
Combining MAP-Elites and Incremental
Evolution to Generate Gaits for a Mammalian

Quadruped Robot

Jørgen Nordmoen, Kai Olav Ellefsen, and Kyrre Glette

Department of Informatics
University of Oslo

P.O. Box 1080 Blindern, 0316 Oslo, Norway
Email: jorgehn@ifi.uio.no

Abstract. Four-legged mammals are capable of showing a great variety
of movement patterns, ranging from a simple walk to more complex
movement such as trots and gallops. Imbuing this diversity to quadruped
robots is of interest in order to improve both mobility and reach. Within
the field of Evolutionary Robotics, Quality Diversity techniques have
shown a remarkable ability to produce not only effective, but also highly
diverse solutions. When applying this approach to four-legged robots
an initial problem is to create viable movement patterns that do not
fall. This difficulty stems from the challenging fitness gradient due to the
mammalian morphology. In this paper we propose a solution to overcome
this problem by implementing incremental evolution within the Quality
Diversity framework. This allows us to evolve controllers that become
more complex while at the same time utilizing the diversity produced by
Quality Diversity. We show that our approach is able to generate high
fitness solutions early in the search process, keep these solutions and
perform a more open-ended search towards the end of evolution.

Keywords: map-elites, incremental evolution, quadruped, gait generation, move-
ment primitives

1 Introduction

Legged robots have a high degree of mobility and can reach many places that are
outside the reach of wheeled robots [1, 2]. This mobility enables legged robots
to aid in many difficult situations and also work in environments optimized for
human locomotion. However, designing a controller for a legged robot is a difficult
challenge. Legged robots have many degrees of freedom and often require tight
coordination to keep the body in balance. Manually designing such controllers is
often time-consuming and as such machine learning is often seen as a promising
alternative to generate the controller [3].

The field of Evolutionary Robotics (ER) takes inspiration from natural evo-
lution to automatically create controllers for a large range of robots [4]. A recent

mailto:jorgehn@ifi.uio.no
Kyrre
Typewritten Text
The final publication is available at Springer via https://doi.org/10.1007/978-3-319-77538-8_48



development in ER is to let the algorithms explore both diverse and high-quality
solutions. This class of algorithms are called Quality Diversity (QD) [5, 6, 7, 8].
One interesting aspect of QD algorithms is their ability to produce a range of
behaviors that can be utilized as a repertoire for subsequent selection [9, 10, 11].
These behavioral repertoires are especially interesting when utilized as a method
to develop movement primitives that can later be operated by a higher-level
controller [10]. By generating these primitives, higher-level abstractions can be
created to facilitate re-use and sharing of controllers for different robots.

Four-legged, or quadruped, robots with legs underneath the body, pose a chal-
lenge for the control algorithm. Because the legs have to move out from under
the robot, the center of gravity is shifted in such a way that the whole platform
can become unstable [12, 13]. This instability makes it difficult to detect the gra-
dient of the fitness function and often impedes the discovery of initial solutions.
This is in contrast to other morphologies, such as the spider configuration in the
Quadratot [14], where the legs are positioned on the side of the body.

The difficulty in discovering the initial solutions is described as the bootstrap
problem in ER [4, 15, 16]. The bootstrap problem occurs when the initial pop-
ulation is difficult to generate and is of poor quality. In complex search spaces
this often occurs because initial individuals are not able to complete the task.
In the context of quadruped gait generation, the bootstrap problem occurs be-
cause any gait must have a high degree of coordination between all four legs.
With many degrees of freedom in each leg, coordination becomes increasingly
unlikely requiring several beneficial changes to occur together for the motion to
become synchronized. Since many ER algorithms typically initialize the search
randomly, the problem becomes even greater, because evolution might use many
evaluations in unproductive regions of the search space [15].

