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ABSTRACT

For robots to handle the numerous factors that can afect them in

the real world, they must adapt to changes and unexpected events.

Evolutionary robotics tries to solve some of these issues by au-

tomatically optimizing a robot for a speciic environment. Most

of the research in this ield, however, uses simpliied representa-

tions of the robotic system in software simulations. The large gap

between performance in simulation and the real world makes it

challenging to transfer the resulting robots to the real world. In

this paper, we apply real world multi-objective evolutionary opti-

mization to optimize both control and morphology of a four-legged

mammal-inspired robot. We change the supply voltage of the sys-

tem, reducing the available torque and speed of all joints, and study

how this afects both the itness, as well as the morphology and

control of the solutions. In addition to demonstrating that this real-

world evolutionary scheme for morphology and control is indeed

feasible with relatively few evaluations, we show that evolution

under the diferent hardware limitations results in comparable per-

formance for low and moderate speeds, and that the search achieves

this by adapting both the control and the morphology of the robot.
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(a) Shortest possible legs (b) Longest possible legs

Figure 1: The robot used in this research features self-

modifying legs. The length of the two lower limbs of all four

legs can be set individually with sub-millimetre accuracy.

1 INTRODUCTION

Evolutionary robotics (ER) uses techniques from evolutionary com-

pution to optimize robot control and morphology, and aims to

produce robots that are both robust and adaptive [5]. One of the

biggest challenges in ER, is making the leap from software simu-

lations to experiments evolving real physical robots [7]. Most ER

research is done exclusively in simpliied physics simulators [19].

Projects that transfer evolutionary results to physical robots often

face discrepancies in performance between the simulator and the

real world, referred to as the reality gap. Evolving in hardware on a

real robot bypasses the problem of the reality gap completely, and

can even be used for on-line adaptation of the system in its intended

environment [6]. Many researchers do not use ER with the intent

of producing an optimal robot controller or morphology, but to

investigate evolutionary processes. Real world evolution might, for

this objective, yield more realistic results since it exhibits the same

noise and unpredictability that other physical systems in nature

present. Evolving in hardware also lets us more closely investigate

the embodied cognition aspect of robotics, namely how the inter-

actions between mind, body, and environment afect how a robot

solves a task. One of the biggest challenges in evolving in hardware

today, is the long evaluation time required. This will be reduced

with quicker and more accurate evaluation methods, and new pro-

duction techniques allowing more systems to be run cheaply and
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eiciently in parallel might ofset much of the diference between

simulation and real world evaluation we see today.

In this paper, we investigate the extent to which control and mor-

phology can be adapted by a real-world evolutionary system if the

physical conditions of the system change. To achieve this, we use a

four-legged robot with high-level control and self-reconigurable

morphology in the form of legs with motorised length adjustment,

shown in Figure 1. In our investigations, we evolve the control and

morphology of the robot at two diferent supply voltages, and com-

pare the resulting individuals. Introducing a change in hardware

conditions by turning down the supply voltage reduces both the

available speed and torque of all joints by about 20%. A reduction

in supply voltage would happen naturally to robots with motors

directly powered by a depleting battery. Lower torque or speed can

also be caused by internal efects like the temperature of the DC

motors or wear and tear on the servo gears, or by external efects

such as friction or texture of the walking surfaces, or the weight

of the robot’s payload. We also evaluate individuals resulting from

the optimal voltage evolutionary run at the reduced voltage, to

investigate the reduction in performance and need for adaptation

to this limitation.

The results show that lowering the supply voltage of the robotś

when it was evolved for the optimal voltageścan signiicantly im-

pact the performance, with a reduction of 38% and 17% to speed and

stability respectively. However, under evolutionary optimization

at the reduced voltage, the robot is able to achieve comparable

performance at low and moderate speeds to the optimal voltage

individuals. We observe signiicant changes in both control and

morphology between the two groups of individuals to achieve this.

