Evolving Robots on Easy Mode: Towards a
Variable Complexity Controller for Quadrupeds*

Tgnnes F. Nygaard!, Charles P. Martin!, Jim Torresen!, and Kyrre Glette!

University of Oslo, Norway
tonnesfn@ifi.uio.no

Abstract. The complexity of a legged robot’s environment or task can
inform how specialised its gait must be to ensure success. Evolving spe-
cialised robotic gaits demands many evaluations—acceptable for com-
puter simulations, but not for physical robots. For some tasks, a more
general gait, with lower optimization costs, could be satisfactory. In this
paper, we introduce a new type of gait controller where complexity can be
set by a single parameter, using a dynamic genotype-phenotype mapping.
Low controller complexity leads to conservative gaits, while higher com-
plexity allows more sophistication and high performance for demanding
tasks, at the cost of optimization effort. We investigate the new con-
troller on a virtual robot in simulations and do preliminary testing on a
real-world robot. We show that having variable complexity allows us to
adapt to different optimization budgets. With a high evaluation budget
in simulation, a complex controller performs best. Moreover, real-world
evolution with a limited evaluation budget indicates that a lower gait
complexity is preferable for a relatively simple environment.

Keywords: Evolutionary Robotics - Real-world Evolution - Legged Robots

1 Introduction

Robots are used in more and more demanding and changing environments. Being
able to adapt to new situations, unexpected events, or even damage to the robot
itself can be crucial in many applications. Robots that are able to learn and adapt
their walking will be able to operate in a much wider range of environments.
Selecting a suitable gait controller for a robot learning to walk can be very
challenging, especially when targeting hardware platforms. A controller is often
chosen early in the design process of a robot, and is used in a wide range of
different evaluation budgets and environments. Simple controllers produce gaits
with a limited diversity. More complex gait controllers are able to produce a
wider range of gaits, with higher variance in performance and behaviors.
Controllers that are too complex might exhibit bootstrap problems, where
the initial random population does not contain a suitable gradient towards better

* This work is partially supported by The Research Council of Norway under grant
agreement 240862.

solutions [I]. Random solutions might also exhibit a high probability of the robot
falling, making it more challenging to evolve in hardware. Another important
factor is the larger and more complex search space, which might require more
evaluations to converge than practically possible without simulations [2].

A controller can be made simpler by embedding more prior knowledge, for
instance by reducing the allowable parameter ranges of the controller. When
the size of the search space is reduced, fewer evaluations are needed, and with
more conservative parameter ranges, falling can be greatly reduced. Reducing
the gait complexity too much, however, leaves the system with a very narrow
and specialized controller that might not be able to produce gaits with the varied
behaviors needed to adapt to new environments or tasks, and limitations set by
human engineers might discard many near-optimal areas of the search space.

Being able to find the right complexity balance when designing a controller
can be very challenging. Any choice made early in the design process might not
suit future use, and picking a single controller complexity for all different uses
might end up being a costly compromise reducing performance significantly. We
have experienced this challenge in our own work where experiments are per-
formed with a four-legged mammal-inspired robot with self-modifying morphol-
ogy in both simulation and hardware [2]. Balancing the need for a low complexity
controller when evolving morphology and control in few evaluations in hardware
without falling, and evolution in complex and dynamic environments requiring
exotic ways of walking in simulations, has proven impossible with our earlier
controller design [3].

Low i High
Controller complexity

Genotypic
space

/
/ ll | |

I I

\ \ ’ \ b Pl

v / Y | / Lo P

! /7 \ ! . \ \

controller /' 7,7 \ \

ontroller Y
Small evaluation budget Large evaluation budget
(Use for)
Simple environments/tasks Demanding environments/tasks

Fig. 1: This diagram shows the concept of a variable complexity controller. The
genotypic space is always the same size, but the mapping to controller space is
changed by the controller complexity parameter, giving safer and more conser-
vative gaits at lower controller complexities.

In this paper, we introduce a new controller where the complexity can be set
by a single parameter that addresses this limitation. We use a dynamic genotype-
phenotype mapping, illustrated in Fig. |l where higher complexity controllers
map the genotypic space to a larger controller space than lower complexity con-
trollers. This allows a more flexible gait either when an evaluation budget allows
for longer evolutionary runs, or when the added flexibility is needed for cop-
ing with difficult environments. Less flexible gaits can be used when there is a
stricter evaluation budget, for instance in real-world experiments. We have inves-
tigated the controller in simulation with our four-legged mammal-inspired robot,
and found that different gait complexities are optimal under different evaluation
budgets. We also verified this through initial tests on the physical robot in the
real world. This suggests that our new controller concept will be useful for cop-
ing with the competing demands of freedom versus ease-of-learning, especially
important when evolving on both virtual and real-world robots.

The contribution of this paper is as follows: We introduce the concept of
a variable complexity gait controller, and show how this can be implemented
for a quadruped robot. We then demonstrate its value through experiments in
simulation, and verify the results with preliminary testing on a physical robot
in the real world.

2 Background

Evolutionary robotics uses techniques from evolutionary computation to opti-
mize the brain or body of a robot. It can be used directly to improve the per-
formance of a robot, or to study biological processes and mechanisms. When
optimizing the brain of a robot, high-level tasks like foraging, goal homing or
herding can be evolved, or lower level functions like sensory perception or new
walking gaits. Optimizing the body of a robot allows adaptation to different
tasks or environments, and research has shown that the complexity of evolved
bodies mirror the complexity of the environments they were evolved in [4].
Several different types of optimization algorithms from evolutionary com-
putation are used to optimize robot control. The most common is the Genetic
Algorithm (GA) [5], which uses genetic operators like mutation and recombina-
tion to optimize gait parameters. It is often done using multiple objectives, in
many cases achieving a range of solutions with different trade-offs in conflict-
ing objectives, including speed and stability [6], or even speed, stability, and
efficiency [7]. Evolutionary Strategies (ES) feature self-adaptation, by adding
the mutation step size to the individuals. This has been shown to speed up the
search, and in some cases outperform traditional EA approaches, when evolving
quadrupedal robot gaits [8]. Genetic Programming (GP) represents individuals
as tree structures rather than vectors, and has been shown to outperform simple
GA algorithms when used to evolve quadruped gaits [9]. Quality-Diversity algo-
rithms aim to build up an archive of solutions that exhibit different behaviors
or characteristics that all perform as well as possible [I0]. This set of diverse

individuals then serves as a pool of solutions that can be searched through to
find solutions to new problems, like a robot adapting to a broken leg [IT].

Optimizing how a robot walks can be very difficult, and one of the biggest
challenges is the bootstrap problem [I]. It can be very hard to start optimizing a
robot gait if none of the random individuals tested initially provides a gradient
towards good solutions. This is mostly a problem when optimizing in hardware,
with much harder time constraints and potential physical damage to the robot.
It can, however, also affect simulations, where initial individuals without any
ability to solve a task can completely remove the selective pressure from the
fitness functions needed for evolution to succeed.

There is a wide range of gait controller types used in evolutionary robotics,
depending on what is being optimized. They are often divided into two cate-
gories, based on whether they work in the joint space, or Cartesian space [12]. A
gait can either be represented as a few discrete poses with trajectories generated
automatically between them, or as a continuous function that specifies the posi-
tion or joint angles at all times. Some gait controllers use simple parameterized
functions that control the joint space of the robot [I1II3]. Other gait controllers
used in evolutionary experiments consist of a parameterized spline that defines
each legs trajectory in Cartesian space. Evolution optimizes either the position
of the spline points directly []], or some higher level descriptors [6/14]. Other
controllers are based on central pattern generators of different architectures and
models [I5]. Some produce neural networks using techniques such as Composi-
tional Pattern Producing Networks (CPPN), which has an inherent symmetry
and coordination built-in. This can lead to gaits far surpassing the performance
of hand-designed gaits based on parameterized functions [16].

The field of neuro-evolution often evolves the structure of the neural net-
works making up the gait controller, in addition to the connection weights. This
goes against the general trend in other fields, where the complexity of gait con-
trollers is most often kept static. Togelius defines four different categories [I7].
Monolithic evolution uses a single-layered controller with a single fitness func-
tion. Incremental evolution in neuro-evolution has several fitness functions, but
still one controller layer. Modularised evolution has more controller layers, but
a single fitness function. Layered evolution uses both several controller layers,
and several fitness functions. When evolving the complexity of a network, it has
been shown that new nodes should be added with zero-weights [I§], allowing
evolution to gradually explore the added complexity.

3 Implementation

3.1 Robot

The experiments in this paper were performed on a simulated version of “DyRET”,
our four legged mammal-inspired robot with mechanical self-reconfiguration [3].
The robot platform is a fully certified open source hardware project, with source
and details available onlineﬂ We use the Robot Operating System (ROS) frame-

! nttps://github.com/dyret-robot/dyret_documentation

https://github.com/dyret-robot/dyret_documentation

	Evolving Robots on Easy Mode: Towards a Variable Complexity Controller for Quadrupeds

