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ABSTRACT

The development of musical robots which create musi-
cal performances or assist musicians during their perfor-
mances has been an active subject of research in the last
few years. In this paper we consider a multi-agent system
for the improvisation of rhythmic patterns, where agents
compete to take the lead and play musical solos. This com-
peting mechanism is based on evolutionary algorithms and
auctions. As such a natural evolution of this system, is
to investigate the ways in which separating these agents
into multiple subpopulations, where some agents occasion-
ally migrate from one subpopulation to the other and try to
bring with them rhythmic knowledge of their past expe-
rience, affects the musical dynamics of these subgroups.
Simulation’s results show that migrating agent’s can dis-
rupt the musical play in those subgroups and ensure diver-
sity in the musical compositions.

1. INTRODUCTION

Generating interesting and creative rthythms has been an
active subject of research in computer music [1-3]/.

Vuust and Witek define a rhythm as “a pattern of discrete
durations and is largely thought to depend on the underly-
ing perceptual mechanisms of grouping” [4]. Therefore
a rthythm makes sense relative to a musical context and
depends on the previous musical patterns that have been
played to fit into the musical composition. However, a
rhythm can also become stale if it becomes too repetitive
and bores out the listener. This duality is a complex task
undertaken by the musician performing an improvisation
who “proceeds by attempting to continue an antecedent
musical situation in such a way that the piece fulfills the
latent expectations implied by the beginning while travers-
ing a musical obstacle course that delays gratification and
creates tension” according to Tirro [5].

Musical systems which perform in a band-like manner
have been explored in the past [6—10]. They allow for users
without former musical training to perform and create in-
teresting sounding musical patterns and become an active
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participant of the musical composition, through human-
robot interaction or robot-robot interaction.

The SoloJam system presented in this paper is built upon
is one of these systems [7]. What is interesting in our case
is the ability for those systems to create novel musical pat-
terns out of a set of simple predefined rules. This system
conducts a series of auctions where agents bid with pro-
posed rhythmic patterns to take the responsibility of per-
forming the next musical solo. Each agent that did not win
this auction then applies a mutation to their rhythmic pat-
tern to try to perform better at the next auction.

This idea of mutating musical patterns to better suit a util-
ity evaluation is inspired by evolutionary algorithms which
are a class of algorithms particularly suited to provide cre-
ative solutions to problems [11]. Subdividing populations
of agents into islands [12] or teams [13], where agents only
occasionally migrate between those subgroups has been an
effective method to preserve diversity of populations and
presents high performing solutions to problems. In this pa-
per, the spatial clustering of musical agents into “bands”
where agents migrate between when they are “bored” is
investigated to try to provide diverse solutions.

Indeed as Tirro stated : “The jazz improviser reuses and
reworks material from previous performances; and, [...]
musical ideas evolve through the passage of time and dur-
ing subsequent performances” [5]. This way migrating
agents could try to bring the knowledge from the musi-
cal patterns of the “band” they were previously in, and try
to apply it to their new environment. Therefore the system
should be designed to promote remembering knowledge
from previous environments, for example, through the de-
sign of the utility function. Encoder based approaches have
also been proven effective at not forgetting knowledge
from previous tasks to allow for lifelong learning [14].

The contributions of this paper are listed as follows.
In this study, we start by discussing the ways intelligent
agents can generate rhythmic patterns relevant to the mu-
sical situation they are in. Furthermore in a second part
we aim at understanding the dynamics of inter-subgroups
migrations of musical agents and how they affect the ways
agents play in a given group after the arrival of a migrating
agent, compared to the case of isolated subgroups.

To meet these goals first a simple Unity simulator will be
designed and then its abilities will be extended to allow for
the migration of musical agents


http://creativecommons.org/licenses/by/4.0/

2. THE SOLOJAM MUSIC SYSTEM
2.1 Presentation

The SoloJam algorithm [7] passes the responsibility to play
a musical solo among agents in a group. At the beginning
of the musical performance, each agent’s musical pattern is
initialised randomly and one leader is selected in the group.
It will play its musical solo until it is not a leader anymore.

