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Abstract

Cauchy sequences, Dedekind cuts, base-10 expansions and continued fractions are examples of
well-known representations of irrational numbers. But there exist others, not so popular, which
can be defined using various kinds of sum approximations and best approximations. In this paper
we investigate the complexity of a number of such representations.

For any fast-growing computable function f , we define an irrational number α f by using a series
of reciprocals of powers of all primes. We prove that certain representations of α f are of low
computational complexity (which does not depend on f ), whereas others, apparently similar
representations, can be of arbitrarily high computational complexity (which depends on f ). The
existence of computable numbers like α f allows us to prove new and non-trivial theorems on the
computational complexity of representations without resorting to the standard computability-
theoretic machinery involving enumerations and diagonalizations.

In the paper we also show how to construct irrational numbers γ whose representations by a
Cauchy sequences are of low computational complexity, but whose base-b expansion may be
of arbitrarily high computational complexity for all bases b. Moreover, for any E2-irrational
number α, there will be an E2-irrational number β, such that α + β has the complexity of γ. As
a consequence, two numbers which have, let us say, base-10 expansions of low computational
complexity, may add up to a number whose base-10 expansion is of arbitrarily high computa-
tional complexity. The same goes for representations by base-2 expansions, base-17 expansions,
Dedekind cuts, continued fractions, and so on.
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1. Introduction

1.1. Conversion of Representations and Unbounded Search

Irrational numbers are infinite objects. In computations these objects have to be represented in
some way or another. We have a number of options. Some popular representations are Cauchy
sequences, Dedekind cuts, decimal expansions, binary expansions and continued fractions. A
number of alternative representations will be discussed in this paper. All these representations
are equivalent in the sense that one representation can be converted into another by an algorithm.
Our investigations are motivated by the question:

Do we need, or do we not need, unbounded search in order to convert one represen-
tation of an irrational number into another representation?

Let us study a few informal examples. We can convert a decimal expansion into a binary expan-
sion without resorting to unbounded search. Consider the infinite decimal expansion

0.31270073941 . . . (1)

of an irrational number β, and assume that we already have computed the first few digits of β’s
binary expansion, e.g., the digits 0.010. How can we compute the next digit? Well, if 0.0101
lies below β, the next digit will be 1, and if 0.0101 lies above β, the next digit will be 0. So
we check if a rational number, given by a finite binary expansion, lies above or below β, and
then we can determine the next digit. Proceeding this way, we can can compute the digits of
β’s binary expansion one by one. No unbounded search will be required as every rational with a
finite binary expansion also has finite decimal expansion. E.g., the binary expansion 0.0101 has
a finite decimal expansion, namely 0.3125, and thus we can determine if 0.0101 lies above or
below β by comparing the digits 0.3125 to the first five digits 0.3127 of (1).

If we want to convert a binary expansion into a decimal expansion, we will need unbounded
search. Consider an irrational β1 that has a binary expansion of the form 0.0(0011)n0001 . . . and
an irrational β2 that has a binary expansion of the form 0.0(0011)n0100 . . .. So both expansions
start with 0.0 and proceed with the sequence 0011 repeated n times where n can be arbitrarily
large. Now, the decimal expansion of β1 starts with 0.0 whereas the decimal expansion of β2
starts with 0.1. This example shows that we possibly will have to examine more than 4n digits
of a binary expansion in order to determine the first fractional digit of the decimal expansion.
Since n can be arbitrarily large, we will obviously need unbounded search.

If we want to turn a (fast converging) Cauchy sequence into a decimal expansion, we will also
need unbounded search. A Cauchy sequence that represents the irrational number β is a sequence
q0, q1, q2, . . . of rationals such that |qn − β| < 2−n. Let us say that each of the first 17 rationals
of the Cauchy sequence equals 10−1. Then we know that β is pretty close to 10−1, but we do
not know if β lies above or below 10−1, and thus we do not know if the decimal expansion of
β should start with 0.0 or 0.1. Since β is irrational, there will somewhere in the sequence be
a qn which allows to determine which of the two alternatives is correct, but we obviously need
unbounded search to find that qn. By the same token we need unbounded search if we want to
convert a Cauchy sequence into a Dedekind cut. (The Dedekind cut of an irrational number β is
a predicate D(q) that tells us if the rational number q lies above or below β. In the example just
seen we have to examine an arbitrarily large initial segment of a Cauchy sequence to determine
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if a rational lies above or below β.) On the other hand, we do not need unbounded search in order
to convert a decimal expansions into a Cauchy sequence. We can do that by chopping off initial
segments of the decimal expansion. E.g., we can turn (1) into a Cauchy sequence q0, q1, q2, . . .
by simply letting q0 = 0, q1 = 0.3, q2 = 0.31, q3 = 0.312, and so on.

The reader might have noticed that we in some sense have kicked out the rationals. Our examples
above discuss conversions between representations of irrational numbers, not between represen-
tations of real numbers. We will proceed along this line and restrict our attention to the irrational
numbers. This is to a certain extent a matter of taste and convenience. It makes the presentation
smooth. The interested reader might want to consider the following question:

Can we, or can we not, uniformly convert one representation of a real number into
another representation?

This question is definitely closely related to the question we ask above, but we will not discuss
the nature of this relationship any further in the current paper.

1.2. Methods of Proofs and Subrecursive Classes

Let us recall our fundamental question in slightly reformulated version:

Do we need unbounded search to convert a representation R1 into a representation
R2?

It is rather obvious how we in principle can give a mathematical satisfying negative answer to
this question. We can simply give an algorithm that converts an R1-representation into an R2-
representation. If the algorithm does not use unbounded search, then the answer is NO. It is not all
that obvious how we can give a mathematical satisfying positive answer. One of our examples
above shows that we need unbounded search to convert a Cauchy sequence into a Dedekind
cut. The example is simple and persuasive. The inevitable conclusion is that we really do need
unbounded search. Still, it is an example and not a proof. Moreover, in the general case, where
R1 and R2 may be unorthodox representations that we are not very familiar with, it will hardly
be satisfactory to cook up an example and wave our hands.

In order to give a proper positive answer to our question, we will work with generalized subrecur-
sive classes. A subrecursive class is a class of total computable functions. The class of (Kalmár)
elementary functions is an example of a subrecursive class. So is the class of primitive recursive
functions. We give a formal definition of a subrecursive class in Section 3, and we prove that for
any total computable function ψ there exists a subrecursive class S with strong closure properties
such that ψ ∈ S.

Now, let us see how we can use subrecursive classes to prove that we need unbounded search to
turn a Cauchy sequence into a Dedekind cut. Assume that we do not need unbounded search (so
our assumption is wrong). Then, if C is a Cauchy sequence for the irrational number β, there will
be a total computable function ψC which is the Dedekind cut of β. The function ψC will depend
uniformly on C, and thus, for any sufficiently large subrecursive class S (with sufficiently strong
closure properties), ψC will be in S whenever C is in S. This entails that the set of irrational
numbers that have a Cauchy sequence in S, henceforth denoted SC , is a subset of the set of
irrational numbers that have a Dedekind cut in S, henceforth denoted SD.
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So if it should be possible to avoid unbounded search when turning a Cauchy sequence into a
Dedekind cut, the inclusion SC ⊆ SD would hold for any sufficiently large subrecursive class S
that has sufficiently strong closure properties. Now, if we prove that there will be arbitrarily large
such S where SC * SD, then we can safely conclude that unbounded search really is needed in
order to convert a Cauchy sequence into a Dedekind cut.

Let SR1 and SR2 denote the sets of irrational numbers that have respectively R1-representations
and R2-representations in S. The statement

there exists an arbitrarily large subrecursive classSwith nice closure properties such
that SR1 * SR2

should be considered as a mathematical clarification and a formalization. It is a way to state that
we need unbounded search to convert an R1-representation into an R2-representation. Moreover,
the statement is amenable to rigorous proof.

The reader should be aware of our main concerns. When we have proved that an algorithm can
be realized by an elementary or a primitive recursive function, we will be satisfied. That is good
enough for us. That implies that the algorithm does not use unbounded search. A fine-grained
complexity-theoretic analysis of algorithms and conversion procedures is beyond the scope of
this paper. It will be convenient to us to work with subrecursive classes that are closed under
elementary, and sometimes even under primitive recursive, operations. Then we can clear the ta-
ble of tedious conventions and potential problems related to coding. Uniform systems for coding
finite sequences are available inside the class of elementary functions. Hence, for any reasonable
coding conventions, standard operations on rational numbers and sequences of rational numbers
(like addition, multiplication, exponentiation, bounded sums, bounded products) will obviously
be elementary. Furthermore, we can work with straightforward and natural definitions of (fast
converging) Cauchy sequences, sum approximations, best approximations, and so on. These are
definitions that do not make sense below the elementary level.

1.3. References

More on computable real numbers, and on computable analysis in general, can be found in
Weihrauch [23] and Aberth [1].

Subjects related to the ones we investigate have been studied over the last seven decades. In a
very early paper on computable analysis, Specker [21] proves that

SD ⊂ S10E ⊂ SC

where S is the class of primitive recursive functions and S10E is the set of irrationals that have a
primitive recursive decimal expansion (Specker sequences were introduced in the same paper).
In addition to Specker’s paper there are works by Mostowski [14], Lehman [16], Ko [7, 8],
Labhalla & Lombardi [15], Weihrauch [22], Georgiev, Skordev & Weiermann [20], Georgiev
[3], Kristiansen [10, 11] and quite a few more. We will give further references throughout the
paper.

