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Abstract— This paper considers a formal object-oriented model
for distributed computing. Object orientation appears as a
leading framework for concurrent and distributed systems.
However, the synchronization of the RPC communication model
is unsatisfactory in many distributed systems. Asynchronous
message passing gives better control and efficiency in this setting,
but lacks the structure and discipline of traditional object-
oriented methods. The integration of the message concept in the
object-oriented paradigm is unsettled, especially with respect to
inheritance and redefinition.

We propose an approach combining asynchronous method
calls and conditional processor release points, which reduces
the cost of waiting for replies in the distributed environment
while avoiding low-level synchronization constructs such as
explicit signaling. Even the lack of replies to method calls in
unstable environments need not lead to deadlock in the invoking
objects. This property seems attractive in asynchronous, open,
or unreliable environments. Furthermore, the approach allows
active and passive behavior (client and server) to be combined
in concurrent objects in a very natural way.

In this paper, we consider the integration of these constructs
with a mechanism for multiple inheritance within a small
object-oriented language. The language constructs are formally
described by an operational semantics defined in rewriting logic.

I. I NTRODUCTION

The importance of inter-process communication is rapidly
increasing with the development of distributed computing,
both over the Internet and over local networks. Object ori-
entation appears as a leading framework for concurrent and
distributed systems, and has been recommended by the RM-
ODP [1], but object interaction by means of method calls
is usually synchronous. The mechanism of remote procedure
calls (RPC) [2] has been derived from the setting of sequential
systems, and works well for tightly coupled systems. It is
clearly less suitable in a distributed setting where the compon-
ents are loosely coupled. Here synchronous communication
gives rise to undesired and uncontrolled waiting, and possibly
deadlock. Asynchronous message passing gives better control
and efficiency, but does not provide the structure and discipline
inherent in method declarations and calls.

Intuitive high-level programming constructs are needed to
unite object orientation and distribution in a natural way. We
do not believe that distribution should be transparent to the
programmer as in the RPC model, rather communication in
the distributed setting should beexplicitly asynchronous. Sep-
arating execution threads from objects breaks the modularity

and encapsulation of object orientation, leading to a very low-
level style of programming. Models of distributed systems
based on asynchronously communicating concurrent objects
seem much more natural. This paper considers programming
constructs for concurrent objects, based on communication by
asynchronous method callsand a notion ofprocessor release
points. Processor release points are used to influence the
implicit internal control flow in concurrent objects. Objects
have an associated processor and a mechanism for scheduling
of pending processes. This reduces time spent waiting for
replies to method calls in a distributed environment and allows
objects to dynamically change between active and reactive
behavior (client and server). These notions were formalized
with the operational semantics of the Creol language [3].

This paper considers how these notions may be integrated
with the structuring mechanism provided by inheritance, ad-
dressing high-level program constructs relevant to the integ-
ration of object orientation and distribution. In contrast to
related work, we propose an integration of asynchronous com-
munication and inheritance which allows method overloading
and redefinition. To illustrate the generality of the approach,
multiple inheritance is considered. To explain the approach and
motivate its suitability, the proposed language constructs for
distributed object systems are integrated in the object-oriented
Creol language with a simple operational semantics, while
maintaining the efficiency control of asynchronous message
passing. The operational semantics of the language extension
is defined in rewriting logic [4], extending Creol’s operational
semantics which is executable as a language interpreter in the
tool Maude [5]. Our experiments suggest that rewriting logic
and Maude provide a well-suited platform for experimentation
with language constructs and concurrent environments.

Paper overview:Sect. II outlines the overall setting of the
approach. Sect. III extends the Creol language with inherit-
ance. Sect. IV gives some examples. Sect. V gives a formal,
operational semantics for the language. Sect. VI considers
related work and Sect. VII concludes the paper.

II. A N APPROACH TOOBJECT-ORIENTED

DISTRIBUTED SYSTEMS

A. Asynchronous method calls

According to the RM-ODP, distributed components may be
seen as (collections of) objects that run in parallel and com-
municate by means of remote method calls. However, existing
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interaction models do not combine the method concept with
distributed concurrent objects in a satisfactory manner. The
three basic interaction models for concurrent processes [2]
are shared variables, RPC, and message passing. As shared
memory models do not generalize well to distributed environ-
ments, shared variables are discarded. With the RPC model,
an object is activated by a method call. Control is transferred
with the call so there is a master-slave relationship between
the caller and the callee. A similar approach is taken with
the execution threads of e.g. Hybrid [6] and Java [7], and
concurrency is achieved through multithreading. The interfer-
ence problem for shared variables reemerges when threads
operate concurrently in the same object, which happens with
non-serialized methods in Java. Reasoning about programs in
this setting is a highly complex matter [8], [9]: Safety is by
convention rather than by language design [10]. Verification
considerations therefore suggest that all methods should be
serialized as in e.g. Hybrid. Restricting to serialized methods,
the invoking process mustwait for the return of a call, blocking
for any other activity in the object. In a distributed setting this
limitation is severe; delays and instability may cause much
unnecessary waiting. A nonterminating method will also block
evaluation of other method calls, which makes it difficult to
combine active and passive behavior in the same object.

In contrast, message passing does not transfer control.
For synchronous message passing, as in Ada’s Rendezvous
mechanism, both sender and receiver must be ready before
communication can occur. Method calls may be modeled by
pairs of messages, on which the two objects must synchronize
[2]. For distributed systems, this synchronization still results in
much waiting. In the asynchronous setting, messages may be
emitted even when the receiver is not ready. Communication
by asynchronous message passing is well-known from e.g.
the Actor model [11], [12]. Generative communication in
Linda [13] is an approach between shared variables and
asynchronous message passing, where messages without an
explicit destination address are shared on a possibly distributed
blackboard. However, method calls imply an ordering on
communication not easily captured in the Actor model and
Linda. We believe that a satisfactory notion of method calls
for the distributed setting should be asynchronous, combining
the advantages of asynchronous message passing with the
structuring mechanism provided by the method concept.

