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Abstract. Co-evolution of robot morphologies and control systems is a
new and interesting approach for robotic design. However, the increased
size and ruggedness of the search space becomes a challenge, often lead-
ing to early convergence with sub-optimal morphology-controller com-
binations. Further, mutations in the robot morphologies tend to cause
large perturbations in the search, effectively changing the environment,
from the controller’s perspective. In this paper, we present a two-stage
approach to tackle the early convergence in morphology-controller co-
evolution. In the first phase, we allow free evolution of morphologies and
controllers simultaneously, while in the second phase we re-evolve the
controllers while locking the morphology. The feasibility of the approach
is demonstrated in physics simulations, and later verified on three differ-
ent real-world instances of the robot morphologies. The results demon-
strate that by introducing the two-phase approach, the search produces
solutions which outperform the single co-evolutionary run by over 10%.

1 Introduction

Evolutionary robotics (ER) is an approach for automatic design and adaptation
of robot bodies and control systems, through the use of evolutionary algorithms
(EAs). This has the potential for improving future robot design processes, as
well as improving the resilience and adaptability of robots [1,2].

While most work in evolutionary robotics concerns the optimization of robotic
control systems, there has also been an effort, mainly through the use of soft-
ware simulations, into simultaneously optimizing robotic bodies and control sys-
tems [3]. While examples of such systems are still limited, it is believed that
optimizing both aspects simultaneously could lead to interesting and robust be-
haviors, even when limited control and actuation is available. Most examples of
the potential of co-evolution of morphologies and controllers are found within the
field of virtual creatures, where a physical counterpart of the simulated system
may not be available [4,5]. However, there have also been some examples of evo-
lution in simulation leading to instantiation of working physical robots [3,6,7],
and recently even simulationless evolution of robotic morphologies [8].



Optimizing robot morphologies together with control systems is a difficult
task, and we have only so far seen relatively simple results, even though signif-
icant amounts of computational resources have been allocated [3]. One of the
reasons for this difficulty is the increased dimensionality of the search space that
comes with the freedom to design the body, in addition to the control system. In
effect this requires a much larger amount of exploration to find the desired qual-
ity of solutions. However, another aspect of the difficulty is that the co-evolution
of morphology and control also leads to a much more difficult search – the search
landscape is much more rugged, and small changes in the morphology can easily
offset the performance of a previously found good body-controller combination.
An interesting view on this, based on the theory of embodied cognition, can be
found in [9]. Here, a morphological change is seen as scrambling of the interface
between the controller and its physical interface to the environment.

With similar observations in our own work on co-evolving morphologies and
control systems [10], in this paper we demonstrate a simple approach to reduce
this effect. We demonstrate that it is possible to improve the solution quality
after convergence of a morphology-controller evolutionary run by freezing the
morphology, and allowing a second phase of continued evolution on the control
system alone. This approach leads to significant improvements in the final so-
lutions with a modest number of further evaluations, and indicates that phases
of optimizing only the control system can be beneficial. Our method can easily
be combined with other approaches, like novelty search [11] or various methods
of encouraging behavioral diversity [12]. We demonstrate the approach for a re-
alistic robot design, and validate the method by producing and evaluating two
of the evolved robot designs in the real world. The performances of the evolved
designs are compared to a hand-designed robot within the same framework.

2 Background

The perhaps most well-known example of co-evolution of morphology and con-
trol is Sims’ work on virtual creatures [4]. Here, virtual creatures were evolved
in a rigid body physics simulation, displaying diverse and natural behaviors.
While these virtual creatures were not targeted for instantiation in the physical
world, the setting of virtual creatures has been popular for exploring various
aspects of co-evolving morphologies and control. Examples include: evolution
of soft bodied creatures [13], evolution of artificial muscle-based creatures [5],
diversity-enhanced morphology evolution [14], and investigations of the rela-
tionships between environment and body complexity [15].

While results from simulations can give a number of insights, being able to
automatically design physical robot morphologies is inarguably even more in-
teresting, and could eventually lead to useful techniques in robot engineering.
However, going from the already difficult task of designing virtual creatures to
designing physically instantiable robots is challenging. The encoding of the so-
lutions need to take into account physically realizable body parts and actuators,
and a sufficiently accurate simulation of these. Further, actually producing the



robots can be a relatively cumbersome and time-consuming task, and usually
only a handful of the results from simulation can therefore be evaluated as real-
world robots.

Finally, the combined morphology-controller robots are prone to reality gap
issues, potentially even more so than when control systems only are evolved. In
particular, it seems to often be the case that some morphology-controller com-
binations work relatively as expected from simulation, while other combinations
suffer from a large reality gap [3,6,7].