A musical pattern is defined by a binary array deciding
if the agent should play a note at a specific beat, O being
silent and 1 playing a note®.
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Figure 1. An example of a musical pattern.

After the musical pattern is defined each agent’s utility is
assessed, which means it’s current musical pattern is com-
pared to the leader’s following Equation 1 :
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u; being the utility of agent i, D; representing the Ham-
ming distance between the agent’s musical pattern and the
leader’s, and 7; being the amount of time the agent has
been playing solo. a and b are weights associated to these
measures and c is a normalization constant.

Two notable exceptions are (1) if an agent which isn’t the
leader is considered too close to the leader’s musical pat-
tern —and its Hamming distance is under a certain thresh-
old e —then its utility becomes O to promote creativity, and
(2) if the agent has just played a solo it gets a utility of 0
for one musical pattern to recover.

Therefore, agents try to adapt to the leader’s musical pat-
tern to maximise their utility function, while trying to re-
main just different enough so they don’t get a utility of 0.
This adaptation is performed by mutating the agent’s musi-
cal pattern just before assessing its utility, i.e. flipping the
value of each bit of the musical pattern with a probability
of 1/x; A being the length of the musical pattern.

Furthermore, genetic crossovers between the adapting
agent’s pattern and the leader’s are performed. A ge-
netic crossover is the action of combining information be-
tween two parents (here the agent’s and the leader’s mu-
sical patterns) to create a new solution as shown in Fig-
ure 2. Our crossover implementation only decreases the
Hamming distance between musical patterns, because it di-
rectly copies part of the leader’s musical pattern. Therefore
a two-points crossover with a probability p. of happening,
is added before the mutation to try to improve each agent’s
utility.
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Figure 2. An example of a 2 points crossover between 2
musical patterns.

Because the leader’s utility only decreases over time with
the 7T; parameter, another agent will eventually take over,
and the responsibility of playing the solo freely circulates
among the group illustrated in Figure 3.

Figure 3. Agents adapting their musical pattern until even-
tually one takes over the group and becomes the new leader
(highlighted in red).

2.2 Example dynamics

An experiment is conducted with the following parameters
ca=1;b=0.05¢c =2, ¢ = 0.1; p. = 0.6 musical
patterns of length 8 and 3 agents playing. The circulation
of the responsibility to play musical solos is validated by
experimental results.
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Figure 4. Agents’ utilities during a baseline SoloJam ex-
periment.

Indeed, it can be seen that the utilities of the agents reg-
ularly spike in Fig. 4, meaning that this agent has become
the leader of the musical performance. Just after an agent
has passed the leadership it’s utility goes back to 0 for one
musical pattern and then goes back to a normal value.

3. THE SOLOJAM ISLAND EXTENSION
3.1 Description

Subpopulations in island models have been used to help
maintain diversity [12] which helps maintain diversity of
the solutions. We therefore introduce the SoloJam Island
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Figure 5. The principle of the SoloJam Island framework.

framework illustrated in Fig. 5, which operates as follows:

At first, the situation can be interpreted as though multi-
ple instances of the SoloJam algorithm detailed in 2 work
in parallel (1). Among those groups agents propose per-
forming solutions close to their leader’s musical pattern
to take the lead and play their musical pattern. However,
sometimes when an agent is free, i.e. not going to be des-
ignated as the next leader, it can decide to migrate to an-
other island, another subgroup where agents are playing
(2). Upon arriving at its new island the agent then fol-
lows the auction process of the group and tries to take the
leadership in its new environment (3). Because the agent
comes from a different island, it brings with it the knowl-
edge from its previous environment in the form of its mu-
sical pattern. This pattern then influences the rest of the
group if the agent plays a solo because the other members
will try to make their patterns resemble the musical pattern
of this migrating agent. With this process, the migrating
agent has changed the search trajectory of the group which
brings diversity to the musical patterns of the island (4).

3.2 Algorithm implementation

A new parameter called p,, is added, the probability for an
island that an agent of this island starts migrating if it is
free. This probability is tested during each auction taking
place on an island. If the test is successful, an agent of this
island is then uniformly randomly designated to leave the
island and go to another random island, which it does if it
is free and there are more than 2 agents on this island. This
is done to avoid the scenario where an agent is stranded
on an island and there’s no more circulation of the musical
solo.

