
A Lightweight Approach to Smart Contracts
Supporting Safety, Security, and Privacy

Olaf Owe and Elahe Fazeldehkordi
Department of Informatics, University of Oslo, Norway

{elahefa,olaf}@ifi.uio.no
March 24, 2022

Abstract
The concept of smart contract represents one of the most attractive uses
of blockchain technology and has the advantage of being transparent, im-
mutable, and corruption-free. However, blockchain is a highly resource de-
manding technology. The ambition of this paper is to propose a new approach
for defining lightweight smart contracts, offering a high level of trust even
without blockchain, when the underlying operating system can be trusted.
Blockchain can be used for a higher degree of trust, for instance when the
runtime system cannot be trusted. The approach gives transparency and im-
mutability, and gives protection against corrupted or incorrect smart contract
implementations. This is achieved by letting smart contract requirement
specifications be separated from the smart contract implementations, pro-
vided by special objects, so-called history objects, recording all transactions
of the associated contract. The history objects are generated by the runtime
system as specially protected objects. Contract partners may interact with
the history objects through predefined interfaces.

We present a framework which includes an executable, imperative lan-
guage for writing smart contracts, a functional language for contract specifi-
cations by means of invariants over the transaction history of a contract, as
well as a verification system. The framework allows compositional and class-
wise verification. A history object can provide runtime checking of specified
behavioral properties of the contract, and can provide safety, security, and
privacy control, as well as trusted transfer of assets. We demonstrate the
approach on an auction system.
Keywords: Transactions; Asynchronous Communication; Smart Contracts;
Security; Privacy; Safety; Specification; Verification; Runtime Checking.

Preprint submitted to JLAMP March 24, 2022

Contents

1 Introduction 2

2 Smart Contracts and Blockchain 5

3 History Objects 8
3.1 Histories as a Generalization of Futures 13

4 A High-Level Language for Active Object systems 13
4.1 Interface Definitions . 14
4.2 Data Type and Function Definitions 16
4.3 Class Declarations for Active Objects 18
4.4 Method Definitions and Imperative Code 20
4.5 The Transaction Type Corresponding to an Interface 23

5 The Implementation of History Objects 27

6 Contract Specifications and Safety 31
6.1 Implementation of SafeHistory . 32
6.2 Specification of the Auction Example 34

7 Verification 34
7.1 Verification of the Auction Example 38

8 Adding Privacy Aspects 41

9 Adding Security Aspects 44

10 Adding Transfer of Assets 46

11 Evaluation 48
11.1 Difference between our Language and Solidity 49
11.2 Difference between our Framework and Blockchain 53

12 Related Work 54

13 Conclusion 59

Appendix A Operational Semantics 61
Appendix A.1 Object Representation 61
Appendix A.2 Operational Rules . 63

Appendix B Notational conventions for lower case characters 68

2

1. Introduction

Blockchain technology started initially with a new currency called Bit-
coin that was based on automated consensus between networked users, not
required to trust each other. Financial industries related to cryptocurrency
have been seen as primary users of this technology and have resulted in the
most widespread applications of blockchain, but its applications go far be-
yond financial ones. The concept of smart contracts represents one of the
most attractive uses of blockchain technology that has appeared recently.

A smart contract is a program that executes the terms and conditions
of an agreement that are predefined by mutually distrusting participants of
the agreement. These programs are stored on blockchain, and their correct
execution is enforced by the consensus mechanism of the blockchain with-
out depending on a trusted authority. Compared to traditional contracts,
smart contracts provide trust with low legal and traditional costs, no risk of
tampering and fraud, no interference or trust issues of a third party. Apart
from these advantages, smart contracts are automatic, fast, and transpar-
ent. The number of applications of smart contracts in industry and everyday
life is countless. Applications include digital identity, banking, tax records,
insurance, real estate, supply chains, IoT, gaming and gambling, auctions,
authorship and intellectual property rights, life science, and health care.

Despite many advantages, there are also some drawbacks in smart con-
tract technology. The concept of smart contracts is built on blockchain;
therefore, it is expensive with respect to time, resources, and power consump-
tion. Besides that, since it has the consensus mechanism of the blockchain at
the bottom, privacy is not inherently supported. Our ambition is to suggest
an approach that avoids these disadvantages.

In this work, we propose a new construct at the programming language
level that supports some of the main advantages of smart contracts based
on blockchain, including trust, immutability, and transparency, but is less
expensive to implement since it is less dependent on the use of blockchain.
It gives a level of trust at the application layer without use of blockchain.
However, it can also be combined with the blockchain technology in order
to improve the overall trust level on insecure platforms. Our approach offers
predefined forms of security and privacy control and comes with a theory
for formal specification and verification. In contrast to traditional smart
contracts, our approach detects and protects against incorrect or tampered
contract implementations.

3

More specifically, we propose a “container box” for recording all calls and
futures (see Section 3.1), related to the interactions involving a given con-
tract service provider. This “container box” will then record all transactions
such as calls to/from the contract, as well as future values generated by the
contract. For this reason, we will call it a history object. It can also be seen
as a “ledger” since it records all the transactions reflecting communication
with the service provider. The transaction history is generated by the un-
derlying system, and programmers have only read access to history objects,
controlled through interfaces. We associate one history object to each con-
tract. We predefine a set of classes and interfaces for these history objects,
restricting write access. These interfaces and classes cover safety, security,
privacy aspects, as well as transfer of assets.

The need for formal verification of smart contracts is pointed out in several
papers [3, 22]. Solidity is the most dominant language used for writing smart
contracts; however, a main drawback with Solidity is that it is not well suited
for specification and reasoning since it did not come with a formal semantics
and is not oriented towards program reasoning [49]. For instance, class-wise
verification is not supported, and even soundness can be a problem. In case
of errors, Solidity uses roll-backs to return to a previous state, reverting all
the modifications made until the last safe state. Reasoning about roll-backs
is challenging since the cause of a roll-back can be implicit.

We therefore consider a high-level language that allows better reasoning
support than Solidity. Our approach avoids the mentioned problems with So-
lidity. Furthermore, our language gives fewer runtime errors and less need for
roll-backs, which simplifies reasoning. In particular, our approach supports
compositional and class-wise verification, i.e., we can verify a class invariant
by looking at the class itself and inherited code from superclasses, without
looking at other classes. This is essential for scalability and open-ended pro-
gram development, which are highly relevant factors for contracts.

In order to define history objects and contracts as autonomous distributed
objects, our language is based on the active object paradigm [48]. This
paradigm offers a natural and high-level understanding of service-oriented
systems, and with a modular semantics, which is essential when we turn to
specification and verification issues. Clients, contract, and history objects
are then described by concurrent and distributed objects, with asynchronous
and non-deterministic message passing. The language builds on the principle
of interface abstraction, i.e., remote field access is illegal, and an object can
only be accessed through an interface. Each object has one or more inter-

4

faces, and the only possible way of object interaction is through the methods
defined in the corresponding interfaces. Our language combines first-class
futures [7], which are often used in active object languages, and a restricted
version of cooperative scheduling [14]. This novel combination gives flexible
method interaction, scheduling control, simplified reproducibility of execu-
tions, support of roll-backs, as well as simplified verification. In particular,
the support of roll-backs is due to the language restrictions on the use of
guards. Furthermore, we show that a history object supersedes the function-
ality of the future mechanism. By providing a useful encapsulation context,
the information in the futures are useful in a long perspective, and thus
avoiding the need for garbage collection of futures. In addition, our solution
improves the privacy and security control of future values.

We demonstrate our approach on versions of a smart contract example,
based on the auction example of Ahrendt, Pace, and Schneider in [3]. We
exemplify an active object defining an auction with an associated history
object, and demonstrate how our approach can be used to provide aspects of
security, privacy, safety, including high-level functional safety specifications
that can be checked at runtime. We show how verification of the auction
contract specification can be done in a simple manner by class-wise reasoning.

The main contribution of this paper is a framework for lightweight smart
contracts based on the notion of history objects, consisting of an impera-
tive language for contracts supporting roll-backs, an executable functional
language for writing smart contract specifications over the transaction his-
tory, and a theory for class-wise verification, with language-based support of
privacy, security, transfer of assets, and runtime checking of contract specifi-
cations. The history objects are part of the runtime system and provide trust
even when the implementation of smart contracts and interacting parties are
intentionally or unintentionally incorrect, or tampered with.

Outline. Section 2 describes relevant background on smart contracts and
blockchain. Section 3 presents the main idea of history objects. Section 4
introduces an underlying programming and specification language, and Sec-
tion 5 shows how history objects are implemented in this language. Section 6
focuses on contract specifications and safety, and section 7 discusses how to
verify contracts, including verification of the example (Section 7.1). Sec-
tions 8, 9, and 10 deal with privacy, security, and trusted transfer of assets,
respectively. Section 11 gives a comparison with Solidity and blockchain.
The last two sections (12 and 13) present related work and a conclusion,
respectively.

5

2. Smart Contracts and Blockchain

In systems with centralized control, parties who wish to trade with each
other have to do this via the central system, which the parties should trust.
Therefore, all the trust should be placed on the central system, and all the
business transactions depend on this third party. This dependency could be
costly for both parties of a transaction. Smart contracts came to solve these
problems. The term smart contract was introduced by Szabo in 1997 [45].
It refers to simple programs that store rules for negotiation and terms of
a contract. These terms will then be checked by a smart contract. Using
smart contracts, untrusted parties can trade directly with each other. Smart
contracts are stored on the blockchain, and each party has a copy of it.

A blockchain is a distributed ledger that is open to anyone; it stores the
information across a network of computers. In general, a ledger is a list
of records that can be in any form, like a notebook, or an excel file. In
blockchain, a ledger is given by the complete information about all trans-
actions of some kind, typically transactions with financial aspects. A dis-
tributed ledger is distributed across many locations instead of placing it in a
fixed location. A blockchain is a chain of blocks. Each block holds some data
together with the hash of the block, which is unique just like a fingerprint,
and also the previous block’s hash. The data stored inside the block depends
on the type of blockchain; for instance, the Bitcoin blockchain stores details
about the transactions, like the sender, the receiver, and the number of coins.
Immediately upon creating a block, its hash is calculated. Any tampering
inside a block will cause its hash to change, and therefore it makes the next
block and all the following blocks invalid since they no longer store a valid
hash of the previous block.

The use of hashes is not enough to prevent tampering, since computers
nowadays can calculate hundreds of thousands of hashes per second, which
means that someone can tamper with a block and calculate all the hashes
of the other blocks again to make the blockchain valid. In order to miti-
gate the risk of tampering, a blockchain also uses a mechanism that is called
proof-of-work, a mathematical computation that slows down the creation of
the new blocks. This mechanism makes it harder to tamper with the blocks
because if someone tampers with one block, he/she must calculate the proof-
of-work for all the following blocks again. Therefore hashing and the proof-
of-work mechanism provide trust in blockchain. Nevertheless, there is one
more way that blockchains secure themselves, namely by being distributed.

6

Blockchain uses a peer-to-peer network, and everyone can join. When some-
one joins the network, he/she receives a full copy of the blockchain. The
node uses this to verify that everything is in order. When someone creates
a new block, that block will be sent to everyone on the network, each node
can verify the block to make sure that it has not been tampered with, and if
validity is accepted by the majority of the nodes, each node adds this block
to their blockchain. All the nodes in the network create consensus, agreeing
about which blocks are valid and which are not. This consensus promotes
transparency and makes blockchains corruption-proof. Other nodes in the
network reject those blocks that are tampered with. Therefore, without the
consent of the majority of the nodes, no one is allowed to add a transaction
block to the ledger. Besides, once a transaction block is added to the ledger,
nobody can change it. So, no single user in the network can modify, delete,
or update the blocks. This characteristic promotes immutability and makes
sure that the blocks remain unchanged. For better space efficiency, one may
store the hash value of a transaction rather than the transaction itself. This
suffices for transaction validation, but not for extracting transaction details.

All the fundamental characteristics of the blockchain technology are also
shared with smart contracts since smart contracts are based on the blockchain
technology. Smart contracts can be applied to many different areas, not only
exchange of money, but also property, stock, or anything else without having
to go through a lawyer, a notary, or other centralized service provider. They
entirely cut out the need for a middle man. Banks, for instance, can use
smart contract to issue their loans or to offer automatic payments, insurance
companies can use it to process specific claims, or postal companies can use it
for payment on delivery. Other examples of smart contracts deal with escrow
agreements, employment agreements, auctions, and voting systems.

