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Abstract. This paper describes the real-world reproduction of a hand-
ful of robots selected from a larger sample of simulated models previously
generated by an evolutionary algorithm. The five robots, which are se-
lected by automatic clustering to be representative of different morpho-
logical niches present in the sample, are constructed in the real world
using off-the-shelf motor components, combined with 3D printed struc-
tural parts that were automatically generated based on the simulator
models. A lab setup, involving evolution of turning gaits for each robot,
is used to automate the experiments. The forward walking speeds of
the constructed robots are measured, and compared with the simulated
speeds. While some of the robots achieve near-identical results, some
show a large performance loss compared to their simulated prototypes,
underlining the reality gap issue seen in similar previous works.

1 Introduction

There is a high need for autonomously operating robotic systems in remote, hos-
tile, or otherwise isolated environments, such as remote planets, disaster areas,
deep mines, or subsea installations. At the same time, human intervention is
difficult, time-consuming, costly, or at worst impossible, and thus robots which
are able to automatically repair or adapt themselves to new situations would
be a great advantage. With the recent and frequent advances in 3D printing
technology, such as an increasing number of materials, higher speeds, and porta-
bility, new possibilities open up for the design or repair of robotic systems. For
example, one could imagine a team of robots, including a mobile 3D printer,
capable of repairing or producing new robot morphologies in situ [1].
Evolutionary robotics (ER) approaches the challenge of automatic design and
adaptation of robotic systems through the use of evolutionary algorithms. While
ER research has mainly concentrated on optimization of robotic control systems,
e.g. for legged robots [2], using software simulations it is also possible to address
the challenge of simultaneously optimizing robot morphology and control [3].
Automated robot design without a fixed topology introduces an encoding
challenge, as more complex data structures are needed to describe the space
of possible solutions. Thus, ER research has produced a wide variety of coding



schemes for describing morphology. Examples include directly encoded module-
based [4] or graph-based [3] approaches, and an approach using LEGO bricks
and servo motors as modular building blocks [5]. Generative and developmen-
tal methods, where complex phenotypes are generated from simpler genotypes
through some sort of indirect encoding, have been successfully applied to evolve
morphology, for example by using cyclic graphs [6], gene regulatory network-
inspired encodings [7], and scalar-field generating methods based on composi-
tional pattern producing networks both with rigid [8] and soft [9] bodies. These
generative methods can produce highly complex and structured results from very
terse information [10] and are known to outperform direct encoding in simple
morphology optimization tasks [11]. Robots designed by some of these methods
have also been reproduced in real life [3,10].

ER in general faces a reality gap challenge, that is, controllers evolved in
simulation often perform much worse on the real robot [12]. This is due to in-
accuracies in simulation combined with evolution’s tendency to produce overfit
solutions. Thus, one may end up with solutions which exploit features nonexis-
tent in the real world. While this is already a significant challenge for controllers
transferred to robust engineer-designed robots, the additional freedom in the
morphological dimension only increases the potential size of a reality gap. There
are only a few examples of evolved robot morphologies and control systems re-
sulting in physical, actuated robots [3,5,10], and the main challenges for these
have been a lack of complexity or regularity in the structures, or low real life
performance due to reality gap issues. In order for morphology-based ER to
be a convincing approach, there is a need for demonstration of robust, high-
performing approaches and more thorough performance evaluations.

In this paper we pursue this goal by building on our previously proposed
generative encoding scheme for evolution of robot morphology and control [13]
to present a full construction process for physical robots from the simulation
results. The approach represents a flexible way to create relatively lightweight
and regular robots of controllable complexity, and thus should have a potential
of resulting in well-performing robots. With the help of a clustering algorithm
working on morphological distance, we pick 5 different robots representative of
the different morphologies evolved in simulation, construct them, and demon-
strate a thorough way of evaluating their real-world performance. The evaluation
setup is able to automatically perform a high number of evaluations and is thus
suitable for future real-world learning experiments and investigations into trans-
ferability from simulation to the real world.

The remainder of this paper is organized as follows: In Section 2, the methods
used to evolve, select, construct, and test the robots are presented. Section 3
presents the resulting robots and their performance. Section 4 discusses the
results, before a conclusion and pointers for future work are given in Section 5.



2 Methods

This section describes the methods used to perform the experiments in this
paper. First, we describe the previous results these experiments are based on,
before we present the selection method used to pick representative robots, and
details about the hardware reproduction. Then we describe the hardware testing
methods and performance evaluation procedures.

2.1 Evolving Robots Through Simulation

A large number of robots were evolved in a simulated environment in [14]. The
evolutionary algorithm uses a genotype inspired by the high-level genetic coding
used in nature to specify the shape of different body segments to encode robots
with a various number of symmetric limbs around a central spine structure. All
sets of limbs are coded with the same program, but variation based on a number
of evolved parameters that are specific to each section along the spine.