In this paper we propose to combine Multi-dimensional Archive of Phenotypic
Elites (MAP-Elites) [7, 8] with incremental evolution. Our contribution is two-
fold, firstly we show that it is possible to use MAP-Elites to generate a diverse
set of high-quality movement primitives for the difficult quadruped morphology.
Secondly, we study the effect of incremental controller complexification within
the MAP-Elites framework.

2 Background

This section will review background material on gait generation and incremental
evolution before describing QD. A special focus will be given to MAP-Elites, one
of the more popular QD algorithms, as well as the basis for our algorithm.

2.1 Gait Generation

Generating gaits has a long history within machine learning and ER. Some early
examples of generating gaits can be found in [1, 17, 18]. A very successful example
of gait generation in ER is the work of [3] which used an Evolutionary Algorithm



(EA) to optimize the gait of the Sony AIBO robot, the result of which ended up
in the commercial release of the robot.

In recent years a large body of research has focused on the control structure,
and learning of such structures, in order to produce a gait. One such approach is
using Artificial Neural Networks (ANNs) to produce the control signals for the
legs [19]. By using EAs, optimizing network weights, parameters and even whole
structures has been shown effective at creating controllers for legged robots [20,
21].

As hardware improves, real-world evolution–evaluating the fitness of a real
robot instead of a simulated version–has also been applied to the problem of
gait generation. This approach avoids the reality gap problem and can produce
good results [14, 22]. However, this approach is difficult to apply to mammalian
morphologies and open-ended evolution of the control structure has not been
demonstrated [23].

Since its introduction, QD has been used extensively to generate gaits. One
example is [24] which compared different control structures within the QD frame-
work, they showed that QD can be used with many different control structures,
but noted that the effectiveness of QD can depend on the control structure.

2.2 Incremental Evolution

The bootstrap problem is one of the fundamental problems within ER [16, 25].
The problem arises when the fitness function is not able to guide the set of ran-
domly generated initial solutions to improve [15]. One solution to the bootstrap
problem is incremental evolution [15]. Incremental evolution starts by decompos-
ing the goal into smaller sub-tasks that evolution is able to solve individually.
When the desired fitness is reached in a sub-task, the task is either updated
to the next sub-task or the task is made more complex. To benefit from the
previous solution special care is taken when the task is decomposed so that the
previous solution is a component to solve the next sub-task. Once all sub-tasks
have been solved the tasks can be combined into the goal task. Alternatively, if
controller complexification is used the problem can be considered solved when
the controller is complex enough to solve the goal.

In their seminal paper on incremental evolution Gomez [15] used task de-
composition to evolve a neural network in a predator-prey scenario. Similar
task decomposition has been used to evolve gait and navigation controller for a
6-legged robot [26], evolving control for soccer players [27] and cooperative pho-
totaxis with hole avoidance [28]. Other forms of incremental evolution has also
been show to be effective. Bongard [29] showed that changing the morphology
over both the ’lifetime‘ and during evolution increases performance and robust-
ness of the robot’s controller. Bongard [30] also demonstrated that combining
environmental and morphological incremental evolution is not only possible, but
yields better performance than either version alone. Mouret [31] identified some
of the challenges with incremental evolution, such as the difficulty in specifying
how a task should be decomposed. Their innovative solution of task decompo-
sition with a multi-objective EA was able to overcome some of these problems,



however, incremental evolution still requires careful consideration in its imple-
mentation.

2.3 Quality Diversity

A recent advance in ER is the use of QD algorithms to overcome some of the
fundamental problems within the field. This new class of algorithms eschews
some of the traditional focus on fitness alone and instead concentrates on the
behavior of the system [5, 32]. These algorithms have shown a remarkable ability
to solve problems that before were considered too complex [6, 11, 33].