Ethereum, the most prominent smart contract platform today, was first
proposed in late 2013 by Vitalik Buterin [13]. Ethereum is an open software
platform and is based on blockchain technology that enables developers to
build and deploy decentralized applications. It focuses on running code for
decentralized applications that deploy on its network, written in the form of
smart contracts. Ethereum’s blockchain not only allows currencies to reside
on it but also software code. Parties or smart contracts in Ethereum can
communicate with each other via transactions, in order to distribute assets
between each other. In Ethereum, a smart contract is like an object in
object-oriented languages such as C++ or Java. Objects in Ethereum are
parties. Each party can have its own state and logic, similar to objects having

7

variables and methods in object-oriented languages, especially in the active
object paradigm where the objects are distributed and autonomous and can
have active behavior.

Several programming languages have been used for writing smart con-
tracts on Ethereum like Solidity, Serpent, Go, and Lisp Like Language (LLL).
LLL is similar to the Lisp language and was used mostly in the very early
history of Ethereum and is probably the hardest to write in. Serpent is sim-
ilar to the Python language and was popular in the early days of Ethereum,
but the most popular and functional one currently is Solidity, which is very
similar to JavaScript.

Solidity is a contract-oriented, high-level programming language. It is
statically typed; it supports inheritance, libraries, and complex user-defined
types, among other features. Solidity builds on Ethereum Virtual Machine
(EVM), which executes an associated low-level bytecode language. This is
similar to bytecode as used in the Java JVM or C# CLR. There are several
compilers (e.g., SolC, a browser-based compiler) that compile smart contracts
written in Solidity into EVM bytecode, which can then be deployed into the
Ethereum blockchain and will be ready to receive transactions. So the entire
life cycle of a smart contract in Ethereum is as follows:

Solidity −→ EVM bytecode −→ Deployment

In the EVM machine code, there are several operations. In Ethereum, each
operation has a cost, in order to execute the smart contract, all the operations
need to be paid. Ethereum has its own currency, which is named ether. Every
transaction and execution of bytecode costs ether.

Gas, on the other hand, is a unit that translates into ether; for instance,
if there are several instructions, the first instruction might cost two gas, and
two gas get translated into some amount of ethers. The reason for separating
gas and ether is to decouple the price of an operation with the market price
of an ether. The gas price for an operation is constant and cannot easily
be changed; however, the value of gas in terms of ether can be changed.
A list of operation codes and how much each operation costs in terms of
gas can be found in the Ethereum yellow paper (with the formal definition
of the Ethereum protocol) [47]. In order to distribute assets between dif-
ferent parties in Ethereum smart contracts, each party sends ether via the
transactions.

8

3. History Objects

We consider the setting of distributed concurrent objects communicating
by asynchronous methods. A smart contract in this setting is reflected by
an object providing a certain service to the environment. Such an object
is called a contract object. We assume a smart contract supports a prede-
fined interface Contract. An object is said to support an interface I if the
class of the object implements I or a subinterface of I. Thus the interface
Contract is the superinterface of all contracts. Consider a contract to be
used by a number of clients. We propose to add an additional object, called
the history object, associated with the contract, storing the history of trans-
actions related to the contract, i.e., the messages corresponding to method
calls and method returns. This object is provided automatically for each con-
tract object, and records the transaction history. The history objects have a
write-once read-many data structure, and are defined by a set of predefined
generalized classes (say provided by a library). These classes are final in the
sense that programmers may neither add fields, methods, nor method redec-
larations. There is only one method, put, that changes the data structure, by
adding a transaction to the transaction history. This method is called by the
runtime system (whenever there is a new transaction) and is not visible to
programmers. Therefore no object may manipulate the state of the history
objects from source code.

For each contract object o we associate a history object:

o.history

The history object will keep track of all transactions involving the contract
object. A contract participant may use a history object to check and verify
that the interaction with the corresponding contract object is appropriate.
From the outside, a history object is treated like a normal object, which
means that any external object may communicate with a history object when
desired, through method calls. This is following the spirit of [43].

Moreover, the behavior of the history objects is given by a set of prede-
fined classes in combination with contract-dependent interfaces. The prede-
fined classes allow a contract designer to select the trust level. In particular,
there is a get method to retrieve information, something which enables a
history object to take the role as a future (see Figure 1). The predefined
classes redefine the put and get methods in order to provide protection of
safety, security, privacy, and assets.

9

Transactions

Call message

get f

get f

put resultget f

get f

History Object

get f

get f

put result

put result

Call message

Call message

Transactions

Transactions

Clients

Contract Object

Figure 1: History objects and illustration of call, put, and get events

The history objects are provided by the underlying software/network
platform. As long as this underlying software platform is protected from
manipulation by attackers, the history objects can be trusted since they are
not accessible through source code and therefore cannot be modified neither
by attackers nor through intentional or unintentional programming “mis-
takes” in the contract object. Thus history objects are protected against
application-level attacks. To improve trust, one can place the history object
on a different physical location than the corresponding contract object, ide-
ally with write-once read-many memory, or one may use a trusted platform
if possible. In case the underlying platform cannot be trusted, one can use
blockchain technology to ensure trust at the underlying platform level.

Our approach can be related to the future concept, which has become
popular in the setting of active object languages and is supported by several
languages [11]. Remote method calls are handled by message passing and the
result of a method invocation is placed in a future object, at which time the
future is said to be resolved. The caller generates a reference to the future
object and this reference may be passed to other objects in the case of first-
class futures. Any object with a reference to the future object may ask for
the value, typically via a get statement, which will block when the future is
not yet resolved. Some languages allow polling (i.e., testing repeatedly until

10

A-Obj S-Obj

B-Obj

C-Obj

D-Obj

Future

Call message

get f

get f
put result

get f

get f

Figure 2: Illustration of the future mechanism

a condition becomes true) to check if a future is resolved, to avoid blocking.
Figure 2 illustrates this use of futures.

A history object can be seen through the History interface, giving basic
access to the transaction history, or through the more limited PreHistory
interface, which provides the functionality of the future mechanism. These
interfaces are given in Figure 3, using a type parameter I reflecting the in-
terface of the associated contract. Furthermore, we provide subinterfaces
of History adding safety, privacy, security, and transfer of assets, namely
SafeHistory, PrivateHistory, SecureHistory, and AssetHistory, respectively.
Note that the interfaces give read-only access. Implementation of these inter-
faces will be explained in Sections 6, 8, 9, and 10. The PreHistory interface
has put and get methods to store and retrieve information, but such that the
put method is not visible to programmers. Each call to, and return from, a
method related to a contract generates a put call, which records this transac-
tion event in the transaction history. When seeing a history object through
the PreHistory interface one may use it as a future. By seeing it through the
History interface one may access the whole or selected parts of the transac-
tion history. The parameter ctr provides a reference to the contract object.
The syntax for interfaces, the Transaction and Transfer types, and the other
concepts used in the interfaces of Figure 3 are defined in Sections 4.1 and 4.5.

Behavioral specifications of interfaces will be given by means of invariants
over the transaction history, denoted h, possibly involving user-defined func-
tions over the history. The behavior of a contract is specified by invariants,

11

interface PreHistory[I] { // interface definition, generalized over interface I
type Trans = Transaction[I]
// Void put(Trans t) // used by the runtime system
T get(Fut[T] f) // for each type T appearing as a method result in I
// returns the future value (possibly error), when resolved.

}

interface History[I] (Contract ctr) extends PreHistory[I] {
type Hist = List[Trans] // type Trans is inherited
Trans lastTrans() // returns the last transaction
Hist getTrans() // returns all transactions
Hist transOf(Any o) // returns all transactions involving object o
... } // possibly other functions

interface SafeHistory[I] extends History[I] {
func safe : Hist → Bool // defining legal histories
invar safe(h) // an invariant over the transaction history h of the contract
// built-in runtime check of safety as specified by “safe”

}

interface PrivateHistory[I] extends History[I] {
func trusted: Any → Bool // defining which objects to trust
// all transaction output to untrusted objects will be de-personalized

}

interface SecureHistory[I] extends History[I] {
func blacklisted : Hist ∗ Any → Bool
// using blacklisting to control unserious parties

}

interface AssetHistory[I] extends History[I] {
func cost : Trans → Transfer // specifying the cost of the transactions
Int myBalance() // returns the accumulated balance of the caller
Int contractBalance() // returns the accumulated balance of the contract

}
Figure 3: Generalized interfaces for history objects.

12

defining boolean conditions over the transaction history h. We therefore let
the history h be available in specifications. In order to add runtime support
of safety aspects, interface SafeHistory uses a boolean function safe defined
over the history, such that safe(h) is an invariant. The invariant safe(h) will
be checked at runtime. This is further explained in the class implementation
of SafeHistory in Section 6.2, and an example is given in Figure 10. Note
that Any is the superinterface of all objects.

Interface PrivateHistory will restrict the flow of private information to un-
trusted objects based on a function trusted, which is specified by the contract
designer, reflecting a suitable policy for the contract. Interface SecureHistory
uses a function blacklisted to detect harmful parties, denying access to black-
listed objects. Alternatively, one could use whitelisting, or define a function
secure : Hist ∗ Trans 7→ Bool, expressing which transactions may be consid-
ered secure. This would allow more general control than blacklisting.

Finally, interface AssetHistory adds the aspect of transfer of assets, letting
some or all of the transactions involve a cost. The cost function is specified
by the contract designer for each transaction, depending on the particular
contract. A history object supporting AssetHistory knows the balance of
assets accumulated for each party including itself. A contract party may
ask for his/her balance by method myBalance, and anyone may check the
balance of the contract by method contractBalance.

As mentioned, we will give a high level implementation of these interfaces
by predefined and protected classes that may not be redefined or extended by
programmers or contract designers. However, contract designers may define
suitable versions of the safe, trusted, blacklisted, and cost functions for their
contracts, through subinterfaces of the given interfaces for history objects,
and these subinterfaces can then be used in so-called “adaptations” of the
predefined classes. The interface definitions are transparent to all users, but
function definitions cannot be overwritten or redefined in any way in our
language. Therefore, the combination of protected general classes for history
objects and contract-specific functions gives trust at the software level.

Before showing how to implement the interfaces above, we will introduce
a high-level programming and specification language (in Section 4).

3.1. Histories as a Generalization of Futures
With the standard future mechanism, it is not trivial to detect when a

future can be discarded; and as many futures may be generated, garbage
collection is in general needed. In the active object paradigm, this is a

13

clear disadvantage since the active objects themselves have a long life time.
When local data inside objects is defined by data types, using a functional
programming language to express and manipulate values of the data type
(such as in the Creol and ABS languages), there is no need for general garbage
collection of these values, assuming storage for values of the data types can
be retrieved efficiently. In our proposed solution, the same history object will
contain all future values generated by a given callee object, including those
of the past as well as future ones. This history object is therefore long-lived
and need not be garbage-collected. However, as the storage need is growing
dynamically, the history objects could be placed on suitable storage media,
possibly split in several parts, letting the latest part be most accessible.

Another disadvantage of the future mechanism is that the future value is
unprotected, and an object getting the value may not know where the future
came from and what it represents. In particular, privacy aspects are unknown
and the information can easily be misused [32]. Our approach comes with
the option of choosing safety and privacy restrictions (see Sections 6 and 8).

4. A High-Level Language for Active Object systems

Before defining history objects, we need an underlying language for inter-
faces, types, and classes – preferably one supporting distribution, autonomy,
and compositional reasoning. We present a high-level language supporting
active objects, based on the Creol/ABS concurrency model [27, 26]. In par-
ticular, we define a functional language for defining interfaces (Section 4.1),
data types and functions (Section 4.2), and then an imperative language for
defining classes supporting concurrent active objects (Section 4.3). Our lan-
guage is strongly typed, and object variables are typed by an interface (not a
class). In order to enable verification and specification of behavior, we build
on language constructs for specification and reasoning supporting class-wise
reasoning and interface abstraction [35, 36]. This means that the clients of
a contract can rely on the abstract specification of the interface of the as-
sociated history object rather than program code. Furthermore, they may
interact with the history objects if they do not trust the contract objects.
The interfaces define visible methods and their specifications. A class may
have several interfaces. Methods of a class that are not exported through an
interface, are considered private.

14

4.1. Interface Definitions
An interface defines a view of a class object, in terms of methods, together

with an invariant describing behavior and related data types and functions.
We define the syntax of interfaces with an augmented Backus-Naur Form
(BNF) regular expression:

interface I [[I+]] [([T x]+)] [extends I+] {
[[with I] [T m([T x]∗)]+]∗
[type and function definitions]∗
[invar R]∗

}

The superscripts ∗ and + are used to denote repeated parts (∗ for zero or
more and + for one or more repetitions), and the meta-symbols [] (without
a superscript) are used to indicate optional parts. Optional class parameters
(x of type T) are given by the syntax ([T x]+). In order to allow generalized
interface definitions, an interface may be parameterized by a number of types
or interfaces using the syntax [I+] (where the brackets are part of the syntax).
For example, interface History[I] is generalized over I. We let I denote an
interface name, T a type name, m a method name, x a formal parameter, and
R an invariant assertion, which may refer to the contract transaction history
h, and user-defined functions on the history. An invariant is an assertion
that must hold initially and be maintained by every method.

