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Abstract

One of the core functions in most Evolutionary Algorithms is
mutation. In complex search spaces, which are common in
Evolutionary Robotics, mutation is often used both for opti-
mizing existing solutions, described as exploitation, and for
spanning the search space, called exploration. This presents
a difficult challenge for researchers as mutation parameters
must be selected with care in order to balance the two, often
contradictory, effects. Strategies that vary mutation during
the search often try to estimate these effects in order to mod-
ify the mutation parameters. In this regard MAP-Elites, a
Quality Diversity algorithm, presents an interesting opportu-
nity. Because factors related to exploration and exploitation
are readily available during the search, optimization based on
these factors could be utilized to improve the search. In this
paper we study how online adaptation of mutation rate, dy-
namic mutation, affects MAP-Elites in order to gain insight
into how the search process is affected by the mutation rate.
Our study compares fixed and dynamic mutation parameters
for two different complex gait controllers. The results show
that dynamic mutation combines favorably with MAP-Elites
and that there is a strong relation between mutation parame-
ters and exploration that can be utilized.

Introduction

Dynamic mutation has long been a staple of Evolutionary
Strategies (ES) where varying the degree of mutation can
aid in both exploration and exploitation (Eiben and Smith,
2007). ES can be used when the search space is unknown or
difficult to predict in order to minimize the number of search
parameters to optimize (Eiben et al., 1999). These properties
are often described as self-adaptation and can be invaluable
help in difficult problems. However, self-adaptation is often
an additional step that researchers must implement without
knowing what results to expect. It is therefore interesting to
implement self-adaptive methods in new problem or algo-
rithm domains to gain a shared understanding of expected
trade-offs.

A recent trend in Evolutionary Robotics (ER) is the use of
Quality Diversity (QD) algorithms to evolve both high per-
forming solutions and a large diversity in behavior (Pugh
et al., 2016). A growing body of work has shown that
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Figure 1: By changing the mutation rate, the characteris-
tics of the search can be altered as the search progresses.
This can allow for greater exploration when few solutions
are discovered and more exploitation when many solutions
are present.

QD algorithms are able to solve problems that have previ-
ously been difficult to solve (Lehman and Stanley, 2008)
and also that retaining inferior solutions to enhance diversity
can lead to better results (Mouret and Clune, 2015). Multi-
dimensional Archive of Phenotypic Elites (MAP-Elites) is
one such QD algorithm that has been used to great ef-
fect (Cully et al., 2015). The simplicity of the algorithm
coupled with the insight that different non-optimal behav-
iors can be interesting in their own right have given rise
to a new way of thinking about controller development for
robots (Duarte et al., 2017).

One reason to combine dynamic mutation and MAP-
Elites is to reduce the computational complexity often as-
sociated with QD algorithms (Gaier et al., 2017). This com-
plexity limits the number of repetitions available for find-
ing a good mutation rate and could preclude some solutions
from developing. By employing a parameter free dynamic
mutation the solutions can adapt to the problem at hand re-
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quiring less computation than repeating the experiment with
varying mutation rates.

It is also interesting to combine dynamic mutation and
MAP-Elites because of the structured design of MAP-Elites.
Two readily available measurements in MAP-Elites are cov-
erage and precision, which define the current proportion of
discovered solutions and the fitness of these solutions. These
measurements are analogous to exploration and exploitation,
and previous results (Samuelsen and Glette, 2018) indicate
that there could be a relation between coverage, precision
and mutation rate.

In this paper, we analyse how dynamic mutation affects
MAP-Elites trying to answer two key questions, /) can dy-
namic mutation achieve the same performance as a hand-
tuned mutation rate without the need for a manual search
for mutation parameters and 2) is there a relation between
the notion of coverage and mutation rate that can be utilized
during the search process. The analysis is a contribution to
further the understanding of QD algorithms and could be
used to guide new development within the field.