QD algorithms like MAP-Elites [8] separates the behavior, of the system in
question, from the fitness. This separation allows QD algorithms to search for
interesting differences in behavior rather than solely focusing on fitness. The
separation of behavior and fitness makes QD different from a Multi-Objective
Evolutionary Algorithm (MOEA) since lower performing solutions are kept as
long as they are behaviorally different from what has already been encountered.
That is, even though a solution is not on the Pareto front it could still be included
if it is behaviorally different from other solutions. The advantage of this diversity
is that the search is less likely to be stuck in local optima, and for high performing
solutions to be built on top of similar, lower performing solutions [7].

A recent development within QD [10] showed that it was possible to cre-
ate control primitives by pairing MAP-Elites with an ANN to create control
abstractions for a simulated vehicle. This work built on the strengths of QD
to discover a diverse set of high quality control primitives that could be paired
with higher-level control abstractions. The ANN was used to select control prim-
itives and was shown to be able to transition between different vehicle control
modes enabling the authors to abstract the underlying vehicle dynamics from
the high-level ANN control system. The work demonstrated the strength of us-
ing these higher-level abstractions in creating complex controllers for unknown
robots possibly enabling new robots to be more easily developed and tested.

(a) Real-world (b) Simulated

Joint 3

Joint 2

Joint 1

(c) Joint configuration

Fig. 1: The quadruped robot used in this paper.



3 Approach

This paper combines MAP-Elites with incremental complexification to evolve
a set of controllers for a four-legged quadruped robot. The robot (Fig. 1) was
developed as an experimental platform to perform real-world evolution in hard-
ware [23]. Each leg has three degrees of freedom as shown in Fig 1c, for a total
of twelve degrees of freedom, with each joint controlled by an internal PID-
controller. In order to run our experiments the robot was simulated using Gazebo
version 7.8.11 with ODE2 in conjunction with Robot Operating System (ROS)3.
In addition, we used the SFERESv2 framework [34] with its default MAP-Elites
implementation4. To understand how incremental evolution is integrated with
MAP-Elites we will introduce the gait controller and explain how this controller
can be complexified.

3.1 Gait Controller

To create a ‘complexifying’, or ‘upgrading’, gait controller we started by param-
eterizing a simple quadruped walk, where the parameters are amplitude, phase,
duty cycle, offset and gait period for each joint. These parameters describe a
continuous first-order spline which represents the commanded angle of a joint5.
Complexification is performed by locking, not allowing evolution to mutate, se-
lected parameters to default values and later unlocking these same parameters,
this is illustrated in Fig. 2 for a simple four valued genome. The parameteriza-
tion makes it trivial to do non-destructive upgrades, retaining the phenotypic
expression, which is important when integrating with MAP-Elites since individ-
uals in the population are not re-evaluated. In the experiments all individuals
in the population are upgraded at the same time to ensure that mutations are
allowed to happen for the newly unlocked parameters. The parameters used for
the different experiments are explained in Section 3.3.

3.2 Evolutionary Setup

The shared MAP-Elites parameters can be found in Table 1. Each individual is
simulated for 10 seconds and an evaluation ends if the individual falls over. The
fitness of each individual is

fitness(n) =

{
Ti if the robot fell over
Ti + stability(n) otherwise

(1)

1 http://gazebosim.org/
2 http://www.ode.org/
3 http://ros.org
4 Source code: https://folk.uio.no/jorgehn/dyret_map_gaits-0.1.0.zip.
5 For further details see the source code.

http://gazebosim.org/
http://www.ode.org/
http://ros.org
https://folk.uio.no/jorgehn/dyret_map_gaits-0.1.0.zip


Joint 1 Joint 2

Amplitude Phase Amplitude Phase

0.0 0.0 X Y

0.0 0.0 X Y

2 Parameters

4 Parameters

Fig. 2: Parameter upgrade for two simple joints. The full configuration is pa-
rameterized by four values, two values for each joint. In the first scenario two
of the values are locked, marked in red, and two are unlocked. To upgrade the
configuration, we copy the two values, X and Y , and unlock the two remaining
parameters. The figure illustrate how two different configurations can behave
identically, but the ‘4 Parameter’ configuration has the possibility to exhibit
new behavior as it can actuate ‘Joint 1’.