The contribution of this paper is twofold: First, we demonstrate

that evolution inds diferent morphology and control combina-

tions suitable for our diferent hardware limitations, entirely by

real-world evolution on a robot with self-reconigurable morphol-

ogy. Secondly, we demonstrate that by having a stable platformwith

high-level control, it is possible to do exploratory multi-objective

morphology and control evolution in relatively few evaluations en-

tirely in hardware. This allows us to investigate complex real-world

dynamics not seen in ER experiments relying solely on software

simulations.

2 BACKGROUND

This section reviews related work in the area of evolutionary ro-

botics, with a focus on real world evolution and evolution of mor-

phology.

2.1 Evolutionary robotics

Modern specialized robots can be hard to develop, and are often

designed by a team of engineers at considerable expense. Alterna-

tively, in ER, robot controllers and morphologies can be designed or

optimized automatically using evolutionary algorithms to identify

new solutions [21]. In general, evolutionary design has been used

to optimize a robot’s control or morphology in an of-line fashion,

before production, and in a diferent environment than where the

robot would be working [6]. The method of embodied evolution

uses on-line evolution of robots in the environment where they will

be deployed, and thus the robots will be able to react to changes

in that environment as they work [32]. Embodied evolution has,

however, almost exclusively been applied to the control of a robot,

as very few robots are able to modify their own morphology during

an experiment without considerable human intervention.

2.2 Real world evolution

Most ER experiments are not performed on physical robots, but

on virtual representations in a simpliied physics simulator [19].

Here, the number and speed of evaluations is only limited by the

access to computational power, and thus such experiments can

be performed much faster than their real-world equivalent. Not

only are real-world experiments more expensive in terms of build-

ing and maintaining a robot, but there are challenges due to noise

in measurements caused by the body of the robot, its dynamic

environment, and the interactions between them [29]. These ad-

vantages make it easy to see the appeal of only using simulations

for evolutionary robotics.

One of the biggest challenges with using simulation in evolution-

ary robots, however, is the reality gap - the discrepancy between

measurements of performance in simulation and the real world

[15]. Modern physics simulators have diferent trade-ofs between

speed and accuracy, and game-based physics engines often sacriice

accuracy for additional stability [8]. Even simulators not focused

on eiciency or stability can exhibit accuracy that is too low to

allow direct transfers of results to real world counterparts. There

are multiple approaches to deal with the reality gap, including

adding noise in simulation [11], doing most of the evolutionary

search in software before doing the last part in hardware [22], or

by making a model of the disparity between simulation and reality,

and use this to guide the search [14]. Some of these techniques

reduce the reality gap signiicantly, but the diference still makes

it challenging to transfer results to the real world - especially as

robots are used in more complex environments. Other techniques

guide the search towards individuals in simulation with behaviors

that perform closer to their real world counterparts, and this might

successfully circumvent some of reality gap problem to the degree

where a subset of solutions might be transfered directly to the real

world [19]. This does, however, limit the results to the small subset

of solutions that has accurate performance in the simulator, and the

search might therefore be drawn towards simple behaviors without

dynamic efects, that are easier to simulate.

Evolving in hardware bypasses the problem of the reality gap

completely, and if evolution is performed on the unrestricted sys-

tem in the environment where it will be serving, also bypasses the

problem sometimes seen in simpliied or limited experiments in

hardware as well [9]. Evolution in hardware is most often done

of-line to perform a one-time adaptation to a new task or environ-

ment, but can also been done constantly in an on-line fashion to

continuously adapt to both slow and abrupt changes to the robot

itself or its environment [6]. There are several sources in the real

world that contribute to uncertainty and noise in measurements of

performance, but these are in many cases connected to the, often

very complex, interactions between the control, body, and environ-

ment. Being able to study the synergy between these and see how

a robot is able to exploit them separately and together to solve a

given task is not possible in a simpliied physics simulator.
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2.3 Evolution of robot morphology

