Formal Methods and the RM-ODP

Ole-Johan Dahl and Olaf Owe
Department of Informatics, University of Oslo
May 1998

Abstract

The RM-ODP documents are criticized for unsatisfactory definition
of basic concepts such as object, class, and subclass, as well as values,
types, and subtypes. Whereas elements of an operational semantics of
ODP systems is provided, and the applicability of certain well known
specification languages is discussed, no methodology for class specification,
implementation development, and verification is given. We propose a set
of recommendations to remedy these shortcomings. Nontrivial examples
are provided.

1 The Basic Concepts

This report contains a few reflections on the contents of the document ISO/TEC
JTC1/SC21/WGT, titled “Reference Model of Open Distributed Processing” [7],
shorthand RM-ODP, dated 1995-6-7.

The purpose of the RM-ODP is to provide a standardized framework for
the description, development, and implementation of Open Distributed Sys-
tems. The following paragraph occurs in an early section on “objectives and
motivations”:

The development of a framework for system specification and the
corresponding infrastructure components is the general goal of ODP
standardization. The RM-ODP provides the framework and enables
ODP standards to be developed specifying components that are
mutually consistent and can be combined to build infrastructures
matched to user requirements. Complying with ODP architectural
principles and conforming to ODP standards in the construction of
distributed systems will result in open distributed systems.

The RM-ODP defines a division of ODP system specifications into several view-
points:

e the enterprise viewpoint, which is concerned with the business
activities of the specified system;

e the information viewpoint, which is concerned with the infor-
mation that needs to be stored and processed in the system;

e the computational viewpoint, which is concerned with the de-
scription of the system as a set of objects that interact at inter-
faces — enabling system distribution;

e the engineering viewpoint, which is concerned with the mecha-
nisms supporting system distribution;

e the technology viewpoint, which is concerned with the details
of the components from which the distributed system is con-
structed.

Each viewpoint is supposed to be an “abstraction” that yields a specification
of the whole system. It is emphasized that different viewpoint specifications
must be mutually consistent, but no advice is offered about how to verify such
consistency.

Some general concepts are identified, presumably to be used for specification
under any viewpoint. The ODP framework is object-oriented, thus the most
basic concepts are said to be those of object and action:

... All things of interest are modelled as objects. Anything of interest
that can happen is an action. ...

Also:

objects can be of an arbitrary granularity (e.g. they can be as large
as the telephone network, or as small as an integer [variable?]).

Objects interact through interfaces ranging from asynchronous message passing
to autonomous data transfer. An object may have several interfaces, possibly
associated with separate “roles”. Abstraction is identified as an important prin-
ciple which enables better modulation. There is no further explanation, and
no relationship to the different viewpoints. It is said that an object contains
“information”, and that its “state” may be changed.

Standard ODP system organization in terms of objects, clusters, capsules
and nodes is described. There are guidelines for the implementation of access
transparency across physical and administrative borders, in terms of objects
performing detailed tasks informally described.

The RM-ODP is divided into 4 parts:

1. Overview

2. Foundations

3. Architecture

4. Architectural Semantics Amendment

In the following section we give some more detailed comments to RM-ODP, in
particular parts 1 and 4. In a final section we propose a method for object
specification, (abstract) implementation, and verification.

2 Formal Methods and ODP
2.1 RM-ODP Part 1

The object concept may be sufficiently well explained for purposes of concrete
programming in a language containing some suitable class concept, but not by

far for purposes of formal methods, such as abstraction and refinement tech-
niques. Concepts of class and type are introduced, as well as subclasses and
subtypes. Both are said to be defined by sets of predicates, such as “being red”.
Although (sub-)types and (sub-)classes are said to go “hand in hand”, the rela-
tionship between these pairs of concepts is not made clear at all. These concepts,
as explained in the Part 1, are thus fairly insubstantial. A concept of template
is mentioned, somehow describing a class of objects, called a template-class.
Template-classes may correspond to class constructs available in some program-
ming languages.

According to the Part 1 classes and types are in general defined by “predi-
cates”. One example of such a predicate is provided: “X is red’, where X is
an object, describes X as belonging to the class of “red objects”.