where Ti is the time the individual was upright, and stability is defined as

stability(n) =

{
C − SM(ωx, ωy) if SM(ωx, ωy) < C

0 otherwise
(2)

where SM is the Squared Magnitude of the x and y components of the body
angular momentum over the evaluation period and C is a constant allowing for
maximization of SM . This fitness function ensures that MAP-Elites is able to
progress even if none of the individuals are able to walk the full evaluation time.
By using SM of the angular momentum MAP-Elites optimizes the stability in
each grid cell, where less angular momentum is interpreted as a more stable gait.
This was chosen to increase viability of the gait and matches the MAP-Elites
notion of optimizing fitness while letting behavior characteristics explore the
behavior space.

The behavior characteristics used in the simulation are inspired by [10] and
are designed to support higher-level control abstractions. The behavior charac-
teristics are average turn rate defined as

1

N

N∑
i=2

(ψi − ψi−1)

(ti − ti−1)
(3)

and average velocity defined as

1

N

N∑
i=1

vi (4)

for x and y dimensions respectively, where N is the number of samples before
the robot fell, ψ is the yaw in radians, ti is the time of sample i and v is the



velocity of the robot. The behavior characteristics drive the search to explore a
variety of velocities and turn rates while fitness optimizes for stability of each
behavior.

Evaluations
30 000

Generations: 300
Batch size: 100

Initial population 1000
Evaluation time 10 seconds
Recombination None

Mutation
Type: Gaussian

σ: 0.2
Probability: 1.0

Behavior characteristics
Dimensions: 2

X-axis: turn rate
Y-axis: Average speed

Table 1: MAP-Elites simulation parameters.

3.3 Experimental Setup

To investigate if incremental evolution can supplement MAP-Elites we tested
four different configurations of the gait controller. For the experiments in this
paper, phase, duty cycle and offset are kept static in all configurations. For each
leg the phase parameter is kept identical for all joints set to 0.00, 0.75, 0.50 and
0.25 for the front left, front right, back left and back right leg respectively where
the value is a percentage of the total gait period. The duty cycle is set to 0.25
and the offset for each joint is set to the resting pose of the robot. This increases
the probability of discovering viable gaits while still allowing enough freedom
to differentiate the four configurations. The four configurations are described
below. The setup consists of three base-configurations which function as reference
implementation and are compared to our incremental configuration.

Simple To ensure that the gait controller is capable of producing viable gaits
the first configuration tested restricts almost all parameters of the gait. In this
configuration most parameters are set to best practices and only a few parame-
ters are evolved. The evolved parameters are as follows, see Figure 1c,

– First parameter describes amplitude of Joint 1.
– Second parameter describes amplitude of Joint 2.
– Third parameter describes amplitude of Joint 3.

These parameters are then replicated for each leg and movement is ensured by
different phases between the legs.



Medium The next configuration tested relaxes a few more restrictions and al-
lows the amplitude of each joint in the left and right legs to be evolved separately.
The parameters evolved are

– The first three (1-3) parameters describe the amplitude of the joints in the
two left legs.

– The next three (4-6) parameters describe the amplitude of the joints in the
two right legs.

This configuration has the potential to explore more gaits along the X axis
compared to the simple configuration, due to the decoupling between the left
and right side of the robot. Since the left and right side can have independent
amplitudes, the gait pattern has the potential to create behaviors more suited
to turning. However, the increase in number of parameters also requires more
coordination.

Complex In this configuration each leg has independent amplitude control of all
joints, giving 12 parameters to optimize. This configuration is the least restrictive
of the base-configurations, which could lead to more diverse gaits with better
performance. The expressiveness could also be a hindrance as the number of
parameters that must be coordinated is larger.