The BNF interface definition shows how to define an interface I by ex-
tending a number of already defined interfaces (I+), inheriting all definitions
of these, and defining a number of methods, types, and functions. The func-
tions may be partially or fully defined. Data types and function definitions
are explained in the next subsection. A (directly or indirectly) extended
interface is said to be a superinterface of I, and interface I is said to be a
subinterface of its superinterfaces. The most general interface is called Any,
and Contract is the superinterface of all contracts. Thus Contract < Any.

Note that a method may have a cointerface, given by a with clause,
which defines the (minimal) interface of the caller object. The caller object
is available inside a method body through the implicit parameter caller ,
typed by the cointerface. An object calling the method must be typed by a
subinterface of the cointerface. A cointerface is needed when a method body
is making calls back to the caller. In order to make these call-backs type-

15

interface Bidder {
with Auction // only Auction objects may call the methods below
Void newAuction() // inform a bidder that a new auction starts
Void newBid(Nat x) // inform a bidder that x now is the highest bid
Void youwon(Nat x) // inform the bidder that he/she won with bid x
Void winner(Bidder o) // method to inform a bidder/owner that o won
Void closed() // inform a bidder that the current auction is closed

}

interface Auction {
Nat highest() // gives the highest bid in the current auction
with Bidder // only Bidder objects may call the methods below
Void open() // to open a new auction
Bool close() // to close the current auction
Bool makeBid(Nat x) // to place a bid in the current auction

}
Figure 4: Interfaces for the auction example

correct, we need to declare an interface for the caller (by a with clause).
For instance, a method defined after the clause with Bidder, knows that
the caller supports interface Bidder and is therefore allowed to make (type-
correct) calls to methods of that interface.

Examples of interfaces for an auction system are given in Figure 4, and a
cointerface is used. Interface Bidder defines the methods of bidder objects,
and interface Auction defines the methods of the auction service provider.
The cointerface used in interface Auction restricts clients calling open, close,
and makeBid to Bidder objects (i.e., objects of classes implementing the
Bidder interface).

Our language uses interfaces to describe distributed objects, which may
have active behavior when desirable, and uses data types to define data
structure local to an object. Since an interface declares no state variables,
an interface can only talk about the transaction history h. Moreover, by
means of functions defined over the history, one may express essential aspects
of objects of the interface and define an abstract state. In a distributed,
open-ended, and unpredictable environment, reasoning by means of history
invariants is more suitable than reasoning based on pre- and post-conditions,
since pre/post-conditions on the callee side will in general need to refer to

16

variables not found on the caller side (when these conditions need to talk
about more than just the input/output). Our language includes executable
history invariants, and allows runtime checking of invariants by means of
history objects supporting SafeHistory.

We next define a functional language for defining data types and func-
tions, and then use this to define transactions, histories, and specifications.

4.2. Data Type and Function Definitions
For the definition of recursive data types and partial functions, we use

a syntax typical for strongly typed functional programming languages with
pattern matching. We consider an executable functional language for data
types and functions. As this language also is used for specifications, we ob-
tain an executable specification language. A user-defined data type is defined
by (named) disjoint unions (... | ...) and products (... ∗ ...), allowing recursive
definitions. A disjoint union may look like c1 : E1 | c2 : E2 | ... where Ei is
a type expression, often a product and ci is implicitly defining a constructor
function used to name an alternative in a disjoint union. Thus, a data type
T is defined by a number of constructor functions for constructing T values.
Each constructor function may have a number of input parameters. For in-
stance, the list type could be defined by type List[T] = nil: | append: List[T] ∗ T
where nil and append are constructor functions. As nil has no input param-
eters, it is called a constant constructor. For convenience, we let the append
constructor function be denoted by the infix symbol “;”, and we omit writing
an empty product. Generalized data type definitions are parameterized by
one or more types or interfaces using the syntax [I+] as before. The list type
can then be declared by the syntax:
type List[T] = nil: | _;_ : List[T]∗T

where the underline indicates argument positions of functions with infix no-
tation (and if needed, more generally for mixfix notations). The transaction
history a, b, c can then be expressed as nil; a; b; c. The constructor func-
tions define the set of possible values (as variable-free constructor terms)
and are implicitly defined. Standard types such as Void, Bool, Nat, String are
predefined with standard functions. The type Void is used to represent no
information (i.e., a unit type), and void is the only value of this type. The
language supports futures, and the predefined type Fut[T] denotes the type
of futures holding values of type T . The supertype of all types is called Data,

17

and the supertype of all interfaces is called Any. Thus Any is a subtype of
Data. We let ≤ denote the subtype relation.

User-defined functions (other than constructors) are defined by a func
declaration stating the input and output types of each function and by a
number of equations where the left- and right-hand sides are expressions con-
sisting of functions, constructor functions, and variables. The types of these
variables are declared in a var clause. We restrict ourselves to equational
function definitions (using multiset path ordering to avoid non-termination
recursion [5]). We use the BNF syntax:
[func g : T∗ → T]∗ // function declaration
[var [T x]∗] // variable declaration
[lhs = rhs [if cond]]∗ // function definition

Here h is a function name, lhs (left-hand side) and rhs (right-hand side)
are expressions, and cond is a boolean condition. A left-hand side defines
a pattern and may contain the special symbols and others representing
an arbitrary pattern and cases not covered, respectively. Any variable in a
right-hand side must occur in the left-hand side.

Examples are given in Figure 5. The last length equation can also be
written as length(q; _) = length(q) + 1. We define the ends-with operator
(ew), with infix notation using _ to indicate the argument positions as before,
expressing that a list q ends with a given element x. A left-hand side may
use others to match any other case not covered by the equations above. For
instance, the last equation for ew could be replaced by the two equations
(q;x) ew x = true and (q;others) ew x = false.

In order to deal with partial functions, we allow error in the right-hand
side, for instance as in the definition of the above last function over lists.
By static checking, one can ensure that a function definition properly covers
all cases of possible inputs (without conflicting overlap). For instance, if the
equation last(nil) = error is omitted, the static checking would detect that
last(nil) is not defined.

4.3. Class Declarations for Active Objects
For the purpose of defining classes, we introduce a high-level language

combining the active object paradigm, first-class futures, i.e., allowing fu-
tures to be passed like parameters to other objects, and guarded methods,
i.e., identifying the conditions under which the methods are enabled [14]. We

18

func length : List[T] → Nat // list length
func _ew_ : List[T] ∗ T → Bool // ends-with test
func last : List[T] → T // finds the last element, if any

var List[T] q, T x // variables used in the equations
length(nil) = 0
length(q;x) = length(q) + 1

nil ew x = false
(q;x) ew y = if x=y then true else false

last(nil) = error
last(q;x) = x

Figure 5: Examples of function definitions

define classes with the BNF syntax below:

class C [[I+]] [([T x]+)] [implements I+] [extends C+] {
[T w]∗ // fields
[constructor body] // class constructor
[[with I] [T m([T x]∗) {method body}]∗]∗ // method definitions
[type and function definitions]∗ // as defined above
[invar R]∗ // invariant specification

}

In order to allow generalized class definitions, a class may by parameterized
by a number of types, interfaces, and classes, using the syntax [I+] as before.
A class C may implement a number of interfaces and extend a number of
superclasses. Thus we support multiple inheritance, but single inheritance
suffices for our example. The body of the class definition (the part between
"{" and "}") consists of field declarations, method definitions, possibly a class
constructor method, as well as additional function, type, and invariant defi-
nitions. A class with an empty class body is called an empty class.

Any type, function, or parameter defined in an interface of a class is
available in the class. Class parameters, fields, methods, as well as type and
function definitions, are inherited in a leftmost, depth-first traversal of the

19

inheritance tree. A class must implement the methods of its interfaces and
respect their invariant(s). For each method in an interface, the type of the
parameters and cointerface (if any) must be a subtype of the types in the
corresponding method definition in the class, and the result type in the class
must be a subtype of that in the interface. A class invariant R may refer to
class parameters and fields as well as the transaction history.

We allow an inherited name to be qualified by the superclass name in
order to deal with inheritance of multiple definitions of the same name. For
instance, if a class extends A,B, and both superclasses have a method m,
then the subclass may refer to these as m@A (or just m) and m@B. Su-
perclass invariants and implements clauses are not inherited, which allows
a subclass to freely redefine methods and invariants without the semantic
constraints of the superclass. When desired, an invariant R of a superclass
C can be inherited by stating invar R@C.

A class inherits the function and type definitions of its interfaces and su-
perclasses. As we allow incomplete function definitions in interfaces, a class
is allowed to complete the definitions of functions, but conflicting definitions
are not allowed and checked statically. A class is executable if all functions
are fully defined (i.e., the equations for function definitions are confluent
and ground complete). Only executable classes may be used to create ob-
ject instances. A contract designer can make executable adaptations of the
predefined classes for history objects. Class adaptations have the syntax:
class C [[I+]] [([T x]+)] [implements I+] [adapts C+] {}

An adaptation of a class is an empty subclass, instantiating the formal
type parameters with actual ones. Thus a class adaptation may not add
or redefine any methods or fields, but inherits definitions of functions from
interfaces, in order to make the resulting class executable. In particular, we
allow adaptation of final classes, and an adaptation of a final class is also
final. By adaptation, a predefined non-executable class may result in an
executable class with user-defined adaptations.

The predefined history object classes are final, which guarantees that
the imperative code of these cannot be modified, while unspecified functions
(such as safe, trusted, cost) can be defined by the contract designer, as desired
for the particular contract. This means that a predefined history class may be
specialized with different function definitions through different adaptations.
In this way the methods of the predefined history classes are protected and
cannot be changed by programmers, whether by purpose or by accident. This

20

is checked statically. Examples are shown in Figures 10, 12, 14, 15, and 17.

4.4. Method Definitions and Imperative Code
We consider a syntax inspired by the Creol/ABS language family. Let

v denote a variable, o an object variable (an object reference), f a future
variable (a reference to a future object), e an expression (assumed to be
pure), and m a method. A variable is either a field w, a local variable y, or a
formal parameter x (assumed to be read-only). We let this denote the current
object, and a method has fid and caller as implicit parameters, identifying
the future identity of the call and the caller object, respectively. We use
capitalized words for types and interfaces, while variable and method names
start with a lower-case character. Class names are written in upper-case
characters.

A method body has the form:

when guard; T y; statements

The body may have an (optional) initial guard, written when guard, in
order to make sure the starting state is appropriate, otherwise the execution
is delayed. The rest of the body consists of a number of typed local variables
(T y), followed by a statement list. Each branch of the body must have
exactly one return statement, return e, where the value of the expression e
is the resulting value, which must be of the method result type. The return
statement is typically last, unless there is some local activity, like book-
keeping, to take care of after the return. (A final return statement return
void may be omitted).

The guard is either a boolean condition, which must be satisfied when
the method starts, or the special construct f?, which checks that the future
f is resolved. A when clause can be compared to the require statement in
Solidity, but rather than resulting in a runtime error as in the case of require
statement, a when clause will delay the method execution to a state where
the guard is satisfied.

Methods with initial guards are expressive enough to avoid blocking calls
and blocking get statements. The resulting value of a future generated by one
method execution can be picked up in a guard by another method execution,
either on the same object or on another object (which knows the future).
Methods with an initial guard are semantically simpler than methods with
internal guards, as suggested in [14]. The combination of first-class futures
and initial guards has not been explored before.

21

We use the syntax if cond then s [else s] fi for if-statements (with optional
then-part) and while cond do s end for while-statements. Assignments have
the syntax v := e where v is a variable and e a (pure) expression. We may
abbreviate T v; v := e to T v := e.

The statement syntax v : ++ e is permitted when v is a list, to express
that an element e is appended at the tail of the list v (semantically, it is
equivalent to the assignment v := (v; e)). This statement adheres to the
write-once discipline since it cannot change previously written elements, and
is used in the update transaction histories by the runtime system.

We consider various kinds of method calls. In order to avoid or control
blocking calls, we combine one-way asynchronous calls, guards, and the future
mechanism, which is popular in active object languages.