Some results present in the current paper have been published in the short conference paper [4].
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1.4. Our Results

We will provide irrational numbers with intriguing properties. Such a number α has a transparent
definition of the form

α =

∞∑
i=1

1

P f (i)
i

(2)

where Pi is the ith prime and f is some fast-increasing function with certain properties (so there
is one such α for each f ). Take any subrecursive class S and pick a suitable f that is not primitive
recursive and lies outside S, that is, f < S (there will always be such an f ). It turns out that for
any fixed b ≥ 2 there is a primitive recursive algorithm (indeed there is an elementary algorithm)
for writing α in the form

α = 0 +
D1

bk1
+

D2

bk2
+

D3

bk3
+ . . . (3)

where

• Di ∈ {1, . . . , b − 1} (note that Di , 0 for all i)

• ki ∈ N \ {0} and ki < ki+1.

Let Âα
b denote the function that gives the nth summand of the series (3), that is, Âα

b (n) = Dnb−kn .
We will refer to Âα

b as the base-b sum approximation from below of α. For each fixed b ≥ 2, the
function Âα

b is elementary (and thus primitive recursive).

Still, an algorithm that generates the series (3) uniformly in b, cannot be primitive recursive.
Indeed, such an algorithm cannot belong to any subrecursive class that does not contain the
function f . Hence the algorithm cannot belong to S no matter how big S might be (because we
have picked an f that is not in S). To put it otherwise and more precisely: Let Ĝα(b, n) = Âα

b (n).
Then Ĝα < S. We will refer to the function Ĝα as the general sum approximation from below of
α.

For any fixed b ≥ 2, there is also a primitive recursive algorithm for writing α in the form

α = 1 −
(
D1

bk1
+

D2

bk2
+

D3

bk3
+ . . .

)
(4)

where

• Di ∈ {1, . . . , b − 1} (note that Di , 0 for all i)

• ki ∈ N \ {0} and ki < ki+1.

The function Ǎα
b that gives the nth summand of the series (4) will be called base-b sum approxi-

mation from above of α. It is not true in general that every irrational that has a primitive recursive
base-b sum approximation from below also will have one from above (an intuitive explanation of
this asymmetry is given early in Section 7). However, for each b ≥ 2, the function Ǎα

b is primitive
recursive, that is, α has a primitive recursive base-b sum approximation from above. Moreover,
in contrast to the case when we were dealing with sum approximations from below, it turns out
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that there also is a primitive recursive algorithm that generates the sum (4) uniformly in b. Let
Ǧα(b, n) = Ǎα

b (n). Then Ǧα is indeed a primitive recursive function. We will refer to the function
Ǧα as the general sum approximation from above of α.

A brief summary: For any subrecursive class S, there is an irrational α such that

• for any fixed b ≥ 2, the base-b sum approximation from below of α is primitive recursive
(indeed, it is elementary)

• the general sum approximation from above of α is primitive recursive

• the general sum approximation from below of α is not in S.

A couple of highly nontrivial theorems follow from the existence of numbers like α. Some might
find it surprising (at least the authors do) that we can find the irrational numbers that are needed
as witnesses in the proofs of these theorems, without resorting to the standard computability-
theoretic machinery involving enumerations, universal functions, diagonalizations, and so on.
The numbers we need are given by readable and transparent definitions of the form (2).

We will also prove that for any subrecursive class S there exist irrational numbers that cannot be
expanded in any base b by an S-algorithm, but still have elementary Cauchy sequences. Now
we need to resort to classical diagonalization techniques to complete our proof. Furthermore, we
use the existence of such numbers to prove some results on representations and closure under
addition which allow us to draw the following conclusion: If we do not admit unbounded search,
no representation of real numbers, with the exception of those equivalent to Cauchy sequences,
will be closed under addition.

We will also prove some theorems on left and right best approximations. These are two possible
ways to represent irrational numbers which so far have not been studied from a computability-
theoretic point of view. A left best approximant to an irrational β is a vulgar fraction a/b, which
is in its lowest terms and smaller than β, such that any vulgar fraction between a/b and β has
greater denominator than a/b (if you want a better approximation that is smaller than β, you have
to use a greater denominator). A left best approximation is a strictly increasing sequence of left
best approximants. A right best approximation is defined symmetrically as a strictly decreas-
ing sequence of right best approximants. Let S be a subrecursive class closed under primitive
recursive operations, and let β be an irrational. It turns out that β has a left best approximation
in S iff β’s general sum approximation form below is in S, and moreover, β has a right best
approximation in S iff β’s general sum approximation form above is in S.

2. Preliminaries

2.1. Subrecursion Theory

We assume acquaintance with subrecursion theory. An introduction to this subject can be found
in Péter [18], Rose [19] or Odifreddi [17]. Here we just state some important basic facts and
definitions. The proofs can be found in the books cited above. We will also assume that the
reader is familiar with basic concepts of computability theory, e.g., Kleene’s T -predicate and
computable indices. An introduction to basic computability theory can be found in, e.g., Cooper
[2] or Leary & Kristiansen [13].
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The initial elementary functions are the projection functions (In
i ), the constants 0 and 1, addition

(+) and modified subtraction ( . ). The elementary definition schemes are composition, that is,
f (~x) = h(g1(~x), . . . , gm(~x)) and bounded sum and bounded product, that is, respectively f (~x, y) =∑

i<y g(~x, i) and f (~x, y) =
∏

i<y g(~x, i). A function is elementary if it can be generated from the
initial elementary functions by the elementary definition schemes. A relation R(~x) is elementary
when there exists an elementary function f with range {0, 1} such that f (~x) = 0 iff R(~x) holds.
Relations may also be called predicates, and we will use the two words interchangeably. A
function f has elementary graph if the relation f (~x) = y is elementary.

The definition scheme (µz ≤ y)[. . .] is called the bounded µ-operator, where (µz ≤ y)[R(~x, z)]
denotes the least z ≤ y such that the relation R(~x, z) holds. Let (µz ≤ y)[R(~x, z)] = y + 1 if no
such z exists. The class of elementary functions is closed under the bounded µ-operator. The
definition scheme

f (~x, 0) = g(~x) and f (~x, y + 1) = h(~x, y, f (~x, y))

is called primitive recursion. If f is defined by a primitive recursion over g and h and f (~x, y) ≤
j(~x, y), then f is defined by bounded primitive recursion over g, h and j. The class of elementary
functions is closed under bounded primitive recursion, but not under primitive recursion. More-
over, the class of elementary relations is closed under the operations of the propositional calculus
and under bounded quantification.

Let 2x
0 = x and 2x

n+1 = 22x
n , and let S denote the successor function. The class of elementary func-

tions equals the closure of {0, S , In
i , 2

x,max} under composition and bounded primitive recursion.
Given this characterization of the elementary functions, it is easy to see that for any elementary
function f there exists k such that f (~x) ≤ 2max(~x)

k .

We will say that a class of functions is closed under the elementary operations when the class
contains all the elementary functions and is closed under composition and bounded primitive
recursion. We will say that a class of functions is closed under the primitive recursive opera-
tions when the class contains all the elementary functions and is closed under composition and
(unbounded) primitive recursion.

Uniform systems for coding finite sequences of natural numbers are available inside the class of
elementary functions. Let f (x) be the code number for the sequence 〈 f (0), f (1), . . . , f (x)〉. Then
f belongs to the elementary functions if f does. We will indicate the use of coding functions with
the notations 〈. . .〉 and (x)i where (〈x0, . . . , xi, . . . , xn〉)i = xi. (So (x, i) 7→ (x)i is an elementary
function.) Our coding system is monotone, that is, 〈x0, . . . , xn〉 < 〈x0, . . . , xn, y〉 holds for any
y, and 〈x0, . . . , xi, . . . , xn〉 < 〈x0, . . . , xi + 1, . . . , xn〉. All the closure properties of the elementary
functions can be proved by using Gödel numbering and standard coding techniques.

We assume some coding of the integers (Z) and the rational numbers (Q) into the natural num-
bers. We consider such a coding to be trivial. Therefore we allow for subrecursive functions from
rational numbers into natural numbers, from pairs of rational numbers into rational numbers, etc.,
with no further comment.

We use f k to denote the kth iterate of the function f , that is, f 0(x) = x and f k+1(x) = f ( f k(x)).

2.2. Honest Functions

Our proofs are based on the theory of honest functions. In this subsection, we state and prove
lemmas and theorems on honest functions that will be needed later. For more on honest functions,
see Kristiansen et al. [12].
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Definition 2.1. A function f : N→ N is honest if it is monotone ( f (x) ≤ f (x + 1)), dominates 2x

( f (x) ≥ 2x) and has elementary graph.

From now on, we reserve the letters f , g, h, . . . to denote honest functions. Small Greek letters
like φ, ψ, ξ, . . . will denote number-theoretic functions not necessarily being honest.

Definition 2.2. A function φ is elementary in a function ψ, written φ ≤E ψ, if φ can be gener-
ated from the initial functions ψ, 2x, max, 0, S (successor), In

i (projections) by composition and
bounded primitive recursion.

Lemma 2.3. Let ψ ≤E f where f is an honest function. Then there exists k ∈ N such that

ψ(x1, . . . , xn) ≤ f k(max(x1, . . . , xn)) .

Proof. The function ψ can be generated from the initial functions f , 2x, max, 0, S , In
i by com-

position and bounded primitive recursion. Use induction on such a generation of ψ to prove that
the lemma holds. Use that f is monotone and that it dominates 2x.

Let Tn denote the Kleene T -predicate, and let U denote the decoding function known from
Kleene’s Normal Form Theorem. We have

φ(x1, . . . , xn) = {e}(x1, . . . , xn) = U(µt[Tn(e, x1, . . . , xn, t)])

when e is a computable index for φ. We will need the next theorem which is proved in Kristiansen
[9].

