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Abstract

A challenge in evolutionary robotics is the in parallel adap-
tation of morphologies and controllers. Here, we considered
encoding methods for morphogenesis of 2D virtual creatures
that can be created from directed trees. Using an evolution-
ary algorithm, we optimized locomotion in these virtual crea-
tures and compared a direct encoding, an L-System, and two
types of encodings that produce neural networks—a Compo-
sitional Pattern Producing Network (CPPN) and a Cellular
Encoding (CE). We evaluated these encodings based on per-
formance and diversification, and we introduced an OpenAI
gym environment as a computationally inexpensive bench-
mark for exploring morphological evolution. The direct en-
coding and L-System generated more fit solutions compared
to the network strategies. Considering morphological diver-
sity, the direct encoding finds solutions more locally in the
morphological search space, the L-System made larger jumps
across this search space, and both network approaches also
make larger jumps though find fewer solutions in this space.
With these results we show how encodings exhibit differ-
ent characteristics as developmental approaches. Since the
genotype-phenotype mapping plays a major role in evolution-
ary robotics, further modifications using more complex tasks
and environments can lead to a better understanding of mor-
phogenesis and thereby improve how morphologies and con-
trollers of robots are evolved.

Introduction
A major challenge in Evolutionary Robotics (ER) is con-
cerned with optimizing both the morphology and control of
robots. For virtual creatures, it is still surprising much work
barely surpasses that of what Sims (Sims, 1994) accom-
plished two and half decades ago (Kriegman, 2019). Many
of the challenges in ER can be associated with the design of
the algorithms that optimize and construct the robots (Ch-
eney et al., 2016). Mostly, recent advances have been made
by altering the Evolutionary Algorithms (EAs) to either pro-
mote diversity (Lehman and Stanley, 2011), or find gradients
in the search space to exploit (Hansen et al., 2003). Evolv-
ing populations in nature convey a blind process of adapta-
tion while still needing to adhere to principles of possessing
evolvability. Wagner and Altenberg (1996) stated that a crit-
ical factor in shaping this evolvability in biological organ-
isms is the representation problem, or genotype-phenotype

Figure 1: Illustration of how encodings generate virtual
creatures. The solid lines represent a direct encoding step
whereas the dotted lines represent an indirect encoding step.
The encodings contain the evolvable parameters (genes) and
the blueprint entails how to construct a robot in Box2D.

mapping (Nolfi and Floreano, 2000). In contrast to the op-
timization strategies that operate on the phylogenetic time
scale (Pfeifer and Bongard, 2006) of evolving populations,
we address the workings of the genotype-phenotype map-
ping by looking at various encoding strategies as develop-
mental abstractions that can be used for optimizing both the
control and morphology of 2D virtual creatures.

Genotype-phenotype mappings can be created through di-
rect encodings (one-to-one mappings), and various types of
indirect (generative) encodings. For the creation of virtual
creatures, indirect encodings have been implemented in the
form of rewriting systems (Sims, 1994; Hornby et al., 2003;
Veenstra et al., 2017), morphogen-based (Turing, 1952) /
cell chemistry approaches (Stanley and Miikkulainen, 2003;
Bongard and Pfeifer, 2003), and neural networks (Stanley,
2007; Auerbach and Bongard, 2010; Cheney et al., 2014;
Ha, 2019), to name a few. Even though these types of en-
codings can alleviate some design requirements for EAs,
challenges such as prematurely converging morphologies
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(Joachimczak et al., 2016; Cheney et al., 2018) are still
prevalent. Even when comparing encodings when evolv-
ing virtual creatures, significant differences in diversifica-
tion aren’t always detectable (Miras et al., 2018). Design
challenges for creating real-world robots from evolved com-
ponents (Lund et al., 1997; Lipson and Pollack, 2000; Faı́ña
et al., 2013), could greatly benefit from designs that allow
for the reuse and recursion of specific components, as is
usually done in modular robots (Stoy et al., 2010; Auerbach
et al., 2014).