To ensure the agent navigates correctly to its destination,
it knows at any time the position of each island, its own po-

sition and the area the agent can walk on, using a Custom
Navigation Mesh! component so that the moving agent
goes around non moving agents and tries to reach the is-
land even if the path is obstructed by other agents.

Finally a sensing range is added, which is the distance
at which an agent can perceive another agent and know
information about it such as the agent’s state or its utility.

Figure 6. The sensing range of an agent.

For example, in Fig. 6, the migrating agent has access to
the information of the two closest agents but can’t access
the information of the furthest one yet.

This framework is designed to limit the amount of in-
formation exchanged between agents. Therefore adapting
agents only need to know the musical pattern of their cur-
rent leader and the state of other agents in their sensing
range i.e. if they are migrating or if they are the leader,
and the leader only needs to know the utilities of agents in
range as well as their state.

4. RHYTHMIC DYNAMICS ON THE ISLANDS
4.1 New utility function and crossover probability

Migrating agents have a special role in these experiments
compared to static agents because they bring with them
the knowledge from their previous environment.Therefore
anew utility function needs to be designed to reward close-
ness to the leader’s pattern but also closeness with its pre-
vious leader’s musical pattern, with the importance of the
latter decreasing over time.This function is defined as fol-
lows:

Umig = 5 [(Ap = Tn) - f(MPy) + (A4 + T,) - f(MP)],

T, < A,
Umig = f(MPc)a Tn 2 Ap'
(2

e fis the utility function defined in Equation 1.

* M Py represents a snapshot of the leader’s musical
pattern when the migrating agent left its former is-
land and M P, is the musical pattern of the leader of
the island the agent currently is on.

' A navigation mesh is a 2D surface in the 3D space composed of
several polygons indicating to a navigating agent the unobstructed areas
in the space it evolves in that it can navigate on. Regular pathfinding
algorithms such as A* are then applied on this mesh so that the agent can
navigate to its destination.



 T,, counts how many musical patterns ago the agent
joined its new island.

» A, is the adaptation period representing how many
musical patterns for the agent should take into ac-
count the musical pattern of the island he used to be
on.

This new utility function rewards the migrating agent for
creating a pattern that is close to its new island leader’s, but
that is also close to the last leader’s pattern it has seen on
its former island. This function starts by giving an equal
importance to the two patterns, and the longer the agent
stays on it’s new island the lesser the contribution of its
former island pattern weighs in, meaning it is required to
adapt to its new environment. Eventually, after the adapta-
tion period has passed or the agent becomes the leader, it
is evaluated just like the other static agents following the
utility function defined in section 2.

Furthermore, migrating agents can now perform
crossovers with the snapshot of their former island’s
leader’s pattern during their adaptation period. To make
sure the agent still adapts to what’s played in its new
island, this probability to perform a crossover is now
adjusted by the amount time the agent has spent in its new
island following this formula:

{P(Tn) =pe- 5= for MP. 3)

P(T,) = pe- 25522 for MP;

This probability ensures a migrating agent is as likely to
perform a crossover with M Py than with M P, on its ar-
rival to its new island. After that, the longer the agent stays
on this island, the higher the probability to mix its musical
pattern with M P, while the probability to copy musical
material from M Py decreases. At the end of this adap-
tation period this crossover probability returns to its usual
value of a probability of p.. to cross over M P, and a prob-
ability of O to cross over M Py.

4.2 Simulation parameters and metrics of interest

Simulations are run with the same parameters as 2.2, 3 is-
lands with 3 agents in the beginning, a probability of mi-
gration p,,,=0.05. For each simulation 150 runs of a dura-
tion of 100 musical patterns are simulated to average re-
sults.

Two cases are going to be investigated, one with A,=20
which means migrating agents totally adapt to their new
island 20 musical patterns after arrival and another with
Ap,=100 meaning agents will never fully adapt to their new
environment and always retain some bias towards using
musical material from their previous environment.

