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Abstract

In the larger context of parsing for semantic interpretation, we present and evaluate a novel approach
to corpus-driven approximation of linguistically rich, constraint-based grammars. We obtain an un-
lexicalized probabilistic context-free grammar (PCFG) from a very large corpus that is automatically
annotated with the fine-grained syntacto-semantic analyses of a broad-coverage Head-Driven Phrase
Structure Grammar (HPSG). PCFG parsing with the resulting approximation greatly improves ro-
bustness, while also increasing formal and computational simplicity. Different ways of encoding
relevant syntactic context in the approximating PCFG are proposed and compared empirically, and
a comparison to state-of-the-art latent-variable PCFG techniques suggests that our approach is more
suitable for grammar approximation with massive amounts of training data. To recover logical-form
meaning representations from the analyses of the robust PCFG parser, we develop a technique for
robust semantic composition based on default unification. For evaluation of the semantic accuracy
of the resulting robust analysis system, we propose a method of reducing the logical forms in the
representation language predominant in computational HPSG to semantic dependency triples. Un-
der various evaluation perspectives, parsing with the approximated grammar delivers competitive
analysis quality.
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1 Introduction & Motivation

The terms ‘deep’ and ‘shallow’ have frequently been used to characterize or contrast dif-
ferent approaches to parsing. Inevitably, such informal notions lack a clear definition, and
there are few signs of community consensus on the relevant dimension(s) of depth, let
alone agreement on applicable metrics. In this work, we suggest more of a gradual con-
tinuum rather than a stark opposition of approaches, and conjecture as a key desideratum
for many parsing applications the goal of making explicit structural relations at the level
of meaning, i.e. abstract dependencies that facilitate semantic interpretation: Who did what
to whom? Although there is no conclusive evidence that the syntax of English (and most
other natural languages) transcends the mathematical complexity of context-free gram-
mar (CFG), traditionally parsing with CFGs (and equivalent formalisms) falls short of our
semantics-centered ideal—a context-free phrase structure tree, in itself, can only provide
purely syntactic dependencies.

Conversely, so-called ‘deep’ linguistic processing has co-evolved with mathematically
richer formalisms (typically introducing at least mild context sensitivity). Examples of
such frameworks include various types of Tree Adjoining Grammar (TAG), Combinatory
Categorial Grammar (CCG), Lexical Functional Grammar (LFG) and Head-Driven Phrase
Structure Grammar (HPSG). Albeit somewhat diverse in underlying linguistic assumptions,
common to all of these is their use of complex, internally structured categories (in some
cases, giving rise to infinite category inventories) and an information-combining operation
like unification. While increased formal power facilitates a tight integration of syntactic
analysis and semantic composition, the greater computational complexity of the above
frameworks can hinder deployment in practical language technology applications.

The linguistic framework of HPSG, for example, centrally builds on the logic of typed
feature structures, TFS for short, (e.g. a mathematical formalism or designer logic like
the one of Carpenter, 1992). The monostratal representation in HPSG integrates a broad
range of syntactic and semantic information concerning a linguistic object (and all its sub-
components) in a single typed feature structure. Compatibility checking and integration of
information from multiple sources is accomplished by graph unification. Such a formalism
is very suitable for the design and implementation of a detailed linguistic theory, but the
lack of a polynomial upper bound on time complexity in unification-based parsing raises
concerns about its computational tractability.

From a computational grammar engineering perspective, grammarians constantly need
to juggle two somewhat conflicting goals: on the one hand, (a) to describe linguistic phe-
nomena in a precise and adequately constrained manner; and on the other hand, (b) to
provide broad grammatical coverage of unseen real-world text. As a consequence, large-
scale computational grammars are often forced to choose (whether consciously or not)
to either compromise linguistic precision, or to accept limitations in parsing coverage. In
this article, we propose PCFG approximation as a way to alleviate some of these issues.
While the HPSG framework is well-suited for linguistic description, we demonstrate that,
with careful design, much simpler approximating probabilistic context-free grammars can
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be extracted automatically and can achieve comparable parsing accuracy while offering
increased robustness and the potential of greater computational efficiency.1

Moving from parsing with the original HPSG to parsing with an approximating PCFG
comes at the expense of integrated semantic analysis: there cannot be meaning compo-
sition during parsing through unification of feature structures, although primitive forms
are conceivable here through, e.g. attribute grammars (Knuth, 1968). More importantly,
the robustness and computational simplicity of the PCFG parser are owed to its inherent
ability to violate—or maybe more appropriately: ignore—parts of the grammatical con-
straints in the original HPSG. The CFG categories in all our PCFG approximations include
the unique identifiers of lexical types (i.e. very fine-grained parts of speech) and all the
syntactic constructions comprising a full HPSG derivation, which is enough information
to unambiguously reconstruct corresponding HPSG analyses. However, there is no guaran-
tee that such derivations will actually be consistent with respect to the full HPSG. Naı̈ve
post-processing of a CFG derivation in the HPSG universe will frequently give rise to uni-
fication failures. To work around these issues, we couple our PCFG parser with a robust
procedure for meaning composition, grounded in default unification, that seeks to maxi-
mize the amount of semantic information available from the robust context-free analyses.
In order to evaluate our results at the level of semantics, we propose a technique for reduc-
ing a full logical form into elementary, variable-free semantic dependencies and sketch (by
example) how different types of information in parser outputs are encoded (or not) across
frameworks.

In summary, the main contributions in this work are: (a) the automated derivation of
robust, polynomial-complexity PCFG parsers from a computationally expensive and less
robust HPSG; (b) an empirical investigation into the effects of contextual category refine-
ments (i.e. ‘node annotation’) and variations in training data size; (c) a head-to-head com-
parison to latent-variable PCFG refinement, on large amounts of training data; (d) a pro-
posal for the reduction of logical-form meaning representations as common in the HPSG
universe into semantic dependencies for granular semantic parser evaluation; and (e) the
application of robust meaning composition, using HPSG principles and rules, to PCFG
derivations that are potentially inconsistent or out-of-scope in the original ‘deep’ grammar.
While the resulting system is a complete end-to-end semantic parser, cross-framework
and cross-domain parser comparison remain an open challenge. As we argue in Section 6
below, there are stark limitations to both intrinsic (i.e. representation-driven) and extrin-
sic (i.e. task-driven) parser evaluation, and the empirical validation of our work, thus,
inevitably remains limited to framework-internal comparison. In terms of both syntactic
and semantic accuracy, we contrast our PCFG parsers with the full, state-of-the-art HPSG
system; we further seek to quantitatively gauge the utility of coverage gains in the robust
system, even though there are no gold-standard HPSG target representations available. Al-

1 Somewhat generally speaking, there is a parallel between our work and the study of Fowler and
Penn (2010), who demonstrate that competitive parsing accuracy can be obtained by applying a
state-of-the-art PCFG parser to CCG. However, they start from a CCG treebank (Hockenmaier &
Steedman, 2007) that was mostly automatically derived from the Penn Treebank (PTB), rather
than from a hand-crafted computational grammar. Furthermore, in this specific version of CCG,
feature structures play a very limited role, and Fowler and Penn (2010) thus actually succeed in
giving a proof of strong equivalence to CFG.
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though an important part of our practical motivation, we exclude an in-depth investigation
of observed parser efficiency from the present study, seeing as there are a great number of
engineering trade-offs that need to be addressed in efficient parsing with either very large
PCFGs or HPSGs.

The remainder of this article is organized as follows: Section 2 provides a brief intro-
duction to HPSG as a linguistic theory and to its utilization in parsing; Section 3 reviews
previous related work on context-free approximations of HPSG and clarifies what kind of
approximations we are looking at; Section 4 develops our corpus-driven PCFG approxima-
tion approach, using both internal and external annotations; in Section 6, we turn to aspects
of semantic parser evaluation and introduce our own (moderately novel) metric; Section 5.2
then discusses our approach to robust meaning recovery from PCFG derivations; details of
data sets and parsers used and contrastive experimental results are presented and discussed
in Section 7; Section 8 seeks to put our results into perspective in a larger context, including
some recent work on parser self-training; finally, Section 9 concludes by speculating about
various forms of (default) unification and other ways to recover from unification failures
that we consider for exploration in future work.

2 Parsing with Head-Driven Phrase Structure Grammars

Head-Driven Phrase Structure Grammar (Pollard & Sag, 1994) is a framework for
constraint-based, lexicalized, non-transformational grammatical description. Expressed in
the formalism of typed feature structures, the HPSG theory assumes a relatively small in-
ventory of general linguistic principles and syntactic construction, which through the in-
teraction with very detailed lexical types (i.e. generalizations over lexeme classes) both
delimit the space of grammatically wellformed structures and fully characterize each avail-
able analysis.