Incremental Controller The incremental controller is a combination of the
above configurations. During evolution this configuration will start with the
‘Simple’ configuration and will change, first, to the ‘Medium’ and then lastly to
the ‘Complex’ configuration. This controller tests if incremental evolution can be
combined with MAP-Elites to produce diverse, high performing solutions. The
gait is incrementally upgraded at static points during the evolution, fixed to 1

3
of the total evaluations for each sub-configuration.

In the results we have also added a configuration called Incremental 2 which
also performs incremental evolution, but instead of starting with ‘Simple’ starts
in the ‘Medium’ configuration and Incremental 3 which starts with ‘Simple’ and
upgrades to ‘Complex’. Both of these configurations incrementally complexify
after 1

2 of the total evaluations have been performed. These configurations are
included to gain insight into the effect of upgrading and how upgrading is affected
by the initial configuration.

4 Experimental results

To compare the different configurations and to understand how incremental evo-
lution performs within the MAP-Elites framework we ran each configuration
with 15 repetitions and used the metrics described in [7] to analyze the results.
These metrics, reliability, the average fitness for all cells in the map, coverage,
the percentage of filled cells, and precision, the average fitness of filled cells,
give an overview of the state in the map. Since we are evolving gait primitives



we are interested in both a diverse set of solutions (large coverage) and high
performance (high precision). Reliability then becomes the product of these two
objectives and gives a summary of the performance.

In the results we annotate the three incremental configurations, described
in Section 3.3, as ‘Incr’, ‘Incr 2’ and ‘Incr 3’ respectively, see Fig. 4. Note also
that even though fitness is evaluated even if the solution fell these solutions
are not included in the results presented below, the individuals are removed
before any calculations take place. In other words, the results only considers
gait controllers that were able to walk the full simulation time without falling
over. For the results below all fitness values have been normalized by subtracting
Ti and dividing by the constant C.

To further illustrate the results, we have plotted the resulting map, in Fig. 3,
from a few select generations for representative runs of each configuration. These
maps give a good overview of the distinction between precision and coverage.
From the maps it is clear to see that ‘Incremental’ and ‘Simple’ find higher
performing solutions while ‘Complex’ is better able to explore the search space.

4.1 Precision

Fig. 4 shows the average fitness for the filled cells for each of the configurations
tested throughout evolution. For the static configurations the precision slowly
increases over the generations. Most improvement is seen in the ‘Complex’ con-
figuration while ‘Simple’ and ‘Medium’ start higher and have little to no increase
over the course of evolution. For the incremental configurations the plots look
quite different and actually decrease towards the end of the evolutionary run.
The large difference in precision seen for the static configurations is likely due
to the relative difference in difficulty of finding good solutions. For the ‘Sim-
ple’ configuration the parameters require very little coordination which seems
to result in higher precision. This is also very evident from the initial random
population where the difference in precision should be directly correlated to the
difficulty in randomly generating a functioning gait. Analyzing the box plot for
generation 300, in Fig. 4 top right, the results show very little spread and most
of the variation is in the ‘Complex’ configuration.

4.2 Coverage

Fig. 4, middle row, shows the number of filled cells over all generations and
a box plot of the last generation. From the generational plot it is clear that
the ‘Complex’ configuration is best able to explore the search space. The two
other static configurations achieve significantly less coverage, which is expected
considering the limitations in the number of parameters and resulting gaits. For
the incremental configurations we clearly see that more parameters open up more
possibilities as each configuration quickly explores more of the search space after
each upgrade, generation 100, 200 for ‘Incremental’ and 150 for the two-other
incremental configurations.



Fig. 3: Illustration of evolved maps for generation, 0, 100, 200 and 300. The X
and Y axis represent the behavior dimensions while the color represents fitness
where bright yellow is higher fitness. For the ‘Incremental’ configuration the
upgrade happens at generation 100 and 200. The figure illustrates the distinction
between precision and coverage, where ‘Complex’ spans a much wider area with
lower performing solutions while ‘Simple’ has fewer solutions with higher fitness.