The robots were evaluated with three objective functions: maximizing for-
ward movement in a simulated environment, minimizing the estimated weight of
the robot, and maximizing diversity. The weight of the simulation robot model
was used as the weight estimate. Diversity was measured as the mean morpho-
logical distance to all other robots in both parent and offspring generations.

The simulation was done using the PhysX simulation engine. The robot was
first simulated for 1s in order to let it settle on the ground, before the robot’s
position was reset. The evaluation was then done by letting the robot move freely
in the environment for 7s and then measuring the displacement of the “head” of
the robot in a predefined forward direction, so that the robots most proficient in
moving in that direction would survive. A custom set of joint constraints were
used to simulate the motors in the robot joints. Additionally, the control system
was designed with a torque limit limiting the actual applied torque to 1 Nm. The
environment itself consisted of an infinite ground plane and long, low obstacles
at regular intervals in the forward direction. Parameters for the simulation and
environment are summarized in Table 1.

2.2 Selecting Representative Robots

The experiments in [14] produced 42000 solutions across 210 runs, most of which
had differing morphologies to some extent. Only five of these could be printed
given the available time and resources; selecting these five purely at random
would most likely give a poor sample of the different morphologies, so a method
was used in order to select robots who are each representative of a larger group
of robots:

Evolutionary runs with the same control system and diversity measure were
selected, so that they differed only in the random seed used. The distance mea-
sure was an approximation of the graph edit distance (GED) introduced in the
same article. From these runs, 12 were arbitrarily selected, maintaining some
of the variety between runs while reducing the number of candidates further to



Table 1. Simulation parameters

PhysX version 3.3 beta-2

General
Timestep 1/1285
Env. static 0.20  Robot static 0.30
Friction Env. dynamic 0.15  Robot dynamic 0.30
Env. restitution 0.40  Robot restitution 0.30
. T . P 1.65 Nm
Motor Static friction 0.15Nm Dynamic friction 57 rpm
Appliable torque 1.8 Nm
Obstacle Width 0.02m Height 0.02m
Length 0.02m Spacing 0.5m

2400. Candidates with a forward movement performance lower than a certain
threshold value were then filtered out, reducing the number of candidates further
down to 949.

The remaining candidates were then grouped into six clusters using hierar-
chical clustering. The distance measure used for clustering was the same as the
one used in the diversity measure they were evolved with. The additional sixth
cluster was a “trap cluster” intended to collect a specific kind of robot that
was known to appear in the runs, with only one set of limbs and no tail, which
moved by rolling around. Although very interesting, this locomotion method was
impossible to reconcile with the laboratory setup described in Subsection 2.5.

2.3 Constructing the Robots

From the beginning, the genetic encoding used in [14] was designed to produce
robots that are possible to construct in the real world. The scale of the robots
and the joint simulation parameters were designed to fit the modular servo mo-
tors Dynamixel AX series produced by Robotis. Specifically, the simulated joint
parameters, as well as the actual servo motors used on the constructed robots
were of the AX-18 model.

Each link in the produced robots consists of one variable-length capsule com-
bined with sockets to attach the servo motors for each joint. In order to minimize
weight the capsules were made hollow, with a thickness of 1.5 mm, and evenly
spaced holes throughout in order to keep wires inside the capsule and also to
make it easier to clean away the support material used by the printer.

The sockets are hand-designed in a CAD program to fit the servos correctly,
including matching holes for easy assembly. In order to attach the sockets to
the central capsule, which must be custom-generated for each link, the fact that
intersecting meshes will be merged into one solid object implicitly by the 3D
printer was exploited. Thus one only needs to have the capsule and socket meshes
positioned correctly and contained in the same data file. To attach side sockets,



which can have an arbitrary rotation relative to the capsule, an additional set of
four supporting bars were generated that each aligned with one end of a socket
in each end and with the surface of the capsule in the middle.

The parts were printed in an Objet Connex 500 multi-material 3D printer,
using the Duruslvory digital material, a predefined mixture of VeroWhitePlus
(a rigid but somewhat brittle) and DurusWhite (a softer, polypropylene-like
material). It was soon discovered that this material, and in fact, most plastic
materials, had significantly lower friction against the floor carpet in the leg
than the friction values modeled in simulation. In order to increase the friction
between robot and floor, hockey tape was added to the endpoints of each limb
on the robots.

2.4 Hardware Testing Setup

In order to perform measurements with the hardware efficiently, the experiments
were automated by programming the robots to turn back when they go out of
bounds; when the robot reaches a certain distance from the center of the floor,
the control system is replaced with one that makes the robot turn either left or
right until it is approximately headed for the center of the floor. When the robot
has finished turning, it is then switched back to its original control system and
the evaluation resumes by restarting the unfinished period. In order to avoid
the measurements being affected by the turning motion, the first period after
resuming evaluation is discarded.