Evolutionary robotics can be used to evolve morphology and adapt

a robot’s body to the task it is solving, and the environment where

it is doing it. It can even make the evolution of control quicker, and

result in more robust gaits [1]. The ield of artiicial life evolves

virtual creatures, closely related to evolution of robot bodies, but is

mainly concerned with the study of the biological processes behind

the evolution, and experiments are not done with the intention

of producing hardware versions of the resulting bodies [17]. Most

work in evolving virtual creatures is done in simulation alone, one of

the earliest examples being Sims’ work evolving bodies represented

by three dimensional boxes [30]. This has also been done in later

work [15], and expanded to more advanced creatures [13], though

there have been several challenges related to the scalability of these

techniques [2]. Evolution of morphology in robotics has also mostly

been done in simulation, though the models used are more realistic

than the virtual creature counterparts, and the intention is most

often to end up with results that could be transferred to the real

world. There are many examples of work evolving the morphology

of diferent types of robots, for instance wheeled robots [16], legged

robots [24], or even soft robots [27]. Morphology can also be evolved

in modular robotics [33], though this most often refers to changing

the way static modules are assembled.

There are some examples of evolution of robot morphology in

simulation, where a select few morphologies are transferred for

testing in the real world, including both legged [28] and more

non-traditional designs [10], but these require excessive human

intervention for each morphology tested in the real world. There

are examples of morphological evolution in hardware directly as

well, but many require excessive human intervention to build and

assemble new morphologies [12], use slow external reconigura-

tion of modular systems [31], or no mechanical reconiguration at

all [18]. There have been examples of real-world robot evolution

with self-modifying morphology, but only using the dynamic body

to speed up or improve the evolution of controllers for a single

optimal body [1]. The authors are not aware of any examples of

real-world evolution of both control and morphology for complex

legged robots.

3 ROBOT AND EVOLUTIONARY SETUP

In this section we present the physical robot and its control system,

the evolutionary setup, and the physical test setup we use in our

experiments.

3.1 The robot

A custom robotic platform (shown in Figure 1) was used for all

experiments in this paper, and is currently under development

at the University of Oslo. Details on the platform itself can be

found in our previous work [23], and we have previously used it

for evolving control with static morphology [25]. The top frame

measures about 480mm by 300mm, connecting the four legs in a

mammalian coniguration. All legs have the ability to change their

length, with a minimum length of 550mm, and maximum length

of 670mm. The middle link, or femur, has a minimum length of

185mm and a maximum of 210mm, while the lowest link, tibia, has

a minmum length of 255mm and a maximum of 350mm.

Table 1: Characteristics of the Dynamixel MX-64AT servos

when powered at diferent voltages.

Parameter name 12V 14.8V

No load speed 63rpm 78rpm

Stall torque 6.0Nm 7.3Nm

Stall current draw 4.1A 5.2A

Stall power draw 49.2W 78.0W

Each leg includes three Dynamixel MX-64AT servos, with on-

board PID controllers to receive the angle commands over USB.

These servos are powered at diferent voltages in the experiments,

and their operating characteristics are shown in Table 1. Reducing

the voltage from the optimal voltage at 14.8V to a reduced voltage

of 12V limits both torque and control by about 20%.

The reconigurable legs use small DC motors connected to lead

screws, with aluminium rails for mechanical strength. An Arduino

Mega with a custom shield is used for the control, and we achieve a

sub-millimetre accuracy on the leg length. The low speed of recon-

iguration (≈1mm/s) makes it inefective to use these actively during

the gait, so they are exclusively used for changing morphology, and

are not seen by the controller.

An Xsens MTI-30 Attitude and Heading Reference System (AHRS)

is mounted close to the middle of the body to measure linear ac-

celeration, rotational velocity and magnetic ields, giving data on

absolute orientation at 100Hz. Relective markers are mounted on

the main body of the robot to allow motion capture equipment

to record the position and orientation of the robot at 100Hz. The

complete robot weighs 5.5kg, and operates tethered during all ex-

periments.