B. Inheritance and structuring mechanisms

Inheritance in object-oriented languages basically serves
two purposes. First, class inheritance is a powerful structur-
ing mechanism for code reuse. Class extension and method
redefinition are convenient both for development and under-
standing of code. Calling superclass methods in a subclass
method enables reuse in redefined methods, making the re-
lationship between the method versions explicit. Thus, this
facility is clearly superior to cut-and-paste programming with
regard to the ease with which existing code may be inspected
and understood. Second, inheritance can be understood in
terms of reasoning reuse, obeying thesubstitutabilityprinciple:

As a subclass is a specialization of a superclass, an object of
the subclass may replace an object of the superclass. This
has led to an active field of research on behavioral subtyping
[14], [15], which aims at identifying conditions for safe
substitutability. Although many languages identify the subclass
and subtype relations, in particular with regard to parameter
passing, several authors argue that inheritance relations for
code and for behavior should be kept distinct. Identifying the
two relations leads to severe restrictions on code reuse which
may seem unattractive to programmers [16].

In order to solve the conflict between unrestricted code
reuse in subclasses, and behavioral subtyping and incremental
reasoning control [15], [16], we use behavioral interfaces [17],
[18] to type object variables and remote calls, and allow mul-
tiple inheritance at both the interface and class level. Interface
inheritance is restricted to a form of behavioral subtyping [15],
whereas class inheritance may be used freely. In this paper,
interfaces are given a purely syntactic presentation.

Inherited class (re)declarations are resolved by disjoint
union combined with an ordering of the super classes. A class
may implement several interfaces, provided that it satisfies the
syntactic and semantic requirements stated in the interfaces.
An object of classC supports an interfaceI if the classC im-
plementsI. Reasoning control is ensured by substitutability at
the level of interfaces:an object supporting an interface I may
be replaced by another object supporting I or a subinterface
of I in a context depending onI, although the latter object
may be of another class. Subclassing is unrestricted in the
sense that implementation claims (as well as class invariants)
are not in general inherited at the class level.

With distinct inheritance and subtyping hierarchies, it is
possible to inherit only a subset of the attributes and methods
of a superclass. However, this would require considerable work
establishing invariants for parts of the superclass that appear
desirable for inheritance, either anticipating future needs or
while designing subclasses. Theencapsulation principlefor
class inheritance states that it should suffice to work at the
subclass level to ensure that the subclass is well-behaved when
inheriting from a superclass: Code design as well as new proof
obligations should occur in the subclass only. Situations that
break the encapsulation principle have been labeled inheritance
anomalies [19], [20], in which reuse requires redefinition.
Reasoning considerations therefore suggest that all attributes
and methods of a superclass are inherited, but method redefin-
ition may violate the semantic requirements of an interface.

C. Asynchronous method calls and inheritance

Distributed communication based on asynchronous message
passing does not offer the structuring mechanisms provided by
method definitions. Notions of asynchronous methods may be
build on top of asynchronous communication paradigms such
as Actors and Linda, fixing a method as either synchronous
or asynchronous. However, formalisms taking this approach
have traditionally either not supported inheritance [21], [22],
imposed redefinition of asynchronous methods [23], or used
inheritance as a means to introduce nondeterminism in the lan-
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guage [5], [24]. Inheritance in the object-oriented sense has not
been supported by these formalisms. In particular, traditional
method redefinition and overriding have not been available.
In this paper, we propose an approach which allows methods
to be invoked in either a synchronous or an asynchronous
manner and which combines (asynchronous) methods calls
with inheritance, allowing redefinition as well as overriding.

III. A N OVERVIEW OF CREOL

This section proposes programming constructs for distrib-
uted concurrent objects, based on asynchronous method calls,
processor release points, and multiple inheritance. Concurrent
objects are potentially active, encapsulating execution threads;
consequently, elements of basic data types are not considered
objects. In this sense, our objects resemble top-level objects
in e.g. Hybrid. Objects have identity: communication takes
place between named objects and object identifiers may be
exchanged. As motivated above, Creol objects are typed
by interfaces, resembling CORBA’s IDL, but extended with
semantic requirements and mechanisms for type control in
dynamically reconfigurable systems. Strong typing implies that
invoked methods are supported by the called object (when not
null), and formal and actual parameters match.

A. Interfaces and strong typing

Two kinds of variables are declared; an object variable typed
by an interface and an ordinary variable typed by a data type.
We assume a common typeData of basic data values, such as
the natural numbersNat, stringsStr, and object identifiersObj,
includingthis, which may be passed as arguments to methods.
ExpressionsExpr evaluate toData. Denote byVar the set of
program variables, byMtd the set of method names, and by
Label the set of method call identifiers. Object variables are
declared withExpr values, which evaluate to data in the context
of the actual class parameters. In order to focus the discussion
on asynchronous method calls, processor release points, and
inheritance in this setting, standard typing issues will not be
discussed in further detail in this paper.

Strong typing ensures that for each method invocation
o.m(In; Out), whereI is the declared interface ofo, the actual
objecto (if not null) will support I and the methodm will be
understood. As object variables are typed by interfaces, only
the methods mentioned in the interface (or its super-interfaces)
are visible. Interfaces do not specify instance variables, so
these cannot be directly referenced. Explicit hiding of class
attributes and methods is not needed. Interfaces describe
viewpoints to objects and have the following general form:

interface F (〈parameters〉) inherits F1, F2, . . . , Fm
begin with G

op m1(. . .)
. . .

op mn(. . .)
end

where F, F1, . . . , Fm, andG are interfaces. Interfaces may
have both value and object parameters, typed respectively by
data types and interfaces. Interface parameters describe the

minimal environment that any object offering the interface
needs at the point of creation.