Three metrics are taken into consideration. Firstly, the
Hamming distances between islands to see if different is-
lands end up converging to the same zones of the search
space because of the migration of agents. However, these
two simulations show musical patterns of the different is-
lands’ leaders stay uncorrelated, so this metric is not inves-
tigated further.

Secondly, the distance between M P; and the musical
pattern of the leader of the new island the migrating agent
arrived in. This metric shows if the migrating agent ef-
fectively manages to use musical material from its former
island to influence the musical composition in its new en-
vironment.

Finally, the autocorrelation of M Py, the list containing
an island’s leader’s pattern after the arrival of a migrating
agent, is explored. This autocorrelation is defined in these
terms :

L —2H(MP;, MP;,)

R(7) = mean(
MP;,MPiy, in MPy,

L
“

* MP; is the musical pattern at index i, M P, , the
musical pattern at index i+7 i.e the musical pattern
played 7 patterns after M P;, provided it exists.

* L is the length of the musical patterns.
* H is the Hamming distance function.

This autocorrelation function yields a value of 1 if the pat-
terns are the same, a value of 0 if they are uncorrelated and
a value of -1 if they are inversely correlated. Therefore its
variations give information about the evolution of leaders’
musical patterns over time. If a migrating agent influences
the evolution of an island’s musical patterns, the autocor-
relation of the island’s musical pattern after the arrival of a
migrating agent should evolve differently than in the case
without migrating agents.

4.3 Experimental results

The two simulations yield the following results :
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Figure 7. The Hamming distance between migrating

agents’ patterns and M Py (A,=20 in blue, A,=100 in or-
ange)

Fig. 7 shows that, when A,=20, while the trend during
the first musical patterns points to a decreasing distance
between the snapshot of the former island, M Py and the
pattern that is being played by the migrating agent’s new
island’s leader M P, , the two patterns stay largely uncorre-
lated. Indeed the patterns here are binary arrays of length
8. Therefore for each bit there is a Y2 chance that agents



share the same bit which entails that uncorrelated patterns
should share 4 bits and have 4 inverted bits leading to a
Hamming distance of 4. A Hamming distance of 8 would
mean that agents’ patterns are inversely correlated.

However, when A,=100, despite the fact that the Ham-
ming distance between M P and M Py remains important,
extending the adaptation period has proven effective at de-
creasing this value during this period. This means migrat-
ing agents had been able to share the musical knowledge
from their former islands more successfully.
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Figure 8. : The mean autocorrelation of an island’s leader’s
patterns after the arrival of a migrating agent (blue A,=20,
orange A,=100) or in the case of isolated islands (green).

Fig. 8 shows that the migration of agents when A,=100
has influence over the evolution of an island’s leader’s mu-
sical patterns because the autocorrelation of an island after
the arrival of a migrating agent doesn’t follow the same
trajectory as the autocorrelation of isolated islands. The
autocorrelation values being lower in the case of the mi-
grating agent indicates this migrating agent brings some
disruptions to the group. Indeed, the musical patterns of
the subsequent leaders tend to be less correlated with each
other compared to the case where agents don’t migrate be-
tween islands.

However, one may argue that in the case where A,=20
the agent doesn’t have enough time to adapt to its new en-
vironment which prevents the knowledge from its previous
island to be shared, underlined by the fact the graphs rep-
resenting the autocorrelation of isolated islands and when
Ap=20 are merged.

These results indicate that the longer the adaptation pe-
riod the higher the level of disruption the migrating agent
entails. This is to be expected because the agent has less
incentive to get close to what’s played on the island during
the first patterns after its migration.

5. CONCLUSIONS

In this work we designed a Unity simulator > which allows
for rhythmic experimentation in multi-agent systems using
spatial clustering of agents. This platform helped underline
and explain the ways in which migrating agents can affect
the rhythmic scenarios of the subgroups they arrive in.

2 Available at
SoloJam-Island

https://github.com/67K-You/

SoloJam Island is thought as a versatile and easily exten-
sible simulator. Future works could investigate methods to
bring more important changes after the arrival of a migrat-
ing agent and tune more finely the weight of the agents’
prior knowledge relative to the state of the musical compo-
sition, including but not limited to :

* Reinforcement learning approaches using autoen-
coders [14] and other deep neural networks’ based
solutions.