3.2 Control system

We use a high-level inverse-kinematics based position controller

for the legs of the robot. The platform also supports a low-level

controller, but this is only used in simulation experiments, due to

the high number of evaluations needed before stable gaits are found.

A continuous, regular crawl gait [3] was chosen, where the body

moves at a constant forward speed during the gait sequence, and

lifts each leg separately to maximize stability. This setup allows

gaits that are statically stable, although the low weight of the legs

in relation to the body makes achieving faster gaits without intro-

ducing dynamic efects challenging. The path for each individual

leg end is deined by a Catmull-Rom spline.

The gait generator uses parameter ranges deined in Table 2 and

generates a number of control points for the spline, resulting in

a continuous gait path for each leg1. Three parameters are used

for manipulating the control points. The parameter step_length

controls the length of the ground contact line, while step_height

determines the height of the step. The step_smoothing parameter

regulates the angle of movement at the point where the leg hits the

ground, by stretching out the front of the spline. This was added

to allow for a reduction of the impact forces from each step, by

making contact with the ground in a more horizontal direction.

1Details on control point generation can be found in the source code at http://robotikk.
net/project/dyret/

http://robotikk.net/project/dyret/
http://robotikk.net/project/dyret/
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Table 2: Gait parameters. These have been constrained (*) to

limit the robot to a maximum speed of 10m/min.

Category Name Values

Spline shape
step_length [ 5mm, 300mm]*

step_height [25mm, 75mm]

step_smoothing [ 0, 50mm]

Gait timing
gait_frequency [0.2Hz, 2Hz]*

lift_duration [ 5%, 20%]

Balancing
wag_phase [−0.2, 0.2]

wag_x_amp [0, 50mm]

wag_y_amp [0, 50mm]

Morphology
femur_length [0, 25mm]

tibia_length [0, 95mm]

To increase the stability of the gait, a conigurable balancing

łwagž movement was added where the robot leans to the opposite

side of the currently lifted leg. This ensures a higher margin of

stability, and is required for a statically stable gait due to the rel-

atively high mass of the legs compared to the body. Parameters

for the phase and amplitude of the balancing wag can be changed

individually for the lengthwise and sideways movement.

The maximum theoretical speed of the robot is given by the

gait_frequency and step_length parameters; however, the actual

speed of the robot also depends on its stability, and friction between

its feet and the ground. Setting a high gait_frequency and low

step_length, and also a low gait_frequency and high step_length

would result in valid gaits. If both parameters are set too high, how-

ever, the robot might end up damaging itself by trying to achieve

a non-realistic forward speed. We therefore limit the product of

step_length and gait_frequency to 10m/min. The lift_duration pa-

rameter decides how much of the gait period is used to lift the leg

through the air, before beginning the next step.

The gait is made completely independent of the robot morphol-

ogy by sending the goal position of the legs to an inverse kinematics

function that reads the lengths of the legs at 10Hz. No adaptation

of any kind is done in the controller for the diferent morphologies,

as we do not want to impose any limitations based on a priori

knowledge of the design. It might, for instance, be intuitive that an

individual with longer legs might work better taking longer steps,

but we do not want to add more dependencies between morphol-

ogy and control than exists naturally in the system. Minimizing

the dependencies makes it easier to analyse the results, as there are

fewer factors afecting the evolutionary search and its results.

The control system is implemented in C++ and uses the software

framework Robot Operating System (ROS) [26]. The leg end positions

from the gait controller are sent through an inverse kinematics

function to obtain the angles necessary to achieve the speciied pose.

The diferent functions of the robot controller are implemented as

individual ROS nodes, and run on a computer connected to the

robot by cable.

3.3 Evolutionary setup

Mammal-inspired four-legged robots, as used in this work, are more

prone to fall than spider- or lizard-inspired robots commonly used

in evolutionary robotics. Our robot’s narrow stance, downward

extending legs, and high centre of gravity, present much more

danger of falling to the side than other bio-inspired designs. To be

able to evolve fast gaits that are also robust on our platform, it is

important to include stability as a itness objective, in addition to

speed. These two goals are conlicting, as a robot standing still has

great stability, while a fast robot necessarily has some movement

that will be interpreted as instability. We therefore chose the NSGA-

II algorithm [4] to identify a Pareto front of solutions; a number

of gaits with diferent trade-ofs between the two objectives. The

software running the evolutionary algorithm uses Sferes2 [20], a

C++ framework for evolutionary experiments.