Experiments on evolving morphologies and controllers employ a variety of
different building blocks, from convenient physics simulation primitives in the
case of virtual creatures [4,13], to building blocks which are convenient to proto-
type and integrate with actuators in the case of physical instantiation [3,6,16,7].
In these cases, focus has been more on the evolutionary design process, and the
resulting physical robots are mostly meant to validate the approach.

However, there have also been some attempts at evolutionary morphology
design with an engineering perspective in mind, range from rather free-form
structures, which are given large design freedom, to structures inspired by more
”realistic” robot shapes, which are intended to solve a task or carry a payload.
These include the design of a variety of shapes for robotic manipulators [17],
or parametric legged robots [18]. It should be noted that while these works
worked on realistic robot shapes, they have so far only been validated in simu-
lation. There are also some good examples of parametric design optimizations
for bio-inspired robot morphologies, such as the optimization of the caudal fin
dimensions for a robotic fish [19], or the optimization of leg parameters for an
octopus-inspired robot [20].

It has been pointed out that co-evolution of morphologies and controllers
is difficult [9]. Methods which have been explored to tackle this challenge in-
cludes generative encodings [6,13,10], morphological diversity-enhanced algo-
rithms [14,10,20], and more complex environments [15].

3 Implementation

3.1 The Robot

Six legged robots with three degrees of freedom for each leg were used for all
experiments. The legs are arranged in a spider configuration, and vacant slots
for tools or two more legs were added to the front of the robot for versatility
and future experiments.

A parametric blueprint was defined from which each robot was defined. The
choice of parameters was limited by the computational complexity of the increas-
ing solution space, while the ambition of a more general robot system provides
a contrast with the demand for more dimensions. The final compromise assumes
symmetry along the movement direction of the robot to allow a sufficiently com-
plex robot with fewer parameters. The lengths of the two outer leg segments
can be set, with minimum lengths, given by the size of the servos used, and the



maximum given by the manufacturing equipment available. Six legs with two
configurable segment lengths each yields 12 parameters, but assuming symme-
try reduces this to 6. The placement of each servo on the base plate was also
made parameterizable, as seen in Fig. 1. A total of 11 parameters defines the
complete morphology of the robot, with details given in table 1.

B1 B2

B3B4B5

21.5mm

Fig. 1: Drawing of the base, showing all pa-
rameters.

Parameter # Lower Upper
Tibia length 3 80mm 254mm
Femur length 3 80mm 254mm
B1 1 52.65m 94mm
B2 1 83mm 284mm
B3 1 61.5mm 254mm
B4 1 52.65mm 254mm
B5 1 61.5m 254mm

Table 1: The parameters used in
morphology.

The physical instantiation of each robot is built using plastic parts printed
in ABS by a Fortus 250mc 3d printer. The parts were designed for high strength
and low weight, and FEM simulation was used extensively in the design pro-
cess. Rapid prototyping principles were used to reduce risk of design errors and
encourage good project progression, and the first manually designed robot can
be seen in Fig. 2. We chose Dynamixel AX-18A smart servos as actuators for
their ease of use and relatively high power, and implemented the whole control
scheme on a windows based computer.

Fig. 2: Image of the printed and assembled hand designed robot. The face was
added for recruitment events, to make the robot seem less frightening to children.



3.2 Control System

We implemented a simple control system that serves as an extension of a popular
wave controller [21]. The traditional controller contains a collection of amplitude
and a phase parameters that together with the source wave signal generates
commands for all actuators. We also needed an offset value for each servo, but
through initial tests found the resulting controller to be hard to limit and evolve.
We therefore introduced two new equations that uses v as minimum angle and
w as maximum angle, as seen in equation 1. An offset φ is added to provide
the full controller equation, given in equation 2. The time t is given in seconds.
Symmetry was also used in the control system, and each pair of servos was thus
defined by its minimum movement, maximum movement, and phase offset. This
results in a total of 36 parameters to define the movement of the robot, as seen
in table 2.

α =
(ν − ω)

2

β =
(ν + ω)

2

(1)

χ(t, ν, ω, φ) =
(ν − ω)

2
× tanh(4 × sin(2 × π × (t+ φ))) +

(ν + ω)

2
(2)

Coxa movement1 4 -0.81 1.64

Coxa movement2 2 -1.64 1.64

Femur movement 6 -2.49 2.49

Tibia movement 6 -2.49 2.49

Phases 18 −π π

Table 2: Table showing search space for morphology at the top and control at
the bottom. Coxa movement1 is moving along the side of the robot, while Coxa
movement2 is moving behind the robot.