Theorem 2.4 (Normal Form Theorem). Let f be an honest function. Let φ be any (Turing)
computable function. Then, φ ≤E f iff there exists a computable index e for φ and a fixed k ∈ N
such that

φ(x1, . . . , xn) = {e}(x1, . . . , xn) = U(µt ≤ f k(max(x1, . . . , xn))[Tn(e, x1, . . . , xn, t)]) .

Moreover,U is an elementary function, and Tn is an elementary predicate.

Definition 2.5. For any honest function f , we define the jump of f , written f ′, by f ′(x) = f x+1(x).

Lemma 2.6. Let f be an honest function. Then, f ′ is an honest function.

Proof. It is obvious that f ′ is monotone and dominates 2x. Let ψ(x, y) be an elementary function
that places a bound on the code number for the sequence 〈y, y, . . . , y〉 of length x + 1. Then,
f ′(x) = y is equivalent to

(∃s ≤ ψ(x, y))[(s)0 = f (x) ∧ (∀i < x)[(s)i+1 = f ((s)i)] ∧ (s)x = y] . (5)

Thus, the relation f ′(x) = y is elementary since all the functions, relations and operations in-
volved in (5) are elementary. This proves that f ′ has elementary graph.

Lemma 2.7. Let f be an honest function, and let ψ be a unary function such that ψ ≤E f . Then
we have ψ(x) < f ′(x) for all sufficiently large x.

Proof. By Lemma 2.3, we have k ∈ N such that ψ(x) ≤ f k(x). For x ≥ k, we have ψ(x) ≤ f k(x) <
f x+1(x) = f ′(x).
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3. Subrecursive Classes and S-Irrational Numbers

The class of primitive recursive functions is a paradigm example of a subrecursive class. So is
the class of elementary functions (these functions are also known as the Kalmár elementary, or
the Csillag-Kalmár elementary, functions). The classes we find in subrecursive hierarchies, like
the Grzegorczyk hierarchy and the Löb-Wainer hierarchy, are of course also called subrecursive
classes. It is also reasonable to call the class of number-theoretic functions that are provably total
in a formal system, e.g. Peano Arithmetic or ZFC, a subrecursive class. Many classes defined
by resource-bounded machine models were often referred to as subrecursive classes in the 1960s
and 1970s. Today we tend to call such classes complexity classes.

We will now give our formal definition of a subrecursive class. The definition should capture all
the variants of subrecursive classes mentioned above.

Definition 3.1. Let σ : N→ N be a total function, and let

[e]σ(x) = U( µt[T1(σ(e), x, t)] )

whereT1 andU are the elementary functions from Kleene’s Normal Form Theorem (see Theorem
2.4).

A set S of functions over the natural numbers is a subrecursive class when there exists a total
computable function σ : N→ N such that

• for each e ∈ N, the function [e]σ is total

• for every φ ∈ S there exists e ∈ N such that φ(x1, . . . , xn) = [e]σ(〈x1, . . . , xn〉).

We say that the function σ generates the class S.

So the essence of our definition is that a subrecursive class is a subset of an efficiently enumerable
class of total functions. It would have made sense to also require that for any e ∈ N there should
be φ ∈ S such that φ(x1, . . . , xn) = [e]σ(〈x1, . . . , xn〉). However, the definition above gives us all
we need to complete our proofs.

Theorem 3.2. For any subrecursive class S, there exists an honest function f such that

ψ ∈ S ⇒ ψ ≤E f .

Proof. Assume that S is generated by the total computable function σ. Let eσ be a computable
index for σ, and let

f (x) = µt[ t ≥ 2x ∧ (∀i ≤ x)(∃t1 ≤ t)[T1(eσ, i, t1) ∧ (∀ j ≤ x)(∃t2 ≤ t)[T1(U(t1), j, t2)] ] ] .

Now, f is a total computable function as σ and [e]σ are total computable functions. The graph
of f is elementary, moreover, f is monotone and dominates 2x. Thus, f is honest. A proof of

x ≥ e ⇒ f (x) ≥ µt[T1(σ(e), x, t)] (Claim)

can be found in Section 8 of Kristiansen [10].
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Now, let ψ be any function in S. Then, we have e such that ψ(~x) = [e]σ(〈~x〉). Let d = σ(e). By
(Claim), we have

ψ(~x) = [e]σ(〈~x〉) = U(µt[T1(d, 〈~x〉, t)]) = U(µt ≤ f (〈~x〉)[T1(d, 〈~x〉, t)])

whenever 〈~x〉 ≥ e. Thus, we have

ψ(~x) = U
(

(µt ≤ f (〈~x〉 + e))[T1(d, 〈~x〉, t)]
)

for all ~x. This proves that ψ is elementary in f .

The preceding theorem implies that any total computable function belongs to some subrecursive
class with strong closure properties: Let ξ be a total computable function. Then {ξ} is a subre-
cursive class (the class is generated by the constant function σ(x) = e where e is a computable
index for ξ). By the theorem, we have an honest f such that ξ ≤E f . Let S = {ψ | ψ ≤E f }. Then
S is a subrecursive class that contains ξ, and moreover, S has very strong closure properties,
e.g., S has the Ritchie-Cobham property (see Odifreddi [17]). Well, S will not be closed un-
der primitive recursion, but the closure of S under primitive recursion, or any other constructive
definition scheme that does not introduce partial functions, will still be a subrecursive class that
contains ξ. However, all this is not relevant with respect to the soundness of our proofs, but the
next corollary will be important in that respect.

Corollary 3.3. For any subrecursive class S, there exists an honest function f such that f < S.

Proof. Theorem 3.2 yields an honest g such that

ψ ∈ S ⇒ ψ ≤E g .

We will prove that g′ < S. Assume for the sake of contradiction that g′ ∈ S. Then we have
g′ ≤E g. By Lemma 2.7, we have g′(x) < g′(x) for all sufficiently large x, and that is obviously
nonsense. Hence g′ < S. By Lemma 2.6, g′ is honest. Let f = g′ and the lemma holds.

Let β be an irrational number. For any integer m and any positive natural number n, there will be
a natural number N such that |β − mn−1| > N−1. If we can generate such an N in a subrecursive
class S, we will say that β is S-irrational.

Definition 3.4. Let S be a subrecursive class. An irrational number β is S-irrational if there is
ν : N→ N in S such that for any m ∈ Z and any n ∈ N \ {0}, we have∣∣∣∣∣β − m

n

∣∣∣∣∣ > 1
ν(n)

.

Let S be a sufficiently large subrecursive class with nice closure properties. The S-irrational
numbers are from a certain point of view well-behaved: For any two representations R1 and
R2 we can subrecursively convert an R1-representation of an S-irrational number into a an R2-
representation. This appears to be true for all known representations of irrationals like Cauchy
sequences, Dedekind cuts, continued fractions, base-2 expansions, base-17 sum approximations
from above, and so on. Thus, the S-irrationals that have a Cauchy sequence in S are exactly the
ones that have a continued fraction in S, which again are exactly the ones that have a base-10
expansion in S, and so on.

10



Let P denote the class of primitive recursive functions. The concept of a number being P-
irrational was introduced by Péter [18]. Lehman [16] proved that the continued fraction of a P-
irrational will be in P if the number has a Cauchy sequence in P. More on S-irrational numbers
can be found in Kristiansen [10].

4. Representations and Closure under Addition

Definition 4.1. A base is a natural number strictly greater than 1, and a base-b digit is a natural
number in the set {0, 1, . . . , b − 1}.

Let M be an integer, let b be a base, and let D1, . . . , Dn be base-b digits. We will use (M.D1D2 . . . Dn)b

to denote the rational number M +
∑n

i=1 Dib−i.

Let D1, D2, . . . be an infinite sequence of base-b digits. We say that (M.D1D2 . . .)b is the base-b
expansion of the real number β if for all n ≥ 1 we have

(M.D1D2 . . . Dn)b ≤ β < (M.D1D2 . . . Dn)b + b−n.

(Note that the second inequality is strict: every real number β has a unique base-b expansion.)

Let (M.D1D2 . . .)b be the base-b expansion of the real number β. We define the function Eβ
b by

Eβ
b(0) = M and Eβ

b(i) = Di (for i ≥ 1).

For any class of functions S, let

SbE = { β | β is irrational and Eβ
b ∈ S } .

Let prim(b) denote the set of prime factors of the base b. Mostowski [14] proved that

prim(a) ⊆ prim(b) ⇒ PbE ⊆ PaE

where P is the class of primitive recursive functions. Kristiansen [11] proved that

prim(a) ⊆ prim(b) ⇔ SbE ⊆ SaE (6)

holds for any subrecursive class S closed under elementary operations.

Definition 4.2. A function C : N → Q is a Cauchy sequence for the real number β when
|β −C(n)| < 2−n.

A function D : Q→ {0, 1} is a Dedekind cut of the irrational number β when D(q) = 0 iff q < β.
We will use Dβ to denote the Dedekind cut of β.

For any class of functions S, let SD and SC , respectively, denote the set of irrational numbers
that have Dedekind cuts and Cauchy sequences in S.

Let S be a subrecursive class closed under elementary operations. Fix a base b. It is straightfor-
ward to prove that we have SD ⊆ SbE ⊆ SC . Let a be a base such that prim(a) * prim(b) and
prim(b) * prim(a). Then, by (6), we have SbE * SaE and SaE * SbE . But of course we also
have SD ⊆ SaE ⊆ SC . It follows that we have SD ⊂ SbE ⊂ SC for any fixed base b. It will be a
corollary of our next theorem that we even have

∞⋃
b=2

SbE ⊂ SC .

11



Theorem 4.3. Let f be any honest function. There exists an irrational number γ such that (i) γ
has an elementary Cauchy sequence and (ii) for any base b, we have Eγ

b �E f .