0.0

0.2

0.4

0.6

0 100 200 300

P
re
ci
si
on

Simple
Medium
Complex
Incr
Incr 2
Incr 3 ∗∗∗∗∗ ∗∗∗ ∗∗∗∗∗ ∗∗∗∗ ∗∗ ∗∗∗

0.0

0.2

0.4

0 100 200 300

C
ov
er
ag

e

Simple
Medium
Complex
Incr
Incr 2
Incr 3 ∗∗∗∗∗ ∗∗∗∗ ∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗

0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300

Generation

R
el
ia
bi
lit
y

Simple
Medium
Complex
Incr
Incr 2
Incr 3 ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗

Fig. 4: The plots show precision, coverage and reliability. The median is plotted
over all generations, left, and a box plot is shown for the last generation on the
right. The box plots also show the result of a pairwise Wilcoxon Rank Sum test,
adjusted using Holm’s method, where an asterisk corresponds to a significant
difference at the p < 0.001 level.



It is also interesting to note that the initial coverage for all configurations
is about the same, but the coverage quickly diverges in subsequent generations.
The box plots also show that the difference is significant between several of the
configurations for the final generation.

4.3 Reliability

To get an overall impression of the performance of the tested configurations we
can combine precision and coverage into reliability as seen in Fig. 4. Reliabil-
ity is defined as the average fitness of all cells divided by the number of cells,
empty cells are given a fitness of zero. From the generational figure it seems that
‘Complex’ performs better than the two other static configurations although the
difference is not statistically significant. The three incremental configurations
show different growths throughout evolution, but by the end of the run start to
converge to the same performance.

All of the incremental configurations show large increases in reliability after
upgrading, which is correlated with the increase in coverage, as noted in the
previous section. These configurations also have higher reliability throughout the
beginning of the evolution compared to the ‘Complex’ configuration correlated
with the large difference in precision.

0.0

0.2

0.4

0.6

(a) Precision for the initial population.

Simple

Medium

Complex

Incr

Incr 2

Incr 3

(b) Coverage for the initial population

Fig. 5: These figures show precision and coverage for the initial population. The
figures illustrate the difficulty in discovering the initial population depending on
the ‘freedom’ of the controller. This can be seen as coverage is essentially equal
for all configurations, yet the fitness of the initial populations are very different,
as illustrated by the difference in precision.



5 Discussion

The main hypothesis explored in this paper is that MAP-Elites combined with
incremental evolution can be used for the difficult task of generating gait primi-
tives for a mammalian quadruped robot. The results show that the quality and
quantity of the primitives varies between the different static configurations. In
contrast the incremental approach is able to develop a large repertoire of high
quality solutions that span a larger area in the search space. It can also be ob-
served that the variance for all three incremental approaches are much lower
than for the best static configuration, as seen in Fig. 4, this could indicate that
the incremental configurations are more consistently finding diverse and high fit-
ness solutions. From manual inspection of the gaits produced, all configurations
are able to discover satisfying controllers that exhibit desired behavior6.

From the precision plot in Fig. 4, it can be seen that complexity is related to
fitness, as more complex configurations achieve lower precision scores. The lower
precision can be attributed to the difficulty in coordinating the joints. To further
explore this we plot the initial population in Fig. 5. Even though the difference
in coverage is low the difference in precision is large.

Because of the limitations imposed on the ‘Simple’ and ‘Medium’ configu-
rations they are not able to gain the same coverage as the ‘Complex’ config-
uration. This can be attributed to the forced coordination imposed on these
configurations. These results are interesting because they illustrate the difficulty
in designing an algorithm to overcome the bootstrap problem. By restricting the
configurations they are able to more quickly discover high performing solutions,
as evident in their precision Fig. 4, but are not able to produce the same range
of behaviors as the ‘Complex’ configuration. We can see that in the reliability
that the incremental configurations seem to be able to get the benefit of both–
however, because of the limited number of evaluations in this paper–they are
not able to completely surpass the ‘Complex’ configuration.

