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Abstract. The complexity of a legged robot’s environment or task can
inform how specialised its gait must be to ensure success. Evolving spe-
cialised robotic gaits demands many evaluations—acceptable for com-
puter simulations, but not for physical robots. For some tasks, a more
general gait, with lower optimization costs, could be satisfactory. In this
paper, we introduce a new type of gait controller where complexity can be
set by a single parameter, using a dynamic genotype-phenotype mapping.
Low controller complexity leads to conservative gaits, while higher com-
plexity allows more sophistication and high performance for demanding
tasks, at the cost of optimization effort. We investigate the new con-
troller on a virtual robot in simulations and do preliminary testing on a
real-world robot. We show that having variable complexity allows us to
adapt to different optimization budgets. With a high evaluation budget
in simulation, a complex controller performs best. Moreover, real-world
evolution with a limited evaluation budget indicates that a lower gait
complexity is preferable for a relatively simple environment.
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1 Introduction

Robots are used in more and more demanding and changing environments. Being
able to adapt to new situations, unexpected events, or even damage to the robot
itself can be crucial in many applications. Robots that are able to learn and adapt
their walking will be able to operate in a much wider range of environments.

Selecting a suitable gait controller for a robot learning to walk can be very
challenging, especially when targeting hardware platforms. A controller is often
chosen early in the design process of a robot, and is used in a wide range of
different evaluation budgets and environments. Simple controllers produce gaits
with a limited diversity. More complex gait controllers are able to produce a
wider range of gaits, with higher variance in performance and behaviors.

Controllers that are too complex might exhibit bootstrap problems, where
the initial random population does not contain a suitable gradient towards better

? This work is partially supported by The Research Council of Norway under grant
agreement 240862.



solutions [1]. Random solutions might also exhibit a high probability of the robot
falling, making it more challenging to evolve in hardware. Another important
factor is the larger and more complex search space, which might require more
evaluations to converge than practically possible without simulations [2].

A controller can be made simpler by embedding more prior knowledge, for
instance by reducing the allowable parameter ranges of the controller. When
the size of the search space is reduced, fewer evaluations are needed, and with
more conservative parameter ranges, falling can be greatly reduced. Reducing
the gait complexity too much, however, leaves the system with a very narrow
and specialized controller that might not be able to produce gaits with the varied
behaviors needed to adapt to new environments or tasks, and limitations set by
human engineers might discard many near-optimal areas of the search space.

Being able to find the right complexity balance when designing a controller
can be very challenging. Any choice made early in the design process might not
suit future use, and picking a single controller complexity for all different uses
might end up being a costly compromise reducing performance significantly. We
have experienced this challenge in our own work where experiments are per-
formed with a four-legged mammal-inspired robot with self-modifying morphol-
ogy in both simulation and hardware [2]. Balancing the need for a low complexity
controller when evolving morphology and control in few evaluations in hardware
without falling, and evolution in complex and dynamic environments requiring
exotic ways of walking in simulations, has proven impossible with our earlier
controller design [3].
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Fig. 1: This diagram shows the concept of a variable complexity controller. The
genotypic space is always the same size, but the mapping to controller space is
changed by the controller complexity parameter, giving safer and more conser-
vative gaits at lower controller complexities.



In this paper, we introduce a new controller where the complexity can be set
by a single parameter that addresses this limitation. We use a dynamic genotype-
phenotype mapping, illustrated in Fig. 1, where higher complexity controllers
map the genotypic space to a larger controller space than lower complexity con-
trollers. This allows a more flexible gait either when an evaluation budget allows
for longer evolutionary runs, or when the added flexibility is needed for cop-
ing with difficult environments. Less flexible gaits can be used when there is a
stricter evaluation budget, for instance in real-world experiments. We have inves-
tigated the controller in simulation with our four-legged mammal-inspired robot,
and found that different gait complexities are optimal under different evaluation
budgets. We also verified this through initial tests on the physical robot in the
real world. This suggests that our new controller concept will be useful for cop-
ing with the competing demands of freedom versus ease-of-learning, especially
important when evolving on both virtual and real-world robots.

The contribution of this paper is as follows: We introduce the concept of
a variable complexity gait controller, and show how this can be implemented
for a quadruped robot. We then demonstrate its value through experiments in
simulation, and verify the results with preliminary testing on a physical robot
in the real world.