Several large-scale HPSG-based parsing systems have been built over the past decade.
Among them are Enju for English & Chinese (Miyao, Ninomiya, & Tsujii, 2004; Yu,
Yusuke, Wang, Matsuzaki, & Tsujii, 2010), Alpino for Dutch (van Noord, 2006), and the
LKB & PET (Copestake, 2002; Callmeier, 2000) for English, German, Japanese, and close
to a dozen other languages represented in the DELPH-IN network.2 These systems are
showcases of computational grammar engineering contributing to state-of-the-art parsing
technologies and some of them have been shown to compete favorably in parsing unre-
stricted texts. Specialized techniques for feature structure manipulation, unification-based
parsing, and statistical disambiguation (see for example Kiefer, Krieger, Carroll, & Mal-
ouf, 1999, Oepen, Flickinger, Tsujii, & Uszkoreit, 2002, and Miyao & Tsujii, 2008, inter
alios) have enabled practical parsing times averaging at a few seconds or below, but due
to the non-restrictive nature of the general formalism, the worst-case time complexity for
these parsers nevertheless remains exponential.

Another challenge in parsing with ‘deep’ grammars lies in the difficulties of statisti-
cal modeling and disambiguation of large, internally finely structured representations. For
example, Abney (1997) shows that naı̈ve Maximum Likelihood Estimation (MLE) is not

2 For background, please see http://www.delph-in.net/.
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Fig. 1. The correlation between the language accepted by the HPSG L(HPSG) and the approx-
imated context-free language L(CFG, C,A), given a corpus C and a set of (internal and external)
annotations A. The approximated languageL(CFG, C′, A) monotonically grows when given a larger
corpus C′ ⊇ C. The language L(CFG, C,A′) usually shrinks when given a larger set of annotations
A′ ⊇ A, but the number of rules grows.

consistent for unification-based grammars. In practice, we see most HPSG parsing systems
opt for the use of a discriminatively trained Maximum Entropy Model (MEM) to proba-
bilistically rank the hypothesis space licensed by the grammar (Miyao & Tsujii, 2002;
Malouf & van Noord, 2004; Toutanova, Manning, Flickinger, & Oepen, 2005). For further
efficiency, the hypothesis space of HPSG parses can be pruned by supertagging or CFG fil-
tering rules (Matsuzaki, Miyao, & Tsujii, 2007) as preprocessing steps. It remains however
unclear how such separate models can be combined to guide the best-first enumeration of
HPSG parses without an exhaustive creation of the (packed) parse forest or inexact, ad hoc
pruning.

3 A Note on Approximation and Survey of Related Work

In this article, we use the term approximation for methods that convert a given source
grammar G in some formalism X into a new grammar G′ in another formalism Y , so
that G′ is in some sense ‘simpler’ than G. Simpler here means that a sentence that lies in
L(G) ∩ L(G′) can be recognized ‘faster’ by G′ than by G, due to the fact that the parsing
complexity of Y is lower than that of X (in our case here, X is HPSG and Y is CFG). X
might even be equal to Y (e.g. X,Y = HPSG) in case rules and/or lexicon entries from G′

are more general than those in G (Kasper & Krieger, 1996).
To be compatible with Pereira and Wright (1991), we use sound approximation when the

following condition also holds for the generated languages: L(G) ⊆ L(G′).3 For instance,
a sound approximation of the context-free language {anbn | n ≥ 0} is the regular language
(a+ b)?. Thus an unsound approximation can be characterized by L(G)∩L(G′) 6= ∅. The
corpus-driven method used in this article is by its nature unsound, as depicted schemati-
cally in Figure 1.

3 This notion of soundness should not be confused with soundness as used in logic.
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Unsound approximation methods are not ‘buggy’ when used to produce domain-specific
subgrammars, as they do neither produce a true superset nor a subset of the original lan-
guage. This is a desired effect, since unsound grammars should cover the relevant construc-
tions of a domain (and only these) and they should be robust against ungrammatical input
w.r.t. the domain we are interested in. Finally, more training material and more annotations
even allow us to monotonically come close to the original HPSG parse trees.

Previous work on approximating HPSG has seen two major approaches: (i) sound gram-
mar-based and (ii) unsound corpus-driven approximations.

The grammar-based approach (Kiefer & Krieger, 2000, 2004) seeks to compile out
a huge set of categories by flattening typed feature structures (TFSs) into atomic sym-
bols. This approach can in principle derive a CFG equivalent to the original HPSG (at least
where the underlying grammar actually circumscribes a finite set of categories). However,
in practice it might generate billions of CFG productions, when applied to a genuinely
broad-coverage HPSG. Even when carefully addressing only a subset of the information in
the HPSG universe, the resulting grammars will often be too large to be useful for parsing
or generation. Nevertheless, exhaustive parsing has benefitted by a speedup factor of 2–3
for the Verbmobil domain; see Kiefer and Krieger (2004).

The corpus-based approach (Krieger, 2004, 2006), on the other hand, builds the approxi-
mating CFG by observing the growth of the parse chart when analyzing text with the HPSG.
Passive edges on the chart represent the successful application of HPSG rules, hence are
modeled by an approximating CFG production. Also, the resulting CFG symbols typically
preserve only partial information from the HPSG TFS, for example taking advantage of a
small set of feature paths used in the so-called unification quick check (Kiefer et al., 1999),
i.e. frequently failing and thus most discriminating feature paths in the HPSG universe.4 As
reported in (Krieger, 2006), exhaustive parsing with corpus-based HPSG approximations
has led to a speedup of two orders of magnitude (again for the Verbmobil domain).

Both approaches are originally purely symbolic in the sense that there is no probabilistic
model produced to disambiguate CFG parses. In the context of the corpus-based approach,
one could of course also acquire frequency counts for each CFG rule. But since not all
passive edges occur in a full parse tree, and not all parses are correct, the statistics available
in the method of Krieger (2006) are not very suitable for the parsing task.

Kiefer, Krieger, and Prescher (2002) propose to use a PCFG in a two-stage parsing setup,
where the PCFG predicts derivations in the first step, followed by the replay of unification.
The experiment was carried out on a relatively small grammar, and, due to the lack of
large-scale treebanks at the time, the unsupervised Inside – Outside algorithm was used for
probability estimation.

Cahill, Burke, O’Donovan, Van Genabith, and Way (2004) report on an application
of PCFG approximation to LFG parsing and the recovery of long-distance dependencies
in LFG f-structures. Two main differences between their work and the one presented in
this article should be noted. First, the approximation target for Cahill et al. (2004) is a
treebank-induced grammar, while this article targets a large hand-crafted grammar. Sec-

4 The quick check paths are practically determined based on the the statistics accumulated by carry-
ing out the complete unifications in parsing a set of representative sentences with the HPSG.
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ond, the monostratal representation in HPSG entails that a correct derivation tree will also
guarantee the correct recovery of unbounded dependencies represented by the underlying
feature structures, while in the LFG universe these have to be resolved separately on the
f-structure projection level, instead of directly on LFG c-structures (i.e. the context-free
backbone).

Further approaches from other frameworks are presented in depth in (Kiefer & Krieger,
2004) and (Krieger, 2006).

4 Probabilistic Context-Free Approximation of HPSG

Unlike the approaches in previous work which approximate the symbolic HPSG alone, we
propose a PCFG approach which approximates the combination of the grammar and its
disambiguation model. This allows us to closely model the deep parser behavior with a
single approximating PCFG.

For the experiments in this article, we use the English Resource Grammar
(ERG; Flickinger, 2002) and the accompanying treebanks (see Section 7.1 below for full
details). But the technique presented in this section can be easily applied to other lan-
guages and HPSG implementations (and in principle to other unification-based frameworks
as well).

4.1 Derivation Normalization

A complete HPSG analysis is recorded in a derivation tree. The terminals of the tree are
surface tokens in the sentence. The preterminals name lexical entries used in the analysis.
Internal tree nodes (excluding preterminals and the root), finally, correspond to grammati-
cal constructions (rules) applied to derive the full HPSG sign. An extra root node denotes
the HPSG ‘start symbol’ that licenses a complete parse. An example derivation from the
ERG is given in Figure 2 together with a simplified feature structure of one constituent. In
the derivation, the three binary HPSG schema used, for example, correspond to the subject–
head, nominal compound, and head–complement constructions; conversely, unary rules
like N PL OLR or HDN BNP C correspond to plural nominal inflection and the formation of
a determinerless, ‘bare’ noun phrase, respectively. In total, the ERG distinguishes between
some 270 construction types and close to 1,000 lexical types of preterminals.

ROOT STRICT

SB-HD MC C

HDN BNP C

N-HDN CPD C

debt n1

Debt

N PL OLR

burden n1

burdens

HD-CMP U C

be c are

are

HD OPTCMP C

W PERIOD PLR

heavier a1

heavier.



SS


LOC


CAT


HEAD verb

MOD

〈[
anti synsem min

]〉
VAL

[
SUBJ

〈[
LOC.CONT.H.IDX 1

]〉
COMPS 〈〉

]


CONT . . .