Background
Evolutionary Strategies

ES has for a long time been one of the core methods in
Evolutionary Algorithms (EAs) (Béck et al., 2013). It can
be viewed as a specialization of an EA where the building
blocks are continuously adapted to gain additional advan-
tages (Bick and Schwefel, 1993). ES has been very success-
ful thanks to innovations such as CMA-ES (Hansen et al.,
2003), which have seen widespread use in many different
fields (Gregory et al., 2011; Bergstra et al., 2011).

At the core of ES is the notion that mutation parame-
ters are simply another parameter in the genome (Eiben and
Smith, 2007). The mutation parameter is mutated along with
the rest of the genome, following a different scheme than the
rest, and is then used as the basis to mutate the other param-
eters in the genome. This means that the mutation operator
is able to adapt to the problem and also means fewer param-
eters to pre-define.

Quality Diversity and MAP-Elites

QD algorithms are a relatively recent addition to EAs (Pugh
et al.,, 2016). The main contribution of QD algorithms is
the insight that both fitness and diversity should be valued.
This manifests in the generation of a repertoire of solutions
instead of one or a few globally best solutions. Instead of
optimizing for the best solution these algorithms aim to illu-
minate the search space to discover many different behaviors
to solve the problem (Mouret and Clune, 2015). To search
for these solutions QD algorithms define behavior charac-
teristics, which are intended to capture the overarching de-
sired behavior traits of the solutions. In addition a quality
metric is defined to capture the fitness of a given behavior
characteristic. These two definitions are combined to allow

for a variety of behaviors while at the same time optimizing
the quality of each individual behavior.

MAP-Elites is a QD algorithm where the behavior space
is divided into a discrete /N-dimensional grid (Mouret and
Clune, 2015). Each dimension in the grid represents a be-
havior characteristic and each cell contains a potential solu-
tion with a given quality, or fitness. At each iteration a solu-
tion is selected at random before being mutated, the new so-
lution is then evaluated to determine the behavior and qual-
ity metrics. Once these metrics are determined the solution
is placed in the grid, if the grid already contains a solution
for the given behavior the quality of the two solutions are
compared and the higher quality solution is retained.

Several works (Pugh et al., 2016; Auerbach et al., 2016;
Cully and Demiris, 2017) have undertaken studies into how
QD algorithms work. These works have shown that QD al-
gorithms work well when behavior characteristics are highly
related to the desired goal and that different QD algorithms
excel with different behavior characteristics.

Behavior Repertoire

Behavioral repertoire learning is closely related to QD where
the intention is to generate a set of useful behaviors that can
later be selected among to solve a task (Cully and Mouret,
2013). From early on behavior repertoire learning has been
combined with QD (Cully and Mouret, 2016) where the QD
algorithm is responsible for generating the diversity of be-
haviors desired. Recently this combination has been ex-
tended to not only create a repertoire of behaviors, but also
to create abstract controllers on top of the repertoire (Duarte
et al.,, 2017). The main idea of the work presented is to
utilize QD to generate a repertoire of low-level movement
primitives, which can later be used by high-level controllers
without needing to understand how to generate the move-
ment. This allows high-level controllers to be created for
specific tasks or environment and have these controllers
work on a range of robots.

Methods

To study how dynamic mutation interacts with MAP-
Elites we evolve a behavior repertoire for a mammalian
quadruped (Nygaard et al., 2016, 2018). This task repre-
sents a difficult real-world world problem and is a realistic
test to ensure that the methods presented are useful when
evolving solutions to complex problems. The main source of
complexity stems from the difficult morphology resulting in
difficult fitness gradients (Fukuoka et al., 2003; Nordmoen
etal., 2018).

The simulations were performed using Robot Operat-
ing System (ROS)!, Gazebo® and Open Dynamics Engine

"https://www.ros.org/
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(a) Joint configura- (b) The two different splines used for all
tion within aleg.  joints. The red spline is used for joint
3 while the slower rising blue spline is
used for both joint 1 and 2.