2 Background

Evolutionary robotics uses techniques from evolutionary computation to opti-
mize the brain or body of a robot. It can be used directly to improve the per-
formance of a robot, or to study biological processes and mechanisms. When
optimizing the brain of a robot, high-level tasks like foraging, goal homing or
herding can be evolved, or lower level functions like sensory perception or new
walking gaits. Optimizing the body of a robot allows adaptation to different
tasks or environments, and research has shown that the complexity of evolved
bodies mirror the complexity of the environments they were evolved in [4].

Several different types of optimization algorithms from evolutionary com-
putation are used to optimize robot control. The most common is the Genetic
Algorithm (GA) [5], which uses genetic operators like mutation and recombina-
tion to optimize gait parameters. It is often done using multiple objectives, in
many cases achieving a range of solutions with different trade-offs in conflict-
ing objectives, including speed and stability [6], or even speed, stability, and
efficiency [7]. Evolutionary Strategies (ES) feature self-adaptation, by adding
the mutation step size to the individuals. This has been shown to speed up the
search, and in some cases outperform traditional EA approaches, when evolving
quadrupedal robot gaits [8]. Genetic Programming (GP) represents individuals
as tree structures rather than vectors, and has been shown to outperform simple
GA algorithms when used to evolve quadruped gaits [9]. Quality-Diversity algo-
rithms aim to build up an archive of solutions that exhibit different behaviors
or characteristics that all perform as well as possible [10]. This set of diverse



individuals then serves as a pool of solutions that can be searched through to
find solutions to new problems, like a robot adapting to a broken leg [11].

Optimizing how a robot walks can be very difficult, and one of the biggest
challenges is the bootstrap problem [1]. It can be very hard to start optimizing a
robot gait if none of the random individuals tested initially provides a gradient
towards good solutions. This is mostly a problem when optimizing in hardware,
with much harder time constraints and potential physical damage to the robot.
It can, however, also affect simulations, where initial individuals without any
ability to solve a task can completely remove the selective pressure from the
fitness functions needed for evolution to succeed.

There is a wide range of gait controller types used in evolutionary robotics,
depending on what is being optimized. They are often divided into two cate-
gories, based on whether they work in the joint space, or Cartesian space [12]. A
gait can either be represented as a few discrete poses with trajectories generated
automatically between them, or as a continuous function that specifies the posi-
tion or joint angles at all times. Some gait controllers use simple parameterized
functions that control the joint space of the robot [11,13]. Other gait controllers
used in evolutionary experiments consist of a parameterized spline that defines
each legs trajectory in Cartesian space. Evolution optimizes either the position
of the spline points directly [8], or some higher level descriptors [6,14]. Other
controllers are based on central pattern generators of different architectures and
models [15]. Some produce neural networks using techniques such as Composi-
tional Pattern Producing Networks (CPPN), which has an inherent symmetry
and coordination built-in. This can lead to gaits far surpassing the performance
of hand-designed gaits based on parameterized functions [16].

The field of neuro-evolution often evolves the structure of the neural net-
works making up the gait controller, in addition to the connection weights. This
goes against the general trend in other fields, where the complexity of gait con-
trollers is most often kept static. Togelius defines four different categories [17].
Monolithic evolution uses a single-layered controller with a single fitness func-
tion. Incremental evolution in neuro-evolution has several fitness functions, but
still one controller layer. Modularised evolution has more controller layers, but
a single fitness function. Layered evolution uses both several controller layers,
and several fitness functions. When evolving the complexity of a network, it has
been shown that new nodes should be added with zero-weights [18], allowing
evolution to gradually explore the added complexity.

3 Implementation

3.1 Robot

The experiments in this paper were performed on a simulated version of “DyRET”,
our four legged mammal-inspired robot with mechanical self-reconfiguration [3].
The robot platform is a fully certified open source hardware project, with source
and details available online1. We use the Robot Operating System (ROS) frame-

1 https://github.com/dyret-robot/dyret_documentation
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work for initialization and communication, and the simulated version runs on
the Gazebo physics simulator. The robot and its simulated counterpart can be
seen in Fig. 2.

Fig. 2: The physical robot to the left, and the simulated robot to the right.

The robot uses Dynamixel MX-64 servos from Robotis in the hip joints,
and Dynamixel MX-106 servos for the two lower joints. Its legs consist of two
custom linear actuators each that allow reconfiguration of the leg lengths during
operation. More mechanical details can be found in our previous work [3], and
is not included here due to space constraints and the fact that we are mainly
using a simulated version for our experiments.