AGR | PNG 1

[
PN 3p

]
CONJ cnil


NONLOC | SLASH

〈
! !
〉


ARGS

〈[
v prd are le

]
,
[

hoptcomp rule
]〉



Fig. 2. Example of an original ERG derivation tree and the simplified feature structure of the
constituent “are heavier.”.

Before extracting the approximating grammar, we perform several normalizing transfor-
mations on the original derivations. Firstly, in order to acquire an unlexicalized grammar,



8 Y. Zhang and others

we generalize the lexical entry names of the preterminal with their corresponding lexical
types, as defined in the ERG lexicon. Secondly, we collapse unary chains of lexical (i.e.
derivational and inflectional) rules together with the preterminal lexical types to form a
kind of supertag. As shown in Figure 2, these unary rules always occur above the preter-
minals and below any syntactic constructions. Experiments show that this helps improve
the parsing accuracy of the PCFG. The last normalization is concerned with the treatment
of punctuation. In the ERG, punctuation marks are analyzed as (pseudo-)affixes instead
of independent tokens by themselves. For better compatibility with other annotations, we
convert the original punctuation-attaching unary lexical rules (which tend to apply after
other lexical rules and before any syntactic rules) into a binary branch. The normalized
derivation tree of the previous example is shown in Figure 3. It is worth noting that all
normalization steps can be reversed without introducing ambiguity. The approximating
PCFGs will be extracted from the normalized derivations, while the evaluation will be re-
ported on the original derivations (though the tagging accuracy will be calculated on the
lexical types).

ROOT

ROOT STRICT

SB-HD MC C

HDN BNP C

N-HDN CPD C

n - mc le

Debt

n - c le&N PL OLR

burdens

HD-CMP U C

v prd are le

are

HD OPTCMP C

W PERIOD PLR

aj pp i-cmp le

heavier

punct period

.

Fig. 3. Example of a normalized derivation tree.

4.2 PCFG with External Annotation

Although the derivation tree records all necessary information to recover the complete
HPSG analysis (i.e. carrying out unification on each node of the tree with corresponding
grammar rules and lexical entries), it does not always encode the necessary information in
an explicit way, due to the fact that rules in HPSG are highly generalized (see Section 2).
For example, the rule hd-cmp u c in ERG can be used to derive a head – complement con-
struction independent of the specific syntactic category of the head. Thus a node marked
only with hd-cmp u c could be a VP, PP, or N. Therefore it will be difficult to accurately
predict the derivation without such information. To compensate for the lack of local cate-
gory information in the derivation tree, we add additional annotations to the non-terminals.
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We further differentiate external annotation, i.e. additional information from the context of
the tree node, and internal annotation, i.e. information coming from the HPSG sign.5

For the external annotation, we mark each non-terminal node with up to n grandparents.
This is an effective technique used in both PCFG parsing (Johnson, 1998; Klein & Man-
ning, 2003)6 and HPSG parse disambiguation (Toutanova et al., 2005). As ERG rules are
either unary or binary, we do not annotate nodes with sibling information, though for a
grammar with flat rules this could potentially help, as shown by Klein and Manning (2003)
(so-called horizontal Markovization). We choose not to annotate the preterminal supertags
with grandparents, since the overly fine-grained tagset hurts the parsing coverage.

4.3 PCFG with Internal Annotation

While the external annotations enrich the derivation tree by gathering context information,
internal annotations can explore the detailed HPSG sign associated with each local tree
node. Note that an average ERG sign contains hundreds of feature paths and their corre-
sponding values, hence it is important to pick a suitably small, yet effective subset of these
as annotation. Following the practice of Krieger (2006), we choose to use up to six top-
ranked quick-check paths (see Table 1), which are the most frequently failing feature paths
in unification.

To access the HPSG sign, feature structures are reconstructed by unifying the corre-
sponding TFS of the HPSG rule with the instantiated TFSs of its daughters. This can be
done efficiently even with naı̈ve unification algorithms, since there is no search involved
and the unification never fails when the original derivation tree is produced by the ERG.
Next, the value of the annotation is determined by the type of the TFS at the end of each
given feature path, or *undef* in case the path was not defined in the TFS. For example, for
the feature path SYNSEM.LOCAL.CAT.COMPS (the remaining list of complements needed
to derive a saturated sign), the value *null* denotes an empty list, while *olist* denotes a
list of only optional complements. Figure 4 shows an example of an annotated tree with
one-level grandparenting (depicted by a preceding ˆ ) and internal annotation using the
top-ranked feature path (depicted by surrounding brackets [ ]).

4.4 Grammar Extraction & Probability Estimation

To extract the approximating PCFG, we need a disambiguated treebank annotated with
HPSG derivations. The treebank is constructed by first parsing the input sentences with the
HPSG parser, then disambiguating either manually or automatically using a MEM-based
parse selection model trained on the annotated trees (Toutanova et al., 2005). The CFG
symbols and production rules are extracted directly from the annotation enriched deriva-
tion trees from the treebank. Each tree node contributes to one frequency count of the
corresponding CFG rule with the parent’s symbol as the left-hand side, and the symbols

5 Our notion of internal and external annotation is slightly different from that of Klein and Manning
(2003). In our work, internal annotation refers to the information from the local HPSG sign, i.e.
the feature structure corresponding to a specific node in the derivation tree.

6 This technique is called vertical Markovization by Klein and Manning (2003).
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Table 1. Most frequently failing feature paths, used for internal annotation.

Feature Path

1 SYNSEM.LOCAL.CAT.HEAD
2 SYNSEM.LOCAL.CONJ
3 SYNSEM.LOCAL.AGR.PNG.PN
4 SYNSEM.LOCAL.CAT.VAL.COMPS
5 SYNSEM.LOCAL.CAT.HEAD.MOD
6 SYNSEM.LOCAL.CAT.VAL.COMPS.FIRST.OPT

ROOT

ROOT STRICT
ˆROOT [verb]

SB-HD MC C
ˆROOT STRICT [verb]

HDN BNP C
ˆSB-HD MC C [noun]

N-HDN CPD C
ˆHDN BNP C [noun]

n - mc le

Debt

n - c le&N PL OLR

burdens

HD-CMP U C
ˆSB-HD MC C [verb]

v prd are le

are

HD OPTCMP C
ˆHD-CMP U C [adj]

W PERIOD PLR
ˆHD OPTCMP C [adj]

aj pp i-cmp le

heavier

punct period

.

Fig. 4. Example tree with 1-level grandparent and HEAD feature path annotation.

of its daughters as the right-hand side. For the experiments in this article, we are solely
investigating the accuracy of various approximating PCFGs, and the practical parsing ef-
ficiency is not part of the evaluation (though it is an interesting aspect which we would
like to investigate in our future research; Section 3 reports speedup numbers for the LinGO
forerunner of the English Resource Grammar). Hence we do not prune the CFG symbols
or rules, following the practice of (Klein & Manning, 2003). The rule probability Pr is
calculated with Maximum Likelihood Estimate (MLE) without smoothing.

Pr(A→ β) = P (A→ β|A) = #(A→ β)

#A
(1)

The lexical model, however, does receive smoothing for unknown word handling. More
specifically, words are assigned a signature sig(w) based on their capitalization, suffix,
digit and other character features. We then use the MLE estimate of P (T |sig(w)) as a prior
against which observed taggings T were taken:

P (T |w) = #(T,w) + α · P (T |sig(w))
#T + α

(2)

P (T |w) is then inverted to give P (w|T ).
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The grammar extraction procedure is very efficient. The time required is linear in the size
of the treebank. Even with the richest annotations (with unification operations involved),
the procedure marches through thousands of trees per minute. This allows us to scale up
the extraction with millions of trees.

4.5 Hierarchically Split-Merge PCFG

For comparison we also trained a hierarchically split-merge latent-variable PCFG with the
Berkeley parser. The latent-variable approach (Matsuzaki, Miyao, & Tsujii, 2005; Petrov,
Barrett, Thibaux, & Klein, 2006) has proven to deliver state-of-the-art parsing performance
for multiple languages. The key advantage is that it automatically induces subcategories
from the treebank and produces a finer grained grammar without manual intervention. In
comparison to our annotation approach (which is similar to Klein and Manning (2003), see
Section 4.6), this automatic process requires fewer linguistic decisions and can be easily
transferred to a different language or treebank. On treebanks with coarse-grained categories
(which is typical for manually annotated treebanks), this is particularly effective.

On a rich annotated treebank, however, the approach is less effective due to the fact that
the subtle differences between sub-categories are explicitly annotated. In the case of PCFG
approximation of an HPSG, such details in the non-terminal categories are necessary for
the disambiguation of related but distinct phenomena and important for the construction of
the semantics.