Figure 2: Joint configuration and spline controller.

(ODE)?, utilizing the SFERESV2 framework (Mouret and
Doncieux, 2010), all code is published online*.

The rest of this section will describe the gait controller
and the evolutionary setup before detailing the experiments
performed.

Gait Controller

The controller used for the experiments is an open-loop en-
semble looping first-order spline. Each joint of the four legs,
shown in Figure 2a, is given a spline controller and the pa-
rameters that control the splines are amplitude, phase, duty
cycle and offset, depicted in Figure 2b. Amplitude repre-
sents the movement of the joint. Phase represents the time-
offset for when the joint should start moving, in Figure 2b
the phase is set to 0.0. Duty cycle represents the duration in
which the joint moves forward. Finally, offset is the default
value of the joint at rest. These parameters can either be
completely independent, coordinated intra-leg and/or intra-
body. This gives us a total of 48 parameters that can then be
reduced by coordinating between legs and/or between joints
in a leg. E.g. the phase parameter can be reduced from 12
parameters to 4 by coordinating intra-body so that each leg
has an individual phase parameter duplicated for joint 1, 2
and 3.

MAP-Elites

To generate a behavior repertoire we simulate each individ-
ual controller for 10 seconds, continuously monitoring the
behavior to calculate behavior characteristics. The simula-
tion is set up to abort if an individual falls over before the full
simulation time. This allows us to speed up simulation and
utilize ‘time-before-fall’ as surrogate for stability. However,
we do not consider solutions that fell successful controllers
and remove them after the evolutionary process is done, be-
fore calculating any metrics used in the results. This is done

Shttp://www.ode.org/
‘nttps://folk.uio.no/jorgehn/sigma_exp/
experiment_code.zip

to avoid the likely wrong estimates of the behavior charac-
teristics of falling individuals. Because of the difficulty in
deciding when a fall has started it is difficult to ensure that
the behavior characteristics are correct. As solutions are able
to walk for longer periods of times the estimates become bet-
ter and better before being considered successful. In other
words, the fallen individuals are only used as stepping stones
during evolution. Fitness and behavior characteristics are
identical to our previous work (Nordmoen et al., 2018) and
are designed to evolve gait primitive repertoires. Table 1 is a
summary of the MAP-Elites parameters used. Fitness of an
individual, n, is defined as

T; if the robot fell over
T; + stability(n) otherwise

fitness(n) = {
1

T; is the time the individual was upright, and stability is
defined as

stability(n) = {C Mg y) SM(.wm,wy) <¢
otherwise

2

S M is the Squared Magnitude of the = and y components of

the body angular momentum, w, over the evaluation period

and C' is a constant allowing for maximization of fitness.

The behavior characteristics are average turn rate defined as

N
1 (Yi —i-1)
= e 3
N; (6 — i) ©)
and average velocity defined as
LN
=D )
N=

where N is the number of samples before the robot fell, ¥
is the yaw in radians, ¢; is the time of sample ¢ and v is the
velocity of the robot in the x and y dimensions.

We also define coverage and precision, in accordance
with (Mouret and Clune, 2015), as the number of filled cells
divided by the total number of cells and the average fitness
of filled cells. Where the fitness of each individual is nor-
malized to the range [0, 1].

Experimental Setup

To experiment with dynamic mutation in MAP-Elites we
tested two different controller configurations, a simple Stan-
dard controller and a more complex Hard controller.

The simpler Standard controller has 16 parameters (out of
48), where 12 parameters control the amplitude of each in-
dividual joint and the last four parameters are phase for each
leg. The duty cycle and offset parameters are set to default
values of 0.5 and the rest pose of the robot, respectively.
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Repetitions 30

Map size 11 x 21

100 000
Evaluations Generations: 1000

Batch size: 100
Initial population 1000
Evaluation time 10 seconds
Recombination None

Type: Gaussian
Mutation o: variable

Probability: 1.0

Dimensions: 2

Behavior characteristics | X-axis: Turn rate (Eq: 3)
Y-axis: Average speed (Eq: 4)
Stability (Eq: 2)

Fitness

Table 1: MAP-Elites simulation parameters.