The incremental approach is able to generate higher fitness controllers as well
as explore more of the search space, as seen in the results Fig. 4. This is because
it is able to keep the high precision from before the upgrade, and also explore
the new behavior space after the upgrade. The improvement is evident in each
of the three incremental approaches and is a result of the increase in coverage.

6 Conclusion and Future Work

We have investigated how incremental evolution can be combined with MAP-
Elites to create movement primitives for quadruped robots. In the experiments
we compared several gait parameterizations of different levels of complexity with
a controller that is able to incrementally complexify. The results show that MAP-
Elites was able to create viable controllers, and–when combined with incremental
evolution–also produced a diverse set of solutions with high fitness. This indicates

6 For videos see: https://folk.uio.no/jorgehn/map_gaits/

https://folk.uio.no/jorgehn/map_gaits/


that for more open-ended controllers incremental complexification could be a
promising approach for introducing some guidance into the search.

This paper also shows that evolving movement primitives for mammalian
quadruped robots is possible and a large repertoire of gait patterns can be
evolved. By showing that movement primitives are achievable with such a diffi-
cult morphology, we open the possibility to apply the technique to a large group
of robots so far not explored with Quality Diversity techniques.

A natural next step for this research is to verify that the evolved gait primi-
tives are able to function in the real-world. An extension to this work could also
explore performing the complexification adaptively as a means to achieve faster
convergence.

Acknowledgments. Supported by The Research Council of Norway as a part
of the Engineering Predictability with Embodied Cognition (EPEC) project,
under grant agreement 240862.

Bibliography

[1] Wettergreen, D., Thorpe, C.: Gait generation for legged robots. In: IEEE
International Conference on Intelligent Robots and Systems (1992)

[2] Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for ex-
treme terrain. The International Journal of Robotics Research 12(6), 535–
559 (1993)

[3] Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fu-
jita, M.: Evolving robust gaits with AIBO. In: Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on. vol. 3, pp.
3040–3045. IEEE (2000)

[4] Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary
robotics: what, why, and where to. Frontiers in Robotics and AI 2, 4 (2015)

[5] Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: A new frontier for
evolutionary computation. Frontiers in Robotics and AI 3, 40 (2016)

[6] Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems
through the search for novelty. In: ALIFE. pp. 329–336 (2008)

[7] Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909 (2015)

[8] Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like
animals. Nature 521(7553), 503–507 (2015)

[9] Cully, A., Mouret, J.B.: Behavioral repertoire learning in robotics. In: Pro-
ceedings of the 15th annual conference on Genetic and evolutionary com-
putation. pp. 175–182. ACM (2013)

[10] Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: EvoRBC: Evolu-
tionary repertoire-based control for robots with arbitrary locomotion com-
plexity. In: Proceedings of the 18th annual conference on Genetic and evo-
lutionary computation. ACM (2016)



[11] Cully, A., Mouret, J.B.: Evolving a behavioral repertoire for a walking robot.
Evolutionary computation 24(1), 59–88 (2016)

[12] Van de Panne, M., Lamouret, A.: Guided optimization for balanced loco-
motion. In: Computer Animation and Simulation’95, pp. 165–177. Springer
(1995)

[13] de Santos, P.G., Garcia, E., Estremera, J.: Quadrupedal locomotion: an in-
troduction to the control of four-legged robots. Springer Science & Business
Media (2007)

[14] Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolv-
ing robot gaits in hardware: the HyperNEAT generative encoding vs. pa-
rameter optimization. In: Proceedings of the 20th European Conference on
Artificial Life. pp. 890–897 (2011)

[15] Gomez, F., Miikkulainen, R.: Incremental evolution of complex general be-
havior. Adaptive Behavior 5(3-4), 317–342 (1997)