¢ Including the whole history of the migrating agent’s
musical performances and not only from the last
seen environment. In that case, it would be espe-
cially interesting to investigate how changes in the
number of islands affect the rhythmic dynamics of
the subgroups.

* Developing more complex rhythm representation
schemes which could take into account syncopation
or the tone and the amplitude of the musical note, for
example through the use of dynamic time warping.

* Implementing this framework on real robotic plat-
forms to investigate the impact of message passing
and communication delays in this decentralized sys-
tem.

5.1 Acknowledgments

This work was conducted as a M.Sc. student project and
was partially supported by the Research Council of Nor-
way through its Centres of Excellence scheme, project
number 262762.

6. REFERENCES

[1] A. Milne, S. Herff, D. W. Bulger, W. Sethares, and
R. Dean, “Xronomorph: Algorithmic generation of
perfectly balanced and well-formed rhythms,” in NIME
2016, 2016.

[2] M. Mcvicar, S. Fukayama, and M. Goto, “Autorhyth-
mguitar: Computer-aided composition for rhythm gui-
tar in the tab space,” in Proceedings ICMCISMCI2014,
2014.

[3] G. Weinberg, B. Blosser, T. Mallikarjuna, and A. Ra-
man, “The creation of a multi-human, multi-robot in-
teractive jam session,” in NIME 2009, 2009.

[4] P. Vuust and M. Witek, “Rhythmic complexity and pre-
dictive coding: A novel approach to modeling rhythm
and meter perception in music,” in Frontiers in Psy-
chology, 2014.

[5] F. Tirro, “Constructive elements in jazz improvisa-
tion,” in Journal of the American Musicological Soci-
ety, 1974, pp. 285-305.

[6] K. Jennings and M. Witek, “Toy Symphony: An in-
ternational music technology project for children,” in
Music Education International, 2003, pp. 3-21.


https://github.com/67K-You/SoloJam-Island
https://github.com/67K-You/SoloJam-Island

(7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

A. Chandra, K. Nymoen, A. Voldsund, A. R. Jense-
nius, K. Glette, and J. Torresen, “Enabling partici-
pants to play rhythmic solos within a group via auc-
tions,” in Proceedings of the 9th International Sym-
posium on Computer Music Modeling and Retrieval
(CMMR). Queen Mary University of London, 2012,
pp. 674-689.

K. Tatar and P. Pasquier, “MASOM: A musical agent
architecture based on self organizing maps, affective
computing, and variable markov models,” in Proceed-
ings of the 5th International Workshop on Musical
Metacreation, 2017.

K. Nymoen, A. Chandra, K. Glette, and J. Torre-
sen, “Decentralized harmonic synchronization in mo-
bile music systems,” in IEEE 6th International Confer-

ence on Awareness Science and Technology (ICAST),
2014.

K. Tatar and P. Pasquier, “Musical agents: A typology
and state of the art towards musical metacreation,” in
Journal of New Music Research, 2019.

K. Miikkulainen, “Creative Al through evolutionary
computation,” in Evolution in Action: Past, Present
and Future, 2020.

D. Whitley, S. Rana, and R. Heckendorn, “The island
model genetic algorithm : On separability, population
size and convergence,” in Journal of Computing and
Information Technology, 1999, pp. 33-47.

P. Lichocki, S. Wischmann, L. Keller, and D. Floreano,
“Evolving team compositions by agent swapping,” in
IEEE Transactions on Evolutionary Computation, vol.
17, no. 2, 2013, pp. 282-298.

R. Triki, R. Aljundi, M. Blaschko, and T. Tuytelaars,
“Encoder based lifelong learning,” in 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), vol.
1,2017, pp. 1329-1337.



	 1. Introduction
	 2. The SoloJam music system
	2.1 Presentation
	2.2 Example dynamics

	 3. The SoloJam Island extension
	3.1 Description
	3.2 Algorithm implementation

	 4. Rhythmic dynamics on the islands
	4.1 New utility function and crossover probability
	4.2 Simulation parameters and metrics of interest
	4.3 Experimental results

	 5. Conclusions
	5.1 Acknowledgments

	 6. References

