NOTES ON PARTIAL CORRECTNESS

by
0laf Owe

Abstract. An attempt is done to make successful use
of total functions within partial verification reasoning.
It is shownhow to obtain results with different degrees

of "partialness". An application to (abstract) data
types is suggested.

Research Report Series, Institute of Informatics,
University of 0Oslo, Norway
December 1977
Revised March 1978

This research is supported by The Norwegian Research Council
for Science and The Humanities.

CONTENTS

Introduction

Functionality
Effect Functions

Partial Interpretation of Data Types

Acknowledgements

References

page

11

13
14

1. Introduction

This paper presents some extensions of the approach to program
verification given by Hoare [1,2]. We assume the reader is

familiar with the Hoare system.

The ideas presented here are founded in the development of

an interactive system for program verification, called PROVER
{31, and are orlented towards mechanical verification.

The Hoare-system is based on pwedlcate loglc A'&ﬂﬁl&lsnecrﬁ:
cation of a program ,S, lS given by two formulas on the program variables,the

N\

precondition, P, and the pos;condltlon,Q, written as
P {S} Q.

The meaning is: 1f P 1is valid just before an execution
of S and if the execution terminates normally then Q holds
immediately after the execution.Normal termination of a given execution

is immediately decidable (from the run time messages).

We may say that a weak precondition and a ‘strong postcondltlon
" makes a strong . partial specification, thus

(1) P{S}Q = P'{S}Q'_, if P's P and Q=Q'.

The strongest partial specification of S for a given postcondition
is a fundamental concept.

In the Hoare system it is defined how to construct a precondition
for each basic statement given an arbitrary postcondition, such that
the partial specification generated is the strongest. For instance,
the assignment statement has the strongest partial specification

Q: {x:=e} Q .

X
Qe
free occurrences of the variable x in QT+ We shall allow x

is obtained by substituting the expression e for all

and e to be lists(i.e.vectors), the substitution is then si-
multaneous. This makes "right to left" verification convenient,
i.e.given a postcondition of S a precondition of S is con-

structed by transformation over S from right to left.

t By a program we shall mean any statement (list) or body

of a procedure declaration.
t1t 1f necessaryrenaming bound variables in Q so that no free varlabln

in e is bound.

Any partial specification of a program that never terminates

normally may be verified. Symbolically we will let "error"

denote such a program. Hence, we may formulate the axiom
true {error} false

which is the strongest possible partial specification.

2 . Functionality.

It is useful according to Hoarel4], to interpret a program as

a simultaneous assignment.

A program ,S, can be characterized by a unique partial functicn
fs’ namely the result function of S on the state vector
(i.e..a vector of all the program variables in S)j;and fS is

defined whenever S terminates normally.

Let ts(v) be the condition that S terminates normally with

initial value v of the state vector. By definition we have

(2) Vv v1(ts(v1) & 3 vy, fS (v1) = vz)

The condition that S terminates normally with initial value

v, and result value v, of the state vector, can now be defined:

y - . - F= .
RES (vy,v,) = if t (vy) then fs(vq) v, else false fi
With this notion, the interpretation of P{S}Q can be spec-

ified as
P(v){S}Q(v)=

¥ vy, (RESS(V,},VQ) A P(vy) = Qv,))

expressing that if S +terminates normally and if P holds

for the initial value of the state vector then Q holds for
the result value.

In practical proving it is convenient to reduce the state vector as much as
possible. Mechanically,two vectors of program variables can be determined :
the input vector ,a, of S and the output vector ,x, of S ,such that we
may regard ts as a predicate of a and fS as a function
from values of a (input values) to values of x (output
values). 1In general {a}n{x} + @, (i.e. some program vari-

ables may be changed by S and their initial values are not
redundant).

A precondition is on input values and a postcondition is
usually on output values, however, initial values of inputcutput

variables may be accessed by use of auxiliary variables.

From the given interpretation we may now obtain a useful lemma:
Lemma 1
P{sS}Q
X
& Va ts(a) = (P =0Q fs(a))

Proof P{s}q « Va',x'('RESS(a‘,x'}APz, ='Q§,) , by interpretation

where a' and x' are:disjoint variable:-vectors, a' denoting input
values, %' denoting-output values.

© Va',x'(ts(a') A x'=fs(a') A PZ, ='Q§|)a by definition of RES
1 w1 (+ 1 te 1 a X s ‘ p .
& Va',x ('ts(a)A x fs(a) A P = Q, (a'))’ by simplification

s
e Vva' (%t (a') A Ix'(x'=f _(a')) A Pa'1 > X), by simplification
s s a fs(a')

& Va!' (ts(aO A PZ, ='Q§S(a,)), by (2)
& Va (ts(a) = (P = Q? (a))) , by simplification. o

- - s

i

The rule of functionality given in [5] can be formulated
in our notation as
Rule 1

) P{S}Q "
va ts(a) = (P= Qfs(a))

The conclusion is equivalent to the premise by the given
lemma, and is called the partial function theorem of S
with respect to P{S}Q, and expresses what(is known about
fs apart form the fact that it exists. This rule may

alternatively be formulated in this way, if a necessary

condition for normal termination is wanted:

Rule 2 P{S}Q
va fs(a) = (P=3x Q)

This follows from (2).Rule 2 characterizes ts,giving an upper bound for

‘ {a]téa)3.
In [5] the rule of functionality introduced in Hoare [Uu]
was shown to be inconsistent if used without restrictions.
The restrictions suggested were based on interpretation of
functions as partial functions. Every occurrence of a func-

tion had to be interpreted restrictively:

S vx P(f(x)) is interpreted as Vy\hd(x,y)€f=>P(y))ﬂ

We let the restrictions be explicitly expressed by the predicate

tToo and will obtain partial specifications which have no re-
strictions.

-U-

We may look at the example given in Ashcroft et al [51. Let
S be x:=0; while true do null '

We may prove (using x=0 as invariant)
true {S} false A x=0
Rule 1 gives (since x is the only input varizblé,and there are
no input variables)
T = (true= (false A x=0)%)
By logical simplification we obtain
| ts

Thus we have proved that S never terminates normally.

A partial function theorem may seem to be of little practical - -
use since the truth value of +the term‘ts(a) is usually unknown
at (partial) verification time. However, the following lemma
indicates thata partial theorem can be applied in any precondi-
tiQnrof S without the restriction t (al).

—

Lemma 9 ' P{S}Q & (£ (a)aP){5}Q & (t_(a)=P){5}Q

This means that in a (partial) precondition the termination

condition is redundant (and may be added or deleted).

Proof
i) P{S}Q .
X
- (ts(a)=>(P=>QfS(a))) s by lemma 1
o (té(a>=((ts(a)AP)=Q§S<a)>),tautology
N e (ts(a)/\P){S}Q s, by lemma 1 _
ii)

(ts(a)=>P){S}Q & (ts(a).«(ts(a) =P)){S}QqQ
= (t_(a)aP){S}Q - =
The lemma Shows that "weakest Dartial srecondition " is not
a useful concept, since P1{S}Q « P2{S}Q does not imply that

P1eP2, only that ts(a)=(P1@P2). This is the reason why the

concept 'Strongest partial specification"is used here.

Using lemma 2 , we may easily prove the following rule (rulec):

Rule 3 a) P{S}Q b) P{S}Q

x X x
((P=Qf8(a)) A Rfs(a)){S}R ((PéQfS<a))=> R J{SIR

<
£~

L ad
s(

Note that R can be any predicate independent of P and Q.
This rule generalizes a given specification (P{S}Q) and will
be called Rule of invocation. The term P=Of (2) serves

to make simplification of the precondﬂtloﬁ p0551b1e.

The precondition of the conclusion of b (where the & operator
in a 1s replaced by & = operator) is © weaker. Still the
two ~cogclusions are equiva}ent.

A If we want a precondition which is as

"total" as possible, we should use rule 3 a.

Proof
3b) R’f‘s(a) {s} R ,by lemma 1
(ts(a)=>R>f<S(a)) {s} R ,by lemma 2
((P=Q§§&19=R§$$ {S} R ,by (1) and the.partial functior

theorem of the premise
3a) follows from 3b) by (1) (stronger precondition) 0

Note that we have proved (*) Riﬁ (a) ST R ,

while in [5] +the precondition of ° (*) had to be 1nterpreted as .-

vy ((x,y)EfS=R§) ,or with our notationt (a)=>Rf (a)

The rule of invocation may be formulated without any occur-

rences of the function fs as

Rule 3' EL8iG
(Vv (P:sz_) = Rfj) {sS} R

This again follows from (2). However, this rule is weaker
than rule 3,since the precondition here must hold for any v,not only fs(e) ,

This rule is presented both in [3] and [6], and also shown
to be stronger than the rule of adaptation in [7].

Example:
Assume we have established a proof of

Tfull(q) {insert (g,x)} has (q,x)

where the variable q 1is a sequence of limited size and the
variable x is of the element type. The predicates full and

has, and the procedure insert should be self explaining.

In verification of a program calling insert, the postcondition

1 has (g,x) may be required, i.e. we have the situation
?{insert (g,x)} Thas (g,x)

By Rule of invocation, 3a, we get the precondition (denoting
the function L nsept DY £, the input variables are (q,x), the
output variable is q):

(1full(q)=has(f(q,x),x)) A 7has(f(q,x),x)

o (full(qg) A 7has(f(q,x),x))
Thus we have verified , 7
(full(g)AaThas(£f(g,x),x)) {insert(g,x)}Thas(qg,x)

According to intuition full(g) must hold in the precondition. = -

If we use the rule of adaptation on this problem we get the
precondition false. Now, false (S} Q is valid for any S and
Q, so this gives no information. Rule 3! ~gives the precon-

dition Vvthas(v,x). , which 1is false. -

If we know that insert has no effect on q when q is full,
say full{q)Ad=qo {insert(q,x)} Q=q 3
then we may use rule 3b to obtain

(€ full(g)=q=£(q,x))= ~ Thas(£(g,x),x)) {insert(q,x)}thas(g,x)
= full(q)athas(q,x) {insert(q,x)} Thas(q,x)

3. Effect functions

We define an effect function of S as an arbitrary total
function which extends the unique partial function fs’ i.e.

an effect function ’Fs’ is a total function such that
(3) va ts(a)=>Fs(a) = fs(a)

Note that for any S there will exist at least one such
total function. If S always terminates normally, there is

one unique effect function
Thus, an effect function F_ satisfies

va F_(a) = if t_(a) then f (a) else F(a) fi
where F 1s a given arbitrary total function.

In the following,total functions are denoted by capital letters.

An effect function of S will be denoted by the subscript 8.

It is sometimes convenient to extend the range of a total
function by the value "undefined" ,for instance specifying
division by zero as "undefined". Normal termination does not
result in "undefined" -

(W) ts(a) = Fs(a)# undefined

"Undefined" must sa%isfy
F(undefined)=undefined
and if v is a vector (or a list),
vi=undefined = v=undefined |
One may distinguish the two classes of "undefined" values
F(x)=undefined when x#undefined,and F(undefined) . The

former class may even be regarded as less serious than the
latter (conf. lazy evaluation)

To have a rich verification language, "undefined" can be
"refined 1nto different values, for instance overflow and underflow
which correspond td different error situations [8].

Lemma 3

Let FS be an effect function of S, then

(5) Rp_(a) {8} R
s
is the strongest partial specification of § given R.
Obviously, if an effect function of § is known, we may
mechanically construct a precondition of S and R

giving the strongest partial specification.

Proof
. X
1 RFS(a){S}R
o , by lemma 1

X
b ts(él = Rp ()7 Rgs(a)>

S

& true by (3)

ii) assume P{S}R
. « » by reasoning as in i)
Va (t (a) A P)=> R
s Fs(a)

we conclude

\ / .
(“F, (a) (IR)= <<t (a) A P) {S}Rj \p{s}ﬂ

so (5) is the strongest partial specification given S and R.

J 3

ko

A:partial sSpecification can be used to determine whether a
given function is an effect-function and also give

a necessary condition for normal termination s by rule 2.

If the glven partial spec1f1catlon is strong enouch,the par-
tial functlon theorem defines fS completely within ts’

Say we may prove something of the form

s t(a) = (H@ £_(a) = F(a))

3\

where the predicate H(a) has no occurrence of £, (nor tg)
and I 1is a given total function. T is an effect func-
tion of S by definition (3). Hga)is a necessary condition for

normal termination of S, since Va ts(a) = Héa).

If we like to use Hs(a) as a guard of normal termination

we may define another effect function
Fé(a) = if Héa)then F(a) else undefined fi

Now Fé can be used to obtain necessary conditions for

normal termination wusing (4)

Example.

Let S be the program
if m<100 then m:=m+1 else error fi

Take the postcondition m=m_, where mg is an auxiliary
variable. We may generate the following precondition (using

the Hoare System):

m<100=m+1 = m
@]

Thus we have proved (m~<100=>mo: m+1){8}‘m=mo. The

partial function theorem is

vm Vmo ts(m) = ((m<100= mo:m+1) = m_= fs(m))

Y

Vvm ts(m) = (m<1OO/\fS(m) = m+1)

The function 'F defined by F(m)=m+1 is an effect function

of S. m<100 4is a necessary condition for normal termination.
The function F' defined by E'(m)= 3if m<100 then m+1 else unde-
fined fi 1is also an effect function of S, which will guard

against too large values of m.

An assignment to an array element, a&;:= X, may terminate
abnormally and can be interpreted informally as
(*) if 1€I then a;:=x else error fi 3

where I is the (limited) index range.

Define (alilx) without index restrictions » by

(a1ilx)jiai£ i=j then x else aj.ﬁi
We may now prove that (alilx) is an effect function of (*).
Also if i€I then (alilx) else undefined fi
is an effect function of (*). This indicates that in partial
verification reasoning, one may fegard arrays as of infinite

length . (A formal treatment of this is not given here.) O

A more general result obtained from a partial function theorem
is:

(6) va ts(a? = (Céa;)F = fs(a) = F(a))

Cga% is a condition restricting the domain where the given

2 : .
function F 'can be used as an effect function of §. We will
call F a conditional effect function of S (restricted by C,)

~

9

This can be applied according to the rule

Rule 5

X)
(C%%)FARF(a)) {SIR ’CS,F and F as in (8).

The proof follows by lemma 1 . Hence
we have found that a condition restricting a (conditional)

effect function must be added in the precondition in order +tc
use the conditional effect function

-1 0-

In order to obtain & conditional effect function for S
the mechanical postcondition XIX where X is a
vector of auxiliary variebles, is convenient.

We will get a partial function thecrem of the form

(7) va vx ts(a)=(P(x6a.) = f_(a) = x_) where P(x,d denotes

We may prove the resulting preconditic:
Va ts(a) = (P(F(a),a)=F(a) :fs(a)),(F arbitrary)

so any given function F 1is a conditional effect function of S.

However, one should fry to select F such that P(F(a),a) is weak.

Hopefully, the choice of F is obvious from P. If P(F(a),a)

is true then F is an (unconditional) effect function of S

Also émnééeééary condition for normal termination can be
obtained from (7) . .
Va tg(a)=H (a) ,if Ya lH_(a)=P(x_,a)

Proof

(7) = Va,x_ ts(a)=>("HS(a)=>fS(a)=xo) ,if7Hs(a)=>P(xo,a)‘
=Va ts(a)=>(7HS(a)=on fs(a)=xo -): |
=>VYa ts(a)= Hs(a) ,sinc:e\;‘:)_cofs(a)=xO is‘fal'se

Note that the rules introduced allow a strong postcondition
(like x=xo) even if ‘the internal specification is weak. The

precondition obtained will then be correspondingly strong,:

E ffect functions are most useful for treatment of prio-—
cedure calls and loops. Both kinds of statements are specified
isolated from the program text in which they appear (- pro-
cedures, since any program using them, is apriori unknown - loop:
since specification is done by invariants, which do not always
fit into the surrounding programs). To handle procedures the

. given rules can be worked out to allow parameters as done in [4,7]

-11 -

4. Partial Interpretation of Data Types.

We shall now indicate how the results presented can be ap-
plied to data types [2,8,9,10]. 1In order to "verify a data
type" total correctness is required. Here we define verifi-
cation of a data type ,T, by"partial interpretation! which
is within partial verification reasoning; and show that pro-
grams on the abstraction level of T can be partially veri-

fied. A formal treatment is beyond the scope of this paper.

A data type is defined, abstractly, by a set of functions and

an axiomset on these; and can be regarded as a theory.

A concrete definition (an implementation) of a data type
consists of 1) a concrete representation of the abstract
values (a vector of less abstract types) and ii) programs
(bodies) implementing the abstract functions, operating on
the concrete representation. An implementation can also be

regarded as a theory [10].

Then, to verify (the implementation of) a data type means to
prove that the concrete theory is an interpretation of the
abstract theory. This is done by defining an interpretation,I,

mapping an abstract term to its concrete representation, such
that

I(G) = fG' s

where G' 1s the body of the concrete implementation of G.
Now, to verify (the implementation of) a data type means to
prove the interpretation of the abstract axioms in the concrete
theory. This can not be done from partial function theorems
alone since tG' is not known for any G'. Results based on

total correctness are required.

In order to get some results based on partial correctness, we

define an interpretation I', such that the only difference be-
tween I and I' is that I’(G):=F6,, where Fan is an effect
function of G'. To verify (the implementation of) a data type

by partial interpretation means to prove the I'-interpreta-
tion of the abstract axioms in the concrete theory of effect

functions.

In other words we prove that the I'- interpretation of the

abstract functions are effect functions of the concrete
operations. Thus the abstract functions may be used as ef-

fect functions in programs on the abstraction level of the

data type.

Let t be a variable of a data type T which is verified by
partial interpretation. A call of an abstract function G in

T may be represented by a statement t.G(a) which changes ths

concrete value of t to the function value of G'. We have
RE {t.G(a)}R
G(t,a)"
We can partially verify programs using data types, which

are verified by partial interpretation. o

If all the effect functions are given, then the theory of effect
functions is consistent, and from verification by partial in-

terpretation we can conclude that the abstract theory is con-

sistent.

We may verify a data type T (totally) in two steps:

i) verify T by partial interpretation
ii) for each concrete body G' prove fG'= Fas
where FL, is the effect function used in i)

Example.

A set-like type TE’ where E is the element type, can be de-

fined as a data type which has the abstract functions

Add: TE><E -> TE’ and Has: TE X E -+ Boolean (and other func-

tions). For Add and Has we may have the abstract axiom:
Has(Add(q,x),y) = if x=y then true else Has(qg,y) ik I

TE may be implemented on the representation (a,m), where the
variable m 1is of type [1:n] and a is an array [1:n] of E.
(n is a constant). We define I(q) = (a,m).
Has may be implemented as a boolean function has:

has(a,m,x) =

begin has:=false;

for i:=1 to m do{invariant vij:[1:1i-1] (aj Z x)}
if a.=x then has:=true; exit fi
end

Add may be implemented as a procedure,add,changing the repre-
sentation:

add(a,m,x) =

8

if m<n then m:=m+1 ; a i=x else error.

For has we can obtain the effect function H (and we define
I'(Has(g,x)) = H(a,m,x)).
H(a,m,x) = 3j:[1:m](aj:x)
For add we can obtain the effect function A
A(a,m,x) = ((alm+1|x),m+1)
(Calilx) defined as on page 9)
To verify the implementation by partial interpretation we must prove
H(A(a,m,x),y)=if x=y then true else H(a,m,y) n o

which follows easily from the definition of A and H.

However, we can not (totally) verify the given

implementation . In order to prove (by total correctness)
fadd': A we must change A 'QEEQ*QL“ZQS in the example on page
8-9. If the abstract axiom is. changed correspondingly, reflectin
the capaeity constraint , weé may,using A'gmmiﬁthe:h@lamxmatkm
by partial interpretat%on; and together with & proof of f_,.=A' and fhas7E
we have verified the Implementation (totally) .

Acknowledgements.

The author is greatly indebted to Ole-Johan Dahl for his con-
structive critieism.
The author would also like to thank Reiji Nakajima for many

fruitful discussions.

10.

= I

REFERENCES

Hoare: An Axiomatic Basis for Computer Programming.
Comm.ACM, 12,10 (0ct.1969).

Hoare: Proof of Correctness of Data Representations.
Acta Informatica, 1, 1972.

Schj¢@gll,Hesjedal,

and Owe: PROVER

Lecture Notes nr.24, Institute of Mathematics,
University of 0Oslo, 1976.

Clint,Hoare: Program Proving: Jumps and Functions.
Acta Informatica,1, 1972.

Ashcroft,Clint,

and Hoare: Remarks on "Program Proving:Jumps and Functions
by M.Clint and C.A.R. Hoare". o
Acta Informatica, 6, 1976.

Guttag,Horning,

and London: A Proof Rule for Euclid Procedures.
IFIP, Working Conference on the Formal Descrip-
tion of Programming Concepts, Aug. 1977.

Hoare: Procedures and Parameters: An Axiomatic. Approach.
Symp. on Semantics of Algorithmic LanguagesSpringer-Verlag, 7'
Goguen: Abstract Errors for Abstract Data Types.

IFIP, Working Conference on the Formal Description
of Programming Concepts New Brunswick,N.J.Aug.1977

Burstall, .

Goguen: Putting Theories Together to make Specifications.
- Int.Jt.Conf. on A.I., 1977.

Nakajima,Honda,
Nakahara: Describing and Verifying Programs with Abstract
’ Data Types.

in "Formal Description of Programming Concepts".
North Holland Publ. Comp. 1977.