The more complex Hard controller has 28 parameters (out
of 48), where the first 16 are identical to the Standard con-
troller and 12 parameters are individual offset values for all
joints. The duty cycle is set to default 0.5. The complexity of
this controller stems from the additional degrees of freedom
that comes with the 12 offset parameters and the extended
need for coordination.

Mutation is normalized in both parameter- and genotype-
space. In parameter-space the mutation is normalized to
[0, 1] before being scaled to the individual range of the pa-
rameters. To ensure that the expected distance after muta-
tion, in genotype-space, is equal for both controllers, the
mutation rate is normalized according to the number of pa-
rameters in use. The normalization is performed by multi-
plying the mutation rate with

1

Vgl =1

where ||g|| is the number of parameters in use by the con-
troller. This normalization is performed regardless of muta-
tion scheme.

&)

Static Mutation In order to compare static mutation
rate with dynamic mutation we performed a grid search
with several fixed mutation rates. The grid search was
performed in two steps, first we tested values from 0.4
down to 0.025, halving the mutation rate at each step,
before we subdivided two ranges to see if the perfor-
mance could be further improved. The values tested were
0.4,0.2,0.1,0.075,0.05,0.03,0.025 for a total of seven
static mutation rate tests.

Evolutionary Strategy (ES) The first dynamic mutation
configuration is an ES, uncorrelated mutation with one step
size (Eiben and Smith, 2007, p. 75). For each solution we
add one additional parameter that is used to mutate the other

parameters in the genome. This parameter is self-adaptive
during the search by mutation along with the rest of the
genome following a separate scheme,

oj =01 VOV (6)
where

TO(# (7

9]l

0y is set to a default starting value of 0.5 and has a mini-
mum of 0.025, to correspond with the smallest static muta-
tion tested.

Simulated Annealing (SA) In addition to testing ES we
also tested with a simple linear scheme dependent on the
number of completed evaluations. This mutation scheme is
inspired by the dropping temperature in Simulated Anneal-
ing and is an alternative to the more complex ES. This mu-
tation scheme proceeds by scaling the mutation rate linearly
from a start to stop dependent on the number of evaluations,

1
o; = start — (start — stop) * N (8)
where ¢ is the current evaluation and N is the total number
of evaluations. In our experiments we fixed the start value to
0.2 and stop value to 0.025.

Coverage-based (Cov) The last dynamic mutation rate
tested is a linear scheme, similar to simulated annealing, but
instead of number of completed evaluations uses coverage
to decrease mutation rate,

o; = start — (start — stop) x Coverage;—1  (9)

where C'overage;_; is the Coverage of the repertoire after
the previous evaluation based on the number of solutions
that were able to walk the full evaluation time.

This dynamic mutation is a first attempt at probing the
relationship between mutation rate and exploration. Like
simulated annealing this scheme introduces two parameters,
start and stop, which need to be set. In our experiments we
tested two different parameter sets; we tested a start value of
0.4 (Cov4) and 0.1 (Covl) with a stop value of 0.025.

Results and Discussion
To illustrate the produced behaviors we have uploaded

videos of a few gaits along with the generational develop-

ment of their repertoires’.

Shttps://folk.uio.no/jorgehn/sigma_exp/
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Scheme Parameters
Stati Constant [0.025, 0.03, 0.05, 0.075,
atie omstant 191,02, 0.4]
Start: 0.5
Dvnami ES Minimum: 0.025
yhammie A Start: 0.2
Stop: 0.025
Start: [0.4,0.1]
Cov Stop: 0.025

Table 2: Summary of mutation schemes and parameters.