• An asynchronous call has the syntax f := o!m(e) where o is the callee,
m the called method, e the list of parameters, and where f is a future
variable declared with type Fut[T] where T is the return type of m.
The future variable f is assigned a new call identity (a reference to
the future object) uniquely identifying the call. This identity may be
communicated to other objects. The caller is not blocked.
In order to obtain the value returned from the call, the caller object (or
another object that knows the future identity) performs v := get f
where v is a program variable of type T . This statement will block if
the future is not resolved, otherwise the result value is copied into v.1

• As a special case, an asynchronous blocking call has the syntax v :=
o.m(e). Semantically, this is the same as f := o!m(e); v := get f
except that f is not visible in the program. The caller is blocked until
the result is available, and then the result will be assigned to v. The
caller and callee should be different objects, otherwise the statement
may cause a deadlock.

• A local call has the syntax v := .m(e), where m is an unguarded local
method. The call is handled as an ordinary stack-based local call, and
will not (in itself) cause a deadlock since there is no guard, but recursion
may cause non-termination.

1When f is a future related to a contract c, the get statement v := get f is implemented
as the asynchronous blocking call v := c.history.get(f).

22

• A simple asynchronous call has the syntax o!m(e). The caller is not
blocked and cannot access the result value. It is used when the caller
does not need the result value.

• A multicast has the syntax list!m(e) where list is a list of objects. The
caller is not blocked, and the result values are not communicated to the
caller. This is the same as making a simple asynchronous call o!m(e)
to each o in list.

• A broadcast has the syntax I!m(e) where I is an interface. The caller is
not blocked, and the result values are not communicated to the caller.
A simple asynchronous call o!m(e) is sent to all objects supporting I
(possibly depending on network properties).

• An error handler can be appended to an assignment-like statement,
including assignments, incremental assignments, synchronous calls, and
get statements, using the syntax < s > where s is the list of statements
to be performed when the execution of the statement results in an error,
If there is no handler, the current method returns an error. For instance
list : ++ last(q) < skip > will have no effect when the last function
returns an error (when q is empty). Without the handler, the method
would result in an error. More advanced forms of exception handling
would be beyond the scope of this paper.

The combination of futures and guards allows a programming style with-
out blocking. For instance, the asynchronous blocking call to m in the code
fragment x := o.m(..); s where x is a field and s is the rest of the body, can be
replaced by the non-blocking call tom in the fragment f := o!m(..); this!n(f)
with n defined as the guarded method:

Void n(Fut[T] f){when f?;T x := get f ; s}

The guard ensures that the get command will succeed immediately. We
here assume s is without local variables and return (local variables can be
transmitted as parameters, and returns can be handled by delegation, using
the mechanism of [35]).

The implementation of guarded methods involves a simple form of coop-
erative scheduling, letting each object have a method invocation queue. A
method invocation is enabled when its guard is satisfied. When a method
execution is completed, an enabled method invocation is selected from the
queue. For instance, one may select the oldest enabled method invocation or

23

use some other queue ordering. Our language ensures that the history will
determine the execution order since it determines all external inputs, and
there is no other internal source of non-determinism, as captured by Theo-
rem 1 below. An operational semantics for our language is provided in the
appendix.

An example of a class defined in this language is given in Figure 6, showing
a class implementing the Auction interface given in Figure 4. It defines class
AUCTION with a number of fields and invariants. The invariants restrict the
values of the fields of AUCTION objects between method executions. The
example illustrates the use of the implicit parameter caller. The methods
open, close, and makeBid use Bidder as a cointerface to restrict the callers
to Bidder objects. This is needed for type correctness since the caller of
open is assigned to owner , which is typed by Bidder , and method close
sends a message to the owner object through the Bidder interface. A similar
discussion applies to makeBid as well, whereas method highest need not have
a cointerface since none is given in the interface. An implementation of a
method must have the same (or wider) cointerface as in the interface.

Method open has a guard to ensure that there is no ongoing auction. This
method completes when the auction object is ready for the new auction. Thus
a blocking open call could cause a delay. An auction participant may instead
do the non-blocking calls ready := auction!open(); this!myauction(ready); ...,
using a future ready. The myauction method can then take care of what to
do when the auction starts and may be implemented with a guard as follows:

Void myauction(Fut[Void] f) {when f ?; actions related to the session}

As an improvement, one may redefine makeBid to ensure that the owner
of an auction is not making bids on his own auction. Instead, we could give
the owner a chance to set a minimal value as a parameter to open.

4.5. The Transaction Type Corresponding to an Interface
In order to define the transaction history, we consider the relevant kinds

of events including invocations and completions, representing method call
messages and return from a method, respectively, as well as get events re-
flecting the transfer of a future value in connection with a get statement or
blocking call. These events are recorded in the history object. In addition,
we may consider object generation events. In our framework, we do not need
to consider reception of invocation messages (on the callee side) since these

24

class AUCTION implements Auction {
Bool isopen:=false; // tells if the auction is open or closed
Nat highBid:=0; // the current high bid
Bidder highBidder; // the current high bidder
Bidder owner; // the auction owner
List[Bidder] bidders:=nil;

invar isopen=(owner 6=null)
invar owner=null ⇒ highBidder=null
invar highBidder=null ⇒ highBid=0

Nat highest() {return highBid }

with Bidder
Void open() {when not isopen; isopen:=true;
owner:=caller; Bidder!newAuction()} // broadcast to all Bidder objects

Bool close() { Bool ok:=(caller=owner);
if ok then // only owner may close the auction
if highBid > 0 then // isopen follows by the invariant
owner!winner(highBidder); // see note on privacy
highBidder!youwon(highBid); // to notify the winner
bidders!closed(); // multicasting to bidders that the auction closes
highBid:=0 fi;

owner:=null; highBidder:= null; isopen:=false;
bidders:= nil fi;

return ok }

Bool makeBid(Nat x){ bidders :++ caller;
if open and x>highBid then
highBid:=x;
(bidders;owner)!newBid(x); // multicasting x to owner and all bidders
highBidder:= caller; return true

else return false fi }
}

Figure 6: The basic auction class

25

can be derived from the history. For our language, we therefore consider only
invocation, and completion, and get events.

An invocation event corresponds to a call to a method m with actual
parameter list e and is represented by a four-tuple of form:

call(u, caller, callee,m(e))

where u is a unique identity generated for the call, a so-called future iden-
tity, caller is the caller object identity, and callee is the callee object. Note
that the second and third arguments indicate the direction of the message
(from-to). This event is generated when the corresponding invocation mes-
sage is sent over the network. When the call has completed normally or
abnormally (i.e., resulted in an error), the completion of the method by the
callee generates the event:

comp(u, callee, caller,m(e), result)

where result is the value resulting from the call, possibly error. As discussed
in Section 3.1, this is a generalization of the future mechanism, in that all
future values generated by the same object are stored in the same object.2

A get event reflects the transmission of a future value and has the form:

get(u, o, r)

where o is the object requesting the future value (through an asynchronous
blocking call or get statement). We include the future value r in the event
even though it is redundant given the corresponding put event. This allows
additional safety control.

For any interface or class I with methods mi (for i ∈ {1, 2, , ...}), we
define the corresponding type Call[I] by one constructor function mi for

2The comp event includes redundant information, in the sense that callee, m(e) are
given by the call event with the same future identity. Removing this redundant informa-
tion gives a more compact representation. However, the redundant specification is useful
for specification purposes because a completion event and the corresponding call event are
visible through different interfaces of objects other than history objects, as explained in
the next section. A solution could be to omit redundant information in the stored trans-
action history (trans), and have a function that enriches the history with the redundant
information when needed. A similar discussion applies to get events, where the r argument
is redundant when the corresponding completion event is present.

26

type Call[I] = ... | mi: .. ∗Tk∗ .. | ... // encoding calls to methods of I/cointerf.
type Comp[I] = ... | mi | ... // encoding the corresponding call completions
type Transaction[I] = call: Fid∗Any∗Any∗Call[I]

| comp: Fid∗Any∗Any∗Call[I]∗Comp[I]
| get: Fid∗Any∗Data
Figure 7: Predefined types for transactions

each method mi, and with input types as given by the parameters of method
mi, and result type as given by the return type of method mi, see Figure 7.
In case a method of the interface has a cointerface, we also add constructor
functions for each method of the cointerface. For a class C, then Call[C]
includes constructor functions for all local methods, exported methods and
cointerface methods. The type Transaction[I] is the union of such calls and
completions, adding implicit parameters. For calls the implicit parameters
are the future identity, the caller and the callee. For completions the call
identity suffices. Here Tk is the type of the kth parameter of method mi, and
the different constructor functions are separated by a bar | (disjoint union).

For interface Auction we have that the type Call[Auction] consists of:

highest: | open: | close: | makeBid: Nat, for methods of Auction, plus
newAuction: | closed: | newBid: Nat | youwon: Nat | winner: Bidder,

The latter ones are due to the cointerface Bidder . The events defined for
Auction objects, defined by type Transaction[Auction], consist of the fol-
lowing call events made by bidder objects (left column) or by the auction
object (right column):

call(u, bidder, auction, open()), call(u, bidder, auction, newAuction())
call(u, bidder, auction, close()), call(u, auction, bidder, closed())
call(u, bidder, auction, makeBid(n)), call(u, auction, bidder, newBid(n))
call(u, o, auction, highest()), call(u, auction, bidder, winner(b))

call(u, auction, bidder, youwon(n))

In this case the get events have the form get(u, o, r), where r is a boolean,
natural, or void, and the completion events have the form comp(u, auction,
bidder, youwon(n), void) and similar for the other methods.

Notation on histories and transactions. We use dot-notation to extract the
different components of a transaction or event. For instance, the caller of

27

a transaction t is given by t.caller. Similarly, we write t.callee, t.fid, and
t.result. This syntax is lifted to transaction lists. For instance, the set of
callers in a transaction list trans is given by trans.caller.

The projection operator “/” is defined for lists such that a list projected
by a set gives the sublist containing all elements in the set. In particular,
trans/{.fid = f} is the sublist of transactions where the future identity is f ,
and trans/{.caller = o} is the sublist of transactions where o is the caller.

Furthermore, trans/Call and trans/Comp give the sublists of invocation
and completion transactions, respectively. The notation last(trans/Comp
/{.fid = f}).result means that we take the sublist of completions in trans that
have future identity equal to f , and then take the value of the last transaction
in the sublist. For an interface I we let the projection trans/I denote the sub-
sequence of trans restricted to call and completion transactions of methods
in the interface I. For instance, we can state that a subclass satisfies the
invariant R of an interface I by requiring R@I(trans/I), thereby considering
the relevant part of the transaction history.

5. The Implementation of History Objects

Using the above language and notion of histories, we can describe how
history objects are implemented. The history object of a contract of class C
contains a (private) event history called trans:
List[Transaction[C]] trans := nil // restricted by read-only access

which is updated by the underlying runtime system by appending each new
message from or to the contract object, see Figure 8. This list variable is
updated by the runtime system through a predefined put method:
Void put(Transaction[C] t) { trans :++ t } // appending t to trans

The put method is not available to the programmer. The runtime system
records every event t (either a call, completion, or get event) in the transac-
tion history by making the call:

this.history.put(t)

Note that local synchronous calls, which neither have a future identity nor
generate a future, are not recorded in trans. Abnormal method termination
results in a comp event with result error.

28

class PREHISTORY[I, C]
implements PreHistory[I] {
// I is the interface of the contract object
// C is the class of the contract object
type Trans = Transaction[I] // transactions of interface I
type AllTrans = Transaction[C] // all transactions of the contract class C
type Hist = List[Trans] // the history seen through the I interface
type FullHist = List[AllTrans] // the full history, including local events

FullHist trans := nil // the history, restricted by read-only access

// Void put(AllTrans t){trans :++ t}// used by the runtime system

T get(Fut[T] f) { // to get a future value when resolved
when (trans/Comp/{.fid=f}) 6=nil; // enabled when resolved
Fut[T] fvalue = last(trans/Comp/{.fid=f}).result;
return fvalue;
this.put(get(f,caller,fvalue)) // record the get event

}

class HISTORY[I, C] implements History[I]
extends PREHISTORY[I,C] { // inherits the parameter "I ctr"
Trans lastTrans() {return last(trans/Trans)} // error when no last Trans
Hist getTrans() {return trans/Trans} // returns all visible transactions
FullHist getAllTrans() {return trans} // returns all transactions
Hist transOf(Any o) {return trans/{.caller=o} } // all transactions of o
...