Parameters are represented as real numbers with the values

shown in Table 2. Gaussian mutation is used on all genes with an

initial sigma of 1/6, which decays per generation to enhance the

exploration early in the search, but still allow exploitation in later

generations. These meta-parameters were tuned to perform well at

the low number of evaluations used in our experiments. Since both

exploration and exploitation is covered by the mutation, we use no

recombination. The step_length and gait_frequency are further lim-

ited by a maximum theoretical speed of 10m/min. If after mutation

the gait surpasses this limit, mutation is done again until it is within

the limits. Three runs are done for each experiment, and they all

contain 8 generations of 8 individuals each, for a total of 192 evalu-

ations for each experiment. When re-evaluating single individuals,

they are evaluated 10 times each to get a satisfactory statistical

distribution of their itness in the real world. To avoid efects on

the performance due to setup, we did our re-evaluations on a dif-

ferent day than the original evolutionary runs. The evolutionary

parameters are summed up in Table 3.

Table 3: Parameters for the evolutionary experiments

Name Value

Algorithm NSGA-II

Evaluation time Maximum 60s

Parameters Real: [0, 1]

Recombination None

Mutation

Type: Gaussian

Probability: 1.0

Initial sigma: 1/6

Sigma decay per generation: 0.05

Minimum sigma: 0.05

Evaluations
Population: 8

Generations: 8

Runs per experiment: 3

Evaluations per re-evaluation: 10

Two itness functions are used in the experiments in this paper,

speed and stability. The speed is calculated by using the duration

of the gait and the Euclidean distance between the start and end

position captured by the motion capture equipment, as seen in

Equation 1, resulting in a measure of traversed meters per minute.

We use a itness function for stability based on the orientation

and measured linear acceleration from the AHRS. The full stability

objective function, seen in Equation 2, is a weighted sum of the
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linear acceleration and orientation function, where acc are samples

from the accelerometer, ang are samples from the orientation output

of the AHRS, i is the sample index, and j is the axis of the sample. The

accelerometer records data in the x, y and z-axes, while orientation

is recorded in roll, pitch and yaw. The scaling factor α was chosen

to provide a balance between the two stability measurements by

having acceleration and orientation afect the itness value equally,

and was in these experiments set to 0.02. The stability objective

function is negated to allow for maximization of both objective

functions, which means that a perfectly stable robot has a stability

score of 0. Samples in both functions are recorded at 100Hz.

Fspeed =
∥Pend − Pstar t ∥

timeend − timestar t
(1)

G(Aj ) =

√

1

n

n
∑

i=1

(A2
j,i −Aj

2
)

Fstabil ity = −

(

α ∗
axes
∑

G(Accaxis ) +
axes
∑

G(Anдaxis )

)

(2)

3.4 Physical test setup and evaluations

The goal of the physical test setup is to maximize the quality of

measurements, while minimizing down time and requirements for

human intervention. Motion capture equipment is used to provide

a precise and accurate reading of position for estimation of speed.

The duration of each gait test is chosen to provide a good balance

between the number and accuracy of evaluations, given the time

budget. Each evaluation is obtained by walking one and a half me-

ters forward, and then walking back to the start position using the

same gait in reverse, before averaging the itness values achieved

in both directions. Each path is restricted by a timeout of 15 sec-

onds, to limit the time spent on evaluating the slower individuals.

Evaluating a gait both directions help cancel out any asymmetric

dynamics in the system that is caused by minor diferences in the

mechanics of the left and right side of the robot.