Robot and virtual creature components are commonly or-
ganized in lattices or articulated chains. In voxel-based soft
robots (VSR), a lattice of similarly sized volumetric compo-
nents is constructed where individual components directly
affect neighboring components via joints (Hiller and Lip-
son, 2014). The big advantage of this method is that the
entire robot morphology can be defined in cartesian coor-
dinates. When using articulated chains however, represent-
ing components in cartesian space is challenging when sizes
and orientations of components vary. The hierarchical com-
ponent dependency in the chain type approach does allow
for morphologies to be generated from directed trees. Since
many robot simulators have a similar hierarchical compo-
nent dependency, we evaluate four types of encodings that
can generate directed trees, which serve as blueprints for the
morphologies of virtual creatures (Figure 1).

Ha (2019) experimented with adjusting the morphology
of a virtual creature as its design, especially in reinforce-
ment learning, is rarely considered for optimization for the
task at hand. In addition, we would therefore like to em-
phasize that it becomes even more challenging when the
body of a robot changes its number of inputs and outputs
during the optimization process. Withdrawing from us-
ing advanced robotics simulators, here, we focused on a
minimal testbed with low computational requirements us-
ing the Box2D physics engine (Catto, 2019). This has been
implemented by creating a new environment for OpenAI
gym (Brockman et al., 2016), which aims to expose bench-
mark problems to a common interface. In this environ-
ment, we created a simple scenario for investigating the
genotype-phenotype mappings for evolving directed tree-
based blueprints for virtual creatures. We believe that this
can be a unifying, easy-to-use testbed for experimenting
with morphological evolution. As the bipedal walker testbed
is widely used for optimization methods (Klimov, 2019), we
employ a similar environment using a fixed random seed for
creating terrain that becomes progressively rougher. While
utilizing the Distributed Evolutionary Algorithms in Python
(DEAP) (Fortin et al., 2012) for the EAs, we added a sim-
ple generator network architecture that allowed robots to be
constructed from neural networks. We use the term gener-
ator network to define neural networks that are queried for
the construction of the blueprints for the virtual creatures.

In our experiments we evaluated a direct encoding, a para-

metric Lindenmayer-System (L-System) (Lindenmayer and
Jürgensen, 1992), and two neural network implementations
as our generator networks. The first neural network is a
Compositional Pattern Producing Network (CPPN), a type
of neural network that has been frequently used for morpho-
genesis in evolving virtual creatures robotics (Auerbach and
Bongard, 2011; Cheney et al., 2014). The second is a net-
work created using a Cellular Encoding (CE) (Gruau et al.,
1994). With these implementations we hope to align a few
concepts for the generation of virtual creatures and mod-
ular ER; using encoding strategies that will be compatible
with various optimization methods and simulation environ-
ments. Apart from evaluating the performance of these en-
codings, we are also interested in how they exhibit search
space traversal.

Our contribution is twofold. Firstly, we implemented vari-
ous encoding strategies and evaluated them based on perfor-
mance and diversity when optimized using a standard EA.
Secondly, the testbed introduced in this paper will allow
users to test optimization strategies for morphological evo-
lution. Additional neural network strategies that might be
useful for morphogenesis can be included by using them as
an encoding defined by the generator network. With the im-
plementation of the testbed as an OpenAI gym environment,
we hope that the machine learning community will be able
to experiment with various optimization methods for evolv-
ing both morphology and control systems that are useful for
virtual creatures and robotics.

Methods
Our experiments were conducted using the OpenAI gym
framework where we introduce a new gym environment for
morphological evolution in modular robotics1. In this frame-
work, we focus on morphological evolution of robots that
are created through directed trees. Different encoding strate-
gies can be used to construct these directed trees. These trees
that serve as blueprints can be interpreted into a virtual crea-
ture. The trees are built by initially creating an axiom node
(root of the tree), and iteratively expanding the tree struc-
ture by adding new nodes. Every node in this tree encapsu-
lates information about a module that can be created in the
simulation environment. The modules that were used could
have up to three other modules attached to them. A module
consists of one specific component, which can have various
shapes and control systems.

In addition to measuring the performance of the virtual
creatures, we measured a simplified tree edit distance (TED)
for each individual in a population compared to all other in-
dividuals in the population. Here we only counted the num-
ber of vertex insertions or deletions between two trees with-
out counting substitutions. This measure gave us an indica-

1source code of the platform can be found at https://
github.com/FrankVeenstra/gym_rem2D
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tion of the existing morphological diversity within a popula-
tion at any given time. The tree blueprints of the elites were
also plotted to see how populations traversed the morpho-
logical solution space.

The original bipedalwalkerv2 environment (Klimov,
2019) rewards agents based on how far they moved within
a certain amount of time. Since our approach can create
many individuals that through random mutation might per-
form badly, or even move in the opposite direction, we added
a feature in the environment that stops evaluating an indi-
vidual if it is does not move forward quickly enough. We
modeled this feature by adding a vertical line that slowly
moves forward, ending the evaluation when it crosses the
root module of an individual being evaluated. We modified
the environment to become progressively more challenging.
This is implemented through increasing a noise factor that
generates the environment. For the experiments we fixed
the random seed for procedurally generating an environment
that was deemed suitable (Figure 2). This environment does
not contain any large downward slopes and ends with a large
hill. The task for the virtual creatures, that are created near
the flagpole, is to move to the right as far as possible.

Modules

In our experiments, modules are basic components of the
robot that encapsulate part of the functionality of the entire
robot (Stoy et al., 2010). However, for simplicity, and en-
suring not to introduce many convoluting factors, we limited
ourselves to using simple primitive shapes as our modules.
In addition, we excluded any collisions between modules in
our implementation. Each module contains three connection
sites where other modules can attach (top, left and right).
The top connection site attaches a new child module directly
where the relative y vector of the parent module crosses the
simulated edge of the parent module. The left and right con-
nection sites attach a new module at a specified angle rela-
tive to the parent module’s coordinates and orientation—left
being defined as the negative angle, right as a positive angle.

For controlling our robots, we implemented an open-loop
controller where each module contained a simple sine wave
function:

y(t) = A sin(ωt+ ϕ) +D (1)

where A is the amplitude, ω is the frequency, ϕ repre-
sents the phase and D is the joint angle offset. In addition
to the equation, a maximum angle was defined as π/2—the
negative and positive values determined the outer bounds of
y. The controller mutation operator changes the amplitude,
frequency, phase and offset of the sinusoidal wave function
using a gaussian distribution random number generator. All
controller values as stored in the genotype were normalized
between -1.0 and 1.0.

Figure 2: Box2D environment used for experiments. Note
that the flag is not scaled.

Evolutionary Algorithm
The implemented EA came from the DEAP (Fortin et al.,
2012) framework. This EA consisted of a (λ, µ) (Eiben
et al., 2003) strategy—we used tournament selection (tour-
nament size 4) as our offspring selection mechanism, and a
generational replacement operator (Floreano and Mattiussi,
2008) where the offspring population replaces the parent
population completely. It is known that this generational
replacement operator can lead to noisy evolutionary pro-
gressions, though we used this type of operator since we
noticed a dramatic decreased morphological convergence
when compared to more elitist approaches (Veenstra et al.,
2019). The mutation operators for our encodings was di-
vided between morphological mutations and controller mu-
tations. The mutation rates determined the probability with
which respective parameters were mutated. A fixed sigma
value was implemented for adjusting the parameters of the
genotype.

For finding suitable parameters for evolving our virtual
creatures, we ran a mutation rate sweep of 256 evolutionary
runs for each encoding with different mutation parameters.
We used a combination of 8 different parameters for the con-
troller mutation rate, and the morphological mutation rate.
The evolutionary runs of the sweep were simulated for 500
generations, using a population size of 100 (50,000 evalua-
tions). We ran 4 duplicates with different random seeds for
each unique combination of parameters. From this sweep,
we chose parameters that we set for 20 duplicates of longer
evolutionary runs for each encoding (100,000 evaluations
per duplicate; population size of 100; each duplicate again
using a different random seed). The parameters adjusted for
the experiments can be found in Table 1.

Creating robots from blueprints
All encodings used for our experiments resulted in a com-
mon blueprint format, a directed tree. This blueprint was
interpreted by the Box2D environment into both the mor-
phology and controller of the virtual creature. The different
encodings that create these blueprints each handled muta-
tions differently. Mutations in the direct encoding directly
affect the directed tree. The mutations in the L-System only
affect the rewrite rules. The mutation operators in the gener-
ator networks affected how the network topology, activation



Table 1: Experimental settings. The values within paren-
thesis were only used for the parameter sweep.

Shared parameters
Evaluations 100,000 (50,000)
Duplicates 20 (4)

Population size 100
Mutation Sigma 0.2

Direct L-system CPPN CE
Mutation rate 0.32 0.16 0.02 0.08

Morph. mut. rate 0.16 0.04 0.02 0.08

functions, and weights were altered. For each encoding, we
supplied a list containing eight modules that served as tem-
plate modules. For the indirect encodings, this list was mu-
tated, which altered the controller and morphology of each
module in the L-System, and just the morphology in the gen-
erator networks. We limited the depth of the directed tree to
8 nodes, and set the maximum number of modules that could
be created to 20 for one robot.

Each node in the tree contained information about (1) the
module type, (2) the morphological parameters associated
with the module type, and (3) the controller. Any mod-
ules that happened to be located below the terrain when the
tree was intepreted, were removed from the virtual creature.
Hence, it is not guaranteed that nodes from the blueprint
were expressed in the phenotype. The following sections
illustrate how each encoding is used to create the blueprints.

Direct Encoding The direct encoding manipulates the di-
rected tree that forms the blueprint of the robot. The mu-
tation operators used for the direct encoding were: (1)
remove node (and sub-nodes), (2) add node, and (3)
mutate controller. When mutating a direct encoding
genome, we looped through each node and evaluate whether
these mutation operators should be called for individual
nodes. To ensure that we add, on average, the same num-
ber of modules in a mutation step, the probability of adding
a module was divided by the total number of nodes already
present in the tree. The add nodemutation operator is called
with a probability for each available connection site on a
node. Since the remove node mutation removes all sub-
nodes as well, the probability of this mutation happening
was set half the probability of an add node mutation.

L-System The L-System implementation is based on a
parametric L-System (Lindenmayer and Jürgensen, 1992),
where the grammar rewrite rules act directly on symbols de-
fined in our alphabet that reference the parameters stored in
nodes. This approach is similar to a CE that has been used as
a rewrite system for directed graphs (Gruau, 1993). In our
case, since we used two different module types, we added
four symbols for each module type to which we associated
specific rewrite rules. This means that eight rules in total

(a) CPPN (b) Cellular Encoding

Figure 3: Typical RGB output values after randomly ini-
tializing the CPPN and the CE. For both networks, the x
and y coordinates were used as inputs to the network.

were employed for generating the entire robot’s morphology
and controller. We only allowed the tree to expand by adding
new leaf nodes based on their associated rules—nodes that
were created did not change. Each symbol also contains a
reference to a specific controller. Therefore, every similar
symbol expressed in the tree contains a deep copy of the
same controller. The controller mutation operator changed
the controllers stored in the symbols. The morphological
mutations changed the rewrite rules directly associated with
each symbol.

Neuroevolution The generator networks were created
through a direct and indirect representation. The direct rep-
resentation utilizes a CPPN (Stanley, 2007). The CPPN has
originally been created to work in conjunction with Neu-
roevolution through Augmenting Topologies (NEAT) (Stan-
ley and Miikkulainen, 2002), which contains an evolution-
ary algorithm. However, to isolate the results of the encod-
ing itself, we decided to use DEAP’s standardized evolution-
ary algorithms instead.

The indirectly encoded generator network was created
through a CE (Gruau et al., 1994). To illustrate how each
encoding results in different expression patterns, we illus-
trate how these networks can generate 2D images by having
the x and y coordinates of a screen as its inputs, and RGB
values as its outputs (Figure 3b). The figure shows that the
CPPN creates smoother gradients when compared to the CE.
To clarify, the CE and CPPN encodings both create compo-
sitional pattern producing networks (the generator network)
but we would like to emphasize that with CE and CPPN we
refer to the encoding, not the network.

For creating virtual creatures, we queried the networks it-
eratively. For a query, we gave each network three inputs of
a single available connection site. The three inputs were, (1)
the current depth of the connection site normalized between
values of -1.0 to 1.0, (2) the parent module index from the
module list (the 8 template modules) normalized between -
1.0 and 1.0, and (3) the value of the angle of the connection



Figure 4: Results of the mutation rate sweep. The accumulative maximum fitness values are presented for each encoding.
The top two figures show the fitness progression influenced by the mutation rate (a) and the morphological mutation rate (b) for
each encoding. The bottom two figures display how the TED changes during the evolutionary run as influenced by the mutation
rate (c) and the morphological mutation rate (d). The legend indicates the values of either the controller mutation rate (left) or
the morphological mutation rate (right).

site (left = -1.0, top = 0.0, and right = 1.0). The network
in turn produced 6 outputs determining: (1) whether a mod-
ule should be attached or not, (2) which module should be
connected, and (3) four outputs determining the parameters
of the controller of the module (amplitude, phase, frequency
and offset). As mentioned, the morphology of the modules
is changed in the supplied template list separately and the
generator networks’ second output determined which mod-
ule from this template to use.

CPPN The CPPN was based on the implementation from
neat-python (McIntyre et al., 2019). We altered the
CPPN through simply calling the mutation operator build
in the library. We set the values of the conn add prob,
conn delete prob, node add prob, node delete prob, and
bias replace rate equal to the morphological mutation
rate parameter that we used since these attributes alter the
topology of the network. The controller mutation rate

altered activation mutate rate, weight replace rate,
weight mutate rate and bias mutate rate in a simi-
lar manner. The sigma value we use was set to al-
ter weight mutate power, bias mutate power and the
response mutate power. To the best of our knowledge,
this was a decent mapping from our mutation rate parame-
ters to mutation settings of the CPPN.

Cellular Encoding The cellular encoding used to create
the generator network was based on Gruau et al. (1994). In
this encoding, a network was generated by initially having a
single cell (or node) connected to an input and output node.
This cell is then divided, according to division rules, into
more cells through either sequential or parallel division. The
rules we implemented for generating this network were (1)
change the node type, (2) divide sequentially, and (3) divide
in parallel. The weights and activation functions were at-
tached to the rules determining how the division happened.
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Figure 5: Evolutionary progression of all encodings. The
shaded area represents the 25th to 75th percentiles. The dot-
ted line shows the maximum fitness of the best run.

We limited the number of node that could be produced by
the CE to 50. This limitation was set as more nodes led to a
computational bottleneck. We limited the number of rewrite
rules the cellular encoding could use to 10. Each node ob-
ject contained information about the type of node, and the
weights of the node’s output edges.

To generate the network, we iterated 10 times over the
nodes present in the network to determine how each node
should be rewritten. This process was terminated early if
the maximum number of allowable nodes was reached. A
node could also contain any activation function that were
also available to the CPPN.

Results
Mutation rate sweep The performance of each encoding
differs greatly with regards to the parameters we set. As can
be seen from Figure 4, the morphological mutation rate pa-
rameter has a bigger effect on the L-System than on the Di-
rect encoding. The diversity measured by the TEDs within
a population was also greatly affected by the mutation pa-
rameters we set (Figure 4). Since this distance metric only
measures morphological parameters of the tree blueprint, we
can see that the controller mutation rate did not affect the
TEDs in the direct encoding, L-System or CE, whereas it
did affect the CPPN. Similarly, the morphological mutation
rate parameter has the opposite effect—the CPPN was not
affected whereas the other encodings were. Based on these
results, we chose the parameters for the experimental runs
that can be seen in Table 1.

Performance analysis The performance of all runs for
each encoding is presented in Figure 5, and the difference
in performance between the accumulated fitness values is
shown in Figure 6. For comparing any significant differ-
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Figure 6: Boxplot of the accumulated best fitness for each
encoding.
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Figure 7: TED measured over generations. For each en-
coding, the lines show the cumulative TED. The shaded area
represents the 95% confidence interval.

ences, we performed six two-sided Mann-Whitney U tests.
There was no significant difference between the direct en-
coding and the L-System (p-value > 0.2), but there was be-
tween the direct encoding and the CPPN (p-value < 0.001),
and the direct encoding and the CE (p-value < 0.001). Sim-
ilarly, the L-System was significantly different from the
CPPN (p-value < 0.001) and the CE (p-value < 0.001) as
well. Furthermore, the CPPN and cellular encoding also
showed a significant difference in performance (p-value <
0.002). We also observed that the performance of the direct
encoding and CPPN is less spread out across runs whereas
the L-System and the cellular encoding produced more out-
liers (e.g. see the dotted lines in Figure 5).

Diversity analysis The diversity based on the TED mea-
sured within a population over time is shown in Figure 7.



Here, the L-System seems to maintain the highest TED in
the population followed by the CE, CPPN and direct encod-
ing respectively indicating that the indirect encodings keep
a larger morphological diversity within the population. Fig-
ure 8 displays how the blueprints of the elites of each run
change over time. From these images it can be qualitatively
seen that elites differ most from one another in the direct
encoding and L-System, whereas elites seem to converge
quicker in the network generator approaches.

The tree structures depicted in Figure 8 were also plot-
ted for all individuals taken at intervals of 20 generations.
Since each node in the representation has a specific posi-
tional coordinate when plotted, we summed up the x and
y coordinates of each position of each node to get a new
abstract positional coordinate (note that different trees can
map to the same coordinates). Through rasterizing these
values, a map of elites, similar to visualizations shown in
MAP-Elites implementations Mouret and Clune (2015), can
be constructed. Figure 9 depicts the cumulative fitness score
for each individual of each encoding in every morphologi-
cal solution space that was found. From this figure one can
see that the direct encoding spreads out locally, individuals
in an area having roughly the same fitness. The L-System
seems to jump across the morphological space where high
fit solutions are rarely found in clusters. The generator net-
works jump across the search space in a similar arbitrary
manner, though not many unique morphological solutions
were found.

Discussion
In this article we looked at how different methods can
be used as developmental abstraction for the genotype-
phenotype mapping when evolving the morphology and
control of 2D virtual creatures. Performance wise, we saw
that the direct encoding and L-System outperformed the im-
plemented generator network strategies based on fitness. In
addition, our results indicate that the encoding strategies
greatly affect how the solution space is traversed. Mainly,
the direct encoding, traverses the morphological solution
space more locally (Figure 9) whereas the indirect encod-
ings make larger jumps across this search space.

Other types of neural networks, or different inputs and
output definitions, can likely improve the performance of the
generator networks. However, the purpose of this implemen-
tation is also to start considering a unified approach for mor-
phogenetic strategies that result in directed trees. Different
encoding types can hereby contribute to the exploration vs
exploitation trade-off. Users familiar with neural networks
can incorporate any type of neural network for optimizing
these directed trees, which potentially lead to interesting de-
signs and aid us in understanding artificial developmental
processes.

A challenge of the generator network approaches for cre-
ating robot morphologies is concerned with tuning the many

(a) Direct Encoding (b) L-System

(c) CPPN (d) Cellular encoding

Figure 8: Blueprints of elites of plotted across genera-
tions. The blueprints are shown across generations (from
light yellow [generation 0] to dark blue [generation 1000]).

adjustable parameters. Although we have tuned some of
these parameters through the parameter sweep, it is un-
known whether the decreased performance is related to the
plethora of parameters or perhaps the mapping of the input
and outputs of the networks. In contrast, the L-System only
contains a few rewrite rules and has the least parameters to
optimize, making it easy to implement. The limitation of
the L-System is that controllers cannot be fine-tuned if they
are of the same type. This limitation does create a few in-
teresting points of potential improvement for the L-System.
The encoding could be improved by, for example, allowing
for the dynamic splitting of rewrite rules over time. One
rule can be split up into two sub-rules that can subsequently
enable fine-tuning of individual modules. Since we used
open-loop controllers defined by sine wave generators, an
additional improvement for all encodings could be a sen-
sory feedback loop that adjusts the controllers dynamically
or online (Sproewitz et al., 2008; Moreno and Gomez, 2010;
Nordmoen et al., 2019).

Since all virtual creatures created for this project
went through an intermediate directed tree blueprint, this
blueprint can also be transformed back into a direct encod-
ing. This adds the possibility of incremental evolution and
hybrid encodings. One could for example start evolving
a virtual creature using an indirect encoding and at some
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Figure 9: Heat maps showing how each encoding explores
the search space. Figures on the left show the cumulative
exploration for each encoding. Figures on the right show the
exploration of a single run.

point, during optimization, switch from indirect encoding
to direct encoding. This could allow for individuals that
jumped across the search space to be fine-tuned, which is
difficult to implement using the original indirect encodings.
Since there is a big difference in how the encodings traverse

the search space, it would be interesting to see what effect
diversification mechanism for EAs would have on the per-
formance of the encodings presented.

We are unsure whether the performance of various strate-
gies in this 2D platform will translate well to 3D problem
spaces, and we would like to investigate this in the future
by deploying the same methods using 3D testbeds such as
presented in James et al. (2019); Coumans and Bai (2017).
Another interesting method could hereby be to simulate var-
ious environments similar to Wang et al. (2019), where these
environments could include 3D simulators. Through quick
explorative experiments done using the 2D testbed, more
complex 3D environment can be used when indicative hy-
perparameters are set. Using directed trees also enables the
creation of more realistic morphology changing simulated
robots (Alattas et al., 2018).

With the presented testbed and encoding results, we hope
to have given some insights in how morphological evolu-
tion for virtual creatures is shaped by encoding strategies.
A potentially unifying approach for using these strategies in
the OpenAI gym environment can ease the process of evolv-
ing both the morphology and control of simple virtual crea-
tures. In addition, it can enable the exploration of genotype-
phenotype mechanisms for increasing performance in arti-
ficial system, and potentially gain insight in developmental
strategies seen in natural systems.

Conclusion
Different types of encodings can be utilized to construct vir-
tual creatures. Considering the effectiveness of each the
encodings we used, the L-System and direct encoding per-
formed best. We did see that diversification across evolu-
tionary runs differed for each encoding. Namely, the direct
encoding tended to explore local areas of the morphological
search space in contrast to bigger jumps that were made us-
ing the indirect approaches. The testbed introduced in this
paper is an OpenAI gym environment for the generation of
2D virtual creatures. This testbed is a computationally inex-
pensive benchmark for experimenting with morphological
evolution of virtual creatures. This method can be useful
to get a better understanding in what genotype-phenotype
mapping to use for evolving simple virtual creatures. Ulti-
mately, if this understanding can translate to more complex
tasks and environments, it can aid in enhance design princi-
ples for creating other simulated and physical robots.
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