In our experiment, we train the split-merge latent-variable PCFG on the normalized
derivation trees. The merging percentage is set to be 50% for each iteration, but calcu-
lated separately for the tags and the grammar categories due to their significant difference
in size. The number of EM iterations after splitting is 50, whereas the number of EM iter-
ations after merging is 20. The Expectation-Maximization training process is much more
expensive than our MLE-based PCFG extraction. Also, given that the categories in the nor-
malized derivations are already quite fine-grained (hundreds of non-terminal symbols and
thousands of tags), the grammar stopped improving after only three rounds of split-merge
iterations.

4.6 Unlexicalized PCFG Annotated with Linguistic Heuristics

Our approximating PCFG is in a sense related to Klein and Manning (2003), which im-
proved the parsing accuracy of a treebank-induced PCFG by enriching the annotation with
linguistically motivated heuristics. Similar to our approach, they also used an unlexicalized
PCFG, enriched in part by the context in which a certain tree configuration occurs (external
annotation). The difference mainly lies in the way in which further linguistic knowledge is
injected. Klein and Manning (2003) relied on a set of linguistically motivated heuristics to
enrich the coarse grained categories of the Penn Treebank (PTB) annotation. In our case,
the complete description of a linguistic sign in a feature structure licensed by HPSG is be-
yond what one can practically accommodate in a PCFG. Therefore, the main effort lies in
the careful selection of most relevant and effective feature paths to be added as the internal
annotations. Hence, the annotation process is well motivated from the linguistic point of
view, and well supported from systematic grammar engineering.
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〈 h1,
h3:udef q〈0:12〉( BV x5{PERS 3, NUM pl}, RSTR h6, BODY h4) ,
h7:compound〈0:12〉( ARG0 x9{SF prop, TENSE untensed}, ARG1 x5, ARG2 x8) ,
h10:udef q〈0:4〉( BV x8, RSTR h12, BODY h11) ,
h13: debt n 1〈0:4〉( ARG0 x8) ,
h7: burden n 1〈5:12〉( ARG0 x5) ,
h14: heavy a 1〈17:26〉( ARG0 e2{SF prop, TENSE pres}, ARG1 x5) ,
h14:comp〈17:26〉( ARG0 e16{SF prop}, ARG1 e2, ARG2 u15)
{ h12 =q h13, h6 =q h7 } 〉

Fig. 5. MRS representation of Debt burdens are heavier.

5 Semantics

As we stated in Section 1, we consider the recovery of structural relations involved in
sentence meaning to be a primary goal of parsing. In parsing with our original HPSG, such
information is built up gradually as part of the HPSG sign. This semantic information can
be extracted from the full sign, in a form suitable for further use in reasoning, applications
or evaluation.

5.1 Minimal Recursion Semantics

The semantic information in the original HPSG can be represented in the form of Minimal
Recursion Semantics (MRS: Copestake, Flickinger, Sag, & Pollard, 2005). This framework
is a flat semantic formalism that represents semantics as a bag of so-called elementary
predications and a set of underspecified scope constraints. An elementary predication can
be directly related to words in the text, or can reflect a grammatical construction, such
as compounding. Each elementary predication has a relation name, a scopal label, and a
distinguished variable (designated ARG0). Arguments of a predication are identified by
‘bleached’ ARGn roles (which are to be semantically interpreted for broad classes of pred-
icates, e.g. those corresponding to unergative or causative verbs). Figure 5 shows the MRS
analysis of Debt burdens are heavier. Here we see seven elementary predications (one per
line, where the bottom line depicts scope constraints—which we will blissfully ignore for
the benefits of exposition): (a) three with overt lexical referents; (b) two grammaticalized
relations representing the compound and comparative constructions; and (c) two predi-
cations corresponding to construction-specific covert (underspecified, definite) quantifiers.
The ARG1 and ARG2 roles of MRS elementary predications describe semantic arguments
relative to the specific predicate, where the ARG1 of the adjectival predication, for example,
marks the entity it modifies; conversely, BV (bound variable) is specific to predications that
represent quantifiers. Entity and event variables carry properties such as number or tense.

5.2 Robust Meaning Composition

As we sketched in Section 1 above, parsing with our approximated PCFGs by itself pro-
duce the semantic information we discussed in the preceding section. In the underlying
HPSG, semantic composition and construction of MRS meaning representations are ac-
complished straightforwardly in the parser. Lexical entries and some constructions (like
N – N compounding or bare noun phrases, as seen in our running example above) intro-
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duce TFS descriptions of MRS fragments, i.e. one or more partially instantiated elementary
predications. In the formation of larger constituents then, unification of component parts
is deployed for three core aspects of meaning composition: (a) argument linking, i.e. iden-
tifying the label or distinguished variable of one predication with an argument position
in another one; (b) variable property aggregation, e.g. recording the temporal contribution
of auxiliaries in an event variable; and (c) accumulation of component parts, i.e. concate-
nation of the multi-sets of elementary predications and scope constraints from daughter
constituents.

As observed by Maxwell and Kaplan (1993), among others, unification is predominantly
used as an information-combining operation here, rather than as a filter on wellformed
combinations of constituents. In other words, in regular parsing unification failures are
comparatively rare in the semantic sub-structures of the HPSG sign, although they can
occur where grammatical constraints are encoded in terms of semantic properties, for ex-
ample subject – verb agreement as the unification of number and person properties on the
ARG0 and ARG1 variables of the nominal and verbal predications, respectively. All PCFG
annotation schemes discussed in Section 4 above preserve sufficient information about the
HPSG lexical types and constructions involved, to enable a post-parsing step of determin-
istic ‘reconstruction’ of the full HPSG sign, in principle. However, when parsing with our
robust PCFGs, there is no guarantee that the resulting derivations are consistent with re-
spect to the underlying HPSG. In the following, we sketch our approach to making such
reconstruction robust to derivations that can be inconsistent with respect to the underlying
HPSG, thus potentially leading to unification failures.

In a perspective on feature structures as information bundles, an inconsistent PCFG
derivation contains conflicting information, say incompatible daughter categories in some
syntactic construction, or discrepant number values in two semantic variables to be uni-
fied. Based on the above reflections on the division of labor between syntactic vs. seman-
tic sub-components in HPSG signs, we conjecture that unification conflicts (when recon-
structing our PCFG derivations within the original HPSG) will be far more frequent in
morpho-syntactic sub-structures and relatively rare in semantic composition. Thus, we can
approach robust meaning composition through a variant of the unification procedure that
allows deleting (i.e. ignoring) some conflicting information, where appropriate—so-called
default unification. In doing so, our abstract goal will be to maximize the quality of seman-
tic information, while keeping to the deterministic nature of the post-parsing reconstruction
of PCFG derivations.

A number of different approaches to default unification (of either untyped or typed fea-
ture structures, and often with varying time complexity) have been proposed over the past
three decades; a relatively recent overview of some of the more influential proposals is
provided by Ninomiya, Matsuzaki, Shimizu, and Nakagawa (2011, Section 4). Key di-
mensions of variation here are (a) which types of information in feature structures can be
‘relaxed’ to make graph unification succeed (node labels, outgoing arcs, or reentrancies—
or combinations of these) and (b) whether or not to preserve commutativity, i.e. order-
independence of the result of default unification (there can, of course, occur conflicting
information in multiple places while unifying two structures, in which cases the order of
relaxation decisions can effect the outcome).

For conceptual and computational simplicity, we adopt a variant of the procedure sug-
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gested in Section 4.1 of Ninomiya et al. (2011). As a failure occurs in the unification of
two (sub-)graph nodes, the node label (i.e. type of the corresponding feature structure) will
be determined solely by the more specific of the two sub-graphs; unification then recur-
sively proceeds on the intersection of outgoing arcs that are appropriate for the result type;
reentrancies are never relaxed (explicitly). This procedure maintains the almost-linear time
complexity of regular unification, though it is not order-independent. To locally determine
which of two graph nodes is more specific (i.e. ‘richer’ in information), we apply two
heuristics: (a) comparing the count of (cycle-free) transitive sub-nodes, which we directly
interpret as an indicator of specificity; and (b) comparing the count of sub-types of the two
conflicting local types (i.e. node labels), where we view a larger number of sub-types as an
indicator of greater uncertainty.7

As such (and unlike some other strategies), our approach to robust unification will al-
ways succeed, although it could in theory do so by discarding the complete information
of one of the two input feature structures. Recall from above that (parts of) our HPSG
feature structures serve as descriptions of logical forms in the MRS framework. MRS ex-
traction from robust unification results, thus, could in principle fail (e.g. owed to a cyclic
sub-structure introduced by default unification) or result in partial or highly underspecified
logical forms where unification failures occurred in semantic composition, which we inter-
nally partitioned into sub-tasks (a) to (c) above. In practice, it appears that sub-task (c)—
the monotonic accumulation of bags of elementary predications and scope constraints—is
hardly affected by conflicting feature structure information. Thus, partiality of resulting
MRSs does not present a practical problem in our work, whereas of course unification fail-
ures in sub-tasks (a) and (b) do occur, with adverse effects on the quality of semantic
outputs. In Section 7.4 below, we demonstrate how comparatively high-quality MRSs can
be obtained from the combination of parsing with the approximating PCFG and robust uni-
fication and further relate the frequency of unification failures to observed output quality.

