calibration.

Exp # Frames
Cam 1

Frames
Cam 2

Frames
Cam 3

Overlap Time (sec)

Exp 1 82 80 71 Yes 470
Exp 2 44 45 39 Yes 243
Exp 3 14 14 11 No 115
Exp 4 9 10 8 No 85
Exp 5 5 6 5 No 60

The second iteration of moves were performed for Eye-
to-Hand calibration, while using the most accurate internal
3D camera calibration mentioned previously. In this part,
tilting was not performed and the calibration checkerboard
was kept at a constant angle, parallel to the each camera’s
image plane. 5 experiments using 3 cameras were conducted
in total, each using a different number of frames, as seen in
Table III. Experiment 1 had a large overlap in checkerboard
positions, in experiment 2 there was a small overlap, while
in the rest there was no overlap and even some gaps between
the positions. Cam 1 and 2 were Kinect V2 sensors, while

Cam 3 was Kinect V1. Time was measured from the start to
the final calibration result of all three cameras.

C. Result Analysis
For the internal calibration, it can be seen that in the first

6 experiments, even with a significantly lower number of
frames used, the error in all of the sensor’s cameras did
not increase much. However, experiments 7 to 9, where the
calibration checkerboard was present only in the part of the
camera’s field of view and was not tilted, show a significant
increase in errors. It can be concluded that the most important
part to achieve good internal calibration accuracy is to
cover the field of view of the camera and perform tilting,
but overlapping same areas with the checkerboard is not
mandatory.

Fig. 8. Eye-to-Hand calibration accuracy results. Overall position error (in
cm) as well as each axis separately are shown by comparing the actual robot
position versus the predicted robot position from the 3D camera sensor.
Dotted lines indicate the number of frames used in each experiment.

Figure 8 shows that the average error rate of Eye-to-Hand
calibration has inverse correlation to the number of frames
used. The larger area of the camera’s field of view is used, the
more accurate calibration is achieved. Looking at the overall
average error, experiment 3 seems to be the most optimal
choice for all three cameras when considering the number
of frames used and accuracy achieved.

As expected, the older Kinect V1 was significantly less
accurate compared to Kinect V2, mainly due to lower
resolution RGB and IR sensors in the camera. The average
error between camera 1 and camera 2, both being Kinect V2,
was almost the same as average errors of each sensor to the
robot. Therefore, calibration of each 3D camera to the robot
is enough for joining the point clouds of two cameras, and
no additional calibration is necessary.

It was also noticed in all five experiments that the Z-axis
has on average 20% larger error compared to both X and
Y-axis. It is likely to be caused by the noisy depth data
from 3D camera, which should be compensated using more
specific methods. On the other hand, it proves that position
estimation in X and Y-axes has even lower error than our
indicated overall error of the calibration.

V. CONCLUSION AND FUTURE WORK

A simple and flexible calibration method for systems
containing a robot and one or more 3D cameras was pre-
sented. It is based on the robot moving a standard calibration
checkerboard and being guided by the information sent from
each of the cameras to cover the largest possible area in the
field of view, to ensure an accurate calibration.

A full calibration, including a sensor internal calibration
together with an Eye-to-Hand calibration can be done, or just
the second part separately, given that the sensor is already
calibrated internally. Modular design ensures that sensors can
be added or removed easily, as well as hardware components
interchanged without any modifications to the algorithm.

According to experiment results, achieving good calibra-
tion requires the robot to cover the majority part of the field
of view of the 3D camera to achieve a good accuracy. Using
our system, a good accuracy calibration of one 3D sensor
taken just out of the box, can be achieved in just a few min-
utes with minimal supervision by the operator. This makes
the system integration and reconfiguration significantly faster
compared to standard manual method, while keeping the
flexibility of varying configurations.

An example application the calibration process was aimed
at the environment-aware collaborative robot arm, where
people or other moving objects can freely and safely operate
in the workspace of the robot without a risk of collision.
However, for a more precise operation where sub-centimeter
accuracy is necessary, a different, more up-close, setup would
be needed as well as a checkerboard containing a finer
structure.

The framework will be further tested with a variety of
physical setups and different 3D cameras and multiple robot
arm types. We plan to open source the code, making it acces-
sible to researchers allowing further testing and development.

Algorithm improvements will include a simultaneous cal-
ibration of multiple cameras provided that the calibration
checkerboard is within the field of view. Furthermore, if only
part of the field of view of the camera will be used in the
operation, it could be defined by the user and instead of
calibrating the whole image area, only the area of interest
would be used.