}
Figure 8: Predefined class implementations of PreHistory and History objects

Similarly, a history object includes a public get method for each method
result of type T which have the following structure:
T get(Fut[T] f){when f is resolved ; return the future value; update trans }

In order to check that f is resolved, we project the transaction history taking
the completions events with f as future identity, and then checking if this

29

sublist is empty. If not, it will have exactly one element since all future values
are unique, and we can extract the future value by .result.

A get statement is therefore possible in our setting as a blocking call to
get on the appropriate history object, or as a non-blocking call to get using
a guard on the corresponding future. Class HISTORY adds definition of
methods for extracting the whole or parts of the history, again by means of
projection, see explanations in Figure 8.

As mentioned, a history object is generated when a contract object is
generated. We therefore use a special notation for contract creation, using
the syntax v := new contractclass & historyclass where contractclass gives
the class of the contract and historyclass gives the class of the associated
history object. We let the parameter ctr of the history object be bound to
the new contract object, and let ctr .history be bound to the new history
object. We require that the new contract respects (the contract part of) the
invariant specification of the history class, as explained in Section 6. The
historyclass must be given by means of a class adaptation, as in

v := new SAFEAUCTION & AUCTIONHIST
v := new AUCTION & AUCTIONPRIVATEHIST
v := new AUCTION & SECUREAUCTIONHIST
v := new AUCTION & AUCTIONWITHTRANSFER

(using the adaptations defined in Figures 10, 12, 15, and 17). Type checking
requires that the given contractclass should be the same as the one used in
the adaptation, and that the type of v should be the same (or larger) as the
one used in the adaptation. The type of ctr .history is the smallest interface
of the new history object. We assume that an adaptation has a smallest
interface. (An adaptation may still implement several interfaces, say both
SafeHistory and AssetHistory, by introducing an interface extending both.)

Discussion
We observe that the transaction history of an active object, as given by

its history object, is sufficient to define the state of the object at the end of a
method execution. The state of an active object at its last method completion
can be reconstructed from the transaction history, and also the pre-state
and post-state of a method with a given future identity. In particular, we
may determine the pre-state of a method execution resulting in error. Note
that suspension in the middle of a method would require more events to be
recorded in the trans variables.

30

Theorem 1 (state recovery). Given the transaction history (trans) of a con-
tract, the pre- and post-state of a method execution with future identity u can
be derived from trans, provided there is a completion with identity u in trans.

Proof. From the operational semantics of our language, it is clear that each
statement is locally deterministic with respect to the object state, apart from
get statements and the execution start of asynchronously called methods,
while local synchronous calls have a deterministic behavior. This means that
each method execution is deterministic relative to the prestate, the choice of
call message and its content, and the future values observed during the execu-
tion. We may assume that all observed future values of a completed method
execution are reflected in trans. An execution involving a contract object
can therefore be seen as a sequence of asynchronously called method execu-
tions where each method is executed sequentially without interruptions, apart
from local synchronous calls. As local synchronous calls are not reflected in
trans, the completions of this execution sequence is exactly reflected by trans
(projected to completions made be the contract object).

The corresponding execution start of such a method execution (with a
given call id u) is immediately after the previous completion event of the
contract object (and the input parameters are given by the call event in trans
with this u). Note that this place in trans is thereby determined, even though
it is not reflected by an event. Thus the sequence of method executions is
determined from trans, and the post-state of the method execution with
identity u is given at the completion state of method execution u, and the
pre-state of the method execution with identity u is given at the completion
state of the method execution previous to u in trans. As mentioned, the
value of a get statement is determined by trans, taking the value specified
in the corresponding get event. Such a get event must be present since the
completion event is in trans. The contract states are therefore calculated
from trans in a deterministic manner since each method execution start is
determined from trans. Thus we may recalculate the post- and pre-state of
each asynchronous method execution performed by the contract.

Furthermore, we observe that the history objects define the transaction
history in a faithful way due to the write-once/read-many language restric-
tion on the trans variable, enforced by the predefined classes, whose fields
and methods are “final” and may not be extended by programmers. This
gives a protection at the software level somewhat similar to smart contract-
s/blockchain. If the runtime system also offers protection of unauthorized

31

write access to these variables by means of write-once/read-many storage or
a trusted execution environment, one does not need blockchain technology to
guarantee write-once/multiple-read access. If not, one may use blockchains.

6. Contract Specifications and Safety

Our specification language gives rise to executable invariants. This may
be exploited in dynamic checking to ensure that there is no contract violation.
This gives an extra level of safety and trust between the contract object
and its users. This is of course valuable if the contract class has not been
formally verified against the contract specification, and even if the contract
has been successfully verified, a user may not know if the code was changed
after verification time, for instance by means of dynamic class upgrades [30],
allowing a class to be replaced by a new version of the class, which means that
the class in question (not a history class) is replaced at runtime, updating
both existing and future objects of the class.

As explained in Section 4.1, an interface does not have state variables so
there is no obvious way to express interface invariants. As mentioned, we
therefore use the local transaction history h to express interface invariants,
together with types and functions defined over the history. However, the
notion of local transactions depends on the particular interface, reflecting
what is visible through the interface. In particular, only events related to
methods exported through the interface I are visible in I. Thus the set of
visible events of a subinterface of I will be larger if additional methods are
defined. Similarly, the set of visible events of a class are in general larger
than those of an interface of the class, since the class may contain methods
not exported through the interface.

We have so far looked at specifications of interfaces and classes defining
history objects and contracts. Specifications of history objects represent
subsystem specifications for all parties interacting with a given contract,
whereas a specification of a contract or contract user restricts the behavior
of that object, and is expressed by restrictions on the local history h of the
visible events of that object. The visible events of an object o are the comp
events made by that object, the call events made by that object, and the
get events observed by that object. We let trans/o denote the sub-sequence
of trans to the visible events of o. In an interface we limit ourselves to
the method exported through that interface, and in a class we consider all
methods called asynchronously. We let trans/I denote the sub-sequence of

32

trans to the events of I. This means that an interface I of a contract user or
contract o satisfies the specification R(trans) of the associated history object,
if R(trans/o/I). Moreover the local history h of a contract user or contract
o in an interface I is given by

h = trans/o/I

For the auction example, the history object invariant may give restric-
tions on Bidder objects, for instance saying that each bidder makes strictly
increasing values of bids, as well as on the Auction contract, for instance
controlling the “youwon” messages. The first restriction may be verified for
bidders, but not for the contract, and the second restriction may be verified
for the contract, but not for the bidders (since projection reduces it to true).

6.1. Implementation of SafeHistory
An implementation of history objects with built-in safety check is shown

in Figure 9, by defining a new version of class HISTORY implementing
SafeHistory of Figure 3. Class SAFEHISTORY checks the contract invari-
ant safe(trans/ctr/I) for each new transaction being recorded, by redefining
the put method so that it checks all output from the contract as well as
input to the contract against the contract specification. The initial return
void statement ensures that the caller may continue without unnecessary
delay while the rest of the put method is finishing. For a transaction t vi-
olating the safety requirement, we let the “erroneous” transaction, error(t)
be stored in the transaction history, where error : Trans → Trans is a con-
structor function allowing us to mark transactions as unsafe, and we add
profile error : Comp[I]→ Comp[I] etc. so that projection still works. This
means that all future values resulting from unsafe method completions will be
marked as erroneous. It entails that contract users will observe that output
from the contract is not safe when they use the get operation.

In order to handle safety violations caused by contract users, we let the
Contract interface provide a method reportviolation that can be used to in-
form a contract about problems with a contract user, namely that the user
does not respect the contract specification. This means that if certain user
requirements are not checked by the contract itself, it is detected in the his-
tory object and the contract is notified. The added safety check is made
by redefining the put method. Since the put method is not available to the
programmer, we require that such redefinitions of put are done at a properly
authorized level before added to the library of classes for history objects.

33

class SAFEHISTORY[I,C] // inherits the class parameter ctr
implements SafeHistory[I]
extends HISTORY[I,C] {
Void put(Trans t) { // redefined to check contract violations
return void; // early return to avoid waiting on the caller side
if safe((trans++t)/ctr/I) then trans:++ t // all fine
else ctr!reportviolation(t.caller);// notifying the contract asynchronously

trans:++ error(t) fi} // marking the event as unsafe
}

Figure 9: A history class implementation with safety check

A note on efficiency. The use of functions defined over the transaction his-
tory may seem inefficient, especially when the history grows in size. However,
there are ways to make this more efficient. A history function g inductively
defined by equations of the form g(empty) = init and g(h; t) = rhs(g(h), t),
can be implemented by a variable g, initialized to init and updated by
g := rhs(g, t). When all history functions are treated this way, one avoids
walking down the entire history whenever the invariant is checked.

A note on detection of violations. We have seen that an unsafe completion
event is detected before it is stored in the history object, and the stored
value is then marked as erroneous. This means that objects receiving the
value (using get) will be aware of the contract violation. For call events
this is not the case. An unsafe call event is detected after the call has been
made, and even though the contract is notified, it may be too late. To make
an improvement here, one could let the history object behave as a wrapper
around the contract, letting all transactions between a contract and its users,
pass through the wrapper and be checked before coming through, using the
general wrapper concept of [37]. The disadvantage of this is that nontrivial
checks will slow down the overall performance. If a history object invariant
restricts the completion events, which is the natural place to make require-
ments, our approach with separate history objects working independently
seems to be an appropriate solution.

6.2. Specification of the Auction Example
We reconsider the auction example, using the interface ActionHist and

class SAFEAUCTION given in Figure 10. Note that the functions defined

34

interface AuctionHist extends SafeHistory[Auction]{
type Trans = Transaction[Auction] // abbreviated data type definition
// type Hist = List[Trans]; inherited
// Functions defined (inductively) over the transaction history
func bid: Hist → Nat // calculates the highest bid from trans
func bidder: Hist → Bidder // calculates the highest bidder
func safe: Hist → Bool // ensures that the winner is the real winner
var Hist q, Nat n, Bidder b
bid(nil) = 0
bid(q; comp(_,_, ctr,makeBid(n), true)) = max(n,bid(q))
bid(q; comp(_,_, ctr, close(), true)) = 0 // auction closed, high bid reset
bid(q; others) = bid(q)

bidder(nil) = null
bidder(q; comp(_, b, ctr,makeBid(n), true)) =

if n>bid(q) then b else bidder(q)
// auction closed, highbidder reset:
bidder(q; comp(_,_, ctr, close(), true)) = null
bidder(q; others) = bidder(q)

safe(nil) = true
safe(q; call(_,ctr,b, youwon(n))) = (b=bidder(q)) and (n=bid(q))
safe(q; others) = true
invar safe(h) // Finally, the contract specification

}

class SAFEAUCTION extends AUCTION {// the contract implementation
// Note that h = trans here since trans = trans/this/SAFEAUCTION
invar safe@AuctionHist(h) and highBid=bid(h) and highBidder=bidder(h)

}

class AUCTIONHIST(Auction a) implements AuctionHist
adapts SAFEHISTORY[Auction, SAFEAUCTION] {

}
Figure 10: The Safe Auction class and the related history object interface and class

35

in an interface are available in any class supporting the interface, and may
occur in executable code. The local history h of AuctionHist is given by
trans/AuctionHist, which simply is trans in this case since there all methods
of the class implementation are visible through AuctionHist.

The contract specification expressing the main property of the Auction
says that safe(h) holds, as well as o = bidder(h) and n = bid(h) when
o!youwon(n) is called (for some o). This ensures that the youwon call is
sent to the right actor, i.e., the one winning the auction according to the
transaction history, and that the winning amount is the correct highest bid
according to the history. Note that both bid and bidder are calculated from
successful makeBid transactions, i.e., with return value true. As shown
in Section 7, this property can be verified for the class implementation of
AuctionHist given in Figure 10.

7. Verification

In this section, we discuss how to verify contract specifications by a Hoare-
style logic for partial correctness (i.e., assuming termination of statements).
We show how to verify a class invariant in a class-wise manner and demon-
strate the verification technique on the auction example. The invariant R
of a class C may talk about fields, class parameters, and its local history h.
We need not consider events reflecting start of execution of a method in the
class since these can be derived from the history. The reasoning system here
is simpler than in [15, 35, 36], since we may consider a smaller event set for
method interaction due to our notion of initial guards. With the presence of
futures, we have a more expressive language than in [14]. Reasoning about
an object o taking part in a smart contract can only verify the role of that
object. The local history of o of class C reflecting this role is the transaction
history of the associated history object restricted to the events generated by
o, i.e.,

h = trans/o/C

To verify the whole contract, as stated in the history object, we need in
general to combine the invariants of the objects taking part in the contract,
using a rule for composition. The objects engaging in a contract can be seen
as a subsystem of concurrent objects, and we may use the composition rule
of [35, 36]. Adapted to our case, the composition rule generates an invariant
Inv(trans) of the history object (where trans is the history of all events seen

36

by the history object) by forming the conjunction of all the local invariants
R h, this

trans/o/C, o of each object o in the subsystem together with a wellformedness
predicate stating that each call transaction has a unique future identity, and
that a call comes before the corresponding completion transaction (the one
with the same future identity), and that a result read (in a get event) is the
same as the generated result (in the preceding completion event with the
same future identity). The notation Rv

e denotes the substitution of (free)
occurrences of v in R by e, and Rv

e simultaneous substitutions. The replace-
ment of this by o is needed to formalize the fact that what is called this in
the class invariant is the object o in the contract.