Grid Search

The result of the grid search is shown in Figure 3a. The fig-
ure plots the precision and coverage as a point, (z,y), for
each evaluation, in order. These points are then combined
into a path to show how precision and coverage evolves to-
gether. This allows us to easily compare both precision and
coverage at the same time over the whole evolutionary run.

For the Standard controller we see a wide range of dif-
ferent precision and coverage values while the Hard con-
troller converges to smaller and less fit repertoires regardless
of mutation rate.

The coverage also show that none of the available con-
trollers are able to reach the full behavior space. To allow
the coverage based mutation scheme to exhibit its full po-
tential we scale the coverage in equation 9 with 0.6. This
allows the coverage based mutation to exhibit its full range
of values without the need for re-scaling the map size, which
allows for direct comparison between the static and dynamic
mutation experiments.

Dynamic Mutation

After performing a search for viable static mutation rates
we now compare static and dynamic mutation. Figure 3b
shows both precision and coverage for all dynamic mutation
rates and two selected static mutation rates. For clarity, only
two static mutation rates are selected to reduce clutter in the
following figures.

For the Standard controller the dynamic mutation rates
are competitive with static mutation in coverage, however,
the dynamic mutation schemes are not able to achieve the
same precision. For the Hard controller the dynamic muta-
tion rates are able to surpass in both coverage and in preci-
sion.

Figure 4 shows the full distribution of all runs for the last
evaluation. This figure shows that evolving the Standard
controller is consistent between most of the mutation rates.
For the Hard controller on the other hand we see a large
variance in both metrics. This is the result of difficulties in
discovering even a single viable controller, which results in
some runs with zero coverage and precision.
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Figure 3: Average precision and coverage plotted as (z,y)
points for each evaluation. The circle represents the final
values of each mutation scheme.
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Figure 4: Box plot for the last evaluation of both coverage
and precision, illustrating the full distribution of each exper-
iment.
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Figure 5: Development of average coverage and precision
throughout evolution.

To understand how each mutation scheme develops
throughout evolution we have plotted both coverage and pre-
cision in Figure 5. From the figure we can see that coverage
and precision see rapid growth early in the evolution before
plateauing. The only exception to these trajectories is the
SA mutation scheme which shows almost linear growth in
both coverage and precision and would seem to continue this
trend even as the others converge.

For two of the three dynamic mutation rates the develop-
ment of o is pre-defined, for ES it is more difficult to pre-
dict. To understand this development we plot the average o
in the maps in Figure 6. The figure shows several interesting
moments in regards to dynamic mutation. For one we can
see that ES appears initially in the plot at different o val-
ues for the different controllers. This is due to the removal
of solutions that fall, which allows the mutation rate to di-
verge from the initial value, before any solutions are able
to walk the full simulation time. Additionally it is apparent
that our coverage based scheme with a starting value of 0.4
is not able to increase coverage, and thus lower the mutation
rate, for the Hard controller. This relation further explains
the poor performance of this mutation scheme, for the Hard
controller, in Figure 4. It should also be pointed out that
the reason that the SA mutation rate is not a perfect straight
line, in Figure 6, is that we are measuring the average muta-
tion rate of solutions in the map, if a solution from an earlier

0.6- — Hard SA Covl
=== Standard ES Cov4

0.4-

S
02- %
0.0- | | .""-""".
0 25000 50000 75000 100000
Evaluations

Figure 6: Development of average mutation rate through-
out evolution. The standard deviation is not shown, but is
consistently less than 0.1 for all mutation schemes.

evaluation is not replaced it will still contribute to the aver-
age o. This also explains why the two controllers for the SA
mutation scheme are not perfectly overlapping. Another ob-
servation we can make on the basis of this is that solutions
are constantly being replaced. If this were not the case then
we would expect a stagnation at some fixed mutation rate.