ACKNOWLEDGMENT

This work is partially supported by The Research Council
of Norway as a part of the Engineering Predictability with
Embodied Cognition (EPEC) project, under grant agreement
240862

REFERENCES

[1] I. Bonev, “Should We Fence the Arms of Universal Robots?”
http://coro.etsmtl.ca/blog/?p=299, ETS, 2014, accessed September 7,
2015.

[2] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space
approach to human-robot collision avoidance,” in Robotics and Au-
tomation (ICRA), 2012 IEEE International Conference on. IEEE,
2012, pp. 338–345.

[3] P. Rakprayoon, M. Ruchanurucks, and A. Coundoul, “Kinect-based
obstacle detection for manipulator,” in System Integration (SII), 2011
IEEE/SICE International Symposium on. IEEE, 2011, pp. 68–73.

[4] C. Fitzgerald, “Developing baxter,” in Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 1–6.

[5] P. Fankhauser, M. Bloesch, D. Rodriguez, , R. Kaestner, M. Hutter, and
R. Siegwart, “Kinect v2 for mobile robot navigation: Evaluation and
modeling,” in IEEE International Conference on Advanced Robotics
(ICAR) (submitted), 2015.

[6] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” in Consumer
Depth Cameras for Computer Vision. Springer, 2013, pp. 3–25.

[7] OpenCV, “Camera calibration and 3d reconstruction,” Online Avail-
able: http://docs.opencv.org/modules/calib3d/doc/
camera calibration and 3d reconstruction.html, 2015.

[8] S. Ma and Z. Hu, “Hand-eye calibration,” in Computer Vision.
Springer, 2014, pp. 355–358.

[9] R. Horaud and F. Dornaika, “Hand-eye calibration,” The international
journal of robotics research, vol. 14, no. 3, pp. 195–210, 1995.

[10] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and
lenses,” Robotics and Automation, IEEE Journal of, vol. 3, no. 4,
pp. 323–344, 1987.

[11] T. Wiedemeyer, “IAI Kinect2,” https://github.com/code-iai/iai kinect2,
Institute for Artificial Intelligence, University Bremen, 2014 – 2015,
accessed June 12, 2015.

[12] S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (tof)
cameras: A survey,” Sensors Journal, IEEE, vol. 11, no. 9, pp. 1917–
1926, 2011.

[13] C. Amon, F. Fuhrmann, and F. Graf, “Evaluation of the spatial
resolution accuracy of the face tracking system for kinect for windows
v1 and v2,” in Proceedings of the 6th Congress of the Alps Adria
Acoustics Association, 2014.

[14] V. Lippiello, B. Siciliano, and L. Villani, “Eye-in-hand/eye-to-hand
multi-camera visual servoing,” in Decision and Control, 2005 and
2005 European Control Conference. CDC-ECC’05. 44th IEEE Con-
ference on. IEEE, 2005, pp. 5354–5359.

[15] T. Heikkilä, M. Sallinen, T. Matsushita, and F. Tomita, “Flexible hand-
eye calibration for multi-camera systems,” in Intelligent Robots and
Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ Interna-
tional Conference on, vol. 3. IEEE, 2000, pp. 2292–2297.

[16] S. Esquivel, F. Woelk, and R. Koch, “Calibration of a multi-camera
rig from non-overlapping views,” in Pattern Recognition. Springer,
2007, pp. 82–91.

[17] R. Macknojia, A. Chávez-Aragón, P. Payeur, and R. Laganiere, “Cal-
ibration of a network of kinect sensors for robotic inspection over a
large workspace,” in Robot Vision (WORV), 2013 IEEE Workshop on.
IEEE, 2013, pp. 184–190.

[18] H. Zhuang, K. Wang, and Z. S. Roth, “Simultaneous calibration of a
robot and a hand-mounted camera,” Robotics and Automation, IEEE
Transactions on, vol. 11, no. 5, pp. 649–660, 1995.

[19] F. Dornaika and R. Horaud, “Simultaneous robot-world and hand-eye
calibration,” Robotics and Automation, IEEE Transactions on, vol. 14,
no. 4, pp. 617–622, 1998.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[21] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[22] Z. Zhang, “A flexible new technique for camera calibration,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, pp. 1330–1334, 2000.

[23] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: a
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[24] I. A. Sucan and S. Chitta, “MoveIt!” Online Available:
http://moveit.ros.org, 2013.

[25] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An Efficient Approach
to Single-Query Path Planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995–1001.

[26] I. Sucan, M. Moll, L. E. Kavraki, et al., “The open motion planning
library,” Robotics & Automation Magazine, IEEE, vol. 19, no. 4, pp.
72–82, 2012.