6 Semantic Evaluation

In order to compare our PCFG approximations to analyses derived from the full HPSG sys-
tem, we use several parsing metrics that are in common use: the ParsEval labeled brack-
eting precision, recall, and F1 (Black et al., 1991), exact match against the full syntactic
derivation tree (Toutanova et al., 2005), and—since the ParsEval scores ignore the preter-
minal nodes—also lexical type tagging accuracy. However, one of our intentions in making
use of HPSG is to facilitate a more semantic interpretation of the data, and these standard
metrics only evaluate the syntactic tree.

As we show in Section 6.3, no currently available parser evaluation metric evaluates the
information we are trying to recover, and so we designed our own.

7 Obviously, a number of different strategies could be applied here, for example giving preference
to information contributed by HPSG constructions (rather than daughter constituents), or to head
daughters over non-head daughters. A first round of experimentation with other strategies of pick-
ing defeasible vs. indefeasible information in resolving unification failures, however, suggest that
there is very little variation in the quality of resulting semantics. Further thoughts along these lines
are presented in Section 9.
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6.1 Design Considerations

Recall that our ultimate goal in parsing is to extract meaning from text, i.e. make available
an abstract, logical-form semantics that captures all grammaticalized contributions of the
linguistic signal to interpretation, and only those, while abstracting away from irrelevant
surface variation. To evaluate progress towards this goal in a granular fashion, however,
one needs to be able to break up the semantic information into discrete elements. For this
purpose, we find it useful to distinguish three broad classes of information that contribute
to meaning:

CLASS 1 core functor – argument structure, whether syntactic or semantic;
CLASS 2 predicate information, such as the lemma, word category, and sense;
CLASS 3 properties of events and entities, such as tense, number, and gender.

The ParsEval metric evaluates phrase structure, which covers none of these classes di-
rectly. Dependency-based evaluation schemes, such as Stanford Dependencies (de Marn-
effe & Manning, 2008) evaluate CLASS 1 surface information. The annotation used in
the DepBank version of Briscoe and Carroll (2006) for parser evaluation also describes
just CLASS 1 syntactic information, although the relationships are different to those that
Stanford Dependencies reflect. The annotation of the original PARC700 DepBank (King,
Crouch, Riezler, Dalrymple, & Kaplan, 2003) does describe all three classes of informa-
tion, but again in terms of syntactic rather than semantic properties.

A common element between all the dependency types above is the use of grammatical
relations to describe CLASS 1 information. That is, the dependencies are usually labels like
SUBJ, OBJ, MOD, etc. While these grammatical functions allow one to describe the surface
(grammatical) structure, they do not make the underlying ‘deep’ (logical) structure explicit.
This deep structure which captures semantic rather than syntactic arguments and can be
seen in resources such as the Prague Dependency Treebank (Böhmová, Hajič, Hajičová,
& Hladká, 2003) and the Redwoods Treebank (Oepen, Flickinger, Toutanova, & Manning,
2004) is what we are most interested in evaluating. Using this semantic argument structure
for parser evaluation not only gets closer to the actual sentence meaning that we are trying
to extract, but is potentially more general, as there tends to be wider agreement on semantic
arguments than on specific syntactic analyses, as, for example, whether the main verb
depends on the auxiliary, or vice versa.

At the same time, we wish to focus parser evaluation on information determined solely
by grammatical analysis, i.e. all contributions to interpretation by morpho-syntax, and only
those. For these reasons, we consider the task of semantic role labeling (SRL) against
PropBank-style target representations (Kingsbury, Palmer, & Marcus, 2002) too far re-
moved from parser evaluation proper, i.e. a form of ‘semi-extrinsic’ parser evaluation.
Copestake (2009) elaborates this argument, emphasizing the distinction between (seman-
tic) argument labeling vs. role labeling and demonstrating that a “semantically consistent”
labeling (in the PropBank sense) is impossible in the limit, without resorting to a very fine-
grained, possibly predicate-specific inventory of role labels (an argument that in part goes
back to Dowty, 1991).

Furthermore, gold-standard PropBank-style target representations are available only
for a small subset of pertinent semantic predicate–argument relations and limited to a
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few relatively coherent domains and genres, distinctly different from our more diverse
training and test data (see Section 7 below). With very few exceptions, PropBank has
hardly been used for semantic parser evaluation (as contrasted with SRL), and as in any
‘framework-independent’ parser evaluation—syntactic or semantic—the conversion from
parser-internal to external target representations would inevitably introduce a great deal of
uncertainty (Crouch, Kaplan, King, & Riezler, 2002; Clark & Curran, 2007). Therefore,
the focus of empirical validation of our robust PCFG parser and meaning construction will
be by comparison to the type of semantics most commonly used in the HPSG universe, and
specifically the ERG as our ‘source’ grammar.

6.2 EDM: Elementary Dependency Match

In addition to our focus on semantic information, we considered two other requirements
for an effective parser evaluation metric. It should be:

1. understandable not just by parser developers, but also non-expert users;
2. configurable to suit the level of detail required for a particular scenario.

The metric we have devised to satisfy these requirements is Elementary Dependency
Match (EDM), based on so-called Elementary Dependency Structures (EDS), a variable-
free reduction of MRS developed by Oepen and Lønning (2006).8 In a nutshell, the full
MRS in Figure 5 can be reduced to a semantic dependency graph (EDS), where elemen-
tary predications induce the nodes (which then are labelled by predicate symbols, e.g.
heavy a 1〈17:26〉), and semantic argumenthood is encoded by arcs labelled with the un-

derlying roles, e.g. BV, ARG1, etc. Here MRS variables are mapped onto nodes of the de-
pendency graph on the basis of the distinguished variable notion ( ARG0, see above), and
in cases of a one-to-many mapping (which can arise with scopal arguments, but not in our
running example) a few simple disambiguating heuristics are applied.

In our work, we use sub-string character spans (e.g. 〈5:12〉) to identify nodes in the de-
pendency graph, to facilitate alignment of corresponding elements across distinct analyses,
which in large parts parallels common practise in parser evaluation based on word-to-word
dependencies. Note, however, that our MRSs can lexically decompose the meaning con-
tribution of individual words (as observed in the two elementary predications in Figure 5
corresponding to the account of the comparative heavier) and can further contain pred-
ications introduced by grammatical constructions, e.g. the two-place compound relation
corresponding to the phrase debt burdens. For these reasons, our scheme of identifying
dependency nodes merely by sub-string spans does not establish a unique labelling of the
graph nodes. Thus, in our running example the span 〈17:26〉 corresponds to both predi-
cations involved in the comparative, which will become indistinguishable once the EDS
dependency graph is further reduced into basic triples for evaluation purposes. These re-
ductions not only make it easier for us to compare across parsers or analyses but also facil-

8 In more recent work, Copestake (2009) shows how essentially the same reduction can be aug-
mented with information about the underspecified scope hierarchy, so as to yield so-called De-
pendency MRS (which unlike EDS facilitates bi-directional conversion from and to the original
MRS).
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itate the separation of CLASS 1 vs. CLASS 2 information. Our EDM metric hence consists of
three triple types which align with the three information classes:

NAMEs: spani PRED relationi

ARGs: spani rolej spank
PROPs: spani propertyj valuej

In these forms, relation is the predicate name of an elementary predication from the
MRS, role is an argument label such as ARG1, property refers to an attribute such as TENSE

or NUM, and value is an appropriate instantiation for the respective property. Figure 6
shows the triples produced for the MRS in Figure 5.

NAME ARG PROP
〈0:4〉 PRED udef q ? ROOT 〈17:26〉 〈5:12〉 NUM pl
〈0:4〉 PRED debt n 1 〈0:4〉 BV 〈0:4〉 〈0:12〉 SF prop
〈5:12〉 PRED burden n 1 〈0:12〉 BV 〈5:12〉 〈0:12〉 TENSE untensed
〈0:12〉 PRED udef q 〈0:12〉 ARG1 〈5:12〉 〈17:26〉 SF prop
〈0:12〉 PRED compound 〈0:12〉 ARG2 〈0:4〉 〈17:26〉 SF prop
〈17:26〉 PRED heavy a 1 〈17:26〉 ARG1 〈5:12〉 〈17:26〉 TENSE pres
〈17:26〉 PRED comp 〈17:26〉 ARG1 〈17:26〉

Fig. 6. EDM triples for Debt burdens are heavier.

During evaluation, we can compare the triples from the gold standard analysis with those
ranked top by the parser, and calculate precision, recall, and F1 scores across all triples, as
well as across the three separate triple types (NAME, ARG, and PROP).