For active objects we may want to restrict invocation access
to objects of a particular interface. This way, the active object
can invoke methods of the caller and not only passively
complete invocations of its own methods. Use of thewith
clause restricts the communication environment of an object,
as considered through the interface, to external objects offering
a given cointerface [17], [18]. For some objects no such
knowledge is required, which is captured by the keywordAny
in the with clause. Mutual dependency is specified if two
interfaces have each other as cointerface.

Example. We consider the interfaces of a node in a
peer-to-peer file sharing network. AClient interface captures
the client end of the node, available to any user of the system.
It offers methods to list all files available in the network, and
to request the download of a given file from a given server.
A Serverinterface offers a method for obtaining a list of files
available from the node, and a mechanism for downloading
packs, i.e. parts of a target file. The Server interface is
available to other servers in the network. AClient2 interface
is only available to Servers with a method to fetch a list of
trusted servers from the client.

interface Client interface Server interface Client2
begin with Any begin with Server begin with Server

op availFiles op listFiles op getServers
op reqFile op getLength end

end op getPack
end

The with -construct allows the typing mechanism to deduce
that any caller of a server request will understand thelistFiles
and getPackmethods. To save space, discussion of method
parameters is postponed to Sect. IV. The two interfaces may
be inherited by a third interfacePeer, describing nodes able
to act according to both the client role and the server role:

interface Peer inherits Client, Client2, Server
begin end

B. Class Declarations with Multiple Inheritance

At the imperative level, attributes (class variables) and
method declarations are organized in classes, which may have
value and object parameters similar to interface parameters.
We consider multiple inheritance where all attributes and
methods of a superclass are inherited by the subclass, and
where superclass methods may be redefined. Class inheritance
is declared in Creol by a keywordinherits which takes as its
argument aninheritance list, i.e. a list of class namesC(E)
whereE provides actual class parameters. Say that a method
is definedabovea classC if it is declared inC or in at least
one of the classes inherited byC. When a method is invoked
in an objecto of classC, a method body is identified in the
inheritance graph and bound to the call. In order to keep the
exposition simple, the method call will be bound to the first
possible method definition aboveC in the inheritance graph, in
a left-first depth-first order, and we will here ignore the types
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of the method parameters in the binding strategy. (In Creol
typing considerations are made to ensure strong typing.)

The encapsulation provided by interfaces suggests that
external calls to an object of classC are virtually bound to the
closest method definition aboveC. However, the object may
internally invoke methods of its superclasses. In the setting
of multiple inheritance and overloading, methods defined in a
superclass may be accessed in the subclass by qualified ref-
erences. We let attributes of the superclass be accessed in the
same way. Consequently, identically named attributes which
are inherited from several superclasses are only identified if
they come from a common ancestor class.

Objects are dynamically created instances of classes. Object
attributes are encapsulated and can only be accessed via the
object’s methods. Among the declared methods, we distinguish
therun method, which is given special treatment operationally.
After initialization, the run method, if provided, is started.
Methods may be invoked internally and by other objects of
appropriate interfaces. When called from other objects, meth-
ods reflect passive or reactive behavior in the object, whereas
run reflects active behavior. Methods need not terminate and
all method instances may be temporarilysuspended.

C. Methods Declarations

1) Asynchronous Methods:An object offers methods to its
environment, specified through a number of interfaces and
cointerfaces. All interaction with an object happens through
method calls. In the asynchronous setting method calls can
always be emitted, because the receiving object cannot block
communication.Method overtakingis allowed: if methods
offered by an object are invoked in one order, the object may
start the method instances in another order. A method instance
is, roughly speaking, program code with inner processor
release points, evaluated in the context of local variables.

Different method executions may be interleaved, so the val-
ues of an object’s program variables are not entirely controlled
by a method instance with a release point. Therefore, a method
may have local variables supplementing the object variables.
In particular, the values of formal parameters are stored locally,
but other local variables may also be created. Semantically, an
instantiated method is represented by aprocess〈S, L〉 where
S is a sequence of commands andL : Var → Data the local
state. Consider an objecto which offers the method

op m(in n : Nat out d : Data) == var i : Nat= 0; S .
to the environment. Syntactically, method declarations end
with a period. Accepting a call tom with argument2 from
another objecto′ creates a process〈S, {label 7→ t, caller 7→
o′, n 7→ 2, d 7→ nil, i 7→ 0}〉 in the objecto. An object
may have several (suspended) instances of the same method,
possibly with different values for local variables. The local
variables label and caller are reserved to identify the call
and the caller for the reply, which is automatically emitted at
method termination, i.e. when computation ofS is completed.

An asynchronous method call is made with the command
t!x.m(E), wheret ∈ Label provides a locally unique reference
to the call, x is an object expression,m a method name,

and E an expression list with the actual parameters supplied
to the method. Labels identify replies, and may be omitted
if a reply is not explicitly requested. As no synchronization
is involved, process execution can proceed after calling an
external method until the return value is actually needed by
the process. Return values from the call are explicitly fetched,
say in a variable listV, by the commandt?(V). This command
treatsV as a future variable [21]: If a reply has arrived, return
values are assigned toV and execution continues without
delay. Otherwise, process execution is blocked. In order to
avoid blocking in the asynchronous case, processor release
points are introduced for reply requests (Sect. III-C.2): If no
reply has arrived, execution issuspended.

The syntaxx.m(E; V), where the semicolon separates input
expressions from output variables, is adopted for synchronous
(RPC) method calls, immediately blocking the processor while
waiting for the reply. The language does not support monitor
reentrance, mutual synchronous calls may therefore lead to
deadlock. In order to execute local calls, the invoking process
must eventually suspend its own execution. In particular,
execution of synchronous local calls will precede the active
code. Local calls need not be prefixed by an object identifier,
in which case they may be identified syntactically, otherwise
equality between caller and callee is determined at runtime.

