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Abstract. Creating robust robot platforms that function in the real
world is a difficult task. Adding the requirement that the platform should
be capable of learning, from nothing, ways to generate its own movement
makes the task even harder. Evolutionary Robotics is a promising field
that combines the creativity of evolutionary optimization with the real-
world focus of robotics to bring about unexpected control mechanisms
in addition to whole new robot designs. Constructing a platform that
is capable of these feats is difficult, and it is important to share expe-
riences and lessons learned so that designers of future robot platforms
can benefit. In this paper, we introduce our robotics platform and de-
tail our experiences with real-world evolution. We present thoughts on
initial design considerations and key insights we have learned from ex-
tensive experimentation. We hope to inspire new platform development
and hopefully reduce the threshold of doing real-world legged robot evo-
lution.
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1 Introduction

Robots are used in more and more complex environments, and are expected to
be able to adapt themselves to changes and unknown situations. The easiest
and quickest way to adapt is to change the control system of the robot, but
for increasingly complex environments one should also change the body of the
robot—its morphology—to better fit the task at hand [1]. To achieve this vi-
sion, researchers need access to flexible robot platforms that can be adapted to
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Fig. 1: Initial version of DyRET (left) without self-modifying legs. Latest version
of DyRET (right) with fully extended legs.

new environments and tasks. For many projects this limits choices to simulated
experiments on virtual robots that are never tested in the real world.

Evolutionary Robotics takes inspiration from natural evolution, with concepts
such as hereditary traits and genome mutation, and applies these principles to
robotics. This combination has shown incredible creativity, not only creating
novel robot controllers but, going as far as creating whole new robot bodies.
However, this creativity is usually constrained to the software realm due to
the ease of simulating these new creations and the difficulty in performing the
same number of experiments in the real world. In contrast to the majority of
work in Evolutionary Robotics, Eiben argues for real-world experiments in his
“Grand Challenges for Evolutionary Robotics” [2]. This requires robust hardware
platforms that are capable of repeated experiments. At the same time, these
platforms must be flexible to manage unforeseen demands.

An emerging concept within evolutionary robotics is the theory of Embod-
ied Cognition. This theory suggests that reasoning and cognition cannot be fully
understood if studied in simple computer models alone. The mind, body, environ-
ment, and the interaction between these all contribute as cognitive resources [3].
Taking advantage of these concepts could lead to improved adaptivity, robust-
ness, and versatility [4], however, executing these concepts on real-world robots
puts additional requirements on the hardware and raises several challenges when
compared to learning just control [5].

In this paper, we will present related work before introducing our robot plat-
form with self-adaptive morphology, seen in Fig. 1. The main section of the
paper will describe the challenges we have faced when designing the robot, and
the lessons learned from real-world evolution and experimentation. By summa-
rizing our experiences we can report on key insights which can hopefully lead to
better robotics platforms in the future.
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2 Background

Robots are becoming a more widely used tool in many industries, and are used
for advanced tasks and in complex environments. Historically wheeled robots
have been used extensively in industrial settings because of their simplicity and
ease of deployment [6]. However, we are now starting to see the need for robots to
operate in more complex environments, both inside and out in the real world [7].
Using legs instead of wheels allows the robot to traverse difficult terrains and
environments, making the robot accommodate the user instead of requiring the
user to adapt to the robot.

2.1 Evolutionary robotics

The field of Evolutionary Robotics (ER) uses techniques from evolutionary com-
putation to optimize both a robot’s control and body [8]. Many different legged
robots have been used in ER research. Some use off-the-shelf standard robots
not specifically designed for ER research, like Sony’s Aibo [9], while others use
robots specifically built for the purpose, like the Aracna [10].

Most earlier work in ER only optimize the control system of the robot [2].
This can allow the robot to adapt to the environment it is operating in [11],
or to changes to the robot itself [12]. However, only changing the control has
its limitations, and earlier work has shown that changing the morphology yields
results that could not be achieved by changing control alone [13]. Furthermore,
most work is done on virtual robots in simplified physics simulations, and not
on actual physical robots [14]. This allows for simple parallelization and noise-
free evaluations, but the inaccuracies in the simulator or models used often lead
to big discrepancies in the performance of the virtual robot and its real world
counterpart [15]. There are many techniques to reduce this reality gap [16], but
even with recent strides, this is becoming more and more challenging, as both
the robots themselves, the environment they operate in, and the tasks they are
solving become more complex and harder to model.