Both the robot and control system are designed to ensure re-

peatability for gaits by keeping the distance moved between each

evaluation minimal. This is achieved by having the robot sequen-

tially lift and reposition the legs to the start pose of new gaits after

each evaluation. Two walking sequences of 15 seconds, in addition

to mechanical reconiguration and repositioning of legs before and

after the gait, results in a maximum of about 60 seconds used for

each evaluation. Some human intervention is required if the robot

falls, or gets too close to the perimeter of the experiment area. In

practice, such intervention seems to be required every one to ive

minutes, depending on the objectives used and stage of evolution.

If the robot falls or inishes evaluation without being parallel to the

loor, the program pauses and waits for human intervention before

continuing, to ensure only valid itness scores are recorded.

4 EXPERIMENTS AND RESULTS

Our main experiment is comprised of evolutionary multi-objective

runs at the two diferent voltage levels. We compare the itness

from the two groups of runs, and examine the resulting individuals
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Figure 2: Comparison between itness of the last generations

evolved with optimal and reduced voltage. All individuals

are optimized towards the top right, where an individual

would have both high speed and stability.

to identify signs of adaptation of control and morphology in the

populations. A selection of individuals from the optimal voltage

runs is then re-evaluated 10 times each to gain a representative

measurement of their itness. This re-evaluation is done at both

optimal and reduced voltage to determine how the change in sup-

ply voltage afects performance, and to shed light on the need for

adaptation when subjected to this change. In this section, we irst

present the results of the main experiment, before showing the

results from the re-evaluation of individuals.

4.1 Evolutionary runs

The last populations of all runs are shown in Figure 2. The optimal

voltage runs achieve a higher speed of up to 9m/min, while the

reduced voltage runs achieve speeds of just over 6m/min. Even

though only optimal voltage individuals achieve high speeds, the

performance of both runs is comparable for small and moderate

speeds. The inal populations for both groups have a reasonably

linear shape broken only by a low-stability tail at around 6m/min

in one of the optimal voltage runs.

Figure 3 shows the morphologies that resulted from the runs

with the two diferent voltages. The colour of the individuals shows

the diference in itness of the individuals, showing the relation-

ship between morphology and achieved speed and stability in the

experiments. For the optimal voltage individuals in Figure 3a, we

see a smaller clustering of high femur length and low tibia length

individuals, and a larger clustering of high tibia length with moder-

ate to low femur length individuals. They use a maximum of 79% of

the available reconigurable leg length, while the mean individual

uses 50% of its available reconigurable length.

For the reduced voltage runs in Figure 3b, we see that individuals

use the whole range of reconigurable femur length, but only up

to about 60% of the reconigurable tibia length. Since the reconig-

urable length of the tibia is much longer than for the femur, we only

see up to 68% of the total available reconigurable leg length being

used, with a mean of about 35% for the reduced voltage. We also see

from the graphs in Figure 3 that the performance of the individuals

is not proportional to the total length of the robot, as several of

the tallest robots only have moderate speeds, and a couple of the

shorter individuals have some of the faster speeds.
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(a) Optimal voltage leg lengths.
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(b) Reduced voltage leg lengths.

Figure 3: The length of the two reconigurable leg segments

for the last generations of the evolutionary runs. The colour

indicates where in Fig. 2 the individual comes from,with the

fastest robots in red, and the most stable robots in yellow.

The boxplot in Figure 5 reveals some of the diferences in control

and morphology parameters between the populations. There are

clear diferences in the tibia_length and wag_x_amp parameters,

and moderate diferences in femur_length, step_smoothing, and

step_height. A detailed study of how each of the ten parameters

is afected by the hardware limitations is out of the scope of this

paper, so these diferences are not investigated further individually.

However, we wish to analyse them on a group basis, in order

to study the diferences in morphology and control between the

optimal and reduced voltage runs. To achieve this, linear discrim-

inant analysis (LDA) was applied separately to the morphology

and control parameters to give a one-dimensional representation of

each group. This was followed by a Mann-Whitney U test to estab-

lish signiicance. The Mann-Whitney U test indicated a signiicant

diference in the one-dimensional reduction of the two parameters

for morphology, femur_length and tibia_length, due to the change

in voltage (U = 138, p < 0.01), with Clif’s delta efect size of −0.52.