To verify that R is an invariant of a given class C, we must prove that the
invariant is satisfied initially, i.e., thatR holds for an empty history and initial
field values, and that each method of the class maintains R. The verification
of a method inside a class is done by sequential Hoare-style reasoning. The
Hoare triple [P] s [Q] expresses that if the predicate P holds in the pre-state
of s then the predicate Q holds in the post-state, provided s terminates
normally. If Q implies P , then Q is said to be an invariant of s.

To prove the invariance of R for a method m with parameters x and
method body when guard; s; return e, we need to verify:

[R ∧ guard] s [R]

This triple can be verified locally in the class by ordinary sequential Hoare
logic. In particular, the Hoare axiom for assignment is given by:

[Qv
e] v := e [Q]

This axiom holds since there is no remote field access (and therefore no
semantical aliasing problems) and since expressions are pure. Several other
statements may be reduced to assignments: The special syntax h : ++ t is
semantically the same as the assignment h := (h; t). The return statement
return e is semantically equivalent to the assignment

h : ++ comp(fid, caller, this,m(x), e)

As mentioned, we assume that there is exactly one return statement in each
branch of a method body, and for simplicity we assume that method param-
eters are read-only.

Furthermore, an asynchronous call o!m(e) is treated as the two assign-
ments f := new Fut; h : ++ call(f, this, o,m(e)) where the first assignment

37

represents a non-deterministic assignment to f resulting in a fresh future
identity (like an object creation statement). The Hoare rule for this assign-
ment is [∀f . f 6∈ h⇒ Q] f := new Fut [Q] where the universal quantifier
corresponds to non-determinism, and the condition ensures freshness of f ,
i.e., that f has not already occurred in a transaction in h. Thus, we derive
the following rule for asynchronous calls:

[∀f . f 6∈ h⇒ Qh
(h;call(f,this,o,m(e)))] o!m(e) [Q]

The rule for the get statement is given by:

[∀v .Q h
h;get(f,this,v)] v := get f [Q]

where the universal quantifier on v′ corresponds to a non-deterministic as-
signment to v, which reflects that the read value is locally unknown. In
the compositional rule, this value is resolved through wellformedness of the
contract history (using the corresponding completion event and the well-
formedness predicate).

Combining these two rules, we obtain a similar rule for non-local asyn-
chronous blocking call (o 6= this):

[∀f, v′.f 6∈h ∧ o 6= this⇒ Q v, h
v′,(h;call(f,this,o,m(e));comp(f,this,o,m(e),v′))]v := o.m(e) [Q]

since v := o.m(e) is semantically the same as the statement sequence f :=
new Fut; h : ++ call(f, this, o,m(e)); v := get f when the call is non-
local. The prime on v′ is needed in case v occurs in e (which is the old v
and should not be quantified). (Local calls can be treated as in standard
sequential reasoning.)

In the setting of partial correctness, [P]s [Q] assumes normal termination
of s (and no errors). Thus it does not ensure error-free execution. However,
reasoning about errors is needed in the presence of error handlers, because a
handler may turn an error into a normal value and then the assumption of
normal termination is satisfied. Reasoning about error handlers can be done
as indicated below for handlers on assignments and calls.

One may treat an assignment with a handler, v := e < s >, as the
assignment v := e if e does not result in an error, otherwise s. To distinguish
the two cases, one may use a predicate WD expressing welldefinedness, letting
WD(e) be true if the evaluation of e results in a normal value and false if it
results in an error. (This could be expressed as (e = e)#false extending the

38

error handling to the functional level, using the syntax e#e′.) For instance,
WD(last(q)) is (q 6= nil), which can be obtained from the definition of last
in Figure 5. The rule is then:

[P] s [Q]
[if WD(e) then Q v

e else P] v := e < s > [Q]

Reasoning about an asynchronous blocking call with a handler, v :=
o.m(e) < s > , can be done by the rule:

[P] s [Q]
[∀f, v′ . f 6∈ h ∧ o 6= this⇒ Q′ ∨ P ′] v := o.m(e) < s > [Q]

where Q′ is Q with the substitutions given in the rule for asynchronous block-
ing call, and P ′ is P h

h; call(f,this,o,m(e)); comp(f,this,o,m(e),error). The two extensions
of the history in the precondition are disjoint since quantified variables range
over defined values. A key point here is that the handler can be connected
to a particular transaction in the history.

One could consider other forms of error handlers (for instance at the end of
a method body) in a similar manner, and reasoning about raising exceptions
can be done as usual. We do not discuss reasoning about roll-backs, which
can be non-trivial, especially if it is not clear at verification time how far the
roll-back should go.

7.1. Verification of the Auction Example
Verification of the Class Invariant

We show how to verify that the implementation of the auction system
given in Figure 10 (by class SAFEAUCTION) satisfies its invariant. For our
example, it suffices to consider completion events since only these are used
in the contract specification in AuctionHist.

We prove that class SAFEAUCTION satisfies its invariant R, namely:

safe(h) ∧ highBid = bid(h) ∧ highBidder = bidder(h)

where safe is defined in interface AuctionHist. The invariant must hold
initially and be maintained by each method (except non-visible methods
called synchronously). Initially the history is empty, highBid is 0, and
highBidder is null (the initial value of object references). Thus we need
to prove safe(nil) ∧ 0 = bidder(nil) ∧ null = bidder(nil), which is trivial.

39

Method highest() does not change any fields, and the completion of
highest has no effect on the invariant, so verification is also trivial (since
R implies R).

For method open we need to verify:

[R ∧ not isopen] owner := caller; isopen := true [R h
h;t]

where t is comp(fid, caller, this, open(), void). This gives the following verifi-
cation condition:

R ∧ not isopen⇒ R h,owner,isopen
(h;t),caller,true

with t as above. It is straightforward.
For method makeBid we need to verify the following two triples:

[R ∧ not(open ∧ x > highBid)] bidders : ++ caller [R h
h;t]

where t is comp(fid, caller, this,makeBid(x), false), and:

[R ∧ open ∧ x>highBid] highBid := x;h : ++ t′;highBidder := caller [R h
h;t]

where t is comp(fid, caller, this,makeBid(x), true), and replacing the asyn-
chronous call by h:++ t’ where t’ is the call event reflecting the newBid call,
which does not influence the invariant. We here ignore the assignment
bidders:++caller since the variable bidders does not occur in the invariant. The
first triple is trivial since R h

h;t reduces to R in this case. The second verifi-
cation condition reduces to:

R ∧ open ∧ x>highBid⇒ R h,highBidder,highBid
(h;t′;t),caller,x

by sequential Hoare analysis. This gives the verification condition:

x = bid(h; t′; t) ∧ caller = bidder(h; t′; t)

under assumption of:

safe(h) ∧ highBid = bid(h) ∧ highBidder = bidder(h) ∧ open ∧ x>highBid

This reduces to true by the function definitions of bid, bidder, and safe.
Finally, we consider method close. Ignoring assignments and calls not

affecting the verification, the most challenging branch reduces to the triple:

40

[R ∧ caller=owner ∧ highBid>0]
highBidder!youwon(highBid); highBidder := null [R h

h;t]

which gives the verification condition:

R ∧ caller=owner ∧ highBid>0⇒ (∀f . f 6∈ h⇒ ∀f .R h, highBidder
(h;t′;t), null)

where t is the close completion comp(fid, caller, this, close(), true), and t′ is
call(f, this, highBidder, youwon(highBid)) reflecting the youwon call. This
verification condition follows from the definitions of the invariant and the
safe, bid, and bidder functions.

This completes the proof of invariance of the invariant.

Verification of the Contract Invariant
By the rule for composition we may conclude safe(trans), which ensures

the contract specification of the history object. The fact that the contract
class invariant alone ensures the contract specification reflects that the con-
tract specification does not entail any restrictions on the contract users. How-
ever, imagine that the auction history invariant did state that the current
owner may not make a bid, say:

safe(h; call(_, b, ctr,makeBid(n))) = (b 6= curowner(h))

with curowner defined similarly as the other history functions:
func curowner: Hist → Bidder
curowner(nil) = null
curowner(q; comp(_,b,_,open(),_)) = b
curowner(q; comp(_,b,_,close(),true)) = null
curowner(q; others) = curowner(q)

Then this requirement would have to be verified for Bidder objects, in order
to conclude that safe(trans) holds for the auction contract and its users.

8. Adding Privacy Aspects

A main privacy concern is the handling of information about a particu-
lar data subject, such as an identifiable natural person. At the abstraction
level of our modeling language, we may capture a data subject by an ob-
ject, more specifically, by an object supporting a predefined interface Subject

41

class PRIVATEHISTORY[I, C] implements PrivateHistory[I]
extends HISTORY[I,C] {
// redefines all methods by using restrict:
func restrict: Any ∗ Any −> Any
func restrict: Any ∗ Data −> Data
func restrict: Any ∗ Hist −> Hist
var Any o, Any o’, Data d, Transaction t // variables for function definitions
restrict(o, o’) = restrict(o, const) = const // for each constant constructor
restrict(o, c(.. ,d, ..)) = if trusted(o) then c(.. ,d, ..)

else c(.. ,restrict(o, d), ..) // for each constructor function c
// including call, comp, get for the Transaction type

// For the list type this means:
restrict(o, nil) = nil
restrict(o, h++t) = if trusted(o) then h++t

else restrict(o, h)++restrict(o, t)
// Redefinition of methods using restrict:
T get(Fut[T] f) { // to get a future value when resolved
when (trans/Comp/{.fid=f}) 6=nil;
Fut[T] fvalue = restrict(caller, last(trans/Comp/{.fid=f}).result);
return fvalue;
this.put(get(f,caller,fvalue)) } // record the get event

Trans lastTrans() {return restrict(caller, last(trans/Trans))}
Hist getTrans() {return restrict(caller, trans/Trans)}
FullHist getAllTrans() {return restrict(caller, trans)}
Hist transOf(Any o) {return restrict(caller, trans/{.caller=o}) }
...

}

Figure 11: Predefined implementation of privacy-restricted history objects

(Subject < Any). For instance, a contract party will typically be a data sub-
ject, but not the contracts themselves nor the history objects since they do
not reflect a natural entity. In general we may want to avoid the spreading of
information about data subjects, so-called personal data, except to the sub-
ject itself. Such spreading is manifested through parameters of method calls
or result values of completions and get events. One way of enabling privacy

42

interface DefaultPrivateHistory[I] extends PrivateHistory[I] {
var Any o
trusted(o) = false // no one is trusted
}

interface AuctionPrivateHistory extends PrivateHistory[Auction] {
var Any o
// bidders that have made successful bids are trusted:
trusted(o) = comp(_, o, ctr, makeBid(n), true) ∈ h
}

class DEFAULTPRIVATEHIST[I, C] implements DefaultPrivateHistory[I]
adapts PRIVATEHISTORY[I,C] { // trusted is now defined (by false)
}

class AUCTIONPRIVATEHIST implements AuctionPrivateHistory
adapts PRIVATEHISTORY[Auction, AUCTION] {
// trusted is as defined in AuctionPrivateHistory
}

Figure 12: Alternative definitions of trusted and examples of usage

control is to limit the information about subjects through these events.
As default, an object implementing an interface I is allowing output of in-

formation about itself in interaction with other subjects through the methods
of I, and when using an interface J the object is assumed to allow information
about itself submitted through calls to subjects of interface J . But we would
like to restrict the spreading of information about other subjects through
history objects.

In the auction example, interface Bidder is potentially spreading infor-
mation about a subject (the winner) through method winner . This problem
could be detected statically. (In the auction implementation this method is
used to inform the owner about the winner, something which is not really
needed and the method could be removed.) No other spreading of personal
data is possible with the Bidder and Auction interfaces. However, spreading
of personal data through the history objects is possible since anyone may
access (parts of) the transaction history.