6.3 Comparison to Other Frameworks and Related Metrics

To see how the EDM metric relates to other dependency-based parser evaluation metrics
(and to give at least a bit of an indication of how our parser outputs compare to other analy-
sis frameworks), we show how the same example sentence is represented in four commonly
used metrics, in the context of the information classes outlined above. Figure 7 shows the
analysis as represented by Stanford Dependencies and Briscoe and Carroll (2006) Gram-
matical Relations. Both representations present the basic CLASS 1 syntactic information,
although they use different analyses of the predication copula construction.

root(ROOT-0, heavier-4)
nsubj(heavier-4, burdens-2) (ncsubj are burdens )
nn(burdens-2, Debt-1) (ncmod burdens Debt)
cop(heavier-4, are-3) (xcomp are heavier)

Fig. 7. Stanford Dependencies (left) and Grammatical Relations (right) for
Debt burdens are heavier.

CCG dependencies (see Figure 8) combine syntactic CLASS 1 information with CLASS 2

information, since each dependency includes the CCG category (or supertag) of the head
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Debt-0 N/N burdens-1
are-2 (S[dcl]\NP)/(S[adj]\NP) burdens-1
are-2 (S[dcl]\NP)/(S[adj]\NP) heavier-3

heavier-3 S[adj]\NP burdens-1

Fig. 8. CCG dependencies for Debt burdens are heavier.

word. Each dependant is considered a separate evaluation element, with the part of the
category it fills indicated here by bold face.

Figure 9 shows the PARC700 DepBank annotation for our example. As with the EDM
triples, information pertaining to properties of events and entities is represented separately.
Some information about the predicates is captured in the lemmatization (i.e. are as ‘be’) or
heavier as ‘heavy’), but, as with the CCG dependencies, this level of the analysis is rolled
in with the syntactic analysis.

subj(be-0, burden-2) stmt type(be-0, declarative)
xcomp(be-0, heavy-1) tense(be-0, pres)
subj(heavy-1, burden-2) num(burden-2, pl)
mod(burden-2, debt-6) num(debt-6, sg)
adegree(heavy-1, comparative)
adjunct(heavy-1, null-3)

Fig. 9. PARC 700 triples for Debt burdens are heavier.

Of the many parser evaluation metrics are already in use then, none of them are ad-
equate for our purposes in facilitating semantic interpretation, hence the need to devise
our own. Rimell and Clark (2008) discuss some of the issues in designing an evaluation
metric, and while not all of their points are relevant—since we are not trying to evaluate
across frameworks—their discussion of informativeness and compactness is pertinent. We
have made the decision here to be as informative as possible, and, rather than aiming for
compactness, are deliberately separating different elements of the analysis into individual
evaluation elements. This allows us to be comprehensive in what we present, but also con-
figurable to the evaluation scenario, since information can be included for evaluation when
appropriate, and ignored otherwise.

In our current experiments, we are interested in both CLASS 1 and CLASS 3 information
but, with unlexicalized PCFGs, we do not attempt to recover CLASS 2 information, and
hence do not evaluate it.

7 End-to-End Evaluation & Results

7.1 Grammar & Data

We use the 1010 release of the English Resource Grammar (ERG) for the approximation
experiments. This version of the ERG contains a total of 200 syntactic constructional rules,
and 50 lexical rules (that is derivational, inflectional, or punctuation ones). 145 of the 200
syntactic rules are binary, while the remaining 55 are unary. All lexical rules are unary.



Robust Parsing, Meaning Composition, and Evaluation 19

In addition, the grammar contains a hand-compiled lexicon instantiating around 1000 leaf
lexical types with over 35K base-form entries.

Several large treebanks have been developed with the ERG. Unlike traditional, man-
ually annotated treebanks, these were developed as Redwoods-style ‘dynamic’ tree-
banks (Oepen, Toutanova, et al., 2002). Sentences from the corpus are first parsed by the
ERG, and then manually disambiguated (mostly by the grammarian himself). For the exper-
iments in this article, we use the manually disambiguated WeScience Treebank (Ytrestøl,
Flickinger, & Oepen, 2009), which currently contains a total of over 11K sentences from
a selection of Wikipedia articles in the domain of Natural Language Processing, with an
average length of 18 tokens per sentence, pre-processed to strip irrelevant markup, and di-
vided into 13 roughly equal-sized sections. Of all sentences in WeScience, about 78%
received exactly one ‘gold’ analysis during treebanking. The rest either failed to be parsed
by the ERG, or there was no single acceptable reading to the annotator. We will only use
the subset of sentences with a gold parse for the experiment. More specifically we reserve
section WS12 for development and section WS13 for final testing. Sections WS01 to WS11
contain a total of 7,636 ‘gold’ trees, which are used for training.

Apart from WeScience, we also use the large-scale automatically parsed WikiWoods
Treecache (Flickinger, Oepen, & Ytrestøl, 2010). WikiWoods contains about 55M En-
glish sentences extracted from the full English Wikipedia, organized in some 13,000 seg-
ments. The corpus is parsed with the 1010 version of the ERG, and automatically dis-
ambiguated using a Maximum Entropy model trained on the manually disambiguated
trees in WeScience. Only the one top-ranked reading is preserved in the construction
of WikiWoods. Since the correctness of ERG analysis is unchecked in the automatically
parsed data, this dataset must be considered potentially noisy. The total number of ERG
derivations available for training is about 48M.

7.2 The Parser

The approximating PCFG tends to grow huge when rich annotations and large corpora
are used. For efficient application of the resulting grammar, we implemented a CKY-style
parser with bit-vector-based algorithm like the one proposed by Schmid (2004). The algo-
rithm shows its strength in extensibility for grammars with millions of rules and hundreds
of thousands of non-terminal symbols.

A slight deviation of our implementation from the BitPar algorithm is that, after con-
structing the bit-vector-based recognition chart, we do not apply the top-down filtering
routine before calculating the Viterbi probabilities. Practice shows that in our case the
recognition chart is normally sparse, and the filtering routine itself costs more time than
what it saves from the additional calculations in the Viterbi step.

For correctness checking, we reproduced the unlexicalized PCFG parsing accuracy re-
ported by Klein and Manning (2003) on PTB with our bit-vector parser while achieving
better efficiency (in both training and testing) than the Stanford Parser. Even though our
parser is implemented in Java (for better cross-platform compatibility), the low-level bit-
vector-based operations make our system competitive even in comparison to the BitPar
implemented in C++.

As mentioned earlier, we do not (yet) prune PCFG rules during grammar acquisition or
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parsing. For lexical look-up, we allow the lexical model to propose multiple tags (cut by a
certain probability threshold). In case a full parse is not found, a partial parsing model tries
to recover fragmented analysis according to the Viterbi probabilities of the constituents.
With careful design of the PCFG and sufficient training data, the parser normally delivers
close to full parsing coverage even without the fragmented partial parsing mode.

7.3 Experimental Setup

For the evaluation of our approximating PCFGs, we compare the top-ranked parses pro-
duced by the PCFG with the manually disambiguated gold trees in WS13. We assume that
parser inputs have been pre-tokenized (according to ERG conventions) but not tagged. All
comparisons are against the original derivations.9 Several different training sets are used.

WS contains 7636 gold trees from sections WS01 – WS11 of the WeScience Treebank,
which also served as the training data for the ERG-native MEM parse selection model. This
dataset is too small to acquire high coverage PCFGs with heavy annotations. Therefore,
only PCFG(0) and PCFG(FP1) results are reported here.

WW000 contains 85,553 automatically parsed and disambiguated trees from WikiWoods
(all segments with 000 as suffix). This is less than 0.2% of the entire collection, but close
to the limit for the latent-variable PCFG training with the Berkeley Parser.

WW00 contains about 482K sentences (all segments with 00 as suffix), roughly 1% of
the entire WikiWoods. We were able to successfully train PCFGs with relatively rich
annotations.

WW contains the complete WikiWoods with ∼48M parsed trees. With feature path an-
notations, the training of the models takes too long. Also, excessive annotation makes it
difficult to parse with the resulting huge grammar. We stop at two levels of grandparent
annotation, obtaining a PCFG with almost 4M rules and over 128K non-terminal symbols.

7.4 Empirical Results

Tables 2 and 3 summarize the results of the accuracy evaluation. All results are reported
on the 785 ‘gold’ trees from section WS13 of WeScience. PET is the accuracy of the
HPSG parser disambiguation model given the candidate parse forest and the gold tokeniza-
tion. PCFG(0) is the unannotated PCFG read off the bare (normalized) derivation trees.
PCFG(GPm ,FPn) is the annotated PCFG model with m-levels of grandparents and n fea-
ture paths. And PCFG-LA(SM3) is the latent-variable PCFG after three split-merge training
iterations with the Berkeley Parser.

The discriminative parse disambiguation model of PET serves as the upper bound for

9 Full details of our evaluation setup—gold standard data, parser outputs and scores for all configu-
rations, pointers to the open-source resources involved, and all software—are available for repro-
ducibility and follow-up experimentation at http://svn.delph-in.net/snug/edm/.
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Table 2. Syntactic evaluation of parsing accuracy on WS13 with various models and train-
ing sets. Reported are grammar size (#Rule, #NT, #T); ParsEval precision (P), recall (R),
and F1; as well as exact match ratio (EX) on the original derivation tree and tagging
accuracy (TA) on its lexical types.

