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ABSTRACT
This paper proposes an approach to representing robot mor-
phology and control, using a two-level description linked
to two different physical axes of development. The bioin-
spired encoding produces robots with animal-like bilateral
limbed morphology with co-evolved control parameters us-
ing a central pattern generator-based modular artificial neu-
ral network. Experiments are performed on optimizing a
simple simulated locomotion problem, using multi-objective
evolution with two secondary objectives. The results show
that the representation is capable of producing a variety of
viable designs even with a relatively restricted set of param-
eters and a very simple control system. Furthermore, the
utility of a cumulative encoding over a non-cumulative ap-
proach is demonstrated. We also show that the representa-
tion is viable for real-life reproduction by automatically gen-
erating CAD files, 3D printing the limbs, and attaching off-
the-shelf servo motors.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Design, experimentation

Keywords
Evolutionary robotics, morphological evolution, embryogenic
encoding

1. INTRODUCTION
Currently, both rigid body simulators and prototyping tools

such as 3D-printers are becoming more advanced, and at
the same time more accessible. This opens up new opportu-
nities in automated robot design, as simulations are quicker

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

to do and real-world verification becomes much easier. This
is certainly the case when designing robot morphology us-
ing evolutionary algorithms, which requires a large number
of evaluations, either through simulation or prototypes, or
both.

Automated robot design without a fixed topology intro-
duces an encoding challenge, as more complex data struc-
tures are needed to describe the space of possible solutions.
Thus, the research into automated robot design using evo-
lutionary algorithms has produced a wide variety of coding
schemes for describing morphology.

In [14] a tree-based structure is used, where each node
represents one of several possible standard modules like joints
or variable sized rigid elements. A wide variety of tasks in-
volving both fixed-position robots and mobile robots are op-
timized for, starting from initial populations of hand-made
designs. Here, control is not evolved, but rather handled us-
ing hand-written inverse kinematics routines in combina-
tion with task-specific logic.

In Lipson and Pollack’s groundbreaking work [15], simu-
lated locomoting robots with co-evolved morphology and
control were reproduced and tested in real life. The repro-
duction was done using 3D-printing and standard actuator
components. The encoding used is direct, and very low-
level: The control system is a fully connected, variable size
artificial neural network and the morphology is represented
as a number of straight bars connecting a variable number
of points in space. All bars could form either rigid elements
or linear actuators. While this approach succeeded in creat-
ing real-life robots capable of forward locomotion, the en-
coding lacked support for the kind of modularity and struc-
tural regularity seen in nature.

In generative and developmental systems, complex phe-
notypes are generated from simpler genotypes through some
sort of indirect encoding. This encoding is used as a devel-
opmental program, or set of instructions that can be evalu-
ated to produce the phenotype. These encodings are highly
productive - they can produce highly complex and struc-
tured results from very terse information [9] and are known
to outperform direct encoding in simple morphology opti-
mization tasks [13].

In the first and perhaps most well-known example of gen-
erative co-evolution of morphology and control [18], Sims
evolves animal-like creatures in a virtual environment using
a graph-based representation where a directed graph is used
to describe morphology. Each node in the graph represents
a part design and each edge represents an instantiation of
the part the edge points to. By starting from a root node and



following the edges repeatedly, allowing cycles in the graph,
advanced morphologies with repeating or fractal structures
are achieved. The control system is explained in terms of
a neural network, but with nodes that can represent a wide
range of mathematical functions. A variety of behaviors like
walking, swimming and following are evolved.

Much research has been done on how DNA specifies the
growth and shape of living creatures. This research has, for
practical reasons, primarily been focused on a species of fruit
fly, the drosophila melanogaster. An drosophila egg is po-
larized during creation by a gradient of different proteins
along the anterior-posterior (head-tail) axis, forming the ba-
sis for segmenting the body into different sections [17]. The
growth of these sections is then regulated by Hox genes. These
genes lie in a handful of tight clusters in the DNA, and are
usually colinear - they appear in the same order in the chro-
mosome as they are expressed in the embryo from anterior
to posterior.

Hox genes and other development-related genes have pre-
viously inspired artificial genetic regulatory networks (GRNs),
a developmental process emulating gene regulation on a very
fine level that has evolved complex robots capable of loco-
motion [4]. An L-system/GRN hybrid, also inspired by how
Hox genes regulate segment development, was used in [1] to
evolve insect-like robots with fixed limb morphologies and
a simple co-evolved control system.

One of the most famous Hox gene studies is that of the
Bithorax Complex, the gene cluster that regulates the rear
end of the drosophila body. It has been shown that the ef-
fect of section specific regulators in this gene cluster stack
up as one moves backwards along the body: in addition to
the regulators associated with the section itself, the regula-
tors associated with all anterior sections are also active [16].

It is also expected that the Hox genes themselves do not
contain the entire blueprint of the section, but rather regu-
late control parameters or switches that affect more detailed
developmental programs stored elsewhere in the genome
[16, 6]. Intuitively this makes sense, because it allows the
same basic design, of a wing or a leg for example, to be re-
peated with some variation down along the body.

The default, then, would be for each section to be iden-
tical, and then become differentiated later as the develop-
mental program grows more complex, as seen in [6]. This
seems similar to the concept of symmetry breaking [22]: left
and right side would be mirrors of each other until the de-
velopmental program takes a parameter varying from left to
right into use, and front and back limbs would be identical
until otherwise specified.

This paper proposes an approach for encoding animal-
like robot morphologies in a generative, biologically inspired
manner by separating the genotype information into two
separate parts. The two parts can be thought of as providing
a separate high- and low-level description of the morphol-
ogy and control system, with all sections being constructed
by reusing the same developmental program with different
parameters. Based on biological precedent and supported
by results in evolutionary robotics, bilateral symmetry is im-
plicitly enforced in the encoding. Altogether, this enables a
compact and structured method of encoding the morphol-
ogy of a limbed robot.

It is then demonstrated that this approach can be imple-
mented in a fairly simple encoding scheme that can be used
to evolve robots capable of stable forwards locomotion. The
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Figure 1: Influence of section plan and body plan genes,
with the section plan encoded as a list of per-segment pa-
rameters. As the numbering and shading illustrates, the
right and left limb segments are mirror images created
from the same genetic information.

encoding is also designed with real-life reproduction in mind,
and generates designs that are restricted to realistic configu-
rations and physical dimensions for reproduction using only
3D-printing and commercial off-the-shelf components.

The remainder of this paper is organized as follows: In
Section 2 the general approach is explained, and the spe-
cific encoding used in the experiments is described along
with the experimental setup. The results of the experiments
are shown in Section 3. Section 4 contains discussion of the
results, before a final conclusion is given in Section 5.

2. METHODS
The interpretation of Hox genes in the previous Section

suggest a simple bioinspired model for encoding morpho-
logical information: the body is divided into a linear sequence
of sections, each of which is developed from the same de-
velopmental program, or section plan, but differentiated by
a high-level body plan, as shown in Figure 1. The body plan
has a gene for each section in the body. Each of these genes
specifies control parameters that decide the outcome of eval-
uating the section plan when located in the section corre-
sponding to the gene.

For each section, all genes up to and including the corre-
sponding gene are evaluated in order, each gene modifying
some parameters, while completely overwriting others. In
this way, the parameters may be differentially coded. Over-
writing can be thought of as the last gene repressing the ex-
pression of the previous ones. Modification can be likened
to having each gene make a contribution to the production
of some protein, which then regulates the expression of the
parameter in question. When a parameter is modified and
not overwritten, we say that it is coded cumulatively.

For example, if the physical dimensions are coded this way,
then the dimensions of a segment or a whole section would
depend on the previous one, and the physical dimensions
of the first one would decide the physical scale of the entire
robot. This may be an evolutionary advantage, as it would
make single mutations affect shape more smoothly.

Genotypes that exhibit this kind of two-stage organization
could certainly develop during evolution in a variety of de-
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Figure 2: Schematic view of the physical parameters of a
simple robot. The axis-of-rotation angle Ai , j

φ is not shown,
but would have the effect of rotating the segment along
with its joint around its major axis. The rotation of the rest
angle Ai , j

ψ is then applied around the resulting axis of rota-
tion. The shaded areas symbolize the actuators.

velopmental encodings such as GRNs, or L-system or GP-
based methods. However, given the prevalence of Hox genes
in nature, designing the genome with two explicit levels of
description might be a reasonable trade-off between gener-
ality and design efficiency when it is acceptable to restrict
the search to animal-like topologies.

For the purpose of providing a minimal proof of concept
of this encoding model, a minimal realization, to be described
in the Subsection below, is tested in a gradient following op-
timization task. Control system parameters are also embed-
ded in the encoding so that the control system is co-evolved
with the morphology. These parameters will be discussed in
detail in Subsection 2.2.

Here, the section is encoded as a simple list of segments,
similar to the scheme seen in Figure 1. It has a gene for the
core of the section (the “spine” of the segment), plus one for
each segment in the limb, extending from both sides of the
spine. Like in the body plan, the parameters stored in the
section plan genes can be cumulative.

Both the top-level body plan and the section plan is rep-
resented as a variable-length vector. Each gene contains a
historical marker and a set of parameters which are differ-
ent for the body plan and the section plan. The historical
markers are used to implement an efficient crossover oper-
ator in the same way as in the NEAT algorithm [19], and are
discussed further in Subsection 2.4.

2.1 Physical Parameters
The physical configuration of each segment in the robot

is decided by three variables: The length L i , j , the angle of
the axis of rotation Ai , j

φ , and the rest angle Ai , j
ψ , where i is

the section number and j is the segment number (i = 1 is
the first section, and j = 1 is the spine). The effect of these

parameters will be described in detail below. A schematic
view of a simple robot is shown in Figure 2.

For each segment, a major axis is defined. If it is the first
segment of a limb ( j = 2), this axis is perpendicular to the
major axis of the previous segment; otherwise it is parallel to
it. L i , j is measured along the major axis of the segment, from
the tip of the segment to the tip of the previous segment, or
from a certain offset from the center of the previous segment
for j = 2.

The previous segment of the spine of a section is defined
to be the spine of the previous section. In that way the body
of every robot consists of a connected tree of segments with
the spine as the main branch and the rest of the genes in
the section plan creating two branches shooting off from the
main branch for each section. Each node in this tree rep-
resents a rigid body part and each edge represents a single
revolute actuator in the robot.

The axis of rotation of the revolute joint connecting the
segment to the previous segment is perpendicular to the ma-
jor axis and has an angular offset of Ai , j

φ to the axis of rotation
of the previous segment, or to the axis that is orthogonal to
the major axis of both segments for j = 2. To avoid twisting
of the spine that would interfere with the bilateral symme-
try, Ai , j

φ is always zero for j = 1. The rest angle Ai , j
ψ adds a

constant offset to the actuator position as seen by control
system, affecting the midpoint of oscillations as well as the
initial position.

While Aφ and Aψare coded directly in the section plan, L
is coded indirectly across both body and section plans. Each
gene in the section plan hold a parameter Ls that represents
the base length of the segment, the two angle parameters
and a set of parameters for the control system of the corre-
sponding actuator, which will be detailed in the following
subsection.

Each gene in the body plan contains two parameters Lb

and Ll that affect the segment length. Ls affects the length
of all parts of the section, including the spine, while Ll only
affects the limb segments. The physical length of the j th
segment on section i is calculated recursively as

L i , j =

⎧⎨
⎩

L i−1, j × L i
b × L j

s j = 1
L i , j−1 × L i

l × L j
s j = 2

L i , j−1 × L j
s j ≥ 3

(1)

The recursion terminates to L 0,1, which is used as a global
parameter that sets the base scale of the robots.

To test the effect of the cumulativeness of the length for-
mula, an alternative method of calculation, where cumula-
tive effects are minimized, is also tested. This method uses
the exact same parameters, and is given as

L i , j =

�
L 0,1× L i

b × L j
s j = 1

L 0,1× L i
b × L i

l × L j
s j ≥ 2

(2)

There are no parameters in the genotype for introducing
left-right asymmetry to the body - the left and right sides
are simply mirror images of the same section plan. Bilat-
eral symmetry is all but universal among animals, so there
is substantial biological basis for ignoring left-right symme-
try breaking. There are also results in evolutionary robotics
indicating that bilaterally symmetric robots have more effi-
cient movement patterns [5]

In the experiment, the physical dimensions as well as the
stall torque and maximum angular velocity of the actuator
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Figure 3: The central pattern generator between two links.
The neurons and synapses that are directly encoded for
that actuator is shown in solid lines. Dashed neurons and
synapses are generated by mirroring or by connecting the
network together with the previous segment. The dashed
nodes marked θ + and θ − are sensor nodes that read pos-
itive and negative actuator angles respectively. The node
nm and its mirror node together control the angular veloc-
ity setpoint rω of the actuator.

box is modeled by the ROBOTIS AX-18A servo motor with
dimensions 32mm×50mm×26mm, stall torque of 1.8Nm
and maximum angular velocity of 10.15rads−1. The capsules
have a radius of 20mm and L 0,1 was set to 100mm.

2.2 Control System
The control system used for the robots is a recurrent neu-

ral network based on central pattern generator (CPG) mod-
ules. Chains of symmetric CPGs with parameters optimized
by evolutionary algorithms have been shown to effectively
replicate gaits of certain reptiles [11]and such networks have
also been successfully applied to control robots of various
topologies [7, 21].

The neuron model used here is the average firing rate model
given by the equation

τi

d mi

d t
=−mi +
∑

j

wi , j x j , xi =
�
1+ e −(mi+bi )
�−1

Here mi and xi are the average membrane potential and
firing rate of neuron i , and τi and bi are the decay time and
membrane potential bias of that neuron. wi , j is the strength
of the synapse from neuron j to neuron i . This model is
used with a network with one module per actuator, each hav-
ing a fixed topology containing feedback paths that control
actuator velocity based on actuator angle and an input sig-
nal, as shown in Figure 3.The input neurons of each module
are connected to those of the parent module, transmitting a
control signal from the head throughout the body. The input
signals of the first section come from two “antennae” that
encode the target heading as

al =
1

2
+
α

2π
, ar =

1

2
− α

2π

where α ∈ (−π, π] is the angle between the direction of
the spine segment of the first section and the target heading,
both projected to the ground plane. If no target heading is
set, α is set to zero.

The parameters for each module are stored in the geno-
type along with the physical parameters of the correspond-
ing gene in the section plan. Like in many CPG based con-
trollers (see for example [11, 21]), the actuator control and
feedback signals are coded differentially and interact with a

symmetric control network, as shown in Figure 3. This em-
ulates the way most single-axis joints in animals are actu-
ated by a pair of muscles that work in opposite directions.
Each half of the control network consists of three neurons:
a control neuron (nc ), a motor neuron (nm ) and an oscillator
neuron (no ).

The motor neuron has incoming synapses from both con-
trol and oscillator neurons, as well as from the opposing mo-
tor neuron and positive and negative angle state feedback
from the actuator. The control neuron has incoming synapses
from the motor neuron and the control neuron on the same
side on the previous segment, while the oscillator neuron
only has a single incoming synapse from the motor neuron.
Since each neuron has two parameters (time delay τ and
bias b ) and each synapse has a weight parameter w , each
network module has a total of 14 real-valued parameters.

In the initial population, all networks are configured with
a strong negative feedback with a high time delay between
motor and oscillator neurons to create oscillations and strong
inhibiting synapses between the two motor neurons to make
the two sides of the module act antisymmetrically. The mo-
tor and control neurons have weak excitatory connections
to each other so that they influence each other. This enables
the control signal to be modified by the motor neurons as it
spreads throughout the tree of CPGs.

All parameters in the network are then allowed to mutate
freely, which might change the amplitude, phase or frequency
of the oscillations, or even break the oscillatory properties of
the network entirely.

2.3 Evaluation
Each robot is evaluated by measuring the robot’s perfor-

mance in following a path defined by a sequence of points,
a typical use case for a mobile robot. The need for more ad-
vanced skills is gradually introduced, and in this aspect the
evaluation is conceptually similar to the scaffolding sched-
ules used in [2].

The robot is placed on a flat surface with the axis of the
first spine segment aligned with the x-axis. The robot is given
0.5s to settle before a target point four meters in front of it
along the x-axis is put in place. The robot then has 16s to get
as close as possible to that point.

The performance is calculated as how far the robot has
progressed along the route to the target point. Since the first
target point is 4m away, it is calculated as 4−d , where d is
the euclidean distance from the tip of the robot to the next
target point. If it reaches within 0.1m of the point, a new
goal is set an additional two meters along the x-axis and two
meters along the y-axis, and the robot given a score of 4+�

8−d .
This way, robots are first encouraged to achieve forward

locomotion. As the locomotion gets more effective, greater
precision in heading are required in order to keep closing
in on the target point. After a certain level of efficiency and
precision have been achieved in moving in the direction the
body is initially aligned in, the robot will have to take a con-
trolled turn at a certain point in order to keep improving its
score substantially.

Since each individual is only simulated for a few seconds,
it is not expected that the robots evolved in this experiment
should make it past the first target point. The second point
is added primarily as a contingency in the evaluation pro-
cedure, and also makes it more difficult for chaotic behavior



to propel robots quickly straight forward and thus dominate
the population.

The rigid body physics are simulated using the Nvidia PhysX
engine. The simulation is run with a fixed timestep of 1/128 s≈
8ms. The joint constraint solver is set to 100 iterations with
an extrapolation factor of 0.75 to ensure good accuracy in
the joint constraints. All surfaces are treated as having the
same material, with a static and kinetic friction coefficient
of 0.60 and 0.54 respectively.

Each segment is modeled as a fixed-size box-shaped ac-
tuator and a variable length capsule. The box is assigned a
mass of 55g and the capsule is modeled as hollow on the in-
side, with the outer 20% of its volume made of a PVC-like
material with a specific gravity of 1.2kgl−1. Skin width, the
amount rigid shapes are allowed to interpenetrate to improve
simulation stability, is set to 2mm for the capsules and 1mm
for the actuator boxes and the ground plane.

Using the distance performance evaluation alone would
result in evolutionary pressure towards increasingly large ro-
bots with an increasing number of actuators, since larger
bodies enable the robot to travel farther with each swing of a
limb, and more actuators can give the robot more power. To
counteract that, two secondary objectives are introduced,
one minimizing the number of actuators and another mini-
mizing the size of the robot, measured as the largest dimen-
sion of the axis-aligned bounding box of the robot in its ini-
tial pose.

To avoid emphasizing these measures on very simple ro-
bots, any robot with fewer than four actuators is treated as
having four, and any robot with a size less than 0.2m is treated
as being of that size. Robots with more than 21 actuators or a
size greater than 1m is not simulated but get a performance
score of −10 assigned to them instead, marking them as in-
feasible.

Additionally, if any part of the robot is subjected to a con-
tact force greater than 1000N the evaluation is immediately
terminated, and a performance score of −20 is given. Any
force of that magnitude is assumed to be caused by the ro-
bot trying to exploit weaknesses in the simulator to propel
itself around, and thus the result is invalidated. Different
negative scores are chosen for different reasons for disquali-
fication so that the reason can be easily read out from fitness
output.

2.4 Evolution
As explained above, the evolved designs are evaluated us-

ing three objective functions, making the design problem a
multi-objective optimization problem. The multi-objective
evolutionary algorithm NSGA-II [8] is used to execute the
evolutionary process. NSGA-II ranks the parent and offspring
population together using non-dominated sorting to sepa-
rate the population into ranks, and then differentiates within
ranks based on a diversity measure called crowding distance.
Survival selection and parent selection is then done by trun-
cation and binary tournaments respectively.

As explained in subsections 2.1 and 2.2, the genotype con-
sists of two variable length vectors: the body plan and the
section plan. The body plan contains two parameters per
gene and the section plan contains 17 parameters per gene:
three physical parameters and 14 parameters for the control
system.

Each gene of both vectors also contains a historical marker.
This is a unique number identifying the evolutionary origins

Table 1: Parameter mutation settings. Initial values
marked * are detailed in Subsection 2.2.

Parameter Mutation Initial
value

Range σ

Section
Lb ×e� (0,σ2) 1 - 0.3

Ll ×e� (0,σ2) 1 - 0.1

Segment

Ls ×e� (0,σ2) 1 - 0.3
Aφ +� �0,σ2

�
0 [−π,π) 0.1

Aψ +� �0,σ2
�

0
	− π3 , π3



0.1
wi , j +� �0,σ2

�
* - 0.1

bi +� �0,σ2
�

* - 0.1

τi ×e� (0,σ2) * - 0.1

of the genes; it never changes during mutation or crossover.
After parent selection crossover is done by first cloning a pair
of parents. The genes of the two parent clones are matched
by their historical markers. All genes that have a match are
crossed using discrete crossover: each parameter is swapped
with a probability p = 0.1. Unmatched genes are kept in the
offspring in which they were found.

After crossover, mutation is then performed on every new
individual as follows: Each preexisting gene in both vectors
is either deleted (p = 0.03), duplicated (p = 0.04) or has its
parameters mutated (p = 0.93). If the gene is duplicated,
then a new gene with a new unique history marker is in-
serted after this gene with all parameters copied (except for
Aφ and Aψ which are set to zero). This is the only time new
historical marker values are introduced.

When a gene is mutated each parameter in it has a prob-
ability p = 0.1 of being changed. Since the various parame-
ters are on different scales and intervals, they are mutated in
slightly different ways, as summarized in Table 1. In essence,
the parameters encoding angles have a fixed range, and ei-
ther wraps or clamps to that range, depending on whether
it corresponds to a full circle or not. Some of the parameters
have a normal random variable added to them, while others
are multiplied by a lognormal random variable, depending
on whether they represent a property which is assumed to
have geometrical growth or not.

The initial population consists of identical designs with
one section and one segment, with initial values as shown in
Table 1. This gives a neutral and maximally simple starting
point for the algorithm. According to complexification [20],
the algorithm should then be able to introduce the complex-
ity needed to evolve efficient designs.

3. RESULTS
The multi-objective evolutionary algorithm was run 160

times, each time with a population of 200 individuals over 80
generations. 80 of the runs were done with the cumulative
length encoding (equation (1)) and the remaining 80 were
done with the noncumulative encoding (equation (2)).

Figure 4 maps the distribution of performance scores and
sizes in all final populations with the cumulative encoding.
Each individual is counted in one of 24× 24 equally sized
bins depending on their performance and size, creating a
two-dimensional histogram. The count in each bin is then
divided by the number of samples in total to get the propor-
tion of the individuals counted in each bin.

This number can be seen as an estimate of the probability
of a randomly selected individual from any run of the algo-
rithm being situated in that area of the objective space. It
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of all individuals in the final populations of all runs with
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coded logarithmically to visualize the full dynamic range
of the distribution.
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Figure 5: Box plot of the fourth quintile performance score
of each population across all runs with cumulative encod-
ing (black) and noncumulative encoding (red).

can be seen that most solutions are relatively small in size
and lie in a oblong cluster that extends further along the per-
formance axis as the size increases. The corresponding plot
for the noncumulative runs, which is not shown, displays
the same general pattern.

Figure 5 shows the distribution of locomotion performance
scores of the 16th best ranked individual (the fourth quin-
tile) in that objective in different generations. The reason
for not choosing the best performing individual is that it will
tend too much towards extreme sizes and numbers of ac-
tuators, and will have a variation between runs that is not
representative of the population in general. The box plot
can also be read as illustrating how large proportion of the
runs where 20% of the final population had a performance
greater than or equal to a certain number.

It can be seen from the plot that the cumulative encod-
ing performs slightly better with this metric, and t-tests be-
tween same-numbered generations with the two variants show
a statistically significant difference for most generations af-
ter the 40th (the p -values average 0.0225 after this point,
with three values above 0.05).
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Figure 6: Distribution of the number of limb pairs of the
200×80 individuals after the 80th generation. Lines repre-
sent± one standard deviation from the mean across runs.

The distribution of number of limbed sections are shown
in Figure 6. Both cumulative and noncumulative encodings
predominantly produce robots with a single pair of limbs,
although roughly one eighth of the evolved robots are quad-
ruped, and a small percentage are hexaped as well. The av-
erage proportion of both biped and hexaped solutions are
significantly different between the two variants. Further-
more, the average number of limb pairs for a final popula-
tion is also significantly different (p = 0.0047), with an aver-
age of 1.228 for the cumulative encoding, and 1.167 for the
noncumulative encoding.

Most of the biped robots have evolved with a symmetrical
dragging gait, as shown in Figure 7. The robots with more
than one pair of limbs, on the other hand, have generally
evolved antisymmetrical trotting gaits, where each limb is
in opposite phase to the opposite limb, as well as the limb
before and after it on the same side. An example of this is
shown in Figure 8.

However, a significant portion of the robots do not have
any gait at all, but rather rely on exploiting weaknesses in
the simulator to propel themselves forward, like the robot
in Figure 9. The exact proportion of simulator-exploiting ro-
bots is hard to quantify, precisely because we were unable to
automatically detect them. However, a manual sample indi-
cated that the results with eight or more limbs were almost
exclusively of this type.

Figure 8 also shows a real-life reproduction of the same
design. This reproduction was created by generating CAD
files by automatically compositing hand-designed actuator
mounting points1 with parametrically generated capsule parts
based on the phenotype parameters of each segment. Ser-
vos were then attached to the resulting 3D-printed parts.

4. DISCUSSION
As seen above, the algorithm used in the experiments pro-

duces predominantly biped designs, most using variants of
the dragging gait shown in Figure 7, with most of the remain-
ing population consisting of quadruped designs. The preva-
lence of these biped designs might be explained by the sim-
plicity of the evaluation environment. The ground is com-
posed of a single planar surface with no irregularities or changes
in material, which might make evolution disregard the sta-
bility and robustness afforded by locomoting using more than
one pair of limbs.

A different environment-related factor which might con-
tribute to the predominance of the biped dragging robots

1The models that were used can be found at
http://folk.uio.no/eivinsam/data/hoxinspired/



Figure 7: An evolved robot with a dragging gait.

Figure 8: An evolved robot with a trotting gait, in simula-
tion (above) and its real-world replica (below).

Figure 9: Typical robot evolved to exploit weaknesses in
the simulator. Several limbs are locked inside each other,
making the simulator apply large forces on the limbs,
sometimes making the robot hover around chaotically.

is the material properties chosen. While the parameters for
the robot design itself were quite detailed, some of the pa-
rameters for the environment were less certain. In partic-
ular, the friction coefficient between robot and floor might
be too high, and thus distort the fitness landscape to a large
degree. This would favor the designs with a dragging gait,
which can use the high friction to latch on to the surface
with the ends of their limbs, so that they can move forward
in large strides.

Comparing the cumulative encoding with the noncumu-
lative one, the results show that the cumulative encoding
produces a small, but statistically significant increase in both
performance, as well as the number of limbs on average.
The increase in number of limbs seems to indicate that the
cumulative encoding facilitates the evolution of complex de-
signs better. In these experiments, the extent of the cumula-
tive effects was limited to the physical size of the robot, and
the evaluation scenario was of limited complexity. However,
with more advanced scenarios, or cumulative effects on more
parameters, the effects of this aspect of the approach pre-
sented here might become even more pronounced.

As Figure 4 shows, the proportion of final designs that are
able to reach the first target point (performance score ≥ 4)
is very small. However, some individuals are able to travel a
considerable distance towards the second target point. Since
both target points have a fixed position across all evalua-
tions, it is unclear whether these solutions have evolved to
actively use the heading sensor input, or the control system
has evolved a fixed program that is followed regardless of
sensory input.

Simulator instability is a common problem in evolution-
ary algorithms, since the evolutionary search is often very
efficient at finding the weak points of the simulator. In this
case, the rigid body simulation did not have continuous col-
lision detection, and so the algorithm can discover configu-
rations where the robot slips into impossible poses from one
time step to the next, and then get locked there, as shown in
Figure 9.

This would then create large forces, enabling robots to hover
frictionlessly a small distance above the ground or suddenly
jolt into the air. Some of these robots would hover in the
direction of the target point, and thus distorting the popu-
lation of that run. It was possible to disqualify the most ex-
plosive of these by enforcing a maximum limit on contact
forces, but this tweak was not able to filter out all of the mis-
behaving robots.

5. CONCLUSIONS AND FUTURE WORK
In this paper, a general, biologically inspired approach for

encoding co-evolved morphology and control is presented,
with two main features: The separation of the genotype into
two levels of description linked to two different physical axes
of development, and a cumulative method of encoding, where
the phenotype of each section of the robot body is a function
of not only its own parameters, but that of all previous sec-
tions as well. A simple encoding based on this approach is
used to evolve locomotion in a simulated environment.

The initial evolutionary results with basic forward loco-
moting robots are promising; however more work on the rep-
resentation will be required for more efficient robots with
morphologies not exploiting simulator instabilities. It is shown
that the cumulative encoding gives better fitness than an
alternative non-cumulative encoding, and it also tends to



produce more complex robot morphologies. By automati-
cally generating the CAD files for one instance of the evolved
robots, and then 3D printing and assembling it with servo
motors, we show that the proposed encoding is suitable for
transferring the results to real life robots.

For future experiments we will explore how the designs
and control systems produced by the algorithm behave in
the real world, extending the proof-of-concept given here.
Given the known reality gap issue in evolutionary robotics
[12], i.e. robots behaving differently when transferred to the
real world due to shortcomings of the simulator, we would
like to experiment with adaptation techniques after trans-
feral. This would involve a form of lifetime learning where
the real life robot adapts or re-learns the control system to
the new environment, given the now fixed body.

In the general Hox-gene-inspired approach presented here,
the section plan has intentionally been defined in very loose
terms. In this proof-of-concept it is represented by a simple
linear structure, but in principle any direct or indirect en-
coding capable of taking a set of additional control param-
eters can be used. Using techniques from genetic program-
ming, the section plan could be coded as a developmen-
tal program, with control parameters from the body plan
used both to control program flow and as parameters in nu-
meric calculations. Likewise, genetic regulatory networks,
or compositional pattern producing networks such as those
evolved in [3]could be instantiated with different conditions
or inputs to produce different section designs.

It also seems obvious that in order to evolve robots capa-
ble of locomoting robustly in the real world, one should in-
troduce a more complex environment than the perfect plane
used in the current experiments. We would like to introduce
areas with obstacles and different friction to promote more
robust gaits [10] or more complex designs [3].
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