Suppose we want to convey the information that X is monochrome. Clearly,
the falsity of X is blue does not follow logically from X being red; in fact,
the object might be multicoloured. It would be necessary to add one predicate
of the form X is mot C for every expressible colour C other than red. Thus,
a complete specification of the monochromicity of X is only possible if a value
type identifying all distinct discernible colours is provided, for instance an enu-
meration type COLOU R={red, blue, green, ...}. If so, universal quantification
can be used:

VC:COLOUReC#red = X is not C

A more practical approach, however, would be to introduce a function, say Col,
applicable to (the state of) X:

Col: S — COLOUR

giving the colour of X, where S is the state space of X. Then the predicate
Col(X) = red would convey the information that X is red. Since values of
type COLOUR are by definition distinct, the applicability of Col shows that
X is monochrome. Notice that if S is the state space of X, the above function
profile expresses the applicability of C'ol to X. That could be a more important
property of X than its actual colour.

The existence of “meaningless” expressions must be considered, such as
Col(Y), if the Col function does not apply to Y. It may be necessary to work
with 3-valued logic, unless applicability is decidable by textual typing of expres-
sions.

In our opinion the RM-ODP idea of restricting the entire universe is a mis-
take, for reasons of constructivity, as well as by ignoring the applicability or
non-applicability of operators. Orthogonal subtype or subclass hierarchies can
rather be realized through multiple heritage.

In RM-ODP (Part 3) the use of higher order functions is advocated. This
means that function spaces will be regarded as types. For subtypes of function
spaces the standard convention of contra-variance on domains is assumed, but
that does not agree with the general principle of subtypes as subsets (by cardi-
nality reasoning, assuming function equality is not affected by function values
for arguments outside the domains.)

The ODP concept of object interfaces corresponds to the traditional notion
of signature. There is, however, a need for semantic information in addition to
the syntactic one. The notion of role corresponds to interface subset. The RM-
ODP requires that different roles of an object be considered separately. This
is impossible in general as far as semantic considerations are concerned. For
instance, in the readers/writers example further below, it would be natural to
consider a reading role and a writing role. However, the external invariant given
can not be split according to the roles.

2.2 Part 4

In part 4, operational semantics for ODP is outlined, in a formalism close to
rewriting logic. The transition rules may be seen as a restricted version of
the Maude language [11], and may even be formulated within simple Maude
(with the addition of specialized messages, reflecting announcement requests,
and interrogations requests and responses.) This means that messages are han-
dled locally by objects in an asynchronous manner, and that shared variable
interaction is not explicitly provided. Even though the rules apparently are
unconditional, we would imagine that conditional rules could be required.

With respect to openness, we observe that an object may not loose interfaces,
but may create new ones. Naturally, objects may also be created and deleted,
and references to interfaces may be communicated through messages.

Part 4 also discusses how different aspects (viewpoints) of ODP can be
“formalized” in different languages such as LOTOS, Z, SDL, and ESTELLE
[8, 12, 10, 9]: Only certain aspects of the the enterprise viewpoint language can
be reflected by LOTUS; for instance, one may not express obligation, prohibition
or temporal constraints. Z may well reflect the more static parts of the infor-
mation viewpoint language, but is limited with respect to the dynamic parts.
SDL and ESTELLE, used as a high level programming languages, may reflect
most aspects of the computational viewpoint language, but essential specifica-
tion issues (such as invariants, refinement notions) are not handled.

Part 4 does not give guidelines on how formal methods can be used to write
specifications. The use of invariants, pre- and post-conditions, and restrictions
on traces, is mentioned in earlier parts of RM-ODP, but is not discussed in
Part 4. Thus, Part 4 lacks methodology on how to write such specifications and
develop them into (abstract) programs.

3 Recommendations

It is necessary to consider the fundamental distinction and relationship between
on the one hand information, represented by data, called values in the sequel,
and objects on the other hand:

e A value is a spaceless, timeless and immutable mathematical concept, such
as the number 5 or a piece of text. A value type is a set of values sharing
properties and (other) applicable operators.

e An object is a representation in space of some value, its state, which may
be subject to change over time. Its current state is a value, and its state
space a value type. The possible properties and behaviours of an object
are defined by its state space, as well as interfaces, operators, and own
actions. Objects sharing these characteristics are said to belong to the
same class.

Thus, a type is defined by identifying a value set and an associated set of func-
tions. In a programming language the time- and spacelessness of values are
realised by leaving it to the language implementation to manage the representa-
tion of unnamed values occurring during a computation process. Class objects
on the other hand are generated explicitly at run time, together with point-
ers (essentially memory addresses) for the purpose of object referencing. Also
changes of object state are caused by explicit actions.

These differences are crucial in specification: For an object it is meaningful,
and useful, to talk about its history, representing its interactions with the en-
vironment up to a given time. A value, on the other hand, cannot be said to
have a history. This means that class specification is essentially different from
type specification, as demonstrated further below.

We consider two useful ways of defining subtypes of given value types and
similarly subclasses of given classes:

e by restricting the value type (state space) by predicates (object invariants),

e by providing more applicable operators (thereby possibly extending the
state space).

There will be a need for incomplete (“loose”) specifications. It is, however,
usually practical to insist on complete signatures specifying type names and
function profiles, as well as interfaces (signatures) for objects. Profiles will spec-
ify applicability of functions and object interactions. For an open distributed
system it is desirable that the signature, including the name space, be modifiable
dynamically, at least extendible. The concept of name space is briefly mentioned
in Part 1 (section 7.3.1). It is curious, however, that the problems concerned
with the dynamic name space management are not discussed anywhere in the
RM-ODP.

For object signatures it will facilitate openness to relax the requirement of
complete profiles for object operators. Notice that in old languages such as
Algol 60, although strongly typed in most respects, there is no requirement for
parameter specification of formal procedures. The same is true in Simula 67 for
“virtual” (i.e. dynamically bound) object operators [2].

For the complete specification of unrestricted value types inductive tech-
niques are useful, possibly including specialized constructs for such concepts
as enumeration types, Cartesian products, and disjoint unions. For the rea-
soning about open systems higher order functions may be useful and perhaps
necessary, even if they will play no explicit role at the level of concrete object
implementations.

In some ODP inspired systems interfaces are classified as being types. Unfor-
tunately that does not agree with the fact that historic information is sometimes
an essential part of the interface semantics (as type values do not have a history).
Rather than introducing another language category it may be better to take a
semantically specified interface to be an abstract object (or class) specification.
That may necessitate orthogonal subclassing through multiple inheritance.

Important aspects of subclasses are the reuse of code (in the form of super-
classes) and the ability of objects of a subclass to “masquerade” as objects of
any superclass. For the purpose of the application of formal methods the latter
is considered more important. It is then necessary to observe severe restrictions
in the use of “redefinition” of operators of subclasses and dynamic (“virtual”) op-
erator binding. Thus, the operators of a subclass must satisfy the specifications,
including profiles, of those defined for a superclass. Redefinition may neverthe-
less be useful in order to take advantage of a restricted state space, and may
be required for updating operators in order not to violate a strengthened object
invariant. Analogous restrictions should apply to the redefinition of operators
in subtypes.

For redefinable operators it may be useful to provide incomplete specifi-
cations. Even so, “partial” correctness may be the appropriate concept for a
redefined operator which has to trap results outside a restricted subtype. Ex-
ample: arithmetic operations giving values of the type “bounded integer” (seen
as a subtype of “integer”). Alternatively, operators may have associated pre-
conditions, leading to proof obligations with use, or to explicit testing. In the
latter case a negative result could lead to abortion or, in a concurrent setting,
possibly to waiting as in “guarded commands”.

For the abstract specification of objects it is in general necessary to consider
historic information, such as finite or infinite sequences of parameterized “events”
representing interactions between an object and its environment. An object
specification in terms of such sequences is fully abstract in the sense that only
information visible outside the object is considered, namely its signature and
operator invocations including transmitted parameter values.

From this viewpoint subclass specification may consist in enriching historic
event sequences by new event types and/or restricting the set of allowed his-
tories. Conversely, a superclass may be obtained by the projection of histories
onto a reduced set of event types and/or by removing restrictions on allowed
histories. These are special cases of the more general concepts of refinement and
abstraction, respectively.

The concept of “heritage anomalies” discussed in the literature, [1], is pri-
marily concerned with the reuse of code. From the point of view of formal
methods the satisfaction of specifications is more important. As already men-
tioned, it may be necessary to rewrite operators in a subclass, e.g by testing for
an additional precondition in order to satisfy a strengthened invariant and/or
to deal with additional state variables. If, however, the superclass version of the
operator is easily callable within the rewritten one, as for instance in JAVA, the
result is that old code is nevertheless likely to be reused.

It would seem that formal methods based on principles sketched above can
be combined with the use of such concrete object structures as those advocated
in the later chapters of the RM-ODP. However, the treatment of a dynamically
varying system signature as a prerequisite to openness remains a difficulty. A
simplification would result if new objects were restricted to belong to subclasses
of, say, a given “environment” superclass.

4 Examples

In the following we suggest a specification formalism which is an alternative
to those presented in Part 4 of RM-OPD, and which is more oriented towards
practical specification, rather than operational semantics. In particular we show
how to specify interfaces, in our view abstract classes, and how to deal with sub-
classes and redefinitions. These specifications are then developed into abstract
designs in a high-level imperative style. We are here limiting the formalism to
deal with safety requirements, and we are demonstrating the formalism by some
examples.

Example 1

The following examples are drawn from the literature, [1]. We specify a hierarchy
of four kinds of message buffer, B1 - B4, in terms of invariants on historic
sequences, H, of “event records™

H:Seq(TyU...UTy,)

where each T; is an event record type, T; = Op;(a1: A1, ..., am;: A,), 1€{1..n}.
Each event record represents an invocation of one of the operators declared for
the class, with associated parameter values.

We use an ad hoc syntax. The term “invariant” signifies that the given
predicate on ‘H also applies to any prefix of H. All class attributes, such as class
parameters, operators, and invariants, are inherited. In a subclass the invariant
may be strengthened by providing an additional conjunct, and the operator list
may be extended. The following operators on finite sequences are used [5]:

:Seq(T) — Nat sequence length
/:Seq(T) x U — Seq(U) projection on event subset
_ < _:8eq(T) x Seq(T') — Bool prefix relation
_.a: Seq(T) — Seq(A) attribute selector lifted to sequences
prs: Seq(T)x <reg T expr>—> Bool prefix of regular sequence

class B1(Msg: type) ==

spec opr put(x: Msg), get(y: Msg)
invariant (H/get).y < (H/put).x

endspec

subclass B2(N: Pos) of Bl ==
spec invariant #(H/put) — #(H/get) < N
endspec

subclass B3 of B2 ==
spec opr get2(yl,y2: Msg) seen as get(yl), get(y2)
endspec

subclass B4 of B3 ==
spec opr lock, unlock

invariant H prs [[put|get]|*, lock, unlock]*
endspec

Notes:

e The seen as construct is useful for splitting one atomic action into several
smaller ones. It implicitly defines an abstraction function, and invariants
are referring to the abstract history. Thus, the B3 history is of the type
Seq(put U get), where each get2 activation is recorded as two get events,
consecutive in ‘H by definition.

e In the above hierarchy the history of each subclass does satisfy the in-
variant specified for any of its superclasses. However, a more flexible and
robust inheritance concept is obtained if the variable H occurring in a class
C means H'/O¢, where H' is the actual history of a C-object, possibly
belonging to a subclass of C, and O¢ is the set of C-operators (including
inherited ones). That would for instance be necessary in B4 if there is a
subclass of B4 introducing more operators.

e This notion of satisfaction is stronger than the one used in [1], where
histories involving new operators are not restricted by requirements of a
superclass.

We sketch below abstract implementations of the specified classes. Operators
are represented as guarded commands, in which an unsatisfied guard represents
a waiting period, and each command is a critical region with respect to the class
object in question. The invariant of a class object relates the local variables to
the object history.

The following additional sequence operators are used in the implementations:

e: — Seq empty sequence
A T x Seq(T) — Seq(T) append term left
F :8eq(T) x T — Seq(T) append term right
_H _:8eq(T) x Seq(T) — Seq(T) concatenate sequences
ew: Seq(T) x T — Bool sequence ends with term

class B1(Msg: type) ==
impl var Bf: Seq(Msg) = ¢;
invariant (H/get).y H Bf = (H/put).x
opr put(x:Msg) == true — Bf := Bftx
get(y:Msg) == Bf #e — (y1Bf) := Bf
endimpl

subclass B2(N: Pos) of Bl ==
impl invariant #Bf <N

opr put(x:Msg) == #Bf # N — super put(z)
endimpl

subclass B3 of B2 ==
impl opr get2(yl,y2: Msg) == #Bf > 2 — get(yl); get(y2)
endimpl

subclass B4 of B3 ==
impl var locked: Bool = false
invariant locked < H ew lock
opr put(x:Msg) == —locked — super put(z)
get(y: Msg) == —locked — super get(y)
get2(yl,y2: Msg) == —locked — super get2(yl,y2)
lock == —locked — locked := true
unlock == locked — locked := false
endimpl

Notes:

e In a subclass where an operator is redefined, the keyword super gives
access to the operator as defined in the superclass. The notation (y-1B) :=
B’, where y and B are variables, is used as a shorthand for assigning the
first term of B’ to y and the rest of B’ to B.

e The observable history H of operator invocation is obtained by extend-
ing the history appropriately at the beginning (after the guard) of each
external operator invocation, but making the abstractions given in the
specification part of the involved classes, as explained above. Thus, H
is viewed as an implicit local variable whose sequence of event records is
extended behind the scenes [3, 4]. The history of the caller is extended
similarly. Note that history variables are fictitious; they may not be used
in executable code.

e A waiting period caused by a guard is on behalf of the calling object, in
the sense that the caller has to wait. It is unable to receive calls while
waiting. The current object, on the other hand, will react to outside calls.
Thus, if the buffer is empty at the time when a get operation in Bl is
issued by an object p, a put operation can be executed in the current B1
object while p is waiting, which will enable the get to go through.

e Whenever the body of an operation contains calls for local operations,
it is required that the associated guards are satisfied, so that the whole
body can be executed as a single critical region. Such calls are regarded
as implementation details not to be recorded in the history (except as
indicated by a seen as clause in the specification). For instance, the user
is obliged to prove that the guards associated with the get operations
occurring the body of get2 both hold.

e If the body of an operation op contains a call for an external one, the
latter is on behalf of the current object, whose history will be extended
accordingly. Any waiting involved will delay the caller of op as well.

Let I. and I; be the externally specified invariant and the internal one for
a class, respectively. The correctness of the implementation is assured (in the
partial sense) by proving I. A I; for the latter. (In the case of Bl a proof of
I; is sufficient, because I, is then implied). If all changes to inherited variables
are effected through calls for inherited operators, the inherited conjuncts of
the internal invariant are necessarily satisfied, and only the local part need be
verified.

Example 2

The following hierarchy describes objects controlling read /write access to given
stored data. Concurrent read operations are allowed, whereas write operations
must be exclusive. In each user process read/write operations must be dynam-
ically enclosed by open/close operations. This fact is expressed as a separate
part of the historic invariant, since it is a requirement to user processes.

Each event is understood to have an attribute, p: Pid, identifying the calling
process, indicated by subscripting. The subscript is omitted if irrelevant. It is
understood that a stated requirement applies to each individual user process;
thus, req P(#H) requires the invariance of Vp: Pid @ P(H/p). Inside a given
class specification Pid denotes the set of external objects, excluding the “current
object”. We use angular brackets to denote sequences, curly ones to denote sets,
and square brackets are used as meta-parentheses in regular expressions.

class RW1 ==
spec opr OR,R,CR (open-read, read, close-read)
oW, W,CW (open-write, write, close-write)

req H prs [[OR R* CR]|[OW [R|W]* CW]]*
def NR(H) == #(H/OR) — #(H/CR) (fact: NR(H)>0)
NW(H) == #(H/OW) — #(H/CW)(fact: NW(H)>0)
inv (NR(H)=0VNW((H)=0)ANW((H)<1
endspec

A disadvantage of an RW1 controller is that readers can monopolize access,
which is unfair to writers. As a remedy we introduce in a subclass an operation
for requesting writing, RW, which inhibits OR’s.

10

subclass RW2 of RW1 ==

spec opr RW (request writing)
req =(RW,OR) in H
inv Vp:Pid ¢ -~(RW,,OR) in H/{RW,,OW,, OR}

endspec

Here ginr states that the sequence ¢ occurs consecutively in r. Notice that a
call for RW will establish a writer priority which lasts until that same process
executes a subsequent OW, even if other writers intervene. The added user
requirement serves to prevent deadlocks. It follows from the invariant that write
requests from distinct user processes must be “honoured” individually, whereas
additional requests from one process are ignored.

Writer processes can now monopolize access, which is unfair to readers. In
order to obtain fairness for readers we introduce an operation for requesting
reading, RR, which inhibits write requests.

subclass RW3 of RW2 ==
spec opr RR (request reading)
req H prs [[RR’ OR R* CR]|[RW’ OW [R|W]* CW]]*
inv Vp: Pide —~(RR,, {RR, RW}) in H/{RR,OR,, RW}
endspec

The invariant shows that requests of both kinds may involve waiting. Therefore
they are required to occur outside read/write regions in each user process. Fair-
ness for readers, as well as writers has now been established, for the following
reasons, assuming that RR and RW operations are treated fairly, and that the
same is true for ORand OW operations:

1. Reader priority can be established by issuing a RR operation. The priority
lasts until that same process executes a subsequent OR. That is allowed
to happen when all outstanding write requests have been honoured (but
in fair competition with OR/OW -operations from other processes).

2. RR operations cannot be used to monopolize reading, because at most
one read request is allowed at any time.

If it were known that the RR caller would not become engaged in interactions
with other objects between the RR and OR operations, a more liberal invariant
would be sufficient to guarantee fairness:

inv Vp: Pid e =(RR,, RW) in H/{RR,,OR,, RW}
It is therefore useful to introduce a specification mechanism, say
RR leads to OR

to mean that the two events will be immediately successive in the history of the
caller, but not necessarily in that of the current object. Thus, the OR operation
will be immediate for any RR occurring during read mode, which means that

11

RW operations will not be blocked when reading is taking place. If, however,
a RR operation occurs during writing, the corresponding OR should be delayed
as seen from the current object.

We show abstract implementations. A guarded command has the general
format G; — G2 — C, where the guards G, G2 serve to enforce respectively
the user requirement and the invariant of the class specification. (Empty guards
are omitted.) If an event occurs in a state not satisfying G; for the caller,
program abortion results, whereas invalid G5 results in waiting as usual. Notice
that the truth of G; cannot be affected by actions of objects other than the
caller p, provided that it adequately implements a test on H/p (see below).

class RW1 ==
impl var rd,wr:Set{Pid} = 0,0
inv Vp:Pide (p € rd < H/p ew {OR,R}) A
Vp:Pide (p € wr < H/p ew {OW,W}) A
rdNwr=0 A #wr<1
opr OR, ==p & rdJwr — wr=0 — rd.add(p)
CR, == p € rd — rd.remove(p)
OW,, == p & rdUwr — rd = wr =) — wr.add(p)
CW, == p € wr — wr.remove(p)
R, == p € rdUwr — (read)
W, == p € wr — (write)
endimpl

subclass RW2 of RW1 ==
impl var wp: Set{Pid} =0 (writer priority)
inv Vp:Pidep c wp < H/p/{RW,OW} ew RW
opr RW, == wp.add(p)
OR, == p ¢ wp — wp=0 — super OR
OW,, == super OW; wp.remove(p)
endimpl

subclass RW3 of RW2 ==
impl var rp:Set{Pid} =0 (reader priority)
inv Vp:Pide (€ rp< H/{RR,,OR} ew RR) N #rp<1
opr RR, == p & rpJwpUrdUwr — rp=0 — rp.add(p)
RW, == p & rpUrdUwr — rp=0 — super RW
OR == super OR; rp.remove(p)
endimpl

A natural way to implement a specification such as RR leads to OR would
be to include a call for the latter in the body of the former, say thus:

RR, == p & rpUwpUrdUwr — rp=0 — rp.add(p); callOR

where the keyword call indicates that a separate event should be included in
the history, and that waiting results if that (second) guard is not satisfied. The
OR operator itself could be made inaccessible directly.

12

The introduction of the “seen as” (and “call”’) mechanisms represents an
essential increase in expressivity. For instance, it becomes possible to distinguish
between events of “initiation” and “termination” of operations (as e.g. in [6]).

In our example the operations RR and OR may be seen as the initiation
and termination, respectively, of a compound “priority read” operation. We are
therefore able to give the following external quasi liveness assertion:

#H/OR > #H/CR = —-HewRR
In states of quiescence the following slightly stronger assertion holds:
H#H/OW = #H/CW = —-HewRR

As an indication of how openness could be facilitated in the case of example
2, the class RW1 might be reformulated thus:

class RW1(M: Memory) ==

impl (as before)
R, == p € rdUwr — M.read
Wy ==p € wr — M.write

endimpl

where:

class Memory ==

spec opr read, write

endspec

An actual parameter to a RW object should be an object belonging to a subclass
of Memory, whose operators would have parameters appropriate for the kind of
device in question. It remains to implement either the replacement of a given
memory object parameter by another one at run time, and/or to generate and
incorporate new RW and Memory objects.

5 Verification

All specifications above (except the last) show passive objects not creating any
calls to the environment. In the general case we consider objects both receiving
and creating calls. Whereas the external invariant of such an object restricts
the history of both kinds of events, the user requirement puts assumptions on
the history of calls initiated by each external object.

Thus, a user requirement R(?) of an object o is now understood as:

Vp: Pid, e R(H/p—)

denoted [R],(#H), where Pid, is the set of objects external to o, and p— denotes
the set of events which p may initiate. (The index o is omitted when considering
a fixed object.) The notation — p denotes the set of events which p may receive,
p— p' denotes p — N — p’, and p used as a set denotes all observable events
involving p, i.e. (p—U—p) — (p—p).

13

We assume here that a user requirement R is historically monotone, i.e.
R(e) holds and &' < h A R(h) = R(R’). An internal invariant is required to
hold outside critical regions of operators. An external one need only be “weakly”
monotone, in the sense that it is required to hold only for quiescent object states.

Semantically, an object o specified by the pair (R(H),I(H)), where R(H) is
the user requirement and I(#) the invariant, has a trace set given by

{h: Seq(o) | [R]o(h) = I(h)}

Thus, an invariant I(#) of a class specification may be strengthened or weakened
by the user requirement R(H) as follows, [R](H) A I(H) and [R)(H) = I(H),
respectively. All three versions of the class specification are semantically equal.

An object is said to satisfy a specification if its trace set (properly restricted)
is a subset of that of the specification, ignoring traces where user requirements
are broken. Similarly, a specification (R1(H),I1(H)), is refined by another
specification, (R2(H),I2(H)), if its trace set is a superset of that of the lat-
ter (properly restricted), ignoring traces breaking R1; thus it suffices to prove
R1(h) = R2(A(h)) and I2(A(h)) = I1(h) where A is the abstraction function.

A class implementation is validated by proving the invariance of the exter-
nal and internal invariants, when assuming the user requirement. I.e. for each
operator implementation

opp==G — G- C
we must prove the Hoare triple
{[RI(H) N(H) NL(H) NG} H:=HtFop,; C{[R|(H) = I.(H) NL;(H)}

where I, and I; are the external and internal invariants, respectively. (Any calls
in C on external objects should also give rise to updates of H.) If C' potentially
consists of more than one critical region, a separate proof must be provided for
each of them.

The guards G’ in the implementations shown above are adequate in the sense
that the user requirements are correctly checked; a corresponding error results
if and only if they are violated. The sufficiency and necessity of each guard G’
is demonstrated by proving:

[R](H) A I.(H) A I;(H) ANG" = R(HFop,/p—)
respectively:
([RI(H) AN (H) AN;(H) A R(HEop,/p—)) = G

All reasoning about fairness remains informal.

Parallel Composition

The (total) trace set of a composition is the set of traces h such that h projected
to the event set of each component is a possible trace of that component. The

14

observable trace set of the composition is the total trace set with all internal
events ignored.

Assume that the object Al satisfies the specification pair (R1(H), I1(#)) and
that A2 satisfies (R2(H),I2(#H)). The parallel composition of the two objects
satisfies the specification

req R1(H/— Al) A R2(H/— A2)
inv 3h: Seq(A1U A2) @ I1(h/A1) A I2(h/A2) N'H = h\(A1 N A2)

for H : Seq((A1U A2) — (A1 N A2)), where h\(Al N A2) is h without internal
events (calls between A1l and A2), provided the following two requirements hold:

VH : Seq(Al) @ [R1] 41 (H) ANI1(H) = R2(H/Al— A2) (1)

VH : Seq(A2) @ [R2)42(H) N I2(H) = R1(H/A2— Al) (2)
(We assume here that the event sets of A1 and A2 are disjoint; this is obvious

if identification of the called object is recorded in each event.)

Proof: From validity of A1 and A2 we have
Vh :Seq(Al) e (Vp:Pid a1, 42 ® R1(h/p— Al)) A R1(h/A2— Al) = I1(h/Al)

Vh :Seq(A2) o (Vp: Piday a2 @ R2(h/p— A2)) A R2(h/AL— A2) = T2(h/A2)

where Pidai, 42 denotes the set of objects external to both Al and A2. We
prove

Vh : Seq(A1U A2) e (Vp: Pida1,42 ¢ R1(h/p— Al) A R2(h/p— A2))

= T1(h/A1) A T2(h/A2) A R1(h/A2— A1) A R2(h/A1— A2)

by induction on h. For an empty trace the proof is trivial, since no user require-
ment can be false on an empty trace (and by validity of A1 and A2).

Consider a trace hFx. Assume the requirements to external objects hold,
ie. Vp:Pide R1(h+xz/p— Al) AN R2(ht z/p— A2). By monotonicity of user
requirements and the induction hypothesis, we have

I1(h/A1) A T2(h/A2) A R1(h/A2— A1) A R2(h/A1— A2)

In the case of = involving an external object, the proof is trivial, as
(htx/A2— Al) = (h/A2— Al) and (ht2/Al1— A2) = (h/A1— A2).

For an internal event x, we have that either (ht-z/A2— Al) = (h/A2— A1)
or (h-xz/Al— A2) = (h/A1l — A2), say the former. Then R1(htz/A2 — Al)
holds. By validity of Al we have I1(htF z/Al), and then R2(ht z/Al — A2)
holds by requirement (1) above. Finally, validity of A2 gives I2(ht-xz/A2). O

In the proof it was essential that invariants restrict the total interleaving
of all relevant events, whereas user requirements restrict the sequence of calls
initiated by each external object. Thus, one given event may only violate the

15

user requirement of one object, and one given object may not initiate a call
violating its own user requirement.

If it would be desirable that the specification of an object puts user assump-
tions on (say out-parameters of) calls initiated by itself, it would be sufficient
to require that

R1(H /A2 A1) A R2(H /A1 — A2) = R1(Hta/A2— A1)V R2(HFx/Al— A2)

for any H and x consisting of events in A1U A2, in addition to the requirements
above.

Notice that historical monotonicity of invariants was not needed in the proof.
Even though all invariants given here are monotonic, one could imagine non-
monotonic invariants, letting an invariant restrict the states outside critical
regions only. (For instance, a seen as clause might result in a non-monotonic
invariant.)

In the above composition the identity of the two components is not hidden in
the observable events. Hiding could be formalized by introducing an abstraction
on the total history (h). However, if the operation sets for the two objects are
not disjoint, operation renaming could be used to avoid naming ambiguities.

Acknowledgements

We are grateful for feedback from discussions with the members of the ADAPT.FT
project group. In addition Anne Salvesen has provided detailed advice concern-
ing the manuscript.

References

[1] L. Crnogorac, A.S. Rao and K. Ramamohanarao: “Inheritance
Anomaly — A formal Treatment”. In Proceedings of FMOODS’97,
pages 319-334. Chapman & Hall, 1997.

[2] O.-J. Dahl, B. Myhrhaug, K. Nygaard: “Simula 67 Common Base
Language”, Norwegian Computing Center, 1968, revised 1970.

[3] O.-J. Dahl: “Can Program Proving be Made Practical?” In Les
Fondements de la Programmation, M. Amirchahy and D. Néel,
(Eds.), INRIA, 1977.

[4] O.-J. Dahl, O. Owe: “Formal Development with ABEL.” In
S. Prehn, W.J. Toetenel (Eds.): VDM’91, Formal Software De-
velopment Methods, LNCS 552, Springer 1991, pp. 320-362.

[5] O.-J. Dahl: Verifiable Programming. Prentice Hall, 1992.

[6] O.-J. Dahl: “Monitors Revisited”. In A.W. Roscoe (Ed.): A Clas-
sical Mind, Essays in Honour of C.A.R. Hoare, Prentice Hall,
1994, pages 93-104.

16

17l

18]

19]

[10]

[11]

[12]

ISO-IEC JTC1/SC21/WGT: “The Reference Model of Open Dis-
tributed Processing”.

http://www-cs.open.ac.uk/~m_newton/odissey/RMODP.html

ISO-IEC 8807: “LOTOS — A Formal Description Technique Based
on the Temporal Ordering of Observational Behaviour”. Geneva,
1988.

ISO-TEC 9074: “ESTELLE — A Formal Description Technique
Based on an Extended State Transition Model”. Geneva, 1989.

ITU Recommendation Z.100-CCITT: Specification and Descrip-
tion Language (SDL). 1993.

J. Meseguer: “Conditional Rewriting Logic as a Unified Model of
Concurrency”. Theoretical Computer Science, 96, pages 73-155,
1992.

J.M. Spivey: The Z notation: A reference manual, Prentice Hall,
1989.

17