#Rule #NT #T P R F1 EX TA

w
s

PET - - - 87.1 87.1 87.1 48.79 96.5
PCFG(0) 10,251 208 1,152 64.8 59.1 61.8 18.09 83.3
PCFG(FP1) 12,178 669 1,152 71.7 63.3 67.2 18.73 82.4

w
w
0
0
0 PCFG(0) 25,859 236 1,799 61.3 58.2 59.7 13.76 83.9

PCFG(GP1) 64,043 3,983 1,799 73.5 70.7 72.1 20.25 85.9
PCFG-LA(SM3) * * * 74.4 69.4 71.8 1.91 88.0

w
w
0
0

PCFG(0) 61,426 247 2,546 64.5 62.1 63.3 16.56 87.8
PCFG(GP1) 187,852 5,828 2,546 78.5 77.9 78.2 25.35 91.5
PCFG(GP1,FP4) 271,956 16,731 2,546 81.6 80.7 81.2 29.04 92.2
PCFG(GP1,FP5) 319,511 21,414 2,546 82.0 81.2 81.6 28.54 92.4
PCFG(GP1,FP6) 320,630 21,694 2,546 81.9 81.1 81.5 28.41 92.4
PCFG(GP2) 489,890 45,658 2,546 80.2 79.8 80.0 28.92 91.6
PCFG(GP2,FP2) 559,006 66,218 2,546 81.1 80.3 80.7 32.10 91.8

w
w PCFG(GP1) 1,007,563 8,852 4,472 81.3 80.6 80.9 29.43 92.5

PCFG(GP2) 3,952,821 128,822 4,472 85.0 84.8 84.9 37.45 93.6

our grammar approximation task. Despite our non-terminal label set being an order of
magnitude above that of the PTB, the ParsEval F1 is comparable to that from state-
of-the-art PCFG parsers trained on twice as much data (McClosky, Charniak, & John-
son, 2006b).10 With the same small amount of training data, the baseline PCFG with-
out annotation achieved ParsEval F1 of merely 61.8. With one feature path annotation
(SYNSEM.LOCAL.CAT.HEAD value), this improved significantly to 67.2, but the size of the
ws data set was insufficient to successfully add grandparent annotation.

Using the larger WW000, the performance of the baseline PCFG decreases by ∼2%
ParsEval F1, most likely due to the noise introduced by the automatic disambiguation
in WikiWoods. However, the larger training set enables 1-level grandparent annotation,
which brings ParsEval F1 up to 72.1. The latent-variable PCFG achieved similar syntactic
accuracy, delivering the best F1 at 71.8 after three split-merge iterations. Error analysis
shows that its low exact match ratio is mostly due to the inaccurate prediction of the preter-
minal chain of lexical/morphological rules. With the 85K training sentences, the learning
curve of the Berkeley parser has already flatten out at this point, and we were unsuccessful
in further scaling up the training set.

The WW00 training set provides sufficient noisy data for the PCFG(0) to outperform the
one trained with the 7636 gold trees, but the real bonus comes from having enough data

10 With less than 20% of the training data, we are still not quite at the top levels seen on §23 of the
PTB when trained on §2–21.
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Table 3. EDM-based semantic evaluation of parsing accuracy on WS13 with various models
and training sets. FS consistency is the proportion of fully wellformed PCFG derivations
(when reconstructed in the HPSG universe), i.e. ones that require no recourse to robust
feature structure unification.

FS Consistency EDMA EDMP
P R F1 P R F1

w
s

PET 100% 86.6 86.4 86.5 94.1 93.9 94.0
PCFG(0) 22.9% 67.5 54.5 60.3 84.1 76.6 80.2
PCFG(FP1) 25.9% 73.2 61.5 66.8 86.8 75.8 80.9

w
w
0
0
0 PCFG(0) 17.0% 63.9 51.1 56.8 81.6 75.4 78.4

PCFG(GP1) 31.5% 73.9 65.6 69.5 87.1 79.0 82.8
PCFG-LA(SM3) 19.6% 76.0 70.6 73.2 87.7 82.9 85.2

w
w
0
0

PCFG(0) 19.1% 67.8 55.7 61.2 84.1 79.0 81.5
PCFG(GP1) 37.8% 79.5 74.2 76.8 90.3 85.8 88.0
PCFG(GP1,FP4) 44.5% 81.5 79.9 80.7 91.1 89.8 90.4
PCFG(GP1,FP5) 45.4% 81.6 80.0 80.8 91.2 90.0 90.6
PCFG(GP1,FP6) 45.4% 81.6 80.0 80.8 91.1 89.9 90.5
PCFG(GP2) 46.0% 81.2 75.9 78.5 90.9 86.4 88.6
PCFG(GP2,FP2) 51.2% 81.5 79.1 80.3 91.3 89.3 90.3

w
w PCFG(GP1) 41.2% 80.7 79.2 79.9 91.0 90.5 90.8

PCFG(GP2) 55.4% 84.6 83.8 84.2 92.9 92.6 92.8

to learn reliable statistics over annotated trees. With the mixture of 1-level of grandparent
and some feature path annotations, ParsEval F1 reached over 80. The best performance
on WW00 is achieved with PCFG(GP1,FP5). 2-levels of grandparents alone outperforms
1-level of grandparent, but the grammar quickly reaches its size limit on this training set
and starts to lose coverage when more feature path annotations are added.

Finally, with the complete WikiWoods, both PCFG(GP1) and PCFG(GP2) improved
further, with PCFG(GP2) reaching our highest ParsEval F1 at 84.9, only 2.2 points below
the upper bound with the discriminative disambiguation model and working on the full
HPSG parse forest produced by the grammar. We attribute such competitive results partially
to self-training effects on the huge corpus (see below for further discussion). The gap on
the exact match ratio is larger, though, possibly due to the fact that the objective function
of the discriminative disambiguation model was, unlike the PCFGs, optimized on complete
parse match instead of individual constituents.

Focussing now on the semantic evaluation, the EDM scores for the most part reflect
the trends in ParsEval. The EDMP scores are relatively high, owing to the strong inter-
dependence of the properties, while the EDMA, as mentioned above, could be consid-
ered similar to labelled accuracy scores (LAS) for dependency parsers, except that the
dependencies are semantic rather than syntactic, and are comparable to state-of-the-art de-
pendency scores. Looking more closely, we see a few extra trends when examining the
EDM results. Based just on the scores, it appears that the feature path annotations have a
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greater positive effect on the semantic analysis than the syntactic (comparing, for instance,
PCFG(GP1) and PCFG(GP1.FP4) or PCFG(GP2) and PCFG(GP2.FP2)). We also see that
mistakes made by the Berkeley parser have less effect on the semantic analysis, meaning
it produces the best EDM results of parsers trained on the WW000 data set.

The EDM triples also allow us to examine what type of information the parsers are getting
wrong. We looked at which frequent (seen greater than 100 times) argument relations each
of the parsers found the most difficult. For the original HPSG parser, we see things well
known to cause problems for parsers, prepositional phrase attachment and conjunctions, as
well compounds, particularly in compound names. The best performing PCFG approxima-
tion, PCFG(GP2) trained on the full WikiWoods, also had problems with PP attachment
and conjunctions, however there were two classes of relations with very different perfor-
mance. In common with all the PCFG approximations, the top performer was very poor at
detecting ARG3 relations for verbs. This is a place where the explicit subcategorisation in
the HPSG lexicon provides a strong benefit to our original parser. On the other hand, the
approximating PCFG was much better at determining the structure of compound names
than the original parser. This probably points to the fact that these relationships are largely
driven by collocation, rather than syntax, and suggests that a focussed statistical approach
would probably improve this problematic area in the PET parser. The other notable trend
in the approximating PCFGs trained on less than the full WikiWoods is low accuracy
in distinguishing between prepositions with a meaningful semantics, and empty particles.
Again, the explicit subcategorisations, and also the constraints defined in the HPSG make
these much easier for our original parser to detect, although with the full WikiWoods as
training data, the approximating PCFG can also learn to correctly disambiguate these.

The EDM P triples were less informative in pinpointing differences between the parsers,
although effects of the prepositions also showed up in this analysis. The major pattern
showing here was that, unlike all the other parsers, the Berkeley parser was less accurate on
nominal properties (person and number) than on verbal properties. This may be due to the
above observation that the PCFG-LA parser was somewhat inaccurate over the preterminal
chain of lexical/morphological rules, which could affect these properties.

As a reflection on the effects of robust unification, observe how higher feature structure
consistency rates do not necessarily align with better EDM scores. We interpret this asym-
metry as evidence for our stipulation that minor syntactic errors do not prevent correct
meaning composition, which is further supported by observation of our best-performing
approximation reaching near-competitive EDM scores despite its comparatively low pro-
portion of fully consistent PCFG derivations—which is just above one in two.