2) Inner Processor Release Points:Guarded commands
g are used to explicitly declare potential processor release
points await g. Guarded commands can be nested within
the same local variable scope, corresponding to a series of
processor release points. When an inner guard which evaluates
to false is encountered during process execution, the process is
suspended and the processor released. After processor release,
any suspended process may be selected for execution.

The typeGuard is constructed inductively:
• wait ∈ Guard (explicit release)
• t? ∈ Guard, wheret ∈ Label
• b ∈ Guard, whereb is a boolean expression over

local and object state
• g1 ∧ g2 andg1 ∨ g2, whereg1, g2 ∈ Guard.
Use ofwait will explicitly release the processor. The reply

guardt? succeeds if the reply to the method invocation with
label t has arrived. Evaluation of guards is done atomically.
We let await g ∧ t?(V) abbreviateawait g ∧ t?; t?(V) and
await p(E; V) abbreviatet!p(E); await t?(V) for some fresh
label t.

Internal control flow in objects is expressed by composing
guarded commands. LetGS1 andGS2 be guarded commands
await g1; S1 and await g2; S2. Inner guards are obtained by
sequential composition; in the statementGS1;GS2, the guard
g2 is a potential release point. Non-deterministic choice is ex-
pressed byGS1�GS2, which may computeS1 if g1 evaluates
to true or S2 if g2 evaluates totrue. Non-deterministic merge is
expressed byGS1|||GS2, defined as(GS1;GS2)�(GS2;GS1).
Synchronized merge, GS1 &GS2, is defined asawait g1 ∧
g2; S1; S2, treating non-guarded arguments as guarded by true
and expanding synchronized method calls (see Sect. IV-B).
Control flow without potential processor release usesif and
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Syntactic categories. Definitions.
g in Guard
p in MtdCall
S in StmList
s in Stm
t in Label
v in Var
e in Expr
x in ObjExpr
b in BoolExpr
m in Mtd

g ::= wait | b | t? | g1 ∧ g2 | g1 ∨ g2

p ::= x.m |m@classname|m
S ::= s | s; S

s ::= skip | (S)
| S1�S2 | S1|||S2 | S1 & S2

| V := E | v := new classname(E)
| if b then S1 elseS2 fi
| while b do S od
| t!p(E) | !p(E) | p(E; V) | t?(V)
| await g | await g ∧ t?(V) | await p(E; V)

Fig. 1. An outline of the language syntax for method definitions, with
typical terms for each category. Capitalized terms such asE denote lists, sets,
or multisets of the given syntactic categories, depending on the context.

while constructs, and assignment to local and object variables
is expressed asV := E for a disjoint list of program variablesV
and an expression listE, of matching types. While expressions
are without side effects,new creates a new object in the
environment and returns its object identifier. In-parameters as
well as this, label, andcaller are read-only variables.

With inner release points, the object need not block while
waiting for replies. This approach is more flexible than future
variables: suspended processes or new method calls may be
evaluated while waiting. If the called object never replies,
deadlock is avoided as other activity in the object is possible.
However, when the reply arrives, thecontinuation of the
process must compete with other enabled suspended processes.

For code inside a subclass ofC,we introduce the syntax
t!m@C(In) for asynchronous andm@C(In; Out) for syn-
chronouslocal invocation of a method aboveC in the in-
heritance graph. As the binding of such calls may be done
without knowing the class ofthis object, they are calledstatic,
in contrast to calls without@, called virtual. As objects are
typed by interfaces, external calls are always virtual. Fig. 1
summarizes the language syntax.

IV. EXAMPLES

A. Peer-to-peer Networking

In a distributed peer-to-peer file sharing system, servers
may arrive and disappear dynamically. A client requests a
file from a server in the distributed network, and downloads
it as a series of packet downloads until the file download
is complete. The connection to the server may be blocked,
in which case the download will automatically resume if
the connection is reestablished. A client may run several
downloads concurrently, at different speeds. We assume that
every node in the network has an associated database with
shared files. Downloaded files are stored in this database,
which is not modeled here but implements an interfaceDB:

interface DB
begin with Server

op getFile(in fId:Str out file: List[List[Data]])
op getLength(in fId:Str out length:Nat)
op storeFile(in fId:Str, file:List[Data])
op listFiles(out fList:List[Str])

end

The methodgetFile returns a list of packets, i.e. a sequence
of sequences of data, for network transmission,getLength
returns the number of such packets for a given file name,
listFiles returns the list of available files, andstoreFileadds a
file to the database, possibly overwriting an existing file.

The classServerCl takes object parameters of interfaces
DB and Client, and implements theServer interface. The
parameters provide static links to the local database and
client. The latter decides which remote servers may be trusted
for downloading files.

classServerCl (myClient: Client2, myDB:DB) implements Server
begin with Server

op getLength(in fId:Str out lth:Nat) ==
await myDB.getLength(fId;lth) .

op getPack(in fId:Str, pNbr:Nat out pack:List[Data]) ==
var f:List[Data]; await myDB.getFile(fId;f); pack:=f[pNbr] .

op listFiles(out servers:List[Str], files: List[Str]) ==
await myClient.getServers( ; servers);

await myDB.listFiles( ; files) .
end

The methodgetLengthreturns the number of packs for a
given file, getPacka particular pack in the transmission of a
file, andlistFiles the lists of known servers and available files,
We lets[i] be thei’th element of lists (for 0 ≤ i ≤ length(s)).
Note thatServerClobjects can haveseveral interleaved activ-
ities: several downloads may be processed simultaneously as
well as uploads to other servers, etc. All method calls are
asynchronous: If a server temporarily becomes unavailable,
the transaction is suspended and may resume at any time after
the server becomes available again. Processor release points
ensure that the processor will not be blocked in this case and
transactions with other servers are not affected.