2.2 Embodied cognition

The theory of Embodied Cognition originally came from psychology, but is mak-
ing its way into many sub-fields of robotics, including swarm robotics and mod-
ular robotics [17]. The original theory states that the brain is not the only
cognitive resource a human has, and that the body, the environment, and the
interactions between these can also serve as cognitive resources[3]. There are
several examples where this has been used successfully in robotics [18]. An im-
portant aspect of this approach, is that a large part of the cognition, or problem
solving ability of a robot, can be placed in the robot body, its environment, and
the interactions these form with each other and the robot controller. Therefore,
inaccurate models of either environment or body can make it impossible to do
this on anything but the physical robot in the real world [2].
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3 The ‘DyRET’ Robot

Our robot, DyRET (Dynamic Robot for Embodied Testing), was developed to
be a platform for experiments on self-adaptive morphologies and embodied cog-
nition [19], shown in Fig. 2. It is a fully certified open source hardware project,
and documentation, code and design files are freely available online [20]. Since it
is intended for use with machine learning techniques it is designed to be robust,
so that is can withstand falls from unstable gaits [21]. It can actively reconfig-
ure its morphology by changing the lengths of its femurs and tibias. Shorter leg
length increases the force at the end of the leg, given constant torque from the
servo. The self-changing morphology therefore allows the robot to change the
trade-off between movement speed and force surplus continuously, and can serve
as a gearing of the motor [22].

Fig. 2: Top and left views of our reconfigurable robotic platform, and examples
of the legs at two different lengths.

The robot is built using Commercial-off-the-shelf (COTS) components where
possible, and all custom parts can be made with consumer grade 3D printers.
We also use composite tubing for structural integrity. Selected parts have an
alternative design in aluminium for more demanding requirements, and have
been milled. Dynamixel servos are used in all rotational joints, which feature
on-board PID controllers for accurate position control. The servos are connected
to a common bus that interfaces to a computer over USB. The length of each
leg segment is controlled by a custom linear actuator, driven by a standard DC
motor. The main mechanism consists of a lead screw that moves carriages along
two rails using a chain, all COTS components. An encoder gives the position
of each actuator, and a simple positional controller is run on an Arduino Mega
board with a custom interface shield. The robot features an XSense MTi-30
Attitude and Heading Reference System that measures linear acceleration, rota-
tional velocity and absolute orientation. The robot has reflective markers that is
used with motion capture equipment to get the absolute position of the robot. It
also features directional force sensors mounted on each foot which can be used
to detect when the feet touch the ground.
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4 Experiences and Challenges

In this section, we present some key lessons we have learned when working with
DyRET. We have tried to summarize the lessons, followed by more detailed
explanations.

Initial design considerations

Robustness and maintainability are more important than ease of build-
ing. Using rapid prototyping and design for manufacturability principles,
along with exploiting Commercial-Off-The-Shelf components are crucial
in achieving an effective design process of a legged robot.

Legged robots are very complex systems, and anticipating all demands and
challenges early in the design process is impossible. Techniques from rapid proto-
typing allowed us to quickly get physical prototypes of the robot, which allowed
us to see and fix challenges that would be difficult to find without having phys-
ical proof-of-concept models of the system available. An important part of this,
is to use already existing Commercial-Off-The-Shelf (COTS) components where
available. This allows us to capitalize on the work of others, and also makes
it easier for others to build or utilize lessons learned from our designs. Design
for manufacturability is another important concept, and promotes adapting the
design to manufacturing considerations during the initial design process, where
they can be solved much more easily than during operation. As an example of
this we have included the designs in Fig. 3 which illustrates how the manufac-
turing methods should help inform the design of the individual parts. Making
a robot that is easy and cheap to build can be important, but our experience
is that maintainability is even more important, especially when using machine
learning that puts considerable strains on the physical robot.

Fig. 3: The two parts on the left are designed for two different 3D printers while
the part on the right is designed for milling. This is an example of designing for
manufacturability where parts are designed for the same purpose, but optimized
for different manufacturing methods.
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Repairs and mechanical failures

A good strategy for redesign is important to balance quick spot repairs
and laborious systematic analyses of failures. Increasing the strength of
individual parts that break is often not an effective way to do iterative
design.