For these experiments, turning control systems were generated by running an
evolutionary algorithm with two objective functions: maximizing turning veloc-
ity and minimizing positional displacement. The population was seeded with 60
mutations of the original forward movement control system and run for 60 gen-
erations. The evolution used uniform Gaussian mutation and whole arithmetic
recombination. All the evolved turning systems worked satisfactory in real hard-
ware, except for those for robot 2, who had too large positional displacement.
This was remedied by further parameter tuning on the real robot.

The robots contain no power source, so they need to be wired to a power
source and controller located elsewhere. In order to let the robot move freely
without tripping in the wire, the wire was put through a pulley in the center of
the ceiling to a winch that is programmed to let out approximately enough wire
to let the robot move freely based on the robots position relative to the center
of the floor.

The position and orientation measurements were done using a motion capture
system. This enables very accurate measurements with minimal modification
of the robots. Three reflex balls were attached to one of the central parts of
the robot, enabling the motion capture system to identify the robot as a rigid
body with a position and orientation. The motion capture system used was
a NaturalPoint OptiTrack with 8 infrared Flex 3 cameras. The cameras were
positioned in the lab ceiling, at the corners and midpoints of the walls.



2.5 Performance Evaluation

In order to provide a fair comparison of the simulated performance of the robots
and the performance in hardware, the same evaluation procedure is used in both
cases. Since the robots were originally evolved to maximize forward movement,
this has been used as the performance metric in these experiments as well.

At the end of each period the displacement of the robot during the period,
in the direction it was heading at the start of the period, is measured. The
period length was set to 1s to align with the control system cycle length. After
every fourth period the mean displacement per second over the last four periods
is stored as a single evaluation. 50 evaluations were done on each robot both
in simulation and in hardware in order to get a good statistical sample of the
performance.

3 Results

This section will present the results of the experiments described in the section
above. First, a description of the selected robots is given in the subsection below,
before the performance measurements are reported in Subsection 3.2.

3.1 The Selected Robots

The twelve runs selected had a total of 2400 candidate robots. After removing
the robots that did not meet the performance criteria, this was reduced to 949
robots. The distribution of these in the six clusters are shown in Table 2. As ex-
pected, one cluster contained only robots with rolling behavior. One other cluster
(number 1) contained mainly rolling robots as well, but this cluster contained
two distinct sub-groups, where a second, smaller group of around 19 robots had
a tail one or two sections long that hindered the rolling motion, and which had
developed a dragging gait instead.

The distribution of the clusters in objective space is shown in Fig. 1, showing
that the clusters roughly match up with different trade-offs between forward

Table 2. The morphological clusters.

Cluster Robots Description
1 138 Two limbs with two joints each, mostly rolling behavior
2 86 Two active limbs with one joint each, midsection either

limbless or with nonfunctional limbs

3 254 Four limbs with two joints each

4 4 Four limbs with two joints each plus limbless waist section
5 458 Six limbs with two joints each

(6) 9 Two limbs with one joint each, no tail, typically with

rolling behavior
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Fig. 1. Objective-space distribution of the clusters. The diversity dimension is omitted,
but generally speaking solutions far from the movement-weight pareto front will have
a higher diversity score. The small dots are the individuals that were discarded before
clustering because of low fitness. (In grayscale, cluster 2 is difficult to see, but occupies
most of the area in between clusters 4 and 6.)

movement ability, weight and diversity. It can be seen that cluster 5, while largest
in number of individuals, consists mostly of robots that survived due to having
distinct morphologies rather than being light or efficient.

In three of the five clusters (clusters 2, 4 and 5) the centroid robot was picked
as its representative. In cluster number 1 a representative of the dragging sub-
group was selected by hand. In cluster 3 a representative with a more interesting
gait than the centroid, but close to it (rank 13 in closeness to the centroid),
was chosen to improve the gait variation between the representatives. Body
schematics for the five selected robots and photographs of the finished robots
are shown in Fig. 3.

Robot 1 has two limbs and a tail, each with two joints, and drags itself
forward with the limbs. Robot 2 had four limbs and two joints in the waist,
but only one joint in each limb. It achieves a trotting gait (neighboring limbs
are in opposite phase) by having a large synchronized swing in the waist joints.
Robots 3 and 4 both have four limbs with two joints per limb. Robot 3, which
has one waist joint, exhibits a bounding gait (front and rear limbs are out of
phase and the robot makes a small leap each time the back limbs pushes the
robot forward). Robot 4 has two waist joints and a pronk-like gait (all limbs are
approximately in sync).