The classClientCl takes an object parameter of interface
Serverand implements theClient interface:

classClientCl (myServer:Server) implements Client, Client2
begin var trusted:List[Str] := myServer
with Server

op getServers(out sList: List[Str]) == sList := trusted .
with Any

op availFiles (out files:List[Str×Str]) == await aux(0; files) .
op aux (in i:Nat out files:List[Str×Str]) ==

var t1, t2:Label, fList1: List[Str]; fList2: List[Str×Str];
files := ε; if (i = length(trusted))then skip else

t1 ! trusted[i] . listFiles(); t2 ! this . aux(i+1);
(await t1?(sList, fList1); trusted := trusted (sList\trusted);

files := files; pair(trusted[i],fList1))
||| (await t2?(fList2); files := files fList2 )fi .

op reqFile(in sId:Str, fId:Str) ==
var file, pack:List[Data], lth: Nat ;

await sId.getLength(fId; lth);
while (lth > 0) do await sId.getPack(fId, lth; pack);

file:=(file; pack);lth:=lth - 1od; !myDB.storeFile(fId,file) .
end
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We denote byε the empty list and by ‘;’ list concatenation.
For t:T and s, s′: List[T ], let s\s′ be the list of elements in
list s which do not occur in lists′ and pair(t, s) the list of
pairs obtained by a pairwise mapping oft onto s.
The methodavailFilesuses an auxiliary methodaux returns a
list of pairs where each pair contains a file identifierfId and
the server identifiersId wherefId may be found, andreqFile
returns the file associated withfId. Note that the auxiliary
function isprivateas it is not declared in theClient interface.

Nodes in the peer-to-peer network which implement the
Peerinterface can be modeled by the classNode below.

classNode (db:DB) inherits ServerCl(this, db),ClientCl(this)
implements Peer

begin end

Due to the instantiation of the superclass parameters with
this, several of the asynchronous calls considered above have
now become local calls to the objects itself. Using inner release
points, this does not cause any difficulties; asynchronous calls
may be evaluated whenever the object is idle.

B. Inheriting synchronization constraints

We now demonstrate the use of Creol on examples from
the literature on the inheritance anomaly [19], in particular
anomalies related to the use of guards. Note that inheritance
anomalies also occur in languages with single inheritance.
Interfaces are omitted here, as they are not central to the
discussion. LetBuf be a class with parameterlength:Nat,
unguarded operationsput(x: Data) andget(out x: Data), and
an internal attributesize recording the current number of
elements in the buffer. By means of the@ construct, we may
easily add guards to make users wait when the operations
cannot be performed properly:

classBuf1(length: Nat)inherits Buf (length)
begin with Any

op put (in x: Data) ==await size < length; put@Buf (x) .
op get (out x: Data) ==await size > 0; get@Buf (;x) .
op get2 (out x1, x2: Data) ==await size > 1;

get@Buf (;x1); get@Buf (;x2) .
end

Here, we have added aget2 operation where the guard ensures
that two synchronousget calls can be performed properly.

We then consider the problems ofhistory sensitive
behavior, adding an operationgget that should behave like
get expect that it must wait after a normalget. We first define
a mix-in classLock, with general synchronization operations:

classLock
begin var locked: Bool=false .
with Any

op unlock == locked :=false .
op lock == locked :=true .
op sync ==await (¬ locked) .

end

We may now use multiple inheritance to add a lock to
the buffer class, and redefine the buffer operations, adding
synchronization by means ofsynchronous merge:

classBuf2(lth: Nat) inherits Buf1(lth), Lock
begin with Any

op put (in x: Data) == unlock@Lock & put@Buf1(x) .
op get (out x: Data) == lock@Lock & get@Buf1(;x) .
op gget(out x: Data) == sync@Lock & get@Buf1(;x) .

end

We have obtained a history sensitive version of the buffer class
by combining the two superclasses in a clean manner. The
resultinggget is guarded by (¬ locked∧ size > 0), ensuring
that both guards are satisfied before the operation may start.
This is in general crucial to avoid deadlock, for instance if
the sync operation grabs the lock (agget would then block a
succeedinggget):

op sync ==await not locked; locked :=true.

This reuse of inherited operations by synchronous merge
and synchronous calls to superclass methods is semantically
clean, e.g. partial correctness reasoning abouts1 ands2 carries
over tos1 & s2 when any common program variables are not
changed in neither statement. As Creol gives read only access
to in-parameters andthis, the requirement is guaranteed for
synchronized merge of super operations from disjoint super-
classes,m1@C1(. . .) &m2@C2(. . .), as in the above example.
Consequently, synchronized merge guarantees maintenance of
superclass invariants when used in this way [25].

This example shows how business code and synchronization
code can be developed independently in Creol, and the two
kinds of code can be combined effectively and cleanly. In
contrast to recent aspect oriented approaches [20], including
synchronization patterns and composition filters, we use the
same basic language to express both kinds of code.

V. A N OPERATIONAL SEMANTICS FORCREOL

The operational semantics of Creol is defined using rewrit-
ing logic [4]. A rewrite theory is a 4-tupleR = (Σ, E, L,R),
where the signatureΣ defines the function symbols of the
language,E defines equations between terms,L is a set
of labels, andR is a set of labeled rewrite rules. From
a computational viewpoint, a rewrite rulet −→ t′ may be
interpreted as alocal transition rule allowing an instance
of the patternt to evolve into the corresponding instance
of the patternt′. Each rewrite rule describes how a part of
a configuration can evolve in one transition step. If rewrite
rules may be applied to non-overlapping subconfigurations,
the transitions may be performed in parallel. Consequently,
concurrency is implicit in rewriting logic (RL). A number of
concurrency models have been successfully represented in RL
[4], [5], including Petri nets, CCS, Actors, and Unity, as well
as the ODP computational model [26]. RL also offers its own
model of object orientation [5].

Informally, a state configuration is a multiset of terms of
given types. Types are specified in (membership) equational
logic (Σ, E), the functional sublanguage of RL which supports
algebraic specification in the OBJ [27] style. When modeling
computational systems, configurations may include the local
system states. Different parts of the system are modeled by
terms of the different types defined in the equational logic.
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RL extends algebraic specification techniques with trans-
ition rules: The dynamic behavior of a system is captured
by rewrite rules, supplementing the equations which define
the term language. Assuming that all terms can be reduced
to normal form, rewrite rules transform terms modulo the
defining equations ofE. Conditional rewrite rules are allowed,
where the condition is formulated as a conjunction of rewrites
and equations which must hold for the main rule to apply:

subconfiguration−→ subconfigurationif condition.

Rules in RL may be formulated at a high level of abstraction,
closely resembling a compositional operational semantics. In
fact, structural operational semantics can be uniformly mapped
into RL specifications [28].

1) System Configurations:An asynchronous method call
will be reflected by a pair of messages, and object activity will
be organized around amessage queuewhich contains incom-
ing messages and aprocess queuewhich contains suspended
processes, i.e. remaining parts of method instances. In order
to increase parallelism in the model, message queues will be
external to object bodies. A state configuration is a multiset
combining Creol objects, classes, messages, and queues. As
usual in RL, the associative constructor for lists, as well as
the associative and commutative constructor for multisets, are
represented by whitespace.

In RL, objects are commonly represented by terms of
the type 〈O : C |a1 : v1, . . . , an : vn〉 where O is the
object’s identifier,C is its class, theai’s are the names of
the object’s attributes, and thevi’s are the corresponding
values [5]. We adopt this form of presentation and define
Creol objects, classes, and external message queues as RL
objects. Omitting RL types, a Creol object is represented by
an RL object〈Ob | Cl,Pr,PrQ, Lvar,Att, Lab〉, whereOb is
the object identifier,Cl the class name,Pr the active process
code,PrQ a multiset of suspended processes with unspecified
queue ordering, andLvar and Att the local and object state,
respectively. Letτ be a type partially ordered by<, with least
element1, and letNext : τ → τ be such that∀x . x < Next(x).
Lab is used to generate method call identifiers and values
of type τ . Thus, the object identifierOb and the generated
local label value provide a globally unique identifier for each
method call. Message queues are RL objects〈Qu|Ev〉, where
Qu is the queue identifier andEv a multiset of unprocessed
messages. Each message queue is a distinct term in the state
configuration, associated with one specific Creol object.

The classes of Creol are represented by RL objects
〈Cl | Inh,Att,Mtds, Tok〉, whereCl is the class name,Inh is
the inheritance list,Att a list of attributes,Mtds a multiset
of methods, andTok is an arbitrary term of sortτ . When an
object needs a method, it is bound to a definition in theMtds
multiset of its class or of a superclass.

To pave the way for dynamic reconfiguration mechanisms,
such as a dynamic class construct [29], the inheritance graph
will not be statically given. We then need a binding mechanism
which dynamically inspects the current class hierarchy as
present in the configuration. As rewriting logic targets local

change, there is no way to access all classes in a configuration
in a single equation or rule. A natural solution is to use abind
message to be sent from a class to its superclasses, resulting in
a bound message sent back to the object generating thebind
message. To simplify the presentation we do not discuss the
influence of parameter types on the binding mechanism.

In RL’s object model [5], classes are not represented expli-
citly in the system configuration. This leads to ad hoc mech-
anisms to handle object creation, which we avoid by explicit
class representation. The commandnewC(args) creates a new
object with a unique object identifier, object variables as listed
in the class parameter list and inAtt, and places the code from
the run method inPr.

2) Concurrent Transitions:Concurrent change is achieved
in the operational semantics by applying concurrent rewrite
steps to state configurations. There are four different kinds of
rewrite rules:
• Rules that execute code from the active process:For every

program statement there is at least one rule. For example,
the assignment rule for the programV := E binds the
values of the expression listE to the list V of local and
object variables.

• Rules for suspension of the active process:When an
active process guard evaluates tofalse, the process and
its local variables are suspended, leavingPr empty.

• Rules that activate suspended processes:When Pr is
empty, suspended processes may be activated. When this
happens, the local state is replaced.

• Transport rules:These rules move messages into and
out of the external message queue. Because the external
message queue is represented as a separate RL object,
it can belong to another subconfiguration than the object
itself and it can therefore receive messages in parallel
with other activity in the object.

When auxiliary functions are needed in the semantics, these
are defined in equational logic, and are evaluated in between
the state transitions [4]. The rules for the basic constructs
concerning method calls, replies, guarded commands, local
synchronous method calls, and creation of new objects, are
now considered in more detail.

3) Method Calls: In the operational semantics, objects
communicate by sending messages. Two messages are used
to encode a method call. If an objecto1 calls a methodm
of an objecto2, with argumentsIn, and the execution of
m(In) results in the return valuesOut, the call is reflected by
two messagesinvoc(o2,m, (n o1 In)) and comp(n, o1,Out),
which represent the invocation and completion of the call,
respectively. In the asynchronous setting, invocation messages
must include the caller’s identity, so completions can be
transmitted to the correct destination. Objects may have several
pending calls to another object, so the completion message
includes a locally unique label valuen, generated by the caller.

When an object calls an external method, a message is
placed in the configuration. The rewrite rule for this transition
can be expressed as follows, ignoring irrelevant attributes in
the style of Full Maude [5]:
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〈O :Ob | Pr : (t!x.m(In); S), Lvar : L,Att : A, Lab : n〉
−→

〈O :Ob | Pr : (t := n; S), Lvar : L,Att : A, Lab : Next(n)〉
invoc(eval(x, (A; L)),m, (n O eval(In, (A; L))))

wherex is an object expression, andeval is a function which
evaluates an expression (list) in the context of a state. In the
case of an asynchronous call without an explicit labelt, the
assignment tot is omitted.

Similarly, a local asynchronous static callt!m@C′(In) gives
rise to the invocation message

invoc(O,m@C′, (n O eval(In, (A; L))))

and the virtual local callt!m(In) is handled ast!m@C(In)

whereC is the class ofO. A synchronous call, remote or local,
virtual or static, is handled by means of an asynchronous call
and a reply command:

〈O :Ob | Pr : p(In; Out); S, Lab : n〉
= 〈O :Ob | Pr : !p(In);n?(Out); S, Lab : n〉

which results in aninvoc message as defined above.
Transport rules take charge of the message, which even-

tually arrives at the callee’s external message queue. After
method execution, a completion message is emitted and even-
tually arrives at the caller’s external message queue.

The caller may wait for a completion in a reply command
(including synchronous calls) or in a guard. The reply com-
mand blocks until the appropriate reply message has arrived
in the external message queue.

〈O :Ob | Pr : (t?(V); S), Lvar : L〉〈O :Qu | Ev : Q comp(n,O,Out)〉
−→

〈O :Ob | Pr : (V := Out; S), Lvar : L〉 〈O :Qu | Ev : Q〉
if n = eval(t, L)

A reply guardt? evaluates to true when thecomp message
has arrived, otherwise the active process is put on the internal
process queue (see below).

4) Virtual and static binding of method calls:When the
invocation of a methodm is found in the external message
queue of an objectO of classC, a messagebind(O,m, In, C)
is generated whereIn is the actual in-parameter list. Virtual
calls are handled by the following equation:

〈O :Ob | Cl : C〉 〈O :Qu | Ev : Q invoc(O,m, In)〉
= 〈O :Ob | Cl : C〉 〈O :Qu | Ev : Q〉 bind(O,m, In, C)

Static method calls are generated without inspecting theactual
class of the callee, thus surpassing local definitions:

invoc(O,m@C′, In) = bind(O,m, In, C′).

If m is defined locally inC, a process with the method code
and local state is returned in aboundmessage. Otherwise, the
bind message is retransmitted to the superclasses ofC in a
left-first, depth-first order.

bind(O,m, In, nil) = bound(O, none)
bind(O,m, In, (C S′))〈C : Cl|Inh : S,Mtds : M〉

= if (m in M) then bound(O, get(m,M, In)) else
bind(O,m, In, (S S′)) fi 〈C :Cl | Inh : S,Mtds : M〉

The auxiliary functionget fetches methodm in the method
multisetM of the class, and returns a process with the method’s

code and local state. Values of the actual in-parametersIn, the
callerO′, and the label valuen are stored as local (read-only)
variables.

The process resulting from binding a synchronous call is
loaded as active code, defined by the following equation:

bound(O, 〈S′, ((label 7→ n) (caller 7→ O) L ′)〉)
〈O :Ob | Pr : (n?(V)); S,PrQ : W,Lvar : L〉 =

〈O :Ob | Pr : S′; cont(n),PrQ : ((n?(V)); S, L) W,Lvar : L ′〉
The additional commandcont(n) ensures that only the process
which made the call may continue after method completion,
thereby causing a LIFO discipline onPrQ for local synchron-
ous calls. For an asynchronous call the resulting processR is
loaded into the internal process queue, defined by the equation

bound(O,R) 〈O :Ob | PrQ : W 〉 = 〈O :Ob | PrQ : R W 〉
Here, the last equation only applies if the first equation did
not give a match. Note that the use of equations enables the
binding mechanism to execute in zero rewrite steps!

5) Guarded Commands:There are three types of guards
representing potential processor release points: boolean ex-
pressions, wait guards, and return guards. Only evaluation
rules for active process return guards are presented here.

Return guards allow process suspension when waiting for
method completions, so the object may attend to other tasks
while waiting. A return guard evaluates totrue if the external
message queue contains the completion of the method call,
and execution of the process continues. If the message is not
in the queue, the active process is suspended. The object can
then compute other enabled processes while it waits for the
completion of the method call.

〈O :Ob | Pr : (await g?; S), Lvar : L〉 〈O :Qu | Ev : Q〉
−→

if inqueue(eval(g, L), Q) then 〈O :Ob | Pr : S, Lvar : L〉 else
〈O :Ob | Pr : ε,PrQ : (W 〈(await g?; S), L〉), Lvar : ε〉 fi
〈O :Qu | Ev : Q〉
where the functioninqueuechecks whether the completion
with the given label value is in the message queueQ.

When no process is active, the return guard of the suspended
process may be retested against the external message queue. If
the completion message is present, the process is reactivated.

〈O :Ob | Pr : ε,PrQ : 〈await g?; S, L′〉 W, Lvar : L〉
〈O :Qu | Ev : Q〉
−→

〈O :Ob | Pr : S,PrQ : W, Lvar : L′〉 〈O :Qu | Ev : Q〉
if inqueue(eval(g, L), Q)

Otherwise, another suspended process from the process queue
PrQ may be loaded intoPr. Remark that any occurrence of a
wait in a guard causing process suspension is removed.

6) Object Creation:A new object with a unique identifier
and an associated event queue are created, after which a
synchronous call is made torun (if present in the class). New
object identifiers are created by concatenating tokensn from
the unbounded setTok to the class name. The identifier is
returned to the object which initiated the object creation.