Effect Size Comparison

In order to compare all mutation schemes we calculated
Cliff’s delta (CLiff, 1993), with a 0.99 confidence level, ac-
counting for Pareto dominance in both coverage and preci-
sion and the two different control algorithms, in accordance
with (Samuelsen and Glette, 2018). This gives us the con-
fidence interval of the effect size, which indicates whether
or not one scheme is better, by how much and if the differ-
ence is statistically significant. The result is summarized in
Table 3. From the table it is clear that the dynamic muta-
tion schemes perform better than the static mutation rates. It
is also clear that our simulated annealing inspired mutation
rate performs best of the dynamic rates, by beating most of
the other dynamic schemes. However, it is interesting to note
that ES seem to outperform it when compared to the worst
performing static mutation rates, 0.025, 0.2, 0.4, which may
indicate that ES performs more consistently than SA. Finally
we can see that there is little difference between the cover-
age based and the two other dynamic mutation rates.

Mutation Rate

Since the SA mutation scheme performs better than the other
dynamic mutation schemes it is interesting to see if we can
detect any relationship between mutation rate and coverage
that could be exploited in a more explicit mutation scheme.
Figure 7 shows mutation rate as a function of coverage to-
gether with a simple quadratic decay model. We then per-
formed a linear fit of this model resulting in an adjusted R?
of 0.97 with all predictors showing statistical significance



\ I SA ES Covl | Cov4
0.025 ] 0.51+0.21 | 0.63+£0.14 | 0.46 +0.22 [ 0.40 +0.20
0.03 [[0.62+0.19 | 0.66£0.14 | 0.54+0.19 | 0.46 +0.22
0.05 [[047+022 | 035+0.20 | 0.33+0.22 | 0.14£0.23
0.075 [ 0.52+0.19 | 0.31+£0.19 [ 0.32+0.21 | 0.32+0.23
0.1 0.67+0.18 | 0.42+0.19 | 0.37+£0.22 | 0.32£0.21
0.2 073+021 | 086+0.11] 0.61+021 | 0.17+0.14
0.4 0.72+0.21 | 1.00+0.00 | 0.68+0.21 | 0.92+0.55

ES 0.30+£0.21 N/A N/A N/A
Covl 0.21 £0.20 | —0.02+0.21 N/A N/A
Cov4 0.01+0.22 | 0.19+0.11 | —0.02+£0.24 N/A

Table 3: Cliff’s delta for an abridged number of the mutation
schemes, with 0.99 confidence level. The values indicate the
confidence interval of the effect size. Positive values favour
the column while negative favour the row. Significant results
are marked in bold.
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Figure 7: Modelling o as a function of coverage. The data
is for the SA dynamic mutation scheme, shown in green and
blue, and the fitted quadratic decay model in red.

of p < 0.001. This shows that a possible further exten-
sion to our coverage based mutation scheme should utilize a
quadratic form.

Discussion

Our results show that dynamic mutation has the potential
to increase both coverage and precision when applied to
quadruped repertoire generation in MAP-Elites. For both
controllers tested it is clear that dynamic mutation is able to
achieve similar or better results than any static mutation rate.
The reason for this is likely the added opportunity to change
between exploration and exploitation. Any static mutation
rate must necessarily trade-off exploration against exploita-
tion and the optimal balance is difficult and time-consuming
to discover. The dynamic mutation rates are able to adapt
this trade-off during the search and therefore out-compete
the static mutation rates tested in this paper. We cannot
exclude the possibility that we have not found the optimal
static mutation rate that would be able to compete with the
dynamic mutation schemes. However, when taking into ac-

count that each repetition of our experiment requires > 50
hours to generate the necessary statistics this also illustrates
the difficulty in finding such an optimal value and why dy-
namic mutation can be worth the additional implementation
complexity.