Proof. We will construct an elementary Cauchy sequence C and let γ be the limit of this Cauchy
sequence. Our construction will guarantee that β , γ if there is a base a such that Eβ

a ≤E f . Thus
the theorem holds.

Let d0 = 1 and let di+1 = f ′(di) (recall that f ′ is the jump of f , that is, f ′(x) = f x+1(x)).
Furthermore, let C(0) = 0 and C(d0) = 1/2. Observe that C(d0) can be written in the form (0.1)2.

Now, assume that we have determined C(di) where i = 〈k, e, a′〉. Assume also that C(di) equals a
rational number qi of the form

C(di) = qi = (0.D1 . . . Ddi )a

where a = a′ + 2. We will now determine C(n) when di < n ≤ di+1. Assume i + 1 = 〈k′, e′, b′〉,
and let b = b′ + 2. If n < di+1, we simply let C(n) = C(di). If n = di+1, let

C(n) = C(di+1) = qi+1 = (0.Ḋ1 . . . Ḋdi+1 )b + ε

where (0.Ḋ1Ḋ2 . . .)b is the base-b expansion of qi and

ε =

2b−di+1 ifU(µt ≤ di+1[T1(e, di, t)]) < qi

−b−di+1 otherwise.

Observe that qi+1 can be written in the form (0.D1 . . . Ddi+1 )b.

This completes our construction of C. It is easy to see that |C(n) −C(n + 1)| ≤ 2−n for any n, and
thus C will be a Cauchy sequence. Let γ = limn→∞C(n).

(Claim) We have β , γ if there is a base a such that Eβ
a ≤E f .

We prove the claim. Since γ ∈ (0, 1) we may also suppose β ∈ (0, 1). Assume Eβ
a ≤E f . Then we

have Ẽβ
a ≤E f where

Ẽβ
a(x) =

x∑
i=0

Eβ
a(i)a−i .

Now Theorem 2.4 yields e and k such that

Ẽβ
a(x) = U(µt ≤ f k(x)[T1(e, x, t)]) .

Since f ′(x) = f x+1(x), we have

Ẽβ
a(x) = U(µt ≤ f ′(x)[T1(e, x, t)])

for all x greater than or equal to the fixed number k. Let i = 〈k, e, a − 2〉. Then, we have di > k,
and thus

Ẽβ
a(di) = U(µt ≤ f ′(di)[T1(e, di, t)]) = U(µt ≤ di+1[T1(e, di, t)]) .

Moreover, by our construction of C, we know that C(di) can be written in the form (0.D1 . . . Ddi )a.
We consider the two cases (1) Ẽβ

a(di) < qi = C(di) and (2) Ẽβ
a(di) ≥ qi = C(di).

12



Case (1). We have

(0.D̃1 . . . D̃di )a = Ẽβ
a(di) < qi = (0.D1 . . . Ddi )a .

It is easy to see that β ≤ qi. Thus β < qi + b−di+1 ≤ qi+1. This implies

β < lim
n→∞

C(n) = γ .

Case (2). We have

(0.D̃1 . . . D̃di )a = Ẽβ
a(di) ≥ qi = (0.D1 . . . Ddi )a .

So in this case we have β ≥ qi. Thus β > qi − b−di+1 ≥ qi+1 which implies

β > lim
n→∞

C(n) = γ .

This concludes our proof of the claim.

Clause (ii) of our theorem follows obviously from the claim, as well as the fact that γ is irrational.
Now we argue that C is elementary. First of all, as f ′ is an honest function, the function d has an
elementary graph (see Lemma 2.6 and its proof). The construction of C guarantees the existence
of an elementary function H, such that qi+1 = H(qi, di+1) for all i. Moreover, (the code of) qi is
bounded above by an elementary function of di. Using the last two facts, the binary function q̃,
defined by

q̃(i, n) =

qi if di ≤ n
0 if di > n,

can be shown to be elementary using bounded primitive recursion of elementary functions. Note
that the relation di ≤ n is elementary and we can compute di if it holds, because d has elementary
graph. Therefore, given the input n, we can elementarily in n compute the unique i such that
di ≤ n < di+1 and give the answer C(n) = C(di) = qi = q̃(i, n). This is an elementary algorithm
for C, thus clause (i) of the theorem also holds.

Corollary 4.4. For any subrecursive class S closed under elementary operations, we have

∞⋃
b=2

SbE ⊂ SC .

Proof. Let β be any irrational number, and let b be any base. By Theorem 3.2, there exists an
honest function f such that

Eβ
b ∈ S ⇒ Eβ

b ≤E f .

Thus, we have γ <
⋃∞

b=2 SbE when γ is the irrational given by Theorem 4.3. Moreover, γ has
an elementary Cauchy sequence, therefore we have γ ∈ SC as S is closed under elementary
operations. The corollary follows since we have SbE ⊆ SC for any fixed b.

Definition 4.5. The subrecursive class E2 is the the closure of 0 (zero), S (successor), In
i (pro-

jections), × (multiplication) and max under composition and bounded primitive recursion.
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The class E2 is know as the second Grzegorczyk class (our definition differs slightly from Grze-
gorczyk’s original definition). Let S be a subrecursive class closed under elementary operations.
Then we have E2 ⊂ S, and thus any E2-irrational number will also be S-irrational. It is proved
in Georgiev [3] that a real number β is E2-irrational iff β is not a Liouville number, that is, iff β
has a finite irrationality measure.

Lemma 4.6. An irrational number β is E2-irrational iff there exists a fixed k ∈ N such that∣∣∣∣∣β − x
y

∣∣∣∣∣ > 1
yk

holds for all x ∈ N and all sufficiently large y ∈ N.

Proof. Assume there is m ∈ N such that |β − x/y| > y−k holds for all x ∈ N and all y ≥ m. Since
β is irrational we can choose ` ∈ N, such that |β − x/y| > `−1 for all x, y ∈ N with y < m. Let
ν(y) = max(yk, `). Then, we have ν ∈ E2. Moreover, we have |β − x/y| > ν(y)−1 for all x, y ∈ N.
This shows that β is E2-irrational.

It can be proved straightforwardly that for any ψ ∈ E2 there exists k ∈ N such that ψ(~x) ≤
max(~x, 2)k (use induction on the structure of ψ). Thus, if β is E2-irrational, there exists k such
that we have |β − x/y| > y−k for all x ∈ N and all y ≥ 2.

Theorem 4.7. Let S be any subrecursive class closed under elementary operations. For any
E2-irrational number α in SC there exists an E2-irrational number β in SC , such that α + β is
irrational and

α + β <
∞⋃

b=2

SbE .

Proof. Let α be an arbitrary E2-irrational in SC . By Lemma 4.6, we have k ∈ N such that∣∣∣∣∣α − x
y

∣∣∣∣∣ > 1
yk (7)

holds for all x ∈ N and all sufficiently large y ∈ N.

Let f be an honest function such that ψ ≤E f for any ψ ∈ S (such an f exists by Theorem 3.2).
In the proof of Theorem 4.3 we construct γ such that (i) γ has an elementary Cauchy sequence
and (ii) for any base b, we have Eγ

b �E f . Let β = γ−α. Then, α+β is irrational and for any base
b, we have α+β < SbE . Obviously, β ∈ SC (note that β ∈ Q implies that γ is E2-irrational, which
obviously contradicts that for any base b we have γ < SbE , see the paragraph after Definition
3.4). Thus, it remains to prove that β is E2-irrational, and by Lemma 4.6, it suffices to prove the
following claim.

(Claim) For all x ∈ N and all sufficiently large y ∈ N, we have∣∣∣∣∣β − x
y

∣∣∣∣∣ > 1
y(2k+2)2 .

Before we turn to the proof of the claim, let us recall the sequence d0, d1, d2, . . . and some facts
about γ. We have d0 = 1 and di+1 = f ′(di) where f ′ is some fast-growing function. Moreover, γ
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is the limit of a sequences of rationals q0, q1, q2, . . . where each qi has finite base-a expansion of
length di and a = (i)3 + 2 (i is considered as the code of a triple). Let b denote (i + 1)3 + 2, and
thus, qi+1 has finite base-b expansion of length di+1. The construction guarantees that

|qi − qi+1| ≤ 2b−di+1

for all i ∈ N. Thus, for all i ∈ N, we also have

|γ − qi| ≤

∞∑
j=i

∣∣∣q j+1 − q j

∣∣∣ ≤ 2b−di+1 + 2c−di+2 + . . . < 3b−di+1 (8)

where c = (i + 2)3 + 2, . . . (the last inequality follows easily from di+1 ≥ (i + 2)di+1 for all i ∈ N).

For all natural numbers x, i and y > 0, we have∣∣∣∣∣β − x
y

∣∣∣∣∣ =

∣∣∣∣∣ xy − β
∣∣∣∣∣ =

∣∣∣∣∣ xy − (γ − α) + qi − qi

∣∣∣∣∣
=

∣∣∣∣∣α +
x
y
− qi − (γ − qi)

∣∣∣∣∣ ≥ ∣∣∣∣∣α +
x
y
− qi

∣∣∣∣∣ − |γ − qi| .

By using (7), (8) and the fact that qi has denominator adi (using its finite base-a expansion of
length di), we obtain ∣∣∣∣∣β − x

y

∣∣∣∣∣ > 1
akdi yk −

3
bdi+1

(9)

for all sufficiently large y ∈ N and all x, i ∈ N.

We are now ready to prove the claim. Pick an arbitrary but sufficiently large y ∈ N, and let i
be the unique natural number such that adi ≤ y2k+2 < bdi+1 . Our proof splits into two cases: (1)
adi ≤ y and (2) y < adi .

Case (1). We have adi ≤ y < y2k+2 < bdi+1 . By (9), we have∣∣∣∣∣β − x
y

∣∣∣∣∣ > 1
y2k −

3
y2k+2 >

1
y2k+2 >

1
y(2k+2)2 .