[16] Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open
issues in evolutionary robotics. Evolutionary Computation 24(2), 205–236
(2016)

[17] Brooks, R.A.: A robot that walks; emergent behaviors from a carefully
evolved network. Neural computation 1(2), 253–262 (1989)

[18] Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots.
Robotics and autonomous systems 19(1), 67–83 (1996)

[19] Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor
control in a quadruped robot. In: Neural Networks, 2000. IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS International Joint Conference on.
vol. 6, pp. 637–641. IEEE (2000)

[20] Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated
quadruped gaits with the HyperNEAT generative encoding. In: 2009 IEEE
Congress on Evolutionary Computation. pp. 2764–2771. IEEE (2009)

[21] Lee, S., Yosinski, J., Glette, K., Lipson, H., Clune, J.: Evolving gaits for
physical robots with the HyperNEAT generative encoding: The benefits of
simulation. In: European Conference on the Applications of Evolutionary
Computation. pp. 540–549. Springer (2013)

[22] Zykov, V., Bongard, J., Lipson, H.: Evolving dynamic gaits on a physical
robot. In: Proceedings of Genetic and Evolutionary Computation Confer-
ence, Late Breaking Paper, GECCO. vol. 4 (2004)

[23] Nygaard, T.F., Tørresen, J., Glette, K.: Multi-objective evolution of fast
and stable gaits on a physical quadruped robotic platform. In: 2016 IEEE
Symposium Series on Computational Intelligence (SSCI) (2016)

[24] Tarapore, D., Clune, J., Cully, A., Mouret, J.B.: How do different encodings
influence the performance of the MAP-Elites algorithm? In: Genetic and
Evolutionary Computation Conference (2016)

[25] Mouret, J.B., Doncieux, S.: Overcoming the bootstrap problem in evolution-
ary robotics using behavioral diversity. In: 2009 IEEE Congress on Evolu-
tionary Computation. pp. 1161–1168. IEEE (2009)

[26] Filliat, D., Kodjabachian, J., Meyer, J.A., et al.: Incremental evolution of
neural controllers for navigation in a 6-legged robot. In: Proceedings of the



Fourth International Symposium on Artificial Life and Robots. pp. 753–760
(1999)

[27] Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P.: Evolving soccer keep-
away players through task decomposition. Machine Learning 59(1), 5–30
(2005)

[28] Christensen, A.L., Dorigo, M.: Incremental evolution of robot controllers
for a highly integrated task. In: International Conference on Simulation of
Adaptive Behavior. pp. 473–484. Springer (2006)

[29] Bongard, J.: Morphological change in machines accelerates the evolution of
robust behavior. Proceedings of the National Academy of Sciences 108(4),
1234–1239 (2011)

[30] Bongard, J.: Morphological and environmental scaffolding synergize when
evolving robot controllers: artificial life/robotics/evolvable hardware. In:
Proceedings of the 13th annual conference on Genetic and evolutionary
computation. pp. 179–186. ACM (2011)

[31] Mouret, J.B., Doncieux, S.: Incremental evolution of animats’ behaviors as
a multi-objective optimization. From Animals to Animats 10 pp. 210–219
(2008)

[32] Auerbach, J.E., Iacca, G., Floreano, D.: Gaining insight into quality diver-
sity. In: Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference Companion. pp. 1061–1064. ACM (2016)

[33] Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through
novelty search and local competition. In: Proceedings of the 13th annual
conference on Genetic and evolutionary computation. pp. 211–218. ACM
(2011)

[34] Mouret, J.B., Doncieux, S.: SFERESv2: Evolvin’ in the multi-core world.
In: Proc. of Congress on Evolutionary Computation (CEC). pp. 4079–4086
(2010)


	Combining MAP-Elites and Incremental Evolution to Generate Gaits for a Mammalian Quadruped Robot