When comparing different dynamic mutation schemes
there are several trade-offs to be made. The results show
little difference between the schemes, however, they indi-
cate some of their respective strengths and weaknesses. For
ES we see that the results are consistent and, even for the
difficult Hard controller, the method is able to generate high
performing repertoires without fault. We can contrast this
with the coverage based mutation scheme, which is able to
generate preferable repertoires for the simple Standard con-
troller, yet for the Hard controller is not able to consistently
generate a repertoire. The same is true for the SA mutation
scheme, which falters in a few runs for the Hard controller,
and can be seen in Figure 4. The reason for this is likely the
initial parameter, which could be tuned better, however, this
highlights the advantage ES has by being almost parameter
free.

When taking performance into account, we see that the
ES scheme is not the overall best performer. The reason
for this seems to be that ES greedily optimizes either pre-
cision or coverage. This can be seen in Figure 6 where ES
appears with a large mutation rate initially, exploration, be-
fore rapidly decreasing the mutation rate, exploitation. In
contrast the two other dynamic mutation schemes decreases
mutation rate over a longer evolutionary period that we hy-
pothesize leads to better solutions later by generating more
diversity early in the search.

Our analysis of the SA mutation scheme, Figure 7,
showed that there is a link between coverage and mutation
rate. This indicates that as coverages increases, in MAP-
Elites, the need for exploration declines and the search can
transition to exploit already discovered solutions. We be-
lieve that this observation can be used to further improve
the coverage based mutation scheme and that the pre-defined
search space in MAP-Elites can facilitate online adaptation
of search parameters.

Future extension of this work would be to develop a more
complete dynamic mutation method that would be able to
utilize both coverage and precision in order to change mu-
tation rate. Ideally this should be parameter free, yet retain
the quadratic decay property to ensure that diversity is main-
tained along with growing quality. Further testing on differ-
ent control architectures would also be beneficial to discover
the limits of the design.

Conclusion

In this paper we compared static and dynamic mutation to
understand how MAP-Elites could benefit from different
mutation schemes. Our results show that dynamic mutation
is compatible with MAP-Elites and is able to surpass static



mutation rates when evolving a repertoire of behavior prim-
itives for a quadruped robot with two different complex con-
trol algorithms. The results show that by applying dynamic
mutation to MAP-Elites parameter tuning can be reduced
to a minimum, decreasing the turn-around time for experi-
ments. For computationally complex search algorithms, like
MAP-Elites, this can be a considerable benefit.

Our experiments on different dynamic mutation schemes
revealed a trade-off between explicitly defined mutation
scaling and an almost parameter free ES. The results indicate
that for difficult problems the ES is able to evolve repertoires
consistently, yet is not able to attain the same quality as the
other dynamic mutation schemes.

This work is a modest extension to the growing body
of research into MAP-Elites. By demonstrating that estab-
lished methods such as ES can be combined successfully
with MAP-Elites we have peered into a new avenue of re-
search and opened the door for more advanced application
domains.

Acknowledgements

This work was partially supported by The Research Council
of Norway as a part of the Engineering Predictability with
Embodied Cognition (EPEC) project, under grant agree-
ment 240862 and through its Centres of Excellence scheme,
project number 262762.

References

Auerbach, J. E., lacca, G., and Floreano, D. (2016). Gaining in-
sight into quality diversity. In Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference Compan-
ion, pages 1061-1064. ACM.

Bick, T., Foussette, C., and Krause, P. (2013). Evolution strategies.
In Contemporary Evolution Strategies, pages 7-45. Springer.

Bick, T. and Schwefel, H.-P. (1993). An overview of evolutionary
algorithms for parameter optimization. Evolutionary compu-
tation, 1(1):1-23.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Al-
gorithms for hyper-parameter optimization. In Advances in
neural information processing systems, pages 2546-2554.

CIiff, N. (1993). Dominance statistics: Ordinal analyses to answer
ordinal questions. Psychological Bulletin, 114(3):494.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots
that can adapt like animals. Nature, 521(7553):503-507.