3.3 Evaluation

The main goal of each individual is a fast walking gait, but the weight of indi-
viduals was also used in the evolutionary algorithm to ensure a higher degree of
variation in the resulting population, and to aid in the evolutionary search by
providing two partially conflicting objectives [22].

A custom in-house developed simulation framework was used to rapidly test
a range of different individuals. The framework acts as an interface to Nvidia
PhysX library, and generates a simplified robot morphology based on the mor-
phological parameters. It uses the same controller code as used in hardware tests.



The evolutionary framework ParadisEO [ref] is used for running the evolutionary
algorithm.

Real world evaluations were done in the University of Oslo’s motion capture
lab. It features an OptiTrack motion capture system to efficiently estimate the
position and pose of the robot, using infrared cameras and the light from reflec-
tive spheres mounted on the robot. Each gait is evaluated for four seconds. A
wiring harness was built to ensure that the robot did not trip in its own power
and command wires, and turning gaits were evolved and used to ensure the robot
stays within the area covered by the cameras at all times. We achieved a fully
autonomous testing system that needs no human intervention during testing or
evolutionary experiments, which allowed for prolonged tests in hardware.

3.4 Evolutionary Setup

We chose NSGA-II [23] as the evolutionary algorithm for our experiments. 32
bit floating point numbers were used to represent all parameters in the genome.

We used non-uniform mutation using the normal distribution with standard
deviations 0.025 and 0.01 for control and morphology mutation respectively.
Random reset mutation was used with a per-gene probability of 0.02. Tests with
several different crossover operators did not yield significant advantages, so these
were not used.

4 Experiments and Results

4.1 Experiments

The main co-evolutionary runs in simulation were done using 1024 generations
of 256 individuals. A total of 20 runs were done, to reduce statistical anomalies.
Two morphologies were then selected from the results, and were, together with
the hand designed robot, selected for further evolution. Control systems for these
three robots were then evolved with three new groups of runs, using the same
evolutionary parameters as before. Morphology was locked, and the controllers
were all reset to random values at the start of the new runs. A smaller num-
ber of evolutionary runs were then conducted on each morphology to generate
turning gaits needed for continuous automated tests in hardware without human
intervention.

The best performing individual from each of the three control-exclusive evo-
lutionary runs were 3d printed and built according to their evolved morphol-
ogy. The performance was then verified in hardware by running the gait on the
physical platform in the motion capture lab, and movement was recorded and
compared to performance in simulation. Each individual gait speed was recorded
over 4 seconds, and two sets of 128 evaluations were done for each individual.
The two sets were done at different times with other tests in between, to reduce
the effect of noise in the test setup.



4.2 Results

Fig. 3 shows a typical development of fitness over the run time for an EA. We
can see from the relatively low increase during the last generations that the
algorithm is close to convergence. We also see a fairly large difference between
the global best distance and the average best distance of the 20 evolutionary
runs.
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Fig. 3: The distance travelled for morphology runs. Highest fitness across all runs
is shown in green, while the blue line shows the average of the maximum fitness
for all runs. Average distance of all last generation individuals is seen in red.

Two robots were selected from the runs, one smaller and one larger than the
hand designed robot. The smaller evolved robot had a 6% lower body weight
(not including servos), while the larger robot had a 2% higher weight. The robots
can be seen in Fig. 4

Table 3 shows the improvement of the additional control-exclusive phase,
compared to the single co-evolutionary run. We see that the two robots with
evolved morphologies gets a considerable improvement at 15.5% and 11.7%. The
manually designed robot only achieves a 3.2% increase over the best performing
individual from the co-evolutionary run.

Fig. 5 shows the results of the co-evolutionary runs, with the Pareto front
marked in red. The results from the evolution of control is seen in green, which
outperforms the co-evolutionary runs significantly. As in table 3, we also here
see that the manually designed robot, in the middle green line, does not show
the same improvement over the Pareto front as the other two.



Fig. 4: The three robots used for real world evaluations. The small evolved robot
is to the left, the hand designed robot is in the middle, and the large evolved
robot is to the right.
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Fig. 5: The Pareto front of the final morphology runs, compared to the three
groups of evolutionary runs for the robot control systems.

Robot 1st phase result 2nd phase result Improvement

Manually designed - 0.299m/s 3.2%*

Small evolved robot 0.203m/s 0.234m/s 15.5%

Large evolved robot 0.304m/s 0.339m/s 11.7%

Table 3: The performance of the 1st phase (co-evolutionary run), 2nd phase
(control-exclusive evolutionary run) and the percentage increase when com-
pared to the Pareto front. A 1st phase result is missing from the manually
designed robot since this morphology is not picked from the Pareto front of the
co-evolutionary run. The improvement is compared to the highest performing
robot of comparable weight.
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Fig. 6: The evolution of control for the small evolved robot. The original top
fitness is marked in purple, and is surpassed already at generation 126.

The performance of the robots tested in the real world can be seen in Fig.
7. We see that the evolved gait for the manually designed robot does not out-
perform the manually designed gait, though the variance in measured speed is
greater. We see that the speed of the smaller evolved robot is slightly lower
than the manually designed robot, and that the large evolved robot outperforms
both. This is consistent with the simulation results. The original fitness values
in the simulation is seen in green, and shows a fairly large reality gap between
simulation and real world.
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Fig. 7: Box plot of the speeds from the motion capture of evolved gaits on all
robots. The green dashed line indicates the speed of the robot in simulation.



5 Discussion

We made the following observations from the experimental results:

– The selected robots display different optimization trade-offs in terms of
weight reduction and speed increase, and we confirmed that these optimiza-
tions were still valid on the real world robots. We see from Fig. 7 that the
smaller evolved morphology has comparable performance to the much heav-
ier hand designed robot, giving further proof of the effectiveness of evolving
the morphology in addition to control. We also see that the reality gap is
very different between the different robots, though this is most likely caused
by inaccuracies in the modeling of the motors in simulation, as it seems pro-
portional to the weight of the robot. The reality gap is relatively large for all
morphologies, but preliminary experiments on real-world adaptation show
promising results towards reducing the performance loss.

– We see from Table 3 and Fig. 5 that the hand designed robot performs worse
than the two evolved robots when compared to the Pareto front of the co-
evolutionary run. This is due to the evolutionary algorithm finding better
morphologies than the hand designed version, and the comparison of the
hand designed robot with an evolved controller to an arbitrary co-evolved
robot with similar weight only yields a slight improvement.

– We see from Fig. 3 that the evolutionary algorithm has most likely converged
on local optima after 1024 generations, and we do not expect considerable
jumps in fitness if we were to run this algorithm for another 1024 genera-
tions. The two stage evolution we propose adds a second run of controller
only optimization, and there are mainly two features of this second run that
could explain the increase in the quality of the solutions found: A reduced
search space due to the frozen morphology genes, and a difference in fitness
landscape ruggedness. Smaller search spaces may typically require fewer eval-
uations before convergence, but do not necessarily affect the ability to escape
local optima. We therefore believe that the changed shape of the fitness land-
scape may be an important factor here, in line with the thoughts in [9] of
locking the controller’s interface to the environment. It would however be
necessary to do further experiments to fully confirm this.

– The second evolutionary run works in a smaller search space due to the locked
morphology, but another aspect of this approach is that it also starts with
new, random control systems. We originally did not expect this step to make
a large difference, since we are using random reset mutation throughout the
co-evolutionary run, but early experiments showed significant improvements.
This most likely shows that the ability to surpass the original convergence is
both due to the changes in landscape, and partial reset of genes. The action
of resetting the genomes could be viewed as spreading out the initial solu-
tions over the entirety of the now morphologically frozen search landscape,
and may thus lead to better exploration towards optimal solutions, as com-
pared to a less diversified population of already converged control genes.



– While it may not be required to do a full evolutionary run in the second
phase, the experiments demonstrate that there is room for adaptation and
performance increase after the morphology has been frozen, which warrants
further explorations into different types of controller optimizations combined
with the co-evolutionary search for morphology and control.

6 Conclusion and Future Work

In this paper, we investigated using a two-phase evolution method to exceed the
initial convergence found in the single co-evolutionary case. We saw that locking
morphology and doing a re-evolution of control on two different morphologies
showed continued improvement of between 10% and 15%, which was unlikely
to be found by extending the original co-evolutionary run. Tests in hardware
showed that the gaits and morphologies found worked also in the real world.

It would be interesting to further investigate the inner workings of why we
are able to exceed the initial fitness found, and if this could be implemented as
an operator within a single evolutionary run. Perhaps using either some sort of
random mutation operator to emulate the reset of controllers between runs, or
an operator that locks the morphology for some number of generations, might
show some improvement over traditional co-evolutionary techniques. Expanding
on this two-phase evolutionary method by using many alternating phases might
show an even higher ability to escape local minima than we found here, and
might allow continued evolution on not only the controller, but the morphol-
ogy as well. It would also be natural to consider lifetime learning schemes, i.e.
allowing the controller to adapt to the morphology before the fitness value is
recorded. We already have some promising results from using such schemes for
fixed morphologies [24]. In any case, these approaches could also be combined
with other methods for preventing premature convergence, such as diversity-
enhancing search methods [14].
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