Finally, recall that empirical results so far were against only about 80% of our test cor-
pus, i.e. the 785 utterances in WS13 that (a) the ERG can parse and where (b) human
diambiguation found a correct analysis among the top-500 parses.11 For the remaining
195 test utterances in WS13, our top-performing PCFG parser makes available syntac-
tic analyses for all but three, and via robust unification we can derive an MRS meaning

11 Arguably, this setup introduces a bias in favor of the HPSG system into our contrastive evalua-
tion setup, seeing as the comparison so far was exclusively focussed on inputs that the ERG can
handle well. In this light, reaching near-comparable semantic dependency accuracies, in our view,
constitutes an even stronger result than one might conclude from Table 3 in isolation.
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representation for all of these. These results confirm the greatly increased robustness (to
extragrammatical inputs) of our parser, compared to the original HPSG system.

Lacking gold-standard target representations for the extra parses, in the following we
seek to contrast the two sets of parses in terms of structural properties. The most important
difference to note between the 785 in-scope (for the ERG) and 192 out-of-scope parses is
their average length: with about 28 leaf nodes per derivation, the out-of-scope trees are
exactly double the average length of the set of in-scope parses. Its ability to successfully
analyze much longer inputs further corroborates the robustness gains in our setup.

For further quantitative comparison of in- vs. out-of-scope analyses, we subdivided the
in-scope parses into four random subsets, each comparable in size to the set of out-of-scope
parses. In terms of tree shape (and with the caveat of averaging over rather small samples),
out-of-scope syntactic analyses exhibit a very slightly higher depth, at 3.07 tree nodes per
leaf, compared to 2.89–2.95 for the in-scope contrast sets. In terms of MRS wellformed-
ness, out-of-scope analyses show a moderately higher proportion of ‘fragmentation’, with
1.04 instances of partial graph connectivity among elementary predications per 100 input
words, compared to between 0.74 and 1.01 for the in-scope samples. Comparing EDMA

triples per input word, again we see comparable average statistics: out-of-scope meaning
representations score at 1.61, contrasting with 1.48–1.59 for in-scope MRSs. While they
cannot directly inform us about the downstream utility of the robust, out-of-scope anal-
yses gained in the PCFG universe, these crude structural comparisons at least suggest a
comforting degree of similarity to our 785 validated, in-scope results.

8 Discussion

It is important to note that the grammar approximation task we take on in this article is
different from traditional treebank-based parsing. Although the accuracy evaluations for
both tasks are performed on a fixed set of gold trees (out of practical necessity in assessing
relative parse quality), in the grammar approximation task we have access to the theoreti-
cally infinite pool of training data automatically generated by the original grammar. Some
complex grammar extraction algorithms which work fine on a small training corpus fail to
scale up to handle millions of trees. On the other hand, our MLE-based PCFG extraction
shows its advantage in extensibility.

Our approach of training a PCFG with automatically parsed corpora is in some sense
similar to recent self-training work in semi-supervised parsing (McClosky, Charniak, &
Johnson, 2006a). However, instead of parsing the unlabeled data with the PCFG directly,
we rely on the HPSG and its disambiguation model in constructing PCFG training mate-
rial. The comparatively highly constrained ERG analyses on unseen data allow us to ob-
tain (seemingly) good-quality trees. And the potential penalty of introducing noisy data is
quickly compensated for by the virtually unlimited volume of available training data.

Our approximating PCFGs are much less constrained than the ERG. From a linguistic
point of view, it would be difficult (to say the least) to analytically interpret the huge set of
PCFG rules. And unlike the ERG, the PCFG is unsuited for making sharp grammaticality
judgments, say in a computer-assisted language learning environment. However, for the
task of parsing unrestricted running text, our approximating PCFGs have the key advan-
tage of being robust (in the sense of making available analyses for all inputs), flexible, and
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maintaining a cubic worst-case bound on parsing time complexity. Our results demonstrate
that one can choose various combinations of annotations to adequately balance efficiency,
accuracy, and coverage—thus facilitating adaptation to specific requirements in individ-
ual applications. Although the experiments reported in Section 7 above are only testing
on sentences which the ERG actually can parse, we have also applied our PCFGs on the
remaining ∼20% text that are out-of-scope for the ERG, and obtained close to full pars-
ing coverage (with less than 1% remaining failures). Although derivation trees constructed
by the PCFG do not guarantee a consistent HPSG analysis, they provide an approximate
prediction of what the syntacto-semantic structure should look like. Using robust unifica-
tion, we can thus obtain a largely wellformed semantic structure with the guidance of the
approximating PCFG for unrestricted running text.

Looking at the specific annotation strategies, we compared the internal annotations with
the external ones. Experimental results show that when grandparent annotation is added,
the grammar size grows quickly. On a huge training set, this is rewarded with significant
accuracy gains. On our smaller training sets though, ‘over-annotating’ with grandparents
results in a decrease in accuracy due to data sparseness. Instead, annotating with feature
path information increases the grammar size more moderately, allowing one to flexibly
seek to approach the optimal granularity of the PCFG.12

In comparison to the linguistic annotations used by Klein and Manning (2003) for PTB
parsing, our annotations are less language- or treebank-specific (with the exception of cer-
tain normalizations). This is due to the fact that ERG analyses are relatively fine-grained
in treating various linguistic constructions: the most relevant annotations can be gathered
from either the grandparents or the internal feature structure. Such a general design allows
us to experiment with other ‘deep’ HPSG parsers (and other grammatical frameworks) in
the future.

For the clarity of the experiment, we have chosen not to do constructional pruning or
smoothing. We thus focused our evaluation mostly on parsing accuracy. This leaves much
room for future investigation. For instance, we observe that a large portion of the grammar
rules have very low frequency counts and almost no impact on the parsing accuracy. On
the other hand, even with the simple PCFG(GP1), after training with 45 million sentences,
the grammar continues to pick up new rules at a rate of one rule per 160 sentences. Most
of these new rules are the combination of low frequency supertags.

Regarding our proposal for granular semantic evaluation of MRS meaning representa-
tions via EDM, we find the results with the semantic evaluation measures to be largely
consistent with our syntactic derivation tree-based evaluation. In cases where differences
were observed, e.g. outputs from parsers adopting different approaches, we find the EDM

12 In a related and contemporaneous study, Evensberget (2011) observe that internal annotation with
much larger sets of feature paths can be beneficial too, under certain circumstances. Using up to
33 paths, hand-picked from the standard ERG quick-check vector, and a subset of WikiWoods
comparable in size to our WW00, he reports a ParsEval F1 score suggesting at least competitive ac-
curacy to our results when training on WW00 (though not our best-performing WW parser). These
experiments are not fully comparable, however, due to subtle difference in input preprocessing.
Furthermore, owed to the greater cost of internal annotation, Evensberget (2011) does not provide
empirical results using internal annotation on the full WikiWoods.
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scores to be more informative regarding the performance on the consequent semantic com-
positions.

Last but not least, given the promising parsing accuracy of the approximating PCFG and
robustness of meaning composition by default unification, we believe it is worth recon-
sidering the role of the hand-written grammars in deep linguistic processing. In the past,
manual grammar engineering has been taking on the dual role of offering concise and accu-
rate linguistic description on the one hand, while attending to the efficiency and robustness
in parsing, on the other hand. These conflicting goals have hindered the development of
practical large-scale linguistic grammars. Techniques as the ones presented in this arti-
cle suggest a way of potentially liberating grammarians from concerns for robustness to
out-of-scope inputs and computational processing cost.

9 Conclusion and Outlook

In conclusion, we presented a corpus-driven approach to approximate a large-scale hand-
written HPSG with a PCFG for robust and accurate parsing. Different annotations are used
to enrich the derivation trees. And with the 48M sentence from the English Wikipedia
automatically parsed and disambiguated by the ERG, a MLE-based PCFG achieved ParsEval
F1 of 84.9, close to the performance of the discriminative parse selection model of the
original grammar (which has access to the candidate HPSG parse forest). The obvious
robustness and potential efficiency advantages of the approximating PCFG suggest a broad
range of promising applications in semantics-oriented parsing.

While in this article we just touched on the topic of robust semantic composition via
default unification, we see a range of alternative solutions to the interesting task of recon-
ciling conflicting information. Apart from the default strategy we have taken in this article,
one could also keep the inconsistency either by upward or downward inference (and po-
tential expansion) of the type inheritance hierarchy, or by producing non-deterministic uni-
fication results that explicitly encode the uncertainty. Hence, inconsistencies between the
fragments of linguistic analysis combined during parsing need not necessarily be resolved
on the spot (as we do in the present study). Instead, disambiguation in the space of relax-
ations addressing conflicting information could be delayed until sufficient (and potentially
extra-linguistic) evidence becomes available. The actual implementation and evaluation of
various strategies remains to be investigated in the future.
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