Designing parts for legged robots is always a trade-off between strength and
weight, and mechanical failures during prototyping is guaranteed. Strengthen-
ing the part that broke can be a quick fix, but our experience is that this often
results in the problem being transferred to other parts of the robot. Both high
persistent forces and sudden shock travel through the mechanical design, and
lead to failures in the next weakest link of the chain. Reducing stress concen-
trations locally in a particular part can sometimes be successful in allowing the
robot to withstand a similar situation again, however, excessive force can often
lead to cascading failures throughout the system. An example of this can be seen
in Fig. 4, where a strengthening of a part that broke lead to the next part in the
chain breaking instead. Having a clear strategy for when and what to do when
mechanical failures happen is important, and early on deciding on a balance be-
tween quick spot repairs and laborious systematic analyses of failures. Once an
experiment is underway, replacing parts with similar parts might be the only op-
tion without skewing the results, so extra efforts on failure identification during
the prototyping phase might be worth the effort. Larger cracks in the material
are often easy to identify, but deflection during operation, small fractures, or
material creep can be harder to detect.

Fig. 4: An example showing a cascading mechanical failure, where an initial
strengthening of a broken part (left, and circled blue on the right) leads to
a failure in the next part in the chain (red circle).
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Controller complexity

Low controller complexity puts less strain on the robot by testing solutions
that are safer and more conservative, and is quicker to optimize. High
complexity controllers can give better results by having higher freedom, but
will necessarily test solutions that are incautious. This complexity trade-off
is often not considered when doing simulation-only experiments, but can
be imperative when working on physical robots.

Learning legged locomotion is a difficult challenge. To optimize the walking
pattern, the gait, the movement of the legs is parameterized through a gait con-
troller. Much a priori knowledge can be embedded into the controller, resulting
in few parameters that are easy to optimize. Less prior knowledge requires more
of the optimization algorithm, resulting in an increased number of evaluations.
The more knowledge that is embedded, the less room there is for a varied range
of behaviors, which might be needed to adapt to new or changing tasks, environ-
ments or the robot itself [23]. Finding the right complexity balance can be very
challenging, especially in real-world learning where the number of evaluations
are limited. We have successfully used a gait controller with dynamic complex-
ity [24], which can be seen in Fig. 5. Another option is using different controllers
for different environments or tasks [25], for instance a complex controller when
optimizing the gait in a simulator with cheap evaluations, and a less complex
controller in the real world.
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Fig. 5: Diagram of a controller with adaptable gait complexity. Here, a dynamic
genotype-phenotype mapping allows a single parameter to control the complexity
of generated gaits [24].
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Starting in the real world

Using a virtual robot can be a quick way to get started learning locomotion.
It is, however, more difficult to transition from abstract simulated robots
to the real world, compared to going from a physical system to simulation.

Evaluating solutions on a physical robot system can take seconds to several
minutes, depending on gait complexity and experiment design. Evaluating in
physics simulations or with simplified models, often done in software, can give a
speedup of several orders of magnitude. This often makes simulation a flexible
and easier starting point. However, our experience with DyRET indicates that
going from a real-world robot to simulation can yield more realistic simulation
results which in turn translates to more sensible real-world gaits after software
optimization. Not basing a virtual robot on a physical prototype makes it easier
to make choices resulting in solutions that turn out to be infeasible in the real
world [14], illustrated in Fig. 6.

Fig. 6: Comparison of different legged robots in simulation, with DyRET on
the right. Since DyRET was first designed in hardware and then transferred to
simulation it is known that it would function in the real world after simulation.

Experiment design

Both the environment and the robot itself are dynamic, and changes will
happen during operation. This can lead to biases in the experiment results,
which have to be controlled by proper experiment design.

One of the key insights we have experienced after real-world experiments
on DyRET is how components change characteristics during the course of ex-
periments. Because of this gradual change, it is important to store as much
information as possible so that automatic procedures can be applied to detect
differences during and after experiments. A big difference between simulation
and real-world experiments is that a real-world experiment can never be per-
fectly replicated. The change in characteristics should also guide the experiment
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design in the real world. Because components are expected to change, it is impor-
tant to evenly test different solutions so as to not bias the experiment towards
a specific one. A specific example is the reduction in performance of our joints
as the motors heat up. If the solutions are always tested in the same order,
this might affect the results, and give spurious effects that can give noise in the
results.

5 Conclusion

In this paper we have presented lessons learned through extensive experimenta-
tion on the DyRET platform. This includes both initial design considerations,
and challenges such as the trade-off between simulated experiments and real
world evolution. Having a mechanically self-modifying quadruped robot is rare
among platforms used in evolutionary robotics research. This gives us a unique
insight into evolution of control and morphology in the real world. By shar-
ing knowledge usually not found in experiment-based publications, we hope to
encourage more researchers within the evolutionary robotics community to try
real-world experiments.
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