8



〈O :Ob | Pr : v := newC(In); S, Lvar : L,Att : A〉
〈C :Cl | Att : A′, Tok : n〉
−→

〈O :Ob | Pr : v := newid; S, Lvar : L,Att : A〉
〈newid:Ob | Cl : C,Pr : run,PrQ : ε, Lvar : ε,Att : ε, Lab : 1〉
〈newid:Qu | Ev : ε〉 〈C :Cl | Att : A′,Tok : Next(n)〉
find(newid, C(eval(In, (A, L))), (this 7→ newid))

Here,newid denotes the new identifier. Class parameters are
stored among object attributes. Afind message, which takes
an object identifier, a class inheritance list, and a substitution
as arguments, causes the inheritance tree to be traversed in a
left-first depth-first order, in order to dynamically accumulate
and initiate all inherited attributes, while passing on appro-
priate class parameters as stated in the inheritance list. The
completed traversal results in a messagefound, with the object
identifier and a substitution (i.e. a local state) as arguments.

find(O, nil, A) = found(O, A)

find(O, ((C(In)) S’ ), A) 〈C :Cl | Inh : S,Att : IA〉
= find(O, (S S’ ), (A initeval(IA , In, A))) 〈C :Cl | Inh : S,Att : IA〉

We here denote byIA a state where variables are bound to
expressions and not only data values. The auxiliary function
initeval uses a stateA to evaluate (sequentially from left to
right) attributes initialized by expressions inIA while passing
the parametersIn. The resulting state is consumed by the
object requestingfind by the equation

found(O, A) 〈O :Ob | Att : ε〉 = 〈O :Ob | Att : A〉
Notice again that the use of equations enables a new object to
be created and initialized in a single rewriting step.

7) Testing Specifications in the Creol Interpreter:Specific-
ations in RL are executable on the Maude modeling and
analysis tool [5]. This makes RL well-suited for experimenting
with programming constructs and language prototypes, com-
bined with Maude’s rewrite strategies and search and model-
checking abilities. Development and testing of language con-
structs can be done incrementally. The operational semantics
described in this paper has been used as a language interpreter
to analyze Creol models [30]. The interpreter consists of 700
lines of code, including auxiliary functions and equational
specifications, and it has 25 rewrite rules.

Although the proposed operational semantics is highly non-
deterministic, Maude rewriting is deterministic in its choice
of which rule to apply to a given configuration. For the
evaluation of specifications of non-deterministic systems in
Maude, as targeted by Creol, this limitation restricts the direct
applicability of the tool as every run of the specification will
be identical. However, RL is reflective [31], which allows
execution strategies for Maude programs to be written in RL.
A strategy based on a pseudo-random number generator is
proposed in [30]. Using this strategy, it is easy to test a
specification in a series of different runs by providing different
seeds to the random number generator. By executing the
operational semantics, Maude may be used as a model analysis
tool. Maude’s search and model checking facilities can be
employed to look for specific configurations or configurations
satisfying given conditions.

VI. RELATED WORK

Many object-oriented languages offer constructs for con-
currency. A common approach has been to rely on the tight
synchronization of RPC and keep activity (threads) and objects
distinct, as done in Hybrid [6] and Java [7], or on the rendez-
vous concept in concurrent objects languages such as Ada [2]
and POOL-T [32]. For distributed systems, with potential
delays and even loss of communication, these approaches
seem less desirable. Hybrid offersdelegationto (temporar-
ily) branch an activity thread. Asynchronous method calls
can be implemented in e.g. Java by explicitly creating new
threads to handle calls [33]. UML offers asynchronous event
communication and synchronous method invocation but does
not integrate these, resulting in significantly more complex
formalizations [34] than ours. To facilitate the programmer’s
task and reduce the risk of errors, implicit control structures
based on asynchronous method calls seem more attractive,
allowing a higher level of abstraction in the language.

Languages based on the Actor model [11], [12] take asyn-
chronous messages as the communication primitive for loosely
coupled processes. This makes Actor languages conceptually
attractive for distributed programming. Representing method
calls by asynchronous messages has lead to the notion of future
variables found in e.g. ABCL [21], Eiffel// [23], CJava [33],
and in the Join-calculus [35] based languages Polyphonic C]

[24] and JoinJava [22]. Our proposed asynchronous method
calls resemble future variables, and inner processor release
points further extend this approach to asynchrony.

Most languages supporting asynchronous methods either
disallow inheritance [21], [22] or impose redefinition of
asynchronous methods [23]. In Polyphonic C] inheritance is
expressed as a disjunction of join patterns [35], resulting in
nondeterminism rather than overloading, and supplemented by
a substitution mechanism for inherited code. CJava [33], re-
stricted to outer guards and single inheritance, allows separate
redefinition of synchronization code and bodies in subclasses.

Maude’s inherent object concept [4], [5] represents an
object’s state as a subconfiguration, as we have done in this
paper, but in contrast to our approach object behavior is cap-
tured directly by rewrite rules. Both Actor-style asynchronous
messages and synchronous transitions (rewrite rules which
involve more than one object) are allowed, which makes
Maude’s object model very flexible. However, asynchronous
method calls and processor release points as proposed in this
paper are hard to represent within this model. Inheritance is by
disjoint union of methods, also resulting in nondeterminism.

VII. C ONCLUSION

The idea of the paper is to show how the concepts of
asynchronous method calls and multiple inheritance can be
integrated in the setting of distributed concurrent objects in
a smooth manner, including asynchronous local calls. The
approach allows active and passive behavior to be easily
combined in concurrent objects. Previous approaches have not
combined asynchronous communication with inheritance in a
satisfactory manner. This idea is materialized through a small
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language Creol with an executable operational semantics based
on rewriting logic. A peer-to-peer example demonstrates the
suitability of the language constructs in a distributed setting.
The major parts of the operational semantics concerning vir-
tual and static binding, synchronous and asynchronous method
calls, and object creation, are presented, ignoring aspects of
type analysis and semantic requirement specification. In par-
ticular, we have given an operational semantics of inheritance
and virtual binding based on dynamic and distributed traversal
of the available classes, rather than statically given inheritance
trees. Our approach may therefore be combined with dynamic
constructs for changing the class inheritance structure, such as
adding a classC and enriching an existing class withC as a
new superclass, which could be useful in open reconfigurable
systems.

We have demonstrated through examples how multiple in-
heritance combined with synchronous merge and synchronous
local calls may reduce the inheritance anomaly, allowing mix-
in classes and an aspect oriented programming style. It remains
to investigate how our approach could be integrated in standard
languages and technologies, and to what extent more elaborate
programming environments would interfere with the clean
computational model proposed in this paper.
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