43

In order to solve this problem, we define a subclass of HISTORY that
restricts the information in each transaction. It is not a good solution to
remove this information from the history objects since it is essential for se-
curity and safety checking. But, we can filter out personal information in
the information going from history objects to other objects. We allow the
sending of information about an object to itself since self access should be
supported, and we allow information about contract transactions to be sent
to trusted objects using the trusted function specified by the contract de-
signer. All other references to a subject S are replaced by a special symbol
representing hidden information, for this purpose we use the ∗ symbol (of
type Subject). Figure 11 shows how to implement this by means of a class
PRIVATEHISTORY implementing PrivateHistory. The implementation is
using a function restrict to filter away private information send to an ob-
ject o. For a history h, restrict(o, h) filters away all occurrences of subject
references other than o, unless o is trusted in which case nothing is filtered
away.

For strict privacy control, one may define trusted(o) = false, saying that
no parties can be trusted. This is shown in interface DefaultPrivateHistory
of Figure 12, and class DEFAULTPRIVATEHIST is used to instantiate his-
tory objects with this privacy policy. Note that the interface must extend
PrivateHistory in order to be able to talk about the trusted function, and the
class must extend PRIVATEHISTORY in order to connect the definition of
trusted to the restrict function. If this policy is used for an auction contract
a and the transaction history ends with:

call(f1, o1, a, makebid(10)); call(f2, o2, a, makebid(20));
comp(f2, o2, a, makebid(20), true); comp(f1, o1, a, makebid(10), false)

the restricted history when communicated to object o1 ends with:

call(f1, o1, a, makebid(10)); call(f2, ∗, a, makebid(20));
comp(f2, ∗, a, makebid(20), true); comp(f1, o1, a, makebid(10), false).

where ∗ indicates hiding of private information as explained.
For the auction example, we may give a more lenient privacy policy. If

we trust all actual bidders, we may instead specify that all successful bid-
ders are trusted. This is done in interface AuctionPrivateHistory of Fig-
ure 12, and the corresponding class to be used for this policy is given by
AUCTIONPRIVATEHIST . As an alternative, if we want to restrict trusted

44

bidders to successful bidders of the current auction session (started with a
successful open), we could define trusted(o) by:

comp(_, o, ctr ,makeBid(n), true) ∈ (h after comp(_,_, ctr , open(), true))

where h after s takes the part of h after the last event in the event set s.
In either case, the transaction example above gives hiding of information
relative to o1 as before, since o1 is not trusted; but if the four transactions
are sent to o2, there would be no hiding since o2 is trusted.

9. Adding Security Aspects

// Subclass with build-in security

class SECUREHIST[I,C] implements SecureHistory[I]
extends HISTORY[I,C]{

T get(Fut[T] f) {return if blacklisted(caller) then error
else get@HISTORY(f) fi }

// similar for the other retrieval methods ...
}

Figure 13: A predefined class for history objects using blacklisting to control security

interface DefaultSecureHistory[I] extends SecureHistory[I] {
var Any o
// parties that have produced erroneous return values are blacklisted:
blacklisted(h,o) = not WD(h/o/Comp)

}

class DEFAULTSECUREHIST[I, C] implements DefaultSecureHistory[I]
adapts SECUREHIST[I,C] {
// inherits definition of blacklisted from DefaultSecureHistory

}

Figure 14: A user-adapted definition of history objects using blacklisting to control security

45

interface SecureAuctionHistory extends SecureHistory[Auction] {
var Any o
// parties that have produced improper close calls are blacklisted:
blacklisted(h,o) = not (h/Comp(_,o,ctr,close(_),false) = nil)

}

class SECUREAUCTIONHIST implements SecureAuctionHistory
adapts SECUREHIST[Auction, AUCTION] {
// inherits definition of blacklisted from SecureAuctionHistory

}

Figure 15: Adapted auction history objects with improved security

A security addition can be defined by implementing class SecureHistory
of Figure 3 and providing a definition of blacklisted reflecting contract par-
ties that have violated some property. We show a class implementation
in Figure 13 where blacklisted objects are not obtaining any information
from the history object. The get method (and similarly the other meth-
ods) is redefined such that blacklisted callers cannot get any information.
Figure 14 includes a general definition of the blacklisted function given by
interface DefaultSecureHist. Here contract parties that have caused errors
are blacklisted, since attackers often do not behave properly, using the WD
function to check for errors. The interface and class defined in Figure 14 can
be user-defined. As an alternative, one could reuse the concept of trusted
and define:

blacklisted(h, o) = not trusted(o) or not WD(h/o/Comp)

The definition of who is blacklisted can be further redefined to accommodate
more sophisticated checking.

Similarly, we can handle security by restricting access to information in
the smart contracts for specific parties. We show a specialization for the Auc-
tion example, where an interface SecureAuctionHistory specifies that objects
doing improper close calls are blacklisted. Class SECUREAUCTIONHIST
instantiates class SECUREHIST for this specification of blacklisted.

Blacklisting could also be connected to failure of transfer of assets, which
is considered next. One could then look at the erroneous completion of
transfer calls and blacklist objects that caused such calls.

46

10. Adding Transfer of Assets

A smart contract is often combined with the aspect of transfer of assets.
Transfer of assets can be associated with each transaction. The cost of a
transaction depends on the kind and parameters of the transaction, and
possibly the local history h. Our framework provides a cost function to be
specified by contract designers, which may capture contract dependent costs
of selling or buying services. This function should be defined in subinterfaces
of AssetHistory, specifying who carries the cost, who benefits from the cost,
as well as the number of “cost units”, given by a natural number. We use
the type Transfer to capture such costs:

type Transfer = none : | (Any ∗ Any ∗Nat)
func cost : Transition → Transfer

A non-empty transfer is given by a triple of form (from, to, amount) where
from defines the paying party, to defines the beneficiary, and amount de-
fines the amount transferred, and none denotes the empty transfer. The
cost function is simply a function from a given transaction to such a triple.
An asynchronous method call to a contract c from some party p may have
the default cost (p, c, 1) saying that each transaction has a small cost for
the caller. This is helpful in avoiding distributed denial of service (DDoS)
attacks since an attack on the contract by a larger number of calls would im-
pose non-trivial costs, which makes such attacks harder, at least for attackers
making these calls. Furthermore, there may be a cost associated with certain
transactions. In general, there may be a cost for callers of contract methods,
while the contract object may define cost for others depending on the partic-
ular method and the history. Static checking may be used to detect DDoS
where an attacker directly or indirectly causes call flooding on a victim; and
the approach of [17] can easily be adjusted to detect flooding with high cost.
The implementation of the auction contract is robust against such attacks.

The handling of assets will be an attractive target for an attacker, either
to obtain funds for himself or to harm others. It is essential to protect against
such possibilities. A more restrictive cost handling could be to insist that
an object may not impose a cost on someone else, i.e., for a call with a cost,
the payer must be the caller. One could also consider restricting the payee
to be the callee. This could easily be captured by an alternative history
interface and predefined class implementation. In this case the cost could

47

simply be captured as a function from transactions (and the history) to nat-
ural numbers, using caller and callee as payer and payee. Note that this more
restricted version of transfers would make the auction cost specifications in
Figure 17 impossible since a youwon call imposes a cost on the callee. Instead
we could add prepayments by defining a cost on a (successful) makeBid(n)
call to the contract (the cost could be n minus earlier prepayments of the
caller in the current session), and let the contract pay the winner upon suc-
cessful close completions and return the prepayments made by all bidders
except the highest bidder. This can conveniently be formulated by functions
over the history.

Figure 16 shows an interface extending AssetHistory with functionality
for obtaining the accumulated balance of any contract party using functions
over histories to calculate this balance. This shows that the balance of each
partner with respect to the contract interactions is defined by the history
object, and one may therefore use the history object as a digital bank.

We may let the smart contract store the assets, or use a more traditional
bank service. In order to make the actual transfer in the latter case, we may
then let the contract object use a bank service, here given as a contract object
(the bank parameter), sending transfer calls as according to the cost function.
These transfer calls are made by the contract object according to the prede-
fined class implementation of AssetHistory, by redefining the put method, as
done in Figure 16. We indicate how transfer failures are detected, but not
how to deal with such failures, which possibly may involve roll-backs. De-
tails of the bank interface is not given, as this would go beyond the purposes
of this paper. Note that the handling of transfers is performed automati-
cally by the history objects according to the predefined implementation of
AssetHistory.

Figure 17 shows an extension of the auction example with costs. Here
all calls to the contract has a small cost (1 unit) to limit DDoS attacks.
Furthermore, there is a cost when a new auction is successfully opened since
this reflects an essential service of the auction. Finally, the winner of an
auction is required to pay the agreed amount to the owner of the auction.
This is reflected in the youwon method, and the auction contract imposes a
cost on the callee (the winner) using the history to identify the beneficiary
(the owner). Other methods called by the contract have no cost (i.e., none).

As mentioned in Section 4, programmers are not allowed to modify the
methods of the predefined classes implementing history objects, and may
therefore not redefine the put method to their benefits. There should be

48

interface AccAssetHistory[I] extends AssetHistory[I] {
func costfor: Transfer ∗ Any −> Int
costfor(none, b) = 0 // defining the cost of a transfer for a given object
costfor((x,y,n), b) = if x=y then 0 else

if x=b then −n else if y=b then n else 0
func balance : Trans ∗ Any → Int // the accumulated balance of a party
balance(nil, b) = 0 // defining the balance of an object b
balance((h;t), b) = balance(h,b) + costfor(t,b)

}

class ASSETHISTORY [I, C] (Bank bank)
implements AccAssetHistory[I]
extends HISTORY[I,C] {

Void put(Trans t) { // redefined to check contract violations
trans:++ t;
bank.transfer(cost(t)) < deal with transfer failure >

}

Int myBalance() {return balance(h,caller)} // the assets of caller
Int contractBalance() {return balance(h,ctx)} // the contract’s assets %Q10

}

Figure 16: A general implementation of AssetHistory by a predefined interface and class

a library of predefined classes covering all combinations of history objects
with/without safety control, security control, privacy control, and cost con-
trol. These sixteen classes are easily derived from those shown. Our frame-
work allows contract designers to specify cost, but not to implement the
handling of cost, since that is given by the predefined classes.

11. Evaluation

11.1. Difference between our Language and Solidity
In general, our language is more high-level and abstract than Solidity [44].

Our language is oriented towards a compositional semantics and class-wise
reasoning. In contrast to our approach, Solidity does not support reasoning

49

interface AuctionWithTransfer extends AccAssetHistory[Auction]{
// inherited: ctr is the current contract, b a bidder, and n a natural number
cost(call(f,b,ctr,_)) = (b,ctr,1) // all calls to ctr have a small cost
cost(comp(f,b,ctr,open(),true)) = (b,ctr,1) // true indicates successful open
cost(call(f,ctr,b, youwon(n))) = (b,owner(h),n) // the winner must pay owner
cost(others) = none // the other contract calls have no cost
}

class AUCTIONWITHTRANSFER implements AuctionWithTransfer
adapts ASSETHISTORY[Auction, AUCTION] { // cost function is defined
}

Figure 17: User-defined specification of auction costs and a class adaptation

about contract specifications by a logic or verification system. Thus the
focus of the languages is different, nevertheless we may try to compare the
expressiveness.

The communication mechanisms are similar, but are following more closely
the object-oriented style in our case. We allow one-way and two-way message
passing, as well as multi-, broadcasting and first-class futures. The Solidity
notion of msg.sender corresponds to caller in our language.

Every contract in Solidity can include declarations of State Variables that
contain persistent data, similar to class fields in our language, Functions
that can modify variables, like methods in our language, Function Modifiers,
typically through require statements, comparable to guards in our language,
Events, similar to transactions in our setting, Struct Types (record type) and
Enum Types, which can be seen as special cases or implementations of user-
defined data types in our language. Besides, contracts support encapsulation
(visibility attributes) and may inherit from other contracts – in our setting
this follows from our notion of interface abstraction and inheritance.

Through fallback functions, custom handling of messages that do not
specify a concrete function to call is supported in Solidity. Values are re-
turned from functions by means of return statements/variables. In our set-
ting, there are no fallback functions since all call messages will be understood
due to static typing as explained below. A typical queue order in our lan-
guage is defined by taking the oldest enabled call first (priority calls could
be added). The use of guards allows calls to be delayed and thereby control

50

the scheduling of calls from within the programming language.
Strong typing. Like Solidity, our language supports strong typing of

variables and expressions. Calls are strongly typed, and for a call o.m(e) it is
checked that the type of o is an interface that supports a method m such that
the actual parameters respect the parameter types of that method, and one
can guarantee that the caller o cannot be null by static over-approximation.
Due to the cointerface mechanism, the caller has a type, and thus even call-
backs of form caller.m(e) can be strongly typed [31], in contrast to Solidity.
The primitives call and delegated in Solidity give rise to untyped calls.