Thus, the claim holds.

Case (2). This is the tricky case. We have y < adi ≤ y2k+2 < bdi+1 . We will need the inequality

di+1 > (i + 2)(2k+2)di (10)

for all i ∈ N.

We can without loss of generality assume that (10) holds: Recall that the sequence d0, d1, d2, . . .
is defined by d0 = 1 and di+1 = f ′(di). If it should not be the case that (10) holds, there will
still be an honest function g (depending on k) such that g ≤E f and f (x) ≤ g(x) and (10) holds
with di+1 = g′(di). When we use such a g in place of f to define the sequence d0, d1, d2, . . ., all
our proofs will go through. A similar problem arises in the next section, see Lemma 5.4 and the
comment after it.
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Next, recall that a = (i)3 + 2 < i + 2 and b = (i + 1)3 + 2. Hence, by (10), we have

bdi+1 > di+1 > (i + 2)(2k+2)di > a(2k+2)di = (adi )2k+2 > y2k+2

and we conclude that

y2k+2 < a(2k+2)di < bdi+1 . (11)

Next we use (9) and (11) to obtain∣∣∣∣∣β − x
y

∣∣∣∣∣ > 1
akdi yk −

3
bdi+1

>
1

akdi yk −
3

a(2k+2)di

>
1

akdi (adi )k −
3

a(2k+2)di
=

1
a2kdi

−
3

a(2k+2)di

≥
1

a(2k+2)di
=

1
(adi )2k+2 ≥

1
y(2k+2)2

for all x and all sufficiently large y. This proves that the claim holds in case (2).

Corollary 4.8. Let S be a subrecursive class closed under elementary operations, and let SI
C

denote the set of S-irrational numbers that have Cauchy sequences in S. Let X be any set of real
numbers such that

SI
C ⊆ X ⊆ Q ∪

∞⋃
b=2

SbE .

Then X is not closed under addition.

Proof. Theorem 4.7 yields E2-irrational numbers α, β ∈ SC such that α + β is irrational and for
any base b, α+ β < SbE . Hence, α+ β < X. Still we have α, β ∈ X as any E2-irrational number is
also S-irrational.

Let S be a subrecursive class closed under primitive recursive operations, and let SR be any of
the classes of irrational numbers considered in this paper with the exception of SC , that is, SR is
one of SbE , SD, Sb↑, Sg↑, Sb↓, Sg↓, S<, S>, S[ ] (some of these classes will be defined below).
Furthermore let SI

R denote the set of S-irrational numbers in SR. Then the equality SI
R = SI

C will
hold, and thus the inclusions

SI
C ⊆ Q ∪ SR ⊆ Q ∪

∞⋃
b=2

SbE

will also hold. By Corollary 4.8, the real numbers in the set Q ∪ SR will not be closed under
addition. Let us restate this informally: If we do not admit unbounded search, no representation
of the real numbers, with the exception of Cauchy sequences, will be closed under addition.

5. Sum Approximations

Sum approximations from below and above were discussed in the introductory section. We will
now give our formal definitions. From now on we will restrict our attention to irrational numbers
between 0 and 1. This entails no loss of generality.
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Definition 5.1. Let (0.D1D2 . . .)b be the base-b expansion of an irrational α.

The base-b sum approximation from below of α is the function Âα
b : N→ Q defined by Âα

b (0) = 0
and Âα

b (n + 1) = Eα
b (m)b−m where m is the least m such that

n∑
i=0

Âα
b (i) < (0.D1 . . . Dm)b .

If D is a base-b digit, then D denotes the complement digit of D, that is, D = (b − 1) − D.

The base-b sum approximation from above of α is the function Ǎα
b : N→ Q defined by Ǎα

b (0) = 0
and Ǎα

b (n + 1) = Eα
b (m)b−m where m is the least m such that

1 −
n∑

i=0

Ǎα
b (i) > 1 − (0.D1 . . . Dm)b .

The general sum approximation from below of α is the function Ĝα : N × N → Q defined by
Ĝα(b, n) = Âα

b (n). The general sum approximation from above of α is the function Ǧα : N×N→
Q defined by Ǧα(b, n) = Ǎα

b (n). (Let Ĝα(b, n) = Ǧα(b, n) = 0 if b < 2.)

For any class of functions S, let

Sb↑ = {α | Âα
b ∈ S } and Sb↓ = {α | Ǎα

b ∈ S }

and let
Sg↑ = {α | Ĝα ∈ S } and Sg↓ = {α | Ǧα ∈ S } .

The functions Âα
b and Ǎα

b are not defined if α is rational. When we use the notation it is understood
that α is irrational.

It follows straightforwardly from the definitions above that

α =

∞∑
i=0

Eα
b (i)b−i =

∞∑
i=0

Âα
b (i) = 1 −

∞∑
i=0

Ǎα
b (i) .

Sum approximations were introduced in Kristiansen [10] and studied further in Kristiansen [11].
It is proved in [10] that we have

Sb↓ * Sb↑ and Sb↑ * Sb↓

for any S closed under elementary operations. Furthermore, it is proved in [11] that we have

prim(a) ⊆ prim(b) ⇔ Sb↓ ⊆ Sa↓ (12)

and

prim(a) ⊆ prim(b) ⇔ Sb↑ ⊆ Sa↑ (13)

for any S closed under primitive recursive operations. The proofs of (12) and (13) are extensions
of the proof of (6).
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Let S be any subrecursive class closed under primitive recursive operations. It is trivial that the
two inclusions

Sg↓ ⊆ Sb↓ and Sg↑ ⊆ Sb↑

hold for any base b, and it follows straightforwardly from (12) and (13) that these inclusions
indeed are strict. In this section we prove a much stronger result, namely that the next theorem
holds.

Theorem 5.2. For any subrecursive class S that is closed under primitive recursive operations,
we have

(i) Sg↓ ⊂

∞⋂
b=2

Sb↓ and (ii) Sg↑ ⊂

∞⋂
b=2

Sb↑.

We will use the number α discussed in the introductory section to prove Theorem 5.2. The
number will be in the set

⋂
b Sb↑ but not in the set Sg↑. A number with a symmetric definition

will be in the set
⋂

b Sb↓ but not in the set Sg↓.

Definition 5.3. Let Pi denote the ith prime (P0 = 2, P1 = 3, . . .). We define the auxiliary function
g by

g(0) = 1 and g( j + 1) = P2( j+2)(g( j)+1)3

j .

For any honest function f and any n ∈ N, we define the rational number α f
n and the number α f

by

α
f
n =

n∑
i=0

P−h(i)
i and α f = lim

n→∞
α

f
n

where h(i) = g( f (i) + i) (for any i ∈ N).

It is easy to see that the functions g and h in the preceding definition are strictly increasing honest
functions. Only the fact that g has elementary graph requires some explanation: for all x, y ∈ N
the equality g(x) = y holds iff

∃s[ (s)0 = 1 ∧ ∀ j ≤ x[ (s) j+1 = P2( j+2)((s) j+1)3

j ] ∧ (s)x = y ] .

The formula states that s is the code of a sequence of length x+1 and its jth element (s) j is equal to
g( j) for all j ≤ x. All operations, relations and functions involved in the formula are elementary.
Since g is increasing and our coding of sequences is monotone, the existential quantifier on s can
be bounded by the code of the sequence y, . . . , y (x + 1 times). This code is is elementary in x, y,
and the elementary relations are closed under bounded existential quantification.

Lemma 5.4. For any n ∈ N, we have

P2(n+2)(h(n)+1)3

n < h(n + 1) .

Proof. Keep in mind that both g and f are increasing functions (we have f (x) ≤ f (x + 1) since f
is honest). By Definition 5.3, we have

h(n + 1) = g( f (n + 1) + n + 1) > P2(n+2)(g( f (n+1)+n)+1)3

n

≥ P2(n+2)(g( f (n)+n)+1)3

n = P2(n+2)(h(n)+1)3

n .
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Lemma 5.4 explains why we use the auxiliary functions g and h to define α f . The number α f is
determined by the arbitrary honest function f , but in our proofs we need that

α f = lim
n→∞

n∑
i=0

P−h(i)
i

where h is a function that satisfies the growth property given in Lemma 5.4. An arbitrary honest
function does not necessarily possess this property.

Lemma 5.5. The number α f is a Liouville number (and thus transcendental).

Proof. It suffices to show that for every n ∈ N \ {0} there exist p, q ∈ N with q > 1, such that

0 <

∣∣∣∣∣α f −
p
q

∣∣∣∣∣ <
1
qn .

Fix n ∈ N \ {0}, and pick relatively prime p and q such that pq−1 = α
f
n . Thus q =

∏n
i=0 Ph(i)

i ≤

P(n+1)h(n)
n . Obviously

0 <
∣∣∣∣α f − α

f
n

∣∣∣∣ = P−h(n+1)
n+1 + P−h(n+2)

n+2 + . . .

and since h is strictly increasing, the last infinite sum is bounded above by

P−h(n+1)
n+1 + P−h(n+1)−1

n+1 + . . . ≤ P−h(n+1)+1
n+1 .

Moreover, as h(n) > n, it follows from Lemma 5.4 that

h(n + 1) − 1 ≥ Pn(n+1)h(n)
n .

Thus
0 <

∣∣∣∣∣α f −
p
q

∣∣∣∣∣ ≤ 1

Ph(n+1)−1
n+1

<
1

h(n + 1) − 1
≤

1

Pn(n+1)h(n)
n

≤
1
qn .

Lemma 5.6. For any j ∈ N and any base b, we have

(i) if Pi divides b for all i ≤ j, then α f
j has a finite base-b expansion of length h( j), that is, α f

j
can be written in the form (0.D1 . . . Dh( j))b,

(ii) if Pi does not divide b for some i ≤ j, then α f
j has an infinite base-b expansion of the form

(0.D1 . . . Ds(Ds+1 . . . Dt)ω)b where t <
∏ j

i=0 Ph(i)
i .

Proof. For any j ∈ N and any base b, we have

α
f
j =

m∏ j
i=0 Ph(i)

i

(14)

where m is the sum of j + 1 summands. Each of these summands is divisible by all the primes
in the list P0, P1, . . . , P j with the exception of exactly one of them. It follows that m is relatively
prime to all the primes in the list, and thus, the fraction (14) is in its lowest terms.
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Now, recall that a rational number q ∈ (0, 1) has a base-b expansion of length k iff there exists
m < bk, such that q = mb−k.

Assume that Pi divides b for all i ≤ j. Since h is increasing, there exists a natural number ` such
that

α
f
j =

m∏ j
i=0 Ph(i)

i

=
` × m

` ×
∏ j

i=0 Ph(i)
i

=
` × m
bh( j) .

This proves (i).

Assume that Pi does not divide b for some i ≤ j. Furthermore, assume for the sake of contradic-
tion that there exist k,m′ ∈ N such that

α
f
j =

m∏ j
i=0 Ph(i)

i

=
m′

bk .

Then we have m′
∏ j

i=0 Ph(i)
i = mbk. This contradicts that mbk has a unique prime factorization as

Pi does not divide mbk for some i ≤ j. As α f
j is rational, α f

j has an infinite base-b expansion of

the form 0.D1 . . . Ds(Ds+1 . . . Dt)ω. We need to argue that t <
∏ j

i=0 Ph(i)
i .

We have proved that the fraction (14) is in its lowest terms. Let
∏ j

i=0 Ph(i)
i = d1 × d2 where d1

is relatively prime to b and as large as possible. Then s is the least natural number such that d2
divides bs, and the length of the period t− s is the multiplicative order of b modulo d1. It follows
straightforwardly that t <

∏ j
i=0 Ph(i)

i . For more details, see Chapter 9 of Hardy & Wright [5].

Theorem 5.7. For any honest function f , we have f ≤PR Ĝα f
( f is primitive recursive in Ĝα f

).

Proof. (To improve the readability, we will write α in place of α f .) Fix n ∈ N, and let b be the
base b =

∏n
i=0 Pi. By Lemma (5.6) (i), αn has a finite base-b expansion of length h(n). By the

definition of α, we have

α = αn + P−h(n+1)
n+1 + P−h(n+2)

n+2 + . . . .

Hence, for any j > h(n), we have

Ĝα(b, j) ≤ P−h(n+1)
n+1 + P−h(n+2)

n+2 + . . .

which easily implies Ĝα(b, j) ≤ P−h(n+1)+1
n+1 (exactly as in the proof of Lemma 5.5). Hence we

also have (Ĝα(b, j))−1 ≥ Ph(n+1)−1
n+1 > h(n + 1) − 1 for any j > h(n).

The considerations above show that we can compute h(n + 1) by the following algorithm:

• assume that h(n) is computed

• compute b =
∏n

i=0 Pi

• search for y such that y < (Ĝα(b, h(n) + 1))−1 + 1 and h(n + 1) = y

• give the output y.
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This algorithm is primitive recursive in Ĝα: The computation of b is an elementary computation.
The relation h(x) = y is elementary, and thus the search for y is elementary in h(n) and Ĝα. This
proves that h is primitive recursive in Ĝα. But then f will also be primitive recursive in Ĝα as the
graph of f is elementary and f (n) ≤ h(n) (for any n ∈ N). This proves that f ≤PR Ĝα.

Theorem 5.8. Let f be any honest function, and let b be any base. The function Âα f

b is elemen-
tary.

Proof. First we will state and prove a few claims. Let

• j ∈ N be such that P j > b

• (0.D1D2 . . .)b be the base-b expansion of α f
j

• (0.Ḋ1Ḋ2 . . .)b be the base-b expansion of α f
j+1

• M = M( j) = P( j+1)h( j)
j and M′ = M′( j) = h( j + 1).

(Claim 1) There are maximum M consecutive zeros in the base-b expansion of α f
j ,

that is, for any k ∈ N \ {0} there exists i ∈ N such that

k ≤ i < k + M and Di , 0 .

(Claim 2) The first M′ −M digits of the base-b expansions of α f
j and α f

j+1 coincide,
that is

i ≤ M′ − M ⇒ Di = Ḋi

and moreover, these digits also coincide with the corresponding digits of the base-b
expansion of α f .

By Lemma 5.6 (ii), α f
j has a base-b expansion of the form 0.D1 . . . Ds(Ds+1 . . . Dt)ω with t <∏ j

i=0 Ph(i)
i . Therefore

t − s ≤ t <

j∏
i=0

Ph(i)
i ≤ P( j+1)h( j)

j = M . (15)

Thus, the first claim holds since any M consecutive digits of α f
j contain all the digits Ds+1, . . . , Dt

of at least one period.

We turn to the proof of the second claim. Since bM′ < PM′
j = Ph( j+1)

j < Ph( j+1)
j+1 , we have

α
f
j < α

f
j+1 = α

f
j + P−h( j+1)

j+1 ≤ α
f
j + b−M′ . (16)

At least one digit in the period Ds+1 . . . Dt is different from b − 1. Thus, it follows from (16) that

Di = Ḋi for any i ≤ M′ − (t − s). (17)
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We obtain from (15) and (17) that the first M′ −M digits of the base-b expansions of α f
j and α f

j+1
coincide. Moreover, since M′( j) is strictly increasing in j, we have

α
f
j < α

f
j+k ≤ α

f
j +

∑
i<k

b−M′( j+i) ≤ α
f
j + b−M′( j)+1

for any k ≥ 1. When we let k → ∞, we conclude as above that the first M′ − M digits of α f
j and

α f coincide. This proves the second claim. We need a third claim before we can turn to the proof
of the very theorem.

For all j ∈ N, we have

M( j)2 + M( j) + 1 < M′( j). (Claim 3)

By the definition of M, we have

M( j)2 + M( j) + 1 = P2( j+1)h( j)
j + P( j+1)h( j)

j + 1

< 3P2( j+1)h( j)
j < P2( j+1)h( j)+2

j < P2( j+1)(h( j)+1)3

j .

Furthermore, by Lemma 5.4 and the definition of M′, we have

M( j)2 + M( j) + 1 < P2( j+1)(h( j)+1)3

j < h( j + 1) = M′( j) .

This proves that (Claim 3) holds.

We are now prepared to prove our theorem, that is, to prove that the function Âα f

b is elementary.
To improve the readability, we will write α in place of α f throughout this proof.

Fix the least m such that Pm > b. We will argue that we can compute the rational number Âα
b (n)

elementarily in n when n ≥ M(m). Note that M(m) is a fixed number (it does not depend on n).
Thus, we can compute Âα

b (n) by a trivial algorithm when n < M(m) (use a huge table).

Assume n ≥ M(m). We will now give an algorithm for computing Âα
b (n) elementarily in n.

Step 1 of the algorithm: Compute (the unique) j such that

M( j) ≤ n < M( j + 1) (18)

(end of Step 1).

Step 1 is a computation elementary in n as M has elementary graph. So is the next step as M′

also has elementary graph.

Step 2 of the algorithm: Check if the relation

n2 + 1 < M′( j) − M( j) (19)

holds. If it holds, carry out step 3A, otherwise, carry out step 3B (end of Step 2).

Step 3A of the algorithm: Compute α j. Then compute base-b digits D1, . . . , Dn2+1 such that

(0.D1D2 . . . Dn2+1)b ≤ α j < (0.D1D2 . . . Dn2+1)b + b−(n2+1) .
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Find k such that Dk is the nth digit different from 0 in the sequence D1, . . . , Dn2+1. Give the output
Dkb−k (end of Step 3A).

Recall that α j =
∑ j

i=0 P−h(i)
i . We can compute α j elementarily in n since h(0), h(1), . . . , h( j) <

M( j) ≤ n and h is honest. Thus, we can also compute the base-b digits D1, D2, . . . , Dn2+1 elemen-
tarily in n. In order to prove that our algorithm is correct, we must verify that

(A) at least n of the digits D1, D2, . . . , Dn2+1 are different from 0, and

(B) D1, D2, . . . , Dn2+1 coincide with the first n2 + 1 digits of α.

By (Claim 1) the sequence DkM( j)+1, DkM( j)+2, . . . , D(k+1)M( j) contains at least one non-zero digit
(for any k ∈ N). Thus, (A) holds since n ≥ M( j). It follows straightforwardly from (Claim 2)
and (19) that (B) holds. This proves that the output Dkb−k = Âα

b (n).

Step 3B of the algorithm: Compute α j+1 and M( j + 1). Then proceed as in step 3A with α j+1 in
place of α j and nM( j + 1) in place of n2 (end of Step 3B).

Step 3B is only executed when M′( j)−M( j) ≤ n2+1. Thus, we have M′( j) = h( j+1) ≤ n2+n+1.
This entails that we can compute h( j + 1), and thus also α j+1 and M( j + 1), elementarily in n.

Now (Claim 3) yields

M( j + 1)2 + M( j + 1) + 1 < M′( j + 1)

which together with (18) implies

nM( j + 1) + 1 < M′( j + 1) − M( j + 1) .

As in step 3A, there will be at least n non-zero digits among the first nM( j + 1) digits of α j+1.
Moreover, the first nM( j + 1) digits of α j+1 coincide with the corresponding digits of α.

We are now ready to prove Theorem 5.2. The inclusion Sg↑ ⊆
⋂

b Sb↑ is trivial. Let f be an
honest function such that f < S. Such an f exists by Corollary 3.3. By Theorem 5.8, we have
α f ∈

⋂
b Sb↑. By Theorem 5.7, we have α f < Sg↑. This proves that Sg↑ ⊂

⋂
b Sb↑. A symmetric

argument will prove that also the inclusion Sg↓ ⊂
⋂

b Sb↓ holds.

Theorem 5.2 should be compared to a result of Lehman’s [16]. He proves that

SD ⊂

∞⋂
b=2

SbE

where S is the class of primitive recursive functions and SD is the set of irrationals that have
Dedekind cuts in S. Let the function Eβ be defined by Eβ(b, n) = Eβ

b(n). It is not hard to see that
Eβ is primitive recursive iff the Dedekind cut of β is primitive recursive. Thus, Lehman’s result
on base expansions is analogous to our result on sum approximations.

6. Left and Right Best Approximations

Definition 6.1. Let α be an irrational number in the interval (0, 1).
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Let a and b be relatively prime natural numbers with b > 0. The fraction a/b is a left best
approximant of α if we have c/d ≤ a/b < α or α < c/d for any natural numbers c, d with
0 < d ≤ b. The fraction a/b is a right best approximant of α if we have α < a/b ≤ c/d or
c/d < α for any natural numbers c, d with 0 < d ≤ b.

A left best approximation of α is a sequence of fractions {ai/bi}i∈N such that

0 =
a0

b0
<

a1

b1
<

a2

b2
< . . .

and each ai/bi is a left best approximant of α. A right best approximation of α is a sequence of
fractions {ai/bi}i∈N such that

1 =
a0

b0
>

a1

b1
>

a2

b2
> . . .

and each ai/bi is a right best approximant of α. Clearly, both sequences converge to α.

LetS< denote the set of irrational numbers that have a left best approximation in the subrecursive
class S, and let S> denote the set of irrational numbers that have a right best approximation in
S.

Lemma 6.2. (i) Dβ ≤E Ĝβ and Dβ ≤E Ǧβ. (ii) Let {ai/bi}i∈N and {a′i/b
′
i}i∈N be left and right,

respectively, best approximations of β. Then we have Dβ ≤E {ai/bi}i∈N and Dβ ≤E {a′i/b
′
i}i∈N.

Proof. Let c and d be natural numbers such that 0 < c/d < 1. Observe that Dβ(c/d) = 0 iff
Ĝβ(d, 1) ≥ c/d and that Dβ(c/d) = 1 iff Ǧβ(d, 1) ≥ 1 − c/d. Thus, it is easy to see that (i) holds.

We turn to the proof of (ii). Observe that we have i < bi for any i. Hence, we have Dβ(c/d) = 0
iff c/d < ad/bd. This shows that the Dedekind cut of β is elementary in a left best approximation
of β. A symmetric argument shows that the Dedekind cut of β is elementary in a right best
approximation of β.

Theorem 6.3. For any subrecursive class S closed under primitive recursion, we have

Sg↑ = S< and Sg↓ = S> .

Proof. We prove S< ⊆ Sg↑. Let {ai/bi}i∈N be a left best approximation of β. We will argue that
Ĝβ can be computed primitive recursively in {ai/bi}i∈N. We assume that Ĝβ(b, i) is computed for
all i ≤ n. The algorithm below shows how to compute Ĝβ(b, n + 1).

Step 1 of the algorithm: Compute

c
d

=

n∑
i=0

Ĝβ(b, i) .

Let c′/d′ = ad/bd (end of Step 1).

We obviously have d′ > d. Thus, since c′/d′ is a left best approximant of β, we have c/d <
c′/d′ < β.
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Step 2 of the algorithm: Search for the least m ∈ N such that c/d + 1/bm ≤ c′/d′. Use the
Dedekind cut of β to find k ≤ m and non-zero base-b digit D such that

c
d

+
D

bk ≤ β <
c
d

+
D

bk +
1
bk .

Give the output D/bk (end of Step 2).

It is easy to see that the algorithm is correct, that is, we have Ĝβ(b, n + 1) = D/bk. It is also
easily seen that the algorithm is primitive recursive in the left best approximation {ai/bi}i∈N.
The algorithm uses course-of-values recursion, but it is well-known that such recursion can be
reduced to primitive recursion. The algorithm uses the Dedekind cut of β. By Lemma 6.2, the
Dedekind cut of β is primitive recursive in {ai/bi}i∈N. This completes the proof of S< ⊆ Sg↑.

Next we proveSg↑ ⊆ S<. We give an algorithm for computing a left best approximation {ai/bi}i∈N
of β, and we argue that our algorithm is primitive recursive in Ĝβ. Let a0/b0 = 0/1 and a1/b1 =

c/N where N > 1 and c > 0 are the unique natural numbers such that

1
N
< β <

1
N − 1

and
c
N
< β <

c + 1
N

.

It is easy to see that c/N is a left best approximant of α. Assume that n ≥ 1 and that an/bn already
is computed. The algorithm shows how to compute an+1/bn+1.

Step 1 of the algorithm: Let
c′

d′
=

an

bn
+ Ĝβ(bn, 2)

with relatively prime c′ and d′ (end of Step 1).

We observe that an/bn = Ĝβ(bn, 1). Hence, we have an/bn < c′/d′ < β < (c′ + 1)/d′, and
c′/d′ will be a left best approximant unless there exists a fraction c/d such that d < d′ and
c′/d′ < c/d < β < (c + 1)/d.

Step 2 of the algorithm: Use the Dedekind cut of β to search for c and the smallest d such that
bn < d ≤ d′ and c′/d′ ≤ c/d < β < (c + 1)/d. Let an+1/bn+1 = c/d (end of Step 2).

Given the comments above, it should be pretty clear that the sequence {ai/bi}i∈N computed by the
algorithm indeed is a left best approximation of β. Step 1 of the algorithm is obviously primitive
recursive in Ĝβ. Step 2 uses the Dedekind cut of β. Lemma 6.2 states that this Dedekind cut is
primitive recursive in Ĝβ, and thus it is easy to see that Step 2 is also primitive recursive in Ĝβ.
This completes the proof of Sg↑ ⊆ S<, and we conclude that Sg↑ = S<. The proof of Sg↓ = S>
is symmetric.

7. More on Sum Approximations

Any irrational number β in the interval (0, 1) can be uniquely written in the form

α = 0 +
1

a1 +
1

a2 +
1

a3 +
. . .
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where each ai is a positive integer. The sequence a1, a2, a3, . . . is called the continued fraction of
β. For more on continued fractions see Hardy & Wright [5] or Khintchine [6].

Let S be a subrecursive class closed under primitive recursive operations, and let S[ ] denote the
set of irrationals that have continued fractions in S. It was proved in Kristiansen [10] that

Sg↓ ∩ Sg↑ = S[ ]

and it was conjectured in [10] that

Sg↓ * Sg↑ and Sg↑ * Sg↓ . (20)

In this section we will prove that (20) indeed holds.

Intuitively, it is not very hard to see why we have Sb↓ * Sb↑ and Sb↑ * Sb↓ when b is a fixed
base and S is closed under elementary operations. Let us consider the case S2↓ * S2↑. Pick a
strictly increasing honest function f such that f < S, and let

β =

∞∑
i=257

1
2 f (i) .

Then the function Ǎβ
2 will be in S whereas the function Âβ

2 will not. Let us see why.

Assume for the sake of contradiction that Âβ
2 is in S. Let g(x) = (Âβ

2(x + 1))−1. Then g will also
be in S as S is closed under standard operations on rationals. Obviously we have f (x) ≤ g(x),
and thus we have f (x) = (µy ≤ g(x))[ f (x) = y]. Now, as the relation f (x) = y is elementary and
S is closed under the bounded µ-operator, we can conclude that f is in S. This contradicts our
choice of f .

In order to see that Ǎβ
2 is in S, observe that the base-2 expansion of β is of the form

0. 000000.............0︸                            ︷︷                            ︸
lots of zeros

1 000000.............0︸                            ︷︷                            ︸
even more zeros

10000.... (21)

Now, the ith fractional digit of the base-2 expansion of 1 − β will be 1 if the ith fractional digit
of (21) is 0, and the other way around, 0 if the ith fractional digit of (21) is 1. This entails that
Ǎβ

2(1) = 2−1 and Ǎβ
2(2) = 2−2 and so on, and thus, the function (Ǎβ

2(x))−1 will not increase too fast
to be in S. The function will be of elementary growth rate, and it is not very hard to prove that
the function indeed is elementary (and thus in S).

An easy generalization of the straightforward argument above shows that the set Sb↓ \ Sb↑ is
nonempty for all bases b and all S closed under elementary operations. A symmetric argument
shows that Sb↑ \ Sb↓ is nonempty. So it is rather easy to see that we have Sb↓ * Sb↑ and
Sb↑ * Sb↓ when b is fixed. It is not all that easy to see why (20) should hold. It is not easy
to come up with natural candidates that can possibly witness the nonemptyness of Sg↑ \ Sg↓

and Sg↓ \ Sg↑. However, it turns out that the number α f , which is discussed in the introductory
section and formally given by Definition 5.3, will be in the set Sg↑ \ Sg↓ when f is a suitable
honest function.

Theorem 7.1. Let f be any honest function. There exists an elementary function Ť : Q → Q
such that (i) Ť (q) = 0 if q < α f and (ii) q > Ť (q) > α f if q > α f .
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Proof. This proof is long and involved. In order to improve the readability, we will write α in
place of α f . Then our definition says that

αn =

n∑
i=0

P−h(i)
i and α = lim

n→∞
αn .

In addition to the sequence α j we need the sequence β j given by

β0 = P−h(0)+1
0 = 2−h(0)+1 and β j+1 = α j + P−h( j+1)+1

j+1 .

Observe that we have α < β j for all j ∈ N, since

α − α j = P−h( j+1)
j+1 + P−h( j+2)

j+2 + . . . ≤ P−h( j+1)+1
j+1

for any j ∈ N. Furthermore, we have

p ≤ β`+1 ⇔ Ph(`+1)
`+1 ≤ (p − α`)−1P`+1 (22)

for any p ∈ Q and any ` ∈ N, such that p > α`. In order to see that (22) holds, observe
that we have β`+1 − α` = P−h(`+1)+1

`+1 by the definition of β`+1. Thus, p ≤ β`+1 is equivalent to
p − α` ≤ P−h(`+1)+1

`+1 which in turn is equivalent to Ph(`+1)
`+1 ≤ (p − α`)−1P`+1.

We will present an algorithm which computes a function Ť with the properties given in the
theorem. The input is the rational number q, and we will argue that the algorithm is elementary
in q. We will also argue that the algorithm gives correct output, that is, if q < α, the algorithm
will output 0, and if α < q, the algorithm will output some rational q′ such that α < q′ < q. We
can w.l.o.g. assume that 0 < q < 1.

Step 1 of the algorithm: Pick any m′, n ∈ N such that q = m′n−1 and n ≥ h(0). Find m ∈ N such
that q = m(P0P1 . . . Pn)−n, and compute the base b such that b =

∏n
i=0 Pi (end of Step 1).

The rational number q has a finite base-b expansion of length s where s ≤ n. Moreover, the
rational numbers α0, α1, . . . , αn and β0, β1, . . . , βn all have finite base-b expansions. It is easy to
see that Step 1 is elementary (in q).

Step 2 of the algorithm: Compute (the unique) natural number j < n such that

h( j) ≤ n < h( j + 1) .

Furthermore, compute α0, α1, . . . , α j and β0, β1, . . . , β j (end of Step 2).

All the numbers h(0), h(1), . . . h( j) are less than or equal to n, and h has elementary graph. This
entails that Step 2 is elementary in n (and thus also elementary in q).

Step 3 of the algorithm: If q ≤ αk for some k ≤ j, give the output 0 and terminate. If βk < q for
some k ≤ j, give the output βk and terminate (end of Step 3).

Step 3 obviously gives the correct output. It is also obvious that the step is elementary.

If the algorithm has not yet terminated, we have α j < q ≤ β j. The algorithm has already
determined α j, and h is an honest function. This makes it possible to check elementarily if
q ≤ β j+1: By (22), we have q ≤ β j+1 iff Ph( j+1)

j+1 ≤ (q − α j)−1P j+1. Thus, q ≤ β j+1 iff there exists y
such that

y ≤ (q − α j)−1P j+1 and h( j + 1) = y and Py
j+1 ≤ (q − α j)−1P j+1 . (23)
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If such a y exists, then an elementary computation can find its numerical value. If such a y does
not exist, then an elementary computation can confirm the nonexistence.

Step 4 of the algorithm: Search for y such that (23) holds. If the search is successful, proceed
with Step 5. Otherwise, that is, if the search is not successful, we have β j+1 < q and the algorithm
proceeds to compute q′ such that α < q′ < q. We explain below how to compute such a q′ (end
of Step 4).

It is explained above why Step 4 is elementary in q. If the algorithm proceeds to Step 5, we have
α j < q ≤ β j+1.

Step 5 of the algorithm: Compute α j+1. If q ≤ α j+1, give the output 0 and terminate, otherwise,
proceed to Step 6 (end of Step 5).

Since we have computed h( j + 1) in Step 4, Step 5 will be elementary in q. It is obvious that the
algorithm gives the correct output.

If the algorithm proceeds to the sixth step, we have α j+1 < q ≤ β j+1. Moreover, the algorithm
has determined α j+1. By (22), we have q ≤ β j+2 iff there exists y such that

y ≤ (q − α j+1)−1P j+2 and h( j + 2) = y and Py
j+2 ≤ (q − α j+1)−1P j+2 . (24)

This makes it possible to check elementarily if q ≤ β j+2.

Step 6 of the algorithm: Search for y such that (24) holds. If the search is successful, give output
0. Otherwise, we have β j+2 < q, and the algorithm will compute q′ such that α < q′ < q. We
explain below how to compute such a q′ (end of the algorithm).

The function h is honest and the search for y is bounded. Thus, it is easy to see that Step 6 is
elementary in q. We will now argue that the output is correct. If the algorithm outputs 0, we have
α j+1 < q ≤ β j+2. We need to prove that α j+1 < q ≤ β j+2 implies q < α.

It is well-known that there is a prime between x and 2x for any x ≥ 2 (the Bertrand-Chebyshev
Theorem). Thus, Py ≤ 2y+1 for any y ∈ N. It follows that b = P0P1 . . . Pn ≤ 2(n+1)2

. Lemma 5.4
together with n < h( j + 1) yield

bh( j+1)+1 ≤ (2(n+1)2
)h( j+1)+1 < 2(h( j+1)+1)3

< Ph( j+2)−1
j+2

and thus
1

Ph( j+2)−1
j+2

<
1

bh( j+1)+1 .

This entails

α j+1 < α < β j+2 = α j+1 +
1

Ph( j+2)−1
j+2

< α j+1 +
1

bh( j+1)+1 . (25)

Now, α j+1 has a finite base-b expansion of length h( j + 1). Thus, (25) implies the first h( j + 1)
digits of the base-b expansions of α j+1, α and β j+2 coincide. Moreover, h( j + 1) > n ≥ s where s
is the length of the base-b expansion of q. Thus, if we have α j+1 < q ≤ β j+2, we also have q < α.

It remains to explain how the algorithm computes q′ such that α < q′ < q in Step 4 and in Step 6.
We will explain how the algorithm works in Step 6. The algorithm works the same way in Step
4 (just replace j + 1 and j + 2 by j and j + 1, respectively).
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When the algorithm starts to compute q′ in Step 6, the (numerical) value of α j+1 is known. It
is also known that β j+2 < q, but the value of β j+2 is not known, moreover, it might not even be
possible to compute the value of β j+2 elementarily (in q). So first our algorithm finds the least
t ∈ N such that bt > (q−α j+1)−1. Such a t can be computed elementarily. Then, by an elementary
computation, our algorithm distinguishes between the two cases

(A) q − b−t > β j+2 and (B) q − b−t ≤ β j+2 .

In case (A) the algorithm will not know the value of β j+2, but the algorithm will give the output
q − b−t. This output is correct as q − b−t > β j+2 > α and b−t > 0. In case (B) the algorithm will
be able to compute β j+2 elementarily in q. Thus, the algorithm can give obviously correct output
β j+2.

Thus, we need to argue that it is possible to distinguish between case (A) and case (B) by an
elementary computation, and we need to argue that it is possible to elementarily compute the
value of β j+2 when (B) holds. By (22), we have

q − b−t ≤ β j+2 ⇔ Ph( j+2)
j+2 ≤ (q − b−t − α j+1)−1P j+2. (26)

We can elementarily decide if there exists y such that

y ≤ (q − b−t − α j+1)−1P j+2 and h( j + 2) = y and Py
j+2 ≤ (q − b−t − α j+1)−1P j+2 .

By (26), (A) holds if such a y does not exist, and (B) holds if such a y exists. If such a y exists,
we can elementarily compute the value of y, and then we can elementarily compute the value of
β j+2 as β j+2 = α j+1 + P−y+1

j+2 .

Corollary 7.2. Let f be any honest function. The Dedekind cut of the real number α f is elemen-
tary.

Proof. Let

D(q) =

0 if Ť (q) = 0
1 otherwise,

where Ť is the function given by Theorem 7.1. Then D is the Dedekind cut of α f , and D is
elementary since Ť is.

Theorem 7.3. Let f be any honest function. There exists a primitive recursive right best approx-
imation of the real number α f .

Proof. We give a primitive recursive algorithm for computing a right best approximation {ai/bi}i∈N
of α f . Let a0/b0 = 1/1. Assume that ai/bi is already computed. The following algorithm shows
how to compute ai+1/bi+1:

• Let c/d = Ť (ai/bi) where c, d ∈ N and Ť is the function given by Theorem 7.1.

• Use the Dedekind cut of α f to search for a natural number c′ such that (c′ − 1)/d < α f <
c′/d (the search is bounded as c′ ≤ c).
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• Use the Dedekind cut of α f to search for a natural number c′′ and the least natural number
d′′ such that d′′ ≤ d and (c′′ − 1)/d′′ < α f < c′′/d′′ ≤ c′/d (the search is bounded as
c′′ ≤ d′′).

• Let ai+1/bi+1 = c′′/d′′.

It is obvious that {ai/bi}i∈N is a right best approximation of α f . We invite the reader to check that
the algorithm indeed is primitive recursive.

The next corollary follows straightaway form Theorem 6.3 and Theorem 7.3.

Corollary 7.4. Let f be any honest function. The general sum approximation from above of α f ,
that is the function Ǧα f , is primitive recursive.

We are now ready to state and prove the last of our main results.

Theorem 7.5. For any subrecursive class S closed under primitive recursive operations, there
exist irrational numbers α and β such that

(i) α ∈ Sg↓ \ Sg↑ and (ii) β ∈ Sg↑ \ Sg↓ .

Proof. Pick an honest function f such that f < S. Such an f exists by Corollary 3.3. By
Corollary 7.4, we have α f ∈ Sg↓. By Theorem 5.7, we have α f < Sg↑. This proves (i). The proof
of (ii) is symmetric.

The next corollary follows from Theorem 6.3 and the preceding theorem.

Corollary 7.6. For any subrecursive class S that is closed under primitive recursive operations,
we have

Sg↑ = S< , S> = Sg↓ .
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