Cully, A. and Demiris, Y. (2017). Quality and diversity optimiza-
tion: A unifying modular framework. IEEE Transactions on
Evolutionary Computation.

Cully, A. and Mouret, J.-B. (2013). Behavioral repertoire learning
in robotics. In Proceedings of the 15th annual conference
on Genetic and evolutionary computation, pages 175-182.
ACM.

Cully, A. and Mouret, J.-B. (2016). Evolving a behavioral
repertoire for a walking robot. Evolutionary computation,
24(1):59-88.

Duarte, M., Gomes, J., Oliveira, S. M., and Christensen, A. L.
(2017). Evolution of repertoire-based control for robots with
complex locomotor systems. [EEE Transactions on Evolu-
tionary Computation.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parame-
ter control in evolutionary algorithms. /EEE Transactions on
evolutionary computation, 3(2):124-141.

Eiben, A. E. and Smith, J. E. (2007). Introduction to evolutionary
computing, volume 53. Springer.

Fukuoka, Y., Kimura, H., and Cohen, A. H. (2003). Adaptive dy-
namic walking of a quadruped robot on irregular terrain based
on biological concepts. The International Journal of Robotics
Research, 22(3-4):187-202.

Gaier, A., Asteroth, A., and Mouret, J.-B. (2017). Data-efficient
exploration, optimization, and modeling of diverse designs
through surrogate-assisted illumination. In Proceedings
of the Genetic and Evolutionary Computation Conference,
pages 99-106. ACM.

Gregory, M. D., Bayraktar, Z., and Werner, D. H. (2011). Fast
optimization of electromagnetic design problems using the
covariance matrix adaptation evolutionary strategy. I[EEE
Transactions on Antennas and Propagation, 59(4):1275—
1285.

Hansen, N., Miiller, S. D., and Koumoutsakos, P. (2003). Reduc-
ing the time complexity of the derandomized evolution strat-
egy with covariance matrix adaptation (cma-es). Evolution-
ary computation, 11(1):1-18.

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness
to solve problems through the search for novelty. In ALIFE,
pages 329-336.

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by
mapping elites. arXiv preprint arXiv:1504.04909.

Mouret, J.-B. and Doncieux, S. (2010). SFERESv2: Evolvin’ in
the multi-core world. In Proc. of Congress on Evolutionary
Computation (CEC), pages 4079-4086.

Nordmoen, J., Ellefsen, K. O., and Glette, K. (2018). Combin-
ing MAP-Elites and Incremental Evolution to Generate Gaits
foraMammalian Quadruped Robot. In Applications of Evolu-
tionary Computation, pages 719-733. Springer.

Nygaard, T. F., Martin, C. P., Tgrresen, J., and Glette, K. (2018).
Self-Modifying Morphology Experiments with DyRET: Dy-
namic Robot for Embodied Testing. In Proceedings of the
Genetic and Evolutionary Computation Conference, page to
appear in. ACM.

Nygaard, T. F, Tgrresen, J., and Glette, K. (2016). Multi-objective
evolution of fast and stable gaits on a physical quadruped
robotic platform. In 2016 IEEE Symposium Series on Com-
putational Intelligence (SSCI).

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Quality diver-
sity: A new frontier for evolutionary computation. Frontiers
in Robotics and Al, 3:40.

Samuelsen, E. and Glette, K. (2018). Multi-objective Analysis of
MAP-Elites Performance. arXiv preprint arXiv:1803.05174.



	Introduction
	Background
	Evolutionary Strategies
	qd and map-elites
	Behavior Repertoire

	Methods
	Gait Controller
	map-elites
	Experimental Setup

	Results and Discussion
	Grid Search
	Dynamic Mutation
	Effect Size Comparison
	Mutation Rate
	Discussion

	Conclusion
	Acknowledgements