The same analysis on the eight control parameters reduced to one,

also indicated signiicant diferences (U = 92, p < 0.01), with a

Clif’s delta efect size of −0.68.
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Figure 4: Fitness of individuals compared to their re-

evaluations at reduced voltage. Green circles show the it-

ness at reduced voltage, and the black arrows show the

change in itness for these individuals.

4.2 Re-evaluation of individuals

Since we are using a high-level controller, it can be hard to directly

predict how a change to a robots internal or external environment

afects it, and we need to verify if adaptation is actually necessary

when changing the voltage, or if the controller is able to handle

both scenarios. For this, we chose ive individuals with diferent

itnesses from the optimal voltage runs. These were then evaluated

ten times at their original voltage, before being tested again at

the reduced voltage. Re-testing under the original conditions is

important to give an accurate comparison, as the noise in hardware

measurements means that the single evaluation during evolution

might not be representative of its true performance.

The results are summarized in Table 4. We can observe that for

the two slowest individuals, the stability actually increases, while

the stability decreases by 13% to 17% for the others. All mean speeds

decrease, with the biggest reduction at 38%. All changes, except in

the speed of the slowest individual, were shown to be statistically

signiicant (p < 0.01) using the Mann-Whitney U test with Holm-

correction of thep-values. Figure 4 shows the change in itness from

original to reduced voltage, where green circles denote re-evaluated

individuals at the lower voltage. This igure reveals the large drop

in speed for fast individuals particularly clearly.

Table 4: Means and standard deviations of results from the

re-evaluation of selected individuals. The original itness

from the evolutionary run is included, in addition to re-

evaluated itness at both optimal and reduced voltage. (* Sta-

tistically signiicant diference)

Speed Stability

evo optimal reduced change evo optimal reduced change

0.63 0.65 ± 0.02 0.64 ± 0.02 -1.9% -0.11 −0.13 ± 0.00 −0.12 ± 0.00 +8.2%*

2.76 2.80 ± 0.03 2.62 ± 0.02 -6.5%* -0.16 −0.16 ± 0.00 −0.15 ± 0.00 +6.4%*

5.56 5.54 ± 0.06 4.54 ± 0.24 -18.0%* -0.23 −0.22 ± 0.01 −0.25 ± 0.01 -12.8%*

7.31 7.15 ± 0.13 4.60 ± 0.26 -35.7%* -0.26 −0.26 ± 0.01 −0.30 ± 0.01 -14.9%*

8.78 8.96 ± 0.13 5.59 ± 0.17 -37.6%* -0.26 −0.26 ± 0.02 −0.30 ± 0.01 -16.7%*
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Figure 5: Genotype values and distributions for all individuals in the inal generations resulting from the evolutionary runs.

5 DISCUSSION

The decrease in performance seen in Figure 4 shows that lowering

the supply voltage of the system afects the robot’s gait. Reducing

both torque and speed of the robot joints yielded a speed reduction

of up to 38% and a stability decrease of up to 17%. This large dis-

crepancy shows the need for adaptation to keep performing well in

dynamic environments with changing hardware conditions. There

is a large number of factors that can afect the performance of a

robot, and it is likely that many robots, especially if working in

complex environments or alongside other agents, might see similar,

or even larger, diferences in performance than we saw here. A

robot can adapt to some of these factors using the evolutionary

techniques shown in this paper, but they have not been tuned to re-

spond quickly to abrupt changes, and are only meant as an of-line

adaptation to new hardware limitations or environments.

We see from the diference in Figures 3a and 3b that the lower

powered individuals are not able to exploit the full available length

of the legs. This is supported by the fact that the mean reconig-

urable leg length is 50% for optimal voltage runs, and only 35% for

reduced voltage runs. Lower leg lengths can be seen as a gearing of

the motors, as shorter legs trade speed for torque, and a reduction

in leg lengths can therefore be seen as a response to the reduced

torque. An interesting detail shown in Figure 5 is that even though

results from the optimal voltage runs have a higher mean leg length,

the femur_length is generally highest in the reduced voltage runs.

Even though the interaction of these parameters under evolutionary

optimisation is very complex, and might require more experiments

to be understood fully, we still see a signiicant change in both

morphology and control, which shows that the evolutionary search

is able to adapt to the new hardware conditions by utilizing both.

The number of evaluations performed in this real-world study

is limited compared to simulated ER research. Early experiments

showed little to no improvement in itness past the sixth genera-

tion, so we chose to do eight generations for a high probability of

the search to converge. We also saw that the resulting populations

contained a good number of individuals with diferent trade-ofs

between the diferent objectives, indicating that we had suicient

population size. Considering Figure 2, we see that there isn’t a

big diference in performance of the inal populations between the

runs, and we consider it unlikely that more runs would change

the results considerably. Figure 5 shows a large diversity in inal

populations for the two groups of runs. We would expect to see

much smaller variations for a converged evolutionary search with

one objective, but that is not the case when doing multi-objective

evolution using NSGA-II. This algorithm has a mechanism for max-

imising the itness diversity in each front of the population, and

since our two itness objectives are conlicting, we end up with

a range of diferent individuals with diferent trade-ofs between

these two objectives, which necessarily results in higher diversity

in the populations as well.

Evolving robots in real-world environments is often challenging

due to noise in measurements. The standard deviations in Table 4

showed only small variations of performance in our experiments,

even when the re-evaluations was done on another day. These

results conirm that we limited noise and uncertainty in our mea-

surements to an acceptable level.

Figure 4 shows that only the faster individuals sufer signiicant

losses in itness and that more stable individuals are robust to

the reduced supply voltage. Visual observation of the evaluations

suggested that the reduction in performance is most likely caused

by the lower stability. The theoretical speed of the gait is given by

the high-level controller and the gait_frequency and step_length

parameters, but unstable gaits stumble or miss steps, leading to

lower distances covered in the same time. This indicates that if we

are to deploy this robot in new conditions, it might be wise to select

more stable gaits, as they are most likely more robust to unknown

environments.

6 CONCLUSIONS AND FUTUREWORK

In this paper we investigated the efects of lowering servo torque

and speed on evolved robots, and to what degree the robot through

evolutionary techniques was able to adapt to this change. This

large reduction in performance from lowering the voltage shows

the need for adaptation to keep performing well in dynamic en-

vironments with changing hardware conditions. We showed that

the evolutionary search was able to achieve comparable results to

the original run at low and moderate speeds by changing both the

control and morphology of the robot. We also demonstrated the
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feasibility of doing multi-objective exploratory morphology and

control evolution entirely in hardware on our new platform.

An avenue for future expansion of this work would be to fur-

ther investigate the actual contribution from using evolutionary

algorithms over random search, and investigate other techniques

from machine learning to implement on-line optimization as well.

The adaptation to lower servo torque and speed in this paper has

been done of-line, and we expect that doing this adaptation on-line

instead would pose additional challenges with interesting solutions

and results. Adding closed-loop control, opening up more parame-

ters in the control system, or having separate parameters for each

leg would give the system more possibilities for adapting, though

getting feasible gaits in the start of the search with a mammal-

inspired coniguration can be very challenging. Current methods

for generating behavioural repertoires could beneit from dynamic

morphologies. It may also be possible to reduce the need for human

intervention, allowing experiments in even more complex environ-

ments, encouraging investigations into embodied cognition and

the interactions between robot body, mind, and environment.

We showed that our evolutionary system is able to adapt both

control and morphology to new hardware limitations, but also that

it is possible to do multi-objective exploratory morphology and

control evolution in relatively few evaluations entirely in hardware,

hopefully inspiring more researchers to take the leap into real world

evolutionary experiments.
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