Robot 5 has six limbs, with two joints in each limb. The two rear limbs are
considerably larger than the other two pairs. This robot has a bounding-like
gait, where each limb pair is in sync; the front and middle limbs have a small
phase difference between them, and the rear limbs are approximately in opposite
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Fig. 2. Performance box plot of the five robots. The left column of each robot is the

simulated measurements and the right box is the measurements in hardware. Each of
the boxes represents 50 measurements.

Table 3. Mean performance summary.

Robot 1 2 3 4 5

Simulation (m/s) 0.235 0.311 0.384 0.242 0.274
Hardware (m/s) 0.120 0.335 0.262 0.231 0.026
Ratio 0.510 1.079 0.682 0.955 0.094

phase of the other pairs. The limbs touch the ground in order from front to back.
As the middle limbs move backwards the rear limbs lift above the middle limbs,
touching them near the knee joints during maximum forward extension of the
rear limbs.

3.2 Performance

The distribution of the performance measurements is shown in Fig. 2. Table 3
show a summary of the mean performance for each robot. Robots 2 and 4 have
overlapping performance ranges between simulation and hardware and mean
performance ratio close to one, while the other three robots have significantly
lower performance in hardware. Robot 5 has the largest performance loss: the
mean performance in hardware is only 9.4% of the mean simulated performance.
Second worst is robot 1 with a 49% performance loss, while robot 3 has 31.8%
lower performance in hardware.
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Fig. 3. Schematic view and photographs of the robots. All lengths are in millimeters.



4 Discussion

The hierarchical clustering produced clusters that seemed to match up reason-
ably well with what was expected, based on randomly sampling the populations
by hand. It also managed to find a rare but interesting robot class, represented
by robot 4, with a double-jointed waist, of which there were only four in the
entire set of 949 robots that met the performance criteria.

While the structural strength of the printed parts generally proved to be
sufficient for these experiments, in one instance (robot 4), one of the spine parts
broke at the intersection between the capsule shape and the bars attaching the
limbs. A new, stronger design was created and printed in order to complete the
experiments.

The performance in hardware relative to simulation varies from robot to
robot, with some robots having about the same performance, while others per-
form considerably worse in hardware. These results are in agreement with similar
experiments such as [3] and [5].

The robots that had the lowest loss of performance in this experiment were
also the least risky designs. Both the dragging motion of robot 1 and the bound-
ing motion of robots 3 and 5 are dependent on friction being simulated correctly,
and in this case they were evolved in an environment with larger friction than
in the real-world lab. Robots 2 and 4, on the other hand, employed gaits that
are less sensitive to changes in friction since they do not rely on pushing for-
ward against the ground, but rather on alternating between having parts resting
on the ground and moving them forward. One simple measure to avoid friction
problems might be to underestimate friction in simulation, in order to give a
conservative estimate of the performance of friction-dependent gaits.

One other cause for the simulation-hardware performance loss is limb col-
lisions. Some of the robot gaits caused limbs to collide, which might not be
modeled well enough in simulation. Robot 5 in particular had a gait that caused
collision or at least near collision once every period. From a performance per-
spective, there seems to be little reason for gaits to cause self-collisions, so one
could perhaps introduce some form of collision discouragement in evolution to
mitigate this. Using a closed-loop control system might also help, because the
control system would be better able to correct itself post-collision.

5 Conclusion & Future Work

This paper has documented the transferral of robots, that were automatically
designed in simulation, into real hardware. From a large pool of robot designs
drawn from previous experiments, five robots were constructed, each acting as
a representative for a larger group of robots with similar morphologies. The
representatives were found using a clustering algorithm, and then a functioning
mechanical body was created from the design using modular servo motors com-
bined with a combination of hand-designed and automatically generated plastic
parts manufactured using a 3D-printer.



A lab setup was created that enabled thorough performance measurements
both in simulation and hardware using the same measure. Measurements in
the lab were compared to similar measurements in simulation, demonstrating
that, at least for some of the robots, forward walking speeds in the same range
as the well-studied hand-designed AIBO robot (see for example [15,2]), were
achieved. However, there was large variation in how well the real-life reproduction
performed compared to the simulated model.

This confirms that some sort of measure is needed in order to make the
products of simulated evolution correlate better with real hardware in terms of
performance. On the simulation side, noise may be added to model external ef-
fects. Forces such as friction, where the conditions are expected to vary between
environments in the real world anyway, should perhaps be underestimated in or-
der to avoid having robots exploit effects that are not certain to appear in reality.
On the hardware side, it might be possible to implement some sort of adaption
technique on the control system in order to regain some of the performance seen
in simulation.

The transferability approach [16] is a promising method for dealing with
the reality gap in the evolution of controllers for fixed-morphology robots, by
building a transferability model based on real-world samples. For such a method
to work also with evolved morphologies, there would be a need for selecting a
limited but representable set of morphologies for real-world sampling. As such,
the methods presented in this paper could be a possible approach, and this
application should be investigated in future work.
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