3.2 Control

In our earlier experiments, we used a fairly standard parameterized spline-based
gait controller working in Cartesian space. We have used the controller for evolv-
ing both control and morphology on the physical robot, with a complex search
space with many degrees of freedom. This required us to have a low complexity
controller, but that meant it was not flexible enough to give us more complex
gaits when we had higher evaluation budgets, such as when using simulations.
Our goal was for the new controller to be adaptable to fit whatever needs we
currently have or might have in the future, with a controller complexity that
could be changed with a single parameter.

The gait controller Since this gait is used on a physical mammal-inspired
robot, the property of being learnable without excessive falling is important,
and a much bigger challenge than for spider-inspired robots. We believe that a
controller operating in joint space would not allow robust enough gaits at low



controller complexity for our robot, so we chose to implement it in Cartesian
space. There are many ways a gait can result in a fall, but ensuring that all legs
on the ground are moving in the same direction with the same speed severely
limits the chance of falling. Complementing this with a wide leg stance gives a
good base to build a parameterizable gait controller on. Ensuring that only one
leg is in the air at a time, and that the robot is always using the proper leg lift
order, further helps the robot to remain stable.

Leg trajectory The control system uses standard inverse kinematics to get
the individual joint angles from the calculated positions. The leg trajectory is
parameterized using an interpolating looping cubic Hermite spline, which inter-
sects five control points. A simple example trajectory can be seen in Fig. 3. The
start and end point of the spline are on the ground, while the other three points
define how the leg moves forward through the air. The leg moves in a straight
line on the ground, parallel to the body of the robot, so only two parameters
decide their positions. The three points in the air are all three dimensional, with
sideways movement being mirrored between left and right legs. This gives a total
of 11 parameters that define the spline shape.

Air front

Air
middle

Air back

Ground front Ground back

Fig. 3: A simple example leg trajectory, seen from the side. The tip of the leg
follows this path when the robot walks. The front of the robot is to the left.

The two control points along the ground are sorted so that they always move
the leg backward, while the order of the three control points in the air is chosen
with an order resulting in the shortest possible spline. This ensures that no
looping or self-intersection can happen, and allows all gait parameters to be
set without constraints. A parameter for lift duration specifies the time the leg
uses to lift back to the front, given in percentage of the gait period, while the
frequency parameter gives the number of gait periods per second.

Balancing wag In addition to positions generated for individual legs, a bal-
ancing wag is added to all legs. Due to the leg lift order, this can not be a simple
circular motion, but needs different frequencies for the two axes. The movement
allows the robot to lean away from the leg it is currently lifting, and gives better
stability. Equation 1 shows how the wag is defined, with t defining the current



time, and T the gait period. 0.43 is a factor to offset the movement between the
two wag axes to align them with the gait. It has a phase offset (Wφ) that allows
for tuning to dynamic effects of the robot, while amplitude can be set separately
for the two directions (Ax/Ay).

Wx =
Ax

2
∗ tanh(3 ∗ sin(

2π ∗ (t+ (Wφ ∗ T ))

T
))

Wy =
Ay

2
∗ tanh(3 ∗ sin(

2π ∗ (t+ (Wφ + 0.43) ∗ T2 )
T
2

))

(1)

Complexity scaling The complexity of the controller can be modified by a
single parameter, from 0 to 100%. There are many ways to provide a scaling of
the complexity of the controller, but we chose to implement this using a dynamic
genotype-phenotype mapping that varies the range of gait parameters linearly
with the controller complexity. All controller parameters have a center value,
that together with the minimum range gives the allowable range at controller
complexity 0%. These have been chosen so they represent a very conservative
and safe controller that should work well in most conditions, based on traditional
robotics techniques and earlier experience with the robot. Using a more complex
controller by allowing a large range of values, however, allows the controller to
deviate from the safe values and into the more extreme values often needed for
more complex environments or tasks. Parameters controlling the spline shape
can be seen in Table 1, with high-level gait parameters in Table 2.

Table 1: Parameters and ranges defining the spline shape
Control point Minimum Maximum Default value Minimum range

Ground front -150 150 50 50
Ground back -150 150 -100 50
Air 1 [-25, -150, 10] [25, 150, 80] [0, 75, 30] [0, 50, 10]
Air 2 [-25, -150, 10] [25, 150, 80] [0, 0, 50] [0, 0, 10]
Air 3 [-25, -150, 10] [25, 150, 80] [0, -75, 50] [0, 50, 10]

Table 2: Parameters and ranges of gait parameters.
Parameter Minimum Maximum Default value Minimum range

Wag phase -π/2 π/2 0 0.2
Wag amplitudes 0 50 0 5
Lift duration 0.05 0.20 0.175 0.05
Frequency 0.25 1.5 - -

Examples of splines with different gait complexities can be seen in Fig. 4.
For complexities of 0, the splines are fairly conservative, but even though the



parameter ranges are low, they do show some variation in their basic shapes. The
higher complexity gaits have spline shapes that are much more unconventional,
though sorting the control points to minimize spline length does remove self-
intersections to keep all trajectories feasible. Please note that the plot shows the
commanded position to the robot, and that the actual leg trajectory can be very
different than commanded, due to the mechanical and control properties of the
actuators, and the dynamics of the system. Very complex shapes that appear
unintuitive for human engineers might end up giving much smoother and higher
performing gaits in the real world than expected.

5
0
%

2
5
%

0
%

Fig. 4: Examples of leg trajectory splines generated at different gait complexities.
These are seen from the side of the robot, with the front of the robot to the left
of the plot. The red boxes show the range of possible control point positions.

3.3 Evolutionary setup

Here we describe the setup we used for evolving the controllers, as well as how we
evaluated them. We evolved controllers for both stable and fast forward walking
on flat ground.

Evolutionary algorithm and operators We used the NSGA-II evolution-
ary algorithm, running on the Sferes2 evolutionary framework. We chose this
algorithm since we are optimizing both speed and stability, but would not like
to choose the specific trade-off between the two objectives before optimization.
NSGA-II features a mechanism to increase the crowding distance in the Pareto
front, which gives a wide range of trade-offs to pick from.

Gaussian mutation was used with a mutation probability of 100% and a
sigma of 1/6. No recombination operators were used.

Early experimentation showed a big difference in the number of evaluations
before convergence for different controller complexities, which suggested the need



for different population sizes. We tested a range of different population sizes at
the minimum and maximum complexity, as well as a few points in between, and
found that a population of eight at zero complexity, and 64 at full complexity
worked best. Population sizes for all intermediary complexities were set linearly,
and rounded to the nearest power of two. Tests showed that runs at all gait
complexities converge to a satisfactory degree after 8192 evaluations.

We performed 25 runs for each controller complexity in simulations to gain a
good estimate of the performance. Each simulated run took about 11 hours, and
we used about 10,000 CPU core hours on the simulation for the experiments
featured in the paper. Experiments in the real world take a lot longer, so we
only performed three runs for each controller complexity, as the experiment only
serves as a preliminary test to see confirm simulated results in the real world.

Fitness objectives We used both speed and stability as our fitness measure-
ments. Speed was calculated as the distance between start and stop position,
divided by the evaluation time, as seen in equation 2. Distance was measured
using motion capture equipment in the real world, and extracted directly in
simulation. Only the speed straight forward was used, so we filtered out any
sideways movement by only measuring position in the forward axis. Stability
was calculated with a weighted sum of the variance in acceleration and orien-
tation. The full fitness function for stability can be seen in equation 3, where
acc are samples from the accelerometer, ang are samples from the orientation
output of the Attitude and Heading Reference System (AHRS), i is the sample
index, and j is the axis of the sample. The Xsens Mti-30 AHRS was used on the
physical robot, and a virtual version of the same was used in simulation.

Fspeed =
‖Pend − Pstart‖

timeend − timestart
(2)

G(Aj) =

√√√√ 1

n

n∑
i=1

(A2
j,i −Aj

2
)

Fstability = −

(
α ∗

axes∑
G(Accaxis) +

axes∑
G(Angaxis)

)
(3)

Evaluation We ran all our simulations on the Gazebo physics simulator. Each
gait was evaluated in simulation by walking forwards 1 meter, with a timeout of
10 seconds. The position and pose of the robot were reset between all evaluations.

Evaluating and comparing the performance of different optimization runs can
be challenging when doing multi-objective optimization. This is especially true
when using an algorithm like NSGA-II, that has a mechanism for stretching out
the Pareto front, making it hard to compare the two objectives separately. There-
fore, we instead looked at the hypervolume [19] when comparing populations.
The hypervolume measures the volume (or area, in the case of two objectives)



of the dominated part of the objective space. The lower bound of stability was
set to -1 for the hypervolume calculation, while speed was capped to 0 m/min.

4 Experiments and results

We present the results of experiments in simulation and on a real-world robot.
These experiments are simplified and performed with as many variables removed
as possible. The robot’s task is to walk straight forward, and the environment
is a flat surface with medium friction, both in simulation and the real world.

4.1 Finding the maximum needed complexity

First, we wanted to investigate whether there is a maximum controller com-
plexity needed for the environment and task we are using. Since neither is very
challenging, we do not expect the need for very complex controllers. We ran full
evolutionary runs at a range of gait complexities.
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Fig. 5: Hypervolume from evolutionary runs with selected gait complexities. The
solid lines show the means, with 95% confidence interval in the shaded areas.

Fig. 5 shows how the hypervolume progresses over evaluations. This shows
that the lower complexity controllers converge quicker, but are not able to achieve
the same performance as the higher complexity controllers. The 50% and 100%
complexity controllers end up with the same performance, though the 100%
complexity controller takes considerably longer to converge.

The details of the last evaluations of the runs are better illustrated with
the boxplots, seen in Fig. 6. These show the distribution of the hypervolumes
achieved at the end of all the optimization runs. The hypervolume improves for
gait complexities from 0% to 40%, but there is no improvement between 40%
and 50%. 100% complexity has a wider spread than the others, which might be
beneficial in some applications, but the median performance is no better than
the 40-50% complexity.
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Fig. 6: Hypervolume for runs with gait controller complexities ranging from 0%
to 100%, showing details from the end results of the optimization process.

4.2 Complexity for different evaluation budgets

A potentially rewarding feature of controlling the complexity of the gait is the
ability to adapt it to a specific evaluation budget. The price of computational
resources is decreasing, enabling a large number of evaluations in simulation.
Hardware experiments, however, are limited by the number of robots that can
be built, maintained, and supervised during experiments. Evaluation is therefore
much more expensive for hardware experiments than for simulations, and this
gap will only increase.

For this investigation, we have selected a range of different evaluation budgets
to test. We have previously used 64 and 128 evaluations in our hardware experi-
ments [14,2], and 512, 2048 and 8192 evaluations gives a range more appropriate
for simulation experiments.

Fig. 7 shows how the controller complexity affects achieved hypervolume
for the different budgets. For the shortest two simulation cases, with 64 and
128 evaluations, hypervolume is highest at 10% complexity. Budgets 512 and
2048 achieve the best performance around 30%, while the long simulation case
performs best at 40%-100%.

4.3 Analyzing resulting populations

Figure 8 shows which parameters are tested at various parts of the search. Some
parameters, like the y position of the back ground control point, end up close
to their conservative estimate, and do not exploit their additional freedom from
the higher complexity in our simple experiments, as seen in Figure 8a. Other
parameters, like the y position of the front ground control point, do use more of
their available range, although it is still close to its original estimate. In Figure
8c, the search with 50% controller complexity seems to maximize the x position
of the third air control point in the spline, while with the whole area available
in the 100% complexity controller, it ends up minimizing it.
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Fig. 7: This figure shows how different controller complexities affects achievable
hypervolume for different evaluation budgets. The vertical lines show the stan-
dard deviation, while the shaded areas show the 95% confidence intervals.

4.4 Initial hardware testing

We also did evolutionary runs using this new controller on the physical robot
in the real world with 64 evaluations per run, using eight generations of eight
individuals. We decided to test a controller complexity of 0%, as well as 50%,
which is the highest complexity we were confident in using on the physical robot
without excessive risk of physical damage to the system. We also tested 20%,
which gives us another data point between these, and was among the two top
performing complexities in simulation with this evaluation budget. The results
can be seen in Fig. 9, where we can see the same general trends as in the sim-
ulator. Controller complexities 0% and 20% both did well, and we are not able
to separate the two with the limited number of evaluations we were able to do
in hardware. 50% controller complexity, however, does considerably worse than
the other two, just as we saw in simulation.

5 Discussion

The performance differences in Fig. 7 suggest that choosing the right controller
complexity for an evaluation budget can be very important, especially when
that budget is small. Lower complexity controllers fall less, so if optimization is
done in hardware, this could also be taken into account when deciding on the
complexity. We did a simple grid-search for our experiments since we were only
investigating the controller, but more advanced search algorithms could be be
performed to further optimise the choice of complexity.

We used different population sizes when evolving with different complexities
in our experiments. Our controller was designed to be evolved with evaluation
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budgets as small as 32 or 64 evaluations when doing real world experiments,
and with budgets larger than 8192 when evolving in simulation. Limiting the
population size to the smallest budget would give a very unrealistic measurement
of performance for the larger budgets, and thus we chose suitable population sizes
for the different complexities through simple trial and error. This does obfuscate
the results to a degree, but we feel this gives the most fair comparison. The
evolutionary operators would likely also be slightly different, but they were kept
the same as they affect the search to a much smaller degree.

The parameter for the x position of the third air control point, seen in Fig. 8c,
seems to be maximized at 50% complexity, but be minimized at 100% complexity.
This is most likely due to interactions between different parameters. At half
complexity, the optimal value might be towards the top of the parameter range.
At full complexity, however, new ranges for the other parameters are opened up,
allowing better performance for lower parts of the range.

The choice of centers and minimum ranges for each gait parameter greatly
affect the performance of lower complexity gait controllers. The choice should
be based on conservative values that are assumed to work sufficiently in all
environments, not on optimal values for a single environment. Evolution is often
used to adapt to changes in environments or tasks. If the centers and ranges were
chosen after optimal solutions were found, they would most likely not perform
well when things change, and one might as well just select the top performing
individuals from simulation directly. In our case, we selected these values before
doing the optimization, and several are far from optimal. This can be seen in
Fig. 6, where the performance of the low complexity controller is much worse
than for the higher complexity ones. This is by design, as safe and conservative
parameters that work for all environments rarely do very well in any of them.

The choice of maximum ranges also affect the outcome, but not to as high a
degree as the center and minimum range. Limiting the ranges too much means
the controller will never be able to achieve the potential increase in performance
from that specific controller feature. Having ranges that are too large, with
values that will never be optimal under any circumstance, serves to slow down
the search, and waste time and resources. A good optimization algorithm that
is not getting stuck in early local optima, however, should be able to converge
outside these infeasible areas. We therefore recommend anyone implementing this
type of controller to spend some time choosing parameter centers and minimum
ranges to be conservative and safe, but not be afraid to overshoot a bit on the
maximum allowable range, as the consequence of choosing ranges that are too
narrow is far worse than selecting too high.

Figure 9 shows the results from the testing in hardware. We are unable to
say anything definitive with the results due to the low number of evaluations
and the relatively high degree of noise, but it does support what we found in
simulation. Not only did the 50% controller complexity perform worse, like pre-
dicted in simulation, but we also experienced qualitatively more extreme gaits,
and actually had to pause the evolutionary runs at several times to repair the
robot after damage. We also experienced several falls with the 50% controller



complexity, but no falls or damage at the two lower complexities, supporting our
original assumption that the gait values were conservative and safe.

We consider this type of controller to be very useful for researchers doing
gait optimization in the real world on physical robots, as the reality gap can
often times make it impractical or impossible to directly use individuals from
simulation in the real world. Simulations can be used to find approximate upper
bounds of the needed complexity as we saw in Fig. 6, but even more useful
is being able to tune the complexity to the limited evaluation budget used in
hardware, as seen in Fig. 7. We also expect that more demanding or dynamic
environments and tasks might be able to exploit higher complexities better than
what we experienced in our experiments, which only included forward walking
in straight lines on even terrain.

6 Conclusion and future work

In this paper, we introduced our new gait controller with variable complexity.
We tested the controller in simulation, and found that different gait complexities
are optimal for different evaluation budgets. We also did preliminary tests on a
physical robot in the real world that supported our findings. Being able to change
the controller complexity allows a researcher to use less complex controllers when
optimizing gait on a physical robot, and increase the complexity when needed
for demanding environments, or when doing longer optimization in simulations.

One natural extension of our work is to use our variable complexity controller
in incremental evolution. Since this controller offers a continuous complexity
parameter, the difficulty can be gradually increased for each generation. Since
an increase in difficulty follows a known set of rules, all individuals can keep
their phenotypic values between generations, even when parameter ranges are
expanded. This allows evolution to gradually explore the added complexity, in
the same way that has been shown to be optimal for neuro-evolution [18]. The
controller complexity can also be changed during the evolutionary process as
part of evolutionary strategies, or be controlled during robot operation as part
of lifelong learning.

We have only tested this controller in a single environment in simulation
where complexities over 50% were not needed. It would be interesting to test it
in more challenging and dynamic environments to see if controllers with higher
complexities are able to use the increased parameter ranges to actually increase
performance. Doing a more thorough investigation into the parameters selected
might yield ranges or values that act limiting on the fully complex controller,
and would allow even more flexible gaits. Analyzing the individual leg trajec-
tories evolved would also be interesting, and could shed light on the matter
from a different perspective. Investigating how evolutionary meta-parameters
interact with the complexity would be interesting, including population size and
evolutionary operators. Adding sensing and allowing the robot to choose which
complexity is needed for its current environment is also worth exploring.
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