Visibility of attributes. Solidity uses a number of primitives, including
private, public, internal, and external to declare visibility of methods/func-
tions from the outside, whereas our language is based on interface abstrac-
tions, i.e., we use interfaces to define visible parts of a class. Only methods
declared in an interface are visible. It is statically checked that a class defines
(either explicitly or implicitly through inheritance) each method declared in
an interface implemented by the class. Thus “method not understood” errors
are not possible, as explained above, which explains why fallback functions
are not needed in our setting.

Reentrance. Reentrancy happens when an object is interrupted during
execution, and can be called again before its previous invocations complete
execution. Reentrance is a well-known source of undesired behavior in Solid-
ity programs. Reentrance is also possible in our setting, but only in invariant
states and when the guard is satisfied. The guard makes it possible to delay
calls that would break the invariant, and thereby ensure desired ordering
restrictions on the transactions. This mechanism is valuable in avoiding un-
desired behavior.

Inheritance. Multiple inheritance and polymorphism are supported in
Solidity. This is controlled by means of the keywords virtual and override.
Using the syntax ContractName.functionName(), and super.functionName(),
one can call functions higher up in the hierarchy, and one level up in the
flattened inheritance hierarchy, respectively. Our language supports multiple
inheritance as well and has a similar way of selecting methods from particular
superclasses. For simplicity, we do not discuss overloading here, but in our
setting of strong typing, overloading with respect to both method parameters
and method result could be done as in [30].

Function modifiers. By using modifiers in Solidity, the behavior of
functions can be modified in a declarative way. In particular, a require state-
ment can check a condition prior to executing the function, possibly causing

51

abnormal termination and roll-back of the state. The require statement can
be compared to our notion of guards, which are also checked at the start
of a method execution, but do not cause abnormal termination, instead,
they may cause the execution of the current method to be delayed until the
guard is satisfied. For instance, if the guard is a future check f?, this gives
a non-blocking way of waiting for a future value. Reasoning about guards
is straight forward, as discussed in section 7, whereas reasoning about roll-
backs is non-trivial since it depends on dynamic information about which
calls have been made. Our setting still supports runtime roll-backs since the
state of a contract at the point of a specific call in the past can be calculated
from the transaction history in the history object. Invariant reasoning about
modifiers can also be challenging, since it is not sufficient that the modified
function maintains the invariant.

Flexibility is provided by class adaptations in our framework. A prede-
fined class can be adapted by means of contract dependent specifications.

Assets. Our approach includes a brief discussion on the treatment of
transfer of assets. We let the aspect of assets and transfer be defined by
the history objects by predefined and protected subclasses, whereas the cost
aspects are specified by contract designers in appropriate interfaces. This
gives trust at the software level since no programmer can redefine the code
of the history objects dealing with transfer.

Predefined data types. Solidity has a large number of predefined nu-
meric types. We have a small number of predefined types and can mimic
other types by inductive data type definitions. Struct definitions are com-
posed of a list of pairs of type names and field names. These can be defined
in our setting by data type definitions using product and disjoint union.

Expressions. Function calls in Solidity can be of several types: internal,
external, delegate, and calls to certain built-in functions. Internal function
calls are simply jumps in the code of the current account. External calls
cause a message to be sent over the Ethereum network, executing code on
another account. Delegate calls exist to provide a functionality akin to shared
libraries, by allowing code from another account to directly operate on the
storage of the calling account. The semantics of external and delegate calls
are notorious sources of bugs in contracts [4], notably the DAO [12] and
Parity multi-sig contract [38] incidents. Our language supports a modular
semantics, and the mentioned bugs do not apply. As mentioned, we may add
a reasoning-friendly delegation mechanism [35].

Error types in Solidity. A strong detection of syntax errors is advan-

52

tageous since that reduces the amount of runtime errors. Runtime errors
appear after the smart contract is deployed to the Ethereum blockchain and
the Solidity code has been compiled to a bytecode that can be understood by
the Ethereum virtual machine. A runtime error happens when EVM detects
something wrong with the smart contract or is making transactions against
the logic of the code. All the state changes that are caused by a transaction
resulting in error are canceled, and the transaction is reverted, and depend-
ing on the kind of error, all the gas of the transaction is consumed or some
of it is refunded. Common runtime errors are: out-of-gas error, revert error,
invalid opcode error, invalid jump error, stack overflow, and stack under-
flow. An out-of-gas error happens when there is insufficient gas to complete
a transaction. If we try to execute a transaction that is not according to the
logic of the smart contract, then EVM returns an error called revert error
and the transaction will be reverted. Invalid opcode happens when we try
to execute a code that does not exist. Invalid jumps occur when we try to
execute a function that does not exist, for instance, if we try to call a func-
tion in another smart contract at an address that does not exist. It can also
happen if we use assembly in Solidity and point to a wrong location in the
code. Stack overflow happens when there are too many recursive calls. In
Solidity, the stack can be at most 1024 frames deep, which means a function
can only call itself 1024 times. This is a kind of error that is not specific to
Solidity and may also happen in many other programming languages. Stack
underflow happens when we try to read an item on an empty stack.

The mentioned runtime errors do not occur for our language, but errors
may result from execution of partial functions and methods raising errors.
This is due to a stronger type system and a simpler and more abstract se-
mantics. For instance, the runtime stack is considered unbounded. However,
there may be calls made to object expressions that are null, which again
may result in non-terminating get statements. This issue can be avoided by
static type checking, over-approximating the type of non-null variables and
requiring that any callee and actual object parameters are of non-null types.
Object generation, this, and caller can be assumed to be of non-null types.

Finally we have logic errors. A logic error reflects a problem in the logic
of the smart contract, and differs from a runtime error in that it is not easily
detected. Logic errors happen when the developer has made a mistake, or
there are open loopholes in a smart contract that can be exploited by attack-
ers. Basically, this kind of error makes a smart contract either dangerous or
makes it produce false result. These kinds of bugs are the most serious and

53

also the hardest to fix because there are no tools that can automatically run
through the smart contract and detect logic errors.

Formal verification can be useful in the analysis of logic errors in smart
contracts. An example of a logic error is the famous 2016 reentrancy attack
of the Distributed Autonomous Organizations (DAO) smart contract, where
a code that connects a set of smart contracts together and functions as a
governance mechanism, was a result of a logic error. A reentrancy attack
can happen when we make an external call to another untrusted contract
before it resolves an error. If the untrusted contract is malicious, it can take
over the control flow of the original smart contract’s code; for instance it
may repeatedly withdraw Ether from the smart contract. In contrast, our
approach has a modular semantics, which makes it harder to attack a con-
tract provider, and it gives support of behavioral specification by means of
contract invariants that can be checked at runtime. Furthermore, our ap-
proach supports class-wise verification method, which can guarantee absence
of certain logical errors at the cost of interactive theorem proving.

11.2. Difference between our Framework and Blockchain
Blockchains have the advantage of being transparent, immutable, and

corruption-free. Our history objects offer similar advantages at the program-
ming language level:

• There is read access to the history objects, possibly limited by privacy
restrictions, and only by predefined methods.

• The history objects are immutable from the programmer’s perspective
and only incremental updates are allowed at the operating system level.

• We support runtime checking of specified safety properties.

• The combination of predefined classes for history objects and contract-
dependent adaptations allows flexible adjustments in a safe manner.

• The history object interface specifications guarantee corruption-freedom,
since the functional specifications cannot be overwritten or modified.

These advantages are obtained without use of blockchains. But as mentioned,
blockchain implementations may be used when underlying middleware or
hardware is not reliable, or when the application is financially critical.

54

The consensus mechanism provided by blockchain is handled differently in
our setting. For each contract, the history object is immutable and defines the
transactions in an objective manner, outside the contract provider control.
Our framework gives language-based support of security, privacy, and safety:

• Security measures such as a blacklist can be added by specifying how
to blacklist objects (and similar for whitelisting).

• Privacy can be added by restricting the access to information in the
transaction history, defining the trusted function for the contract.

• Contract specifications of what is safe can be specified for history ob-
jects and checked at runtime by these history objects.

This support of security, privacy, and safety is built into the history objects
and is therefore useful in a setting where the contract objects and/or its
users could be malicious. More advanced security/privacy mechanisms can
be introduced by added interfaces and classes.

12. Related Work

In general there are two approaches for verifying smart contracts: dy-
namic analysis/runtime verification and static analysis/compile-time tech-
nique. Runtime verification deals with various techniques for checking whether
a running system satisfies or violates certain correctness properties, including
those in [16, 20, 25, 42, 46, 19]. Compile-time techniques analyze programs
before runtime, either by a fully automatic technique (such as a type and
effect system) or by a semi-automatic technique (such as an interactive ver-
ification system). In general, compile-time techniques have the advantage of
providing guarantees of program properties before runtime. The disadvan-
tage is that fully automatic techniques often involve over-approximation, and
formal verification may require non-trivial human assistance. On the other
hand, runtime verification has the advantage of more precise analysis, but in
general introduces additional runtime overhead. In smart contract platforms
like Ethereum, these overheads not only cost time, but also money since
they cause additional gas consumption, therefore the cost of smart contract
execution increases. As mentioned, our approach with runtime checking of
contract invariants by the separate history objects, will not slow down the
contract providers (unless they run on the same platform).

55

A static analysis is said to be syntactic if it is only concerned with the
grammatical structure of a program, and semantic if it involves the meaning
of grammatically correct programs. Thus semantic analysis is, in general,
more powerful in recognizing potential problems in a program. There are
many syntactic analysis tools for smart contracts as well as smart contracts
written in Solidity (e.g., Solcheck 3, Solhint 4, Solint 5, Solium 6). Different
approaches have been presented that try to identify and fix different types
of security vulnerabilities and design patterns [34] in Ethereum smart con-
tracts using semantic analysis techniques. These are summarized below and
a comparison to our work is given afterwards.

Luu et al. [33] provided a symbolic execution static analysis tool called
OYENTE that analyses Ethereum smart contracts in order to detect bugs.
Their tool works directly with EVM bytecode without access to the high-level
representation (like Solidity). Also, in [18], a heuristic indicator of control
flow immutability has been defined by Fröwis and Böhme for the sake of
qualifying loophole risks resulting from modified control flow. They applied
this to a number of smart contracts on Ethereum, and found that two out of
five smart contracts are not trustworthy.

Mavridou and Laszka [34] introduced a formal semantic model called
FSolidM for creating secure smart contracts, that is based on Finite State
Machines (FSM). They provided a graphical editor to help simplifying the
design of smart contracts in FSolidM. They translate FSMs into Solidity
code to support Ethereum smart contracts. They also provided extensions
and design patterns to improve the security and functionality of contracts.
These extensions and patterns are implemented as plugins that developers
can add to a contract automatically.

Many of these semantic approaches are at the bytecode level; therefore
they allow verification of compiled contracts. Grishchenko et al. [21], for
instance, developed a translation from Solidity to the functional language F*,
for which verification tools exist. They have also presented a formalization
of a small-step semantics for EVM bytecode in F*. Thus they can compare
the F* code resulting directly from Solidity with that resulting via EVM.

Hirai [24] defined a formalization of EVM and used it to prove safety

3 See https://github.com/federicobond/solcheck
4 See https://github.com/protofire/solhint
5 See https://github.com/SilentCicero/solint
6 See https://github.com/duaraghav8/Ethlint

56

properties of some smart contracts in the interactive theorem prover Is-
abelle/HOL. Bhargavan et al. [10] presented a framework to analyze and
formally verify Ethereum smart contracts using F*. Their smart contract
verification combines two approaches: They start from the translation of So-
lidity source code into F*, and then using decompilation techniques, they
go from EVM bytecode into F* code. An automatic verifier to prove tem-
poral safety properties of Ethereum smart contracts called VerX has been
presented by Permenev et al. [41]. VerX is based on reduction of temporal
property verification to reachability checking, a symbolic execution engine
for a fragment of EVM, and a form of predicate abstraction.

KEVM has been presented by Hildenbrandt et al. [23]. KEVM is an exe-
cutable formal specification of the EVM’s bytecode and stack-based language
within K Framework. The K Framework is a framework based on rewriting
logic to define executable semantic specifications of programming languages.
A formal verification tool for the EVM bytecode has been presented in [40].
Park et al. have adopted a complete formal semantics of the EVM called
KEVM, and using the K-framework’s reachability logic theorem prover to
generate a correct-by-construction deductive verifier for the EVM. Further-
more, using EVM-specific abstractions and lