Some Distance Measures for Morphological Diversification
in Generative Evolutionary Robotics

Eivind Samuelsen
Institute of Informatics, University of Oslo
Postboks 1080 Blindern
0316 Oslo, Norway

eivinsam@ifi.uio.no

ABSTRACT

Evolutionary robotics often involves optimization in large,
complex search spaces, requiring good population diversity.
Recently, measures to actively increase diversity or novelty
have been employed in order to get sufficient exploration of
the search space, either as the sole optimization objective or
in combination with some performance measurement.

When evolving morphology in addition to the control sys-
tem, it can be difficult to construct a measure that suffi-
ciently captures the qualitative differences between individ-
uals. In this paper we investigate four diversity measures,
applied in a set of evolutionary robotics experiments using
an indirect encoding for evolving robot morphology. In the
experiments we optimize forward locomotion capabilities of
symmetrical legged robots in a physics simulation.

Two distance measures in Cartesian phenotype feature
spaces are compared with two methods operating in the
space of possible morphology graphs. These measures are
used for computing a diversity objective in a multi-objective
evolutionary algorithm, and compared to a control case with
no diversity objective.

For the given task one of the distance measures shows a
clear improvement over the control case in improving the
main objectives, while others display better ability to di-
versify, underlining the difficulty of designing good, general
measures of morphological diversity.
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1. INTRODUCTION

In situations where human intervention is difficult or im-
possible, automatic robot adaptation or repair would be
desirable. With the recent and frequent advances in 3D
printing technology, such as an increasing number of mate-
rials, higher speeds, and portability, new possibilities open
up for the design or repair of robotic systems. For example,
one could imagine a team of robots including a mobile 3D
printer, capable of repairing or producing new robot mor-
phologies in situ [21].

Evolutionary robotics (ER) approaches the challenge of
automatic design and adaptation of robotic systems through
the use of evolutionary algorithms (EAs); population-based
search algorithms inspired by evolution in nature [20]. While
ER research has mainly been concentrated on the optimiza-
tion of robotic control systems, e.g. for legged robots [9],
using software simulations it is also possible to address the
challenge of simultaneously optimizing robot morphology
and control [16].

Automated robot design without a fixed topology intro-
duces an encoding challenge, as more complex data struc-
tures are needed to describe the space of possible solutions.
Thus, ER research has produced a wide variety of coding
schemes for describing morphology. In [13] a tree-based
structure is used, where each node represents one of sev-
eral possible standard modules like joints or variable sized
rigid elements. A wide variety of relatively realistic robotic
tasks are optimized for, starting from initial populations of
hand-made designs.

In [16], simulated locomoting robots with co-evolved mor-
phology and control were reproduced and tested in real life.
The reproduction was done using 3D-printing and standard
actuator components. The encoding used is direct, and very
low-level: The control system is a fully connected, vari-
able size artificial neural network, and the morphology is
represented as a number of rigid bars or linear actuators
connecting points in space. While this approach succeeded
in creating real-life robots capable of forward locomotion,
the encoding lacked support for the kind of modularity and
structural regularity seen in nature.

In generative and developmental systems, complex phe-
notypes are generated from simpler genotypes through some
sort of indirect encoding. This encoding is used as a develop-
mental program, or set of instructions that can be evaluated
to produce the phenotype. These encodings are highly pro-
ductive - they can produce highly complex and structured
results from very terse information [10] and are known to



outperform direct encoding in simple morphology optimiza-
tion tasks [11].

In the perhaps most well-known example of generative co-
evolution of morphology and control [24], animal-like crea-
tures are evolved in a virtual environment using a graph-
based representation. Morphology is described by means
of a directed graph, which may also contain cycles, and ad-
vanced morphologies with repeating or fractal structures are
achieved. The control system is a network with nodes repre-
senting mathematical functions. A variety of behaviors like
walking, swimming and following are evolved.

Other generative approaches to evolution of robot mor-
phology and control in virtual environments include gene
regulatory network encodings [3], producing robot morpholo-
gies consisting of smaller building blocks, and compositional
pattern producing network methods [1, 2], resulting in mor-
phologies with complex surfaces.

A generative co-evolutionary approach which also takes
the step to producing the evolved results in the real world
is presented in [10]. Here, robots are encoded with initial
values and production rules for an L-system, which are then
interpreted into a morphology and control components. The
resulting robots display aspects of symmetry and modular-
ity, and have a higher complexity and fitness than directly
encoded robots.

While evolutionary algorithms are effective on large and
complex search spaces, they may still suffer from premature
convergence and thus it is of interest to encourage an ex-
ploratory search based on a diverse population of solutions.
Several approaches exist to encourage population diversity,
such as niching or fitness sharing [23]. Another efficient ap-
proach is to include a diversity measure as a separate ob-
jective in a multi-objective setting [4]. This approach has
also shown to be efficient in evolutionary robotics, where an
added diversity objective can help overcome the so-called
bootstrap problem [18]. Another recent approach to evo-
lutionary search is the novelty search, which abandons the
fitness and explores purely based on new behavior [14], e.g.
solutions which are different than those already explored.
This approach can also be combined with performance ob-
jectives in hybrid approaches [17, 15].

Common for all of the methods is the need for a dis-
tance measure which defines the distance between two so-
lutions. While such a distance can easily be defined as
e.g. the Euclidean distance between two constant-sized real-
value genomes, it is less straightforward to define in geno-
type space where the solutions have developed to various
sizes and structures, like a neural network graph. Further,
for the evolution of robot control systems, the links between
the genotypic description, the phenotypic controller struc-
ture, and the final behavior may be complex, and thus ap-
proaches based on comparing the differences in the resulting
behavior may be preferred. In [19], a behavior-based dis-
tance outperformed a neural network structure distance in
the phenotype space.

While there are some approaches to general distance mea-
sures based on behavior (8, 6], these methods assume a fixed
robot morphology and operate on clearly defined behavior
vectors such as sensory-motor values or leg-ground contact.
It is less obvious how such measures would be defined in
a context where the morphology changes, e.g. when new
limbs with new motors are generated and radically different
locomotion strategies appear.

On the other hand, with generative mappings specifying
morphology there is an interest for differentiating the solu-
tions on a phenotypic level, as the mapping from genotype
to phenotype may be highly nonlinear. One approach to this
would be to quantify some properties of the morphologies,
such as width, height, and number of joints. These proper-
ties were applied in the evolution of virtual creatures in [15],
using a novelty search approach.

However, such a list of properties does not necessarily dis-
tinguish well between different structural differences. One
approach may be to implement more specific morphology
descriptors, such as e.g. the number of legs, if this kind of
information is available. As several morphology construc-
tions can be seen as graphs, a general graph distance metric
could be applied, such as graph probing [19] or the graph
edit distance (GED) [7]. However, finding the general GED
is an NP-hard problem, and may thus easily become a com-
putational challenge.

In this paper we investigate some distance measures for
generative robot morphologies. The distance measures are
evaluated in an evolutionary robotics setting, where we evolve
simulated robot morphologies for a relatively simple loco-
motion task, using two different control strategies. We com-
pare a diversity-neutral search with the different distance
measures, employed in the diversity objective of a multi-
objective evolutionary algorithm.

The first measure is similar to the one proposed in [15],
which operates in a three-dimensional Cartesian morphology
space. We then define a second measure which also operates
in a three-dimensional Cartesian space, but gives a more
detailed description of the topology of the body. The next
two distances are graph-based measures, one morphology-
specific and one which builds on a restricted case of the
graph edit distance.

The remainder of this paper is organized as follows: In
Section 2 an overview of the generative coding is given, fol-
lowed by a definition of the distance measures, and then
the experimental setup. The results of the experiments are
shown in Section 3. Section 4 contains discussion of the re-
sults, before a conclusion and pointers for future work are
given in Section 5.

2. METHODS

To examine the performance of the four diversity mea-
sures, a set of experiments is performed in which the a
multi-objective evolutionary algorithm is to maximize for-
ward movement, while minimizing mass and maximizing one
of the measures. The four measures are also compared to
the basis case of optimizing forward movement and mass
alone, with no diversity objective. All five cases are run
with two different control system encodings to reduce any
bias introduced by the control system.

The evolutionary algorithm used is NSGA-II [5], and the
evaluations are done in simulation using the PhysX physics
simulation engine. The encoding that is used will be de-
scribed in Subsection 2.1, followed by a description of the
physical parameters and control system parameters that are
evolved, in Subsection 2.2. Then the evaluation and objec-
tive functions are described in Subsection 2.3, before the di-
versity measures are detailed in Subsection 2.4. Finally, the
general setup of the experiments is explained in Subsection
2.5.
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Figure 1: Morphological encoding. The two sets
of genes are expressed in different combinations in
different parts of the phenotype.

2.1 Encoding

The encoding used in the experiments is based on the one
used in [22]. Inspired by how morphology is encoded in ani-
mals, the encoding is restricted to creating symmetric bod-
ies with a spine-limb structure by describing a single limb-
generating program and a set of parameters specific to each
spinal section. To generate the complete morphology, the
limb-generating program is instanced once for each spinal
section, generating a unique limb consisting of a spinal seg-
ment and one or more limb segments by using that sections
parameters, as illustrated in Figure 1.

Asin [22], the limb-generating program is simply a variable-
length list of genes, where each gene encodes the parameters
used to describe the morphology of one segment. However,
here a more generalized method is used to apply the section
parameters during phenotype development. The body plan
genes for each section k contain a fixed number of values
hgk), hék), e hs\lf). These genes encode the values that dif-
ferentiate different sections, and are encoded differentially:
each differentiating value Hi(k) of section k is calculated as

O _ {H}’“” +2™ itk >0
‘ 0 else
All the parameters in the section plan genes are essentially
duplicated N+1 times to match this, so that each parameter
p of each segment becomes encoded as the N + 1 parame-
ters po, p1,p2,--.,pnN in the genotype. Each expressed value
pUk) of segment j in section k is then calculated as

N
p(J!k) :pé] ) 4 ZHz( )pgﬂ )
i=1

where hgk) are the actual values stored in the genotype.

All parameters, both in body ans section plans, were ini-
tially set to zero and were mutated by applying a normal-
distributed random variable with a zero mean to each. The
body plan parameters, and the morphology-related and con-
trol system-related section plan parameters were mutated
using three different standard deviation values, as summa-
rized in Table 1.

Table 1: Evolution parameters
| Parameter function | Symbol | Value |

Population size “w 200
Body plan parameter mutation size on 0.2
Control system parameter mutation size oo 0.1
Morphology parameter mutation size oM 0.05
Gene insertion probability pr 0.0025
Gene deletion probability PD 0.005

Crossover is done by cloning each parent and matching
up genes in each clone by their historical markers. Each
gene contains one such marker; they are always inherited
unchanged, and new marker values only appear when a mu-
tation causes new genes to appear. Unmatched genes are
left untouched by the crossover operator. Crossover of the
parameters in a gene is done by whole arithmetic recombi-
nation.

During mutation, each gene also has a probability of hav-
ing a new gene inserted behind it or having its next gene
deleted. In these experiments the maximum number of genes
in the body plan and section plan is set to 3. This limits
the outcomes to a maximum of 3 pairs of limbs and 2 joints
in each limb. This limits the size of the morphology search
space, and stops the diversity measures from promoting in-
dividuals with an increasingly large number of joints.

This was done partly because we wanted to focus the
search on robots that were easy (and not too costly) to con-
struct in real life, and partly because initial experiments in-
dicated that removing these limits would require an increase
in population size beyond what could be afforded for the ex-
periments presented here.! The limits are implemented by
setting the insert probability to 0 when the number of genes
has reached its maximum. Otherwise the insertion and dele-
tion probabilities are as shown in Table 1.

2.2 Parameters and Control Systems

The section plan genes encode a small number of physical
parameters. The spine segment, of which there is always
exactly one in the section plan, has two parameters: the
segment length [ and the side offset o that decides how far
along the side of the spine segment the first limb segment will
appear, if present. The limb segments, which constitute the
rest of the section plan, has three parameters: the segment
length I, the axis-of-rotation angle A4 that controls the twist
of the limb joint compared to the previous joint, and the
rest angle Ay that adds an offset to the angle which the
joint will start the simulation in, and which is considered
the zero point in the control systems.

As all parameters were coded as real numbers with no
limits, the segment length and the side offset were translated

'The two graph-based measures, at least, will intuitively
strive to spread the population about equally out across

all Zgil M™ possible topologies, where N is the maximum
number of sections and M is the maximum number of seg-
ments in each section, including the spine. N =3, M =3
gives 39 possibilities. Increasing both by only 1 would re-
sult in 340 possibilities, so the population would have to be
increased dramatically to ensure that candidates from the
39 topologies in the smaller search space are properly repre-
sented.



using the formulas

L L' -exp(l)
O = 1/(1+exp(—o))

in order to map them into more suitable ranges ((0, co) and
(0,1) respectively). Here, L’ is the length of the previous
segment on the limb for limb segments, or the previous spine
segment for spine segments, so that the length is coded dif-
ferentially. In the case of the first spine segment L’ was
set to 0.1 m. If the segment length is less than what is re-
quired to contain the necessary servo motor, the segment,
and any following segments in the section plan would not
be expressed. This mechanism enables different sections to
have different number of limb segments. To be consistent
with this, then if the infeasibly short segment is a spine seg-
ment, the following sections in the body plan would not be
expressed either.

The control system parameters are a bit more complex.
One of two control systems is used in the experiments. Both
are simple open-loop systems, and produce periodical signals
with a period of 1s. The first control system is a simple
amplitude-phase system, as used in [12], which can be ex-
pressed as

Cag (t) = atanh (4sin (27 (t + ¢)))

In principle, this control system has two parameters per
joint, but here the amplitude is coded symmetrically along
with the morphology, and the phases are coded differentially,
reducing it to three parameters per joint pair: amplitude,
phase, and phase offset for the second joint in the pair.

The second control system is a cyclic cubic B-spline with
four knots, located at to = 0, t1 = 0.25, to = 0.5 and t3 =
0.75, with a period of one. Strictly speaking the B-spline
then only needs four control values to be fully defined, but
here two differentially coded phase parameters are added to
be able to ensure that smooth phase changes are likely to
occur during mutation. The encoding is symmetrical like
the amplitude-offset system, resulting in six parameters per
joint pair.

2.3 Evaluation

Each individual in the population is evaluated by simulat-
ing its behavior for 8 simulated seconds. After 1s of settling
time has passed, the position of the robot is reset to a fixed
starting point in the environment. After the remaining 7s
have passed, the distance traveled by the robot is measured
as the displacement of the tip of the front spine segment
along the axis that segment was pointing at the beginning
of the simulation. The mass objective value uses the mass
calculated by the simulator.?

In order to make the task more challenging, low, wide ob-
stacles were placed in the simulated environment at regular
intervals. The obstacles were 2cm tall and 2cm deep, and
extended 10 m in each direction. The first obstacle was put
0.5m in front of the robot, with a new obstacle appearing
every half meter after that. The thickness of the robot limbs

2The simulations was done using PhysX version 3.3 beta-2,
with a fixed timestep of 1/128s. The robot models and
obstacles were constructed with capsule and box primitives
and the joints were free 1D revolute joints with additional
custom constraints to simulate internal friction and torque
exerted by a basic DC motor model.

were set to 4cm, so the obstacles only add a degree of un-
evenness to the ground, forcing the robots to lift themselves
up slightly to move forward past the first half meter.

The morphology of the robots was variable to a very large
degree, making infeasible constructions probable. To mini-
mize this problem robots that had no joints, or that clearly
did not simulate properly (e.g. robots that resulted in move-
ment scores > 1km) were removed before the survival selec-
tion.

2.4 Diversity

The diversity of an individual « in the population P, is the
average distance to all other individuals in the population,
which can be written as:

Dy(e) = (=g 2 4l v)

yEPy

Here, d is the distance measure used. This paper compares
four different distance measures, operating in different phe-
notype spaces. T'wo of these are Cartesian spaces, both map-
ping the robot morphology to points in R*, with each of the
three axes corresponding to a scalar feature of the morphol-
ogy. In the first measure, the three features are the height,
mass and number of joints (HMJ), as seen in [15], except
the Euclidean distance is used as the distance value instead
of its square:

drns (z,y) = [[HMJ (z) — HMJ (y)||

The three features in the second measure, length-branches-
depth (LBD), is the sum of segment lengths, the number of
branches in the robot topology (i.e. the number of sections
with at least one limb segment), and the depth of the longest
branch (i.e., the maximum number of joints in any limb). As
with the first measure, the Euclidean distance is used:

drsp (¢, y) = [|[LBD (x) — LBD (y)|

The phenotype space of the other two is a graph space, so
other distance metrics have to be used. The first measure is
the degree-2 graph edit distance (GED), as explained in [25],
which limits the graph edit distance search to only inserting
and removing nodes with no more than two neighbors. The
insert and remove costs are v (A — v) =1 and v (u — A) =
1, and the relabel cost is

v(u—v) =1—exp(—|Lu— L)

where [, is the length of segment x. This way the differences
between two matched segments can never be greater than
the difference from removing or inserting a segment. The
time complexity of this algorithm is bounded by O (NMEQ) ,
where N and M are the number of nodes in the two graphs
and FE is the maximum number of outgoing nodes in any
node in the two graphs. Here, E is guaranteed to be less
or equal to 3, resulting in a time complexity of O (NM),
but with a large constant factor, because each of the NM
operations are quite expensive.

The second graph measure exploits the fact that all evolv-
able morphologies are symmetric and can be laid out in two
dimensions with coordinates as shown in Figure 1. By do-
ing a topology sweep (TS), an approximation of the graph
edit distance can be found as the best correlation between
two-dimensional images of the topologies. Each segment is
given a coordinate (i, j), where 4 is the index of the body
section the link belongs to (e.g. all segments in the head



section have ¢ = 0), and |j| is the distance to the spine in
number of segments. The sign of j is positive on the right
side and negative on the right. The finds the difference of
the best match between the two morphologies by summing
up the cost of replacing the segments in the first morphology
with the segments of the second, displaced by some & along
the 7 axis:

drs (z, y) = mkmz ZW (si; = stin;)

J

if body = has no segment at position 4,j then s7; = A.
v (A — A) is naturally zero. The implementation of this
measure used here is not very efficient, using O (N M S) time,
where S is the number of sections in the longest robot. Since
S here is less or equal to 3, this reduces to the same complex-
ity as the GED, however, the operations are much cheaper
here, resulting in run times comparable to that of the Carte-
sian measures.

2.5 Experimental Setup

Each diversity measure, along with the diversity-less con-
trol case was tested with both control systems in order to
reduce any bias introduced by the specific control system
used. For implementation reasons, the runs with no diver-
sity measure were also run with a third objective, which
would always evaluate to zero, thus effectively reducing the
algorithm to two-objective optimization. In total, there is 10
different variants of diversity measure and control system.
In these experiments, each variant was run 21 times. At the
end of each generation, the objective values of each surviving
individual were recorded. The number of branches and the
depth features of each individual, as used in drgp, is also
recorded for later analysis. Each run was terminated after
the 600th generation. At the end of each run, the average
diversity of the final population is recorded, as measured by
all four diversity measures.

The population is initialized with genotypes based on a
prototype with two body plan genes and three section plan
genes. The segment length parameters were lp = 1, {1 = 0.9
and [1 = 1.1, resulting in segment lengths of 10 cm, 9 cm and
9.9 cm respectively. The other parameters of the first two
segments were zero, while for the outer limb segment, the
parameters were Ay = 7/2 and Ay, = ~7/6. The robot gen-
erated by these parameters is shown in Figure 2. All control
system parameters are initialized to zero. To generate the
initial population, this prototype is then cloned p times, and
then each of the clones are mutated 10 times.

To measure how the diversity measures affects the main
objective of forward locomotion, a linear regression model is
estimated that predicts the 90th percentile forward moving
individual® of the population at a given generation. Even
though considerable effort has been spent to implement con-
straints so that impractical or faulty solutions are not scored
well, some will always slip through® and appear as outliers
on the fringes of the population. Thus the 90th percentile is
used because it shows the performance achieved by the best

3Since the population size was 200 in all the experiments,
this corresponds to the 20th best individual ranked by that
objective.

4For example, the runs using the HMJ measure were vul-
nerable to extremely tall robots that just tilted very slowly
forward, since the height component of the diversity measure
encouraged very tall designs.

Figure 2: The initial prototype robot.

Table 2: P-values of pairwise T-tests on diversity
measure forward movement performance differences
after generation 600

None LBD HMJ TS GED

LBD 0.0001

HMJ | <0.0001 | <0.0001

TS | <0.0001 | <0.0001 | 0.0002

GED | <0.0001 | <0.0001 | 0.0221 | 0.1553

individuals, while being more robust against outliers than
the single best individual. The model is on the form

Su=oa0+acC+ Z ay Dy
VAU

Here, U is the diversity case (i.e. one of the diversity mea-
sures or no diversity measure) used as the basis for the model
and C'is one for all runs with the cubic spline control system,
and zero otherwise. Dy is one for all runs where diversity
case V was used, and zero otherwise. The acC term of the
model accounts for systematic differences in score between
the two control systems. Setting C' = 0.5 gives a model for
the average expected score for the two control systems. ag
is the expected score of diversity case U with the amplitude-
phase control system, and ay is the expected difference be-
tween cases U and V. This model is robust in the sense that
when applied the predicted score will be the same regardless
of the choice of U.

3. RESULTS

The expected forward locomotion performance of the dif-
ferent diversity measures over generations are shown in Fig-
ure 3. Table 2 shows the p-values of the T-test on the dif-
ferent pairwise differences in performance, as found by cal-
culating Sy for all cases. The matrix is symmetric, so only
the lower triangular part is supplied.

The control case performs better (p < 0.01) than the cases
with a diversity measure approximately from generation 50
to generation 100, where the LBD measure catches up. This
measure then outperforms the control case approximately
from generation 200 until termination, and has been mea-
surably better than the other measures since generation 10.
The other measures remain inseparable until generation 450,
when the HMJ measure becomes measurably worse than T'S.
HMJ becomes different only by a weak significance to GED,
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Figure 3: (Expected) average performance of the
algorithm as measured by the 90th percentile for-
ward moving individual for the different diversity
measures after different generations.

with p-values in the range of 0.02 to 0.05 after generation
480. TS and GED distance remain inseparable, statistically
speaking, until the end.

Figure 4 shows the distribution of number of branches and
depth of the different diversity cases. The values are found
using regression models similar to the one used for the for-
ward movement score for each branch or depth value, but
with a quasibinomial model instead of a linear one because
the numbers are proportions. It can be seen that while HMJ,
TS and GED all have a large proportion of 1 and 3-branched
robots (i.e. bipeds and hexapods) and a smaller proportion
of 2-branched robots, the diversity-less case and LBD pro-
duce dominantly 2-branched robots. Similarly, when looking
at the depth distribution the control case and LBD mostly
produce robots with two-jointed limbs, while for the other
three cases the distribution between one and two-jointed
limbs is much more (but not quite) even.

The final population diversity in the different cases as
measured by all four diversity measures is shown in Ta-
ble 3. In all measures the diversity of the control case is
much lower than in the other cases. The diversities mea-
sured by T'S and GED are similar in all cases, and the runs
evolved with these two measures also result in similar values
in all measurements. The two Cartesian distance measures
show a different behavior. Both measures rate runs with
HMJ diversity highly and runs with both are rated highly
by HMJ, but runs with LBD rate much lower with by its
own measure.

Figure 5 shows three examples of robots produced by the
algorithm. The robot in Figure 5a has 1 branch and a depth
of 2, and locomotes using a rolling motion. Since the obsta-
cles are wide and relatively low, the robot is able to roll over
it and stay on course. Figure 5b shows a tripod morphology
(1 branch, depth 1) were the limbless rear spine segments
are used as a third leg that helps push the robot forward.
In Figure 5c one can see a much larger morphology with 2
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Figure 4: Limb length and branch count distribu-
tion - dark gray is 0, middle gray is 1, light gray
is 2 and white is 3. The number inside the boxes
is the corresponding proportion, no number means
less than 0.10.

branches and a limb depth of 2. This robot uses a gait where
all four limbs move synchronously to lift the body up and
forward. When the robot reaches the obstacles it gains ex-
tra traction from pushing against them with the rear limbs.
Some variants of this morphology is able to propel itself far
enough forward to grab on to a new obstacle each period,
thus reaching a speed of 0.5m/s.

4. DISCUSSION

From the experimental results, we can make the following
observations:

e Using diversity with the LBD distance gives the best-
performing forward movement results, as seen in Fig-
ure 3, and thus LBD-based diversity search seems to
explore most efficiently the set of useful morphologies
for the given task. We hypothesize the following: In

Table 3: Mean cross-measure diversity of the final
populations

Measured by
LBD HMJ TS GED
None | 1.69 3.14 122 1.54
LBD | 3.66 9.00 3.05 3.17
HMJ | 818 894 590 6.28
TS | 562 6.76 574 5.80
GED | 554 599 523 5.71

Evolved with




(a) Rolling robot climbing the low obstacles (b) Robot with successful tripod gait (c¢) Robot pushing itself from the obstacle
behind it

Figure 5: Some example results

the given scenario, the most efficient solutions tend to 5. CONCLUSION AND FUTURE WORK

be quadruped configurations, as seen in Figure 4. Op- In this paper, we have presented some distance measures
timization of the LBD diversity may lead to a larger for a generative robot morphology encoding, and analyzed
variation in the total length of the robot limbs, as their performance across two control systems in a simulated
there is a limited number of topologies available for environment. For the given locomotion task with small ob-
the branches and depth combinations. The LBD mea- stacles, one of the distance measures shows a clear improve-
sure may thus tend to explore different lengths within a ment over the plain evolutionary approach. Since the per-
quadruped configuration, leading to efficient solutions formances of the different methods vary considerably, an
for the task, as opposed to the other measures which evaluation of the distance measure to employ according to
may emphasize less significant components. the task at hand seems appropriate.

Most of the measures are morphology-specific, in principle
requiring a rigid, acyclic graph-like morphology, limiting the
scope of these results somewhat. However, the restrictions
may not be as strict as they appear; many rigid genera-
tive morphologies should be translatable into acyclic struc-
tures on a functional level (e.g. by collapsing rigid struc-
tures and then collapsing duplicate edges (joints) between
nodes), with differences in rigid structures handled by re-
labeling costs, and techniques may possibly be found to do
the same for non-rigid morphologies as well (some Voronoi
diagram-inspired approach, perhaps).

While the proposed diversity measures indeed show promis-
ing results, the search was limited to a relatively small set

e For the given task, it is clear from Figure 3 that even
though LBD diversity gives the best forward move-
ment performance, the control case of no diversity still
gives significantly better performance than diversity
using the other measures. One reason for this may be
that the more complex distances lead to a wider explo-
ration of the search space, and thus limit exploitation,
while in the current task such a wide exploration is not
necessary in order to achieve good results. It is how-
ever possible that more complex and deceptive tasks
may require a wider search and thus favor search based
on diversity with the more complex, topology-based

distances. . .
of possible topologies. It would be perhaps be prudent to
e While the GED distance gives a theoretically better verify the results with looser restrictions on the number of
measure of difference between topology graphs than limbs and joints per limb. There are also other aspects about
the TS distance, we can see from Table 3 that the the morphological phenotype spaces that could be explored.
two distances produce relatively similar values, with For instance, the current distance measures do not take into
TS being slightly higher on all measures. The slight account the joint angles, which may for otherwise similar
favor of TS is also indicated by the even distributions topologies have a great impact on the resulting behavior.
in Figure 4. The preferable graph-based distance met- Similarly, the control systems are co-evolved with the mor-
ric would therefore be TS, also taking into consider- phology and should thus be taken into consideration. While
ation that GED is computationally much more com- there is no obvious approach to measuring behavior together
plex. As an example, the evolutionary experiments with generative morphologies, as mentioned in Section 1, it
using GED diversity required about three times longer would be highly interesting to explore measures which would
runtime than the other diversity experiments. give more information of the combined morphology and con-

trol.

In order to fully explore the possibilities and limitations
of the diversity methods, and the capabilities of the gen-
erative system, it would be necessary to experiment with
even more complex tasks, such as environments with more
difficult obstacles. This could again lead to more complex
morphologies, as indicated in [2]. Furthermore, the general-
ity of the results should be verified for a range of different
encodings, environments and tasks, and also over a wider
range of control systems.

e From Table 3 one can observe that there are com-
plex interactions between the distance metrics. For
instance, evolving with the HMJ diversity will lead
to high diversity scores over all measures, even out-
performing the results of evolving directly with other
measures. At the same time, evolving with LBD gives
a very high HMJ score, but poor scores in the other
measures. The mechanisms behind this seem complex;
however we relate it to different morphology compo-
nents getting different emphasis depending on the dis-
tance measure, directing the search in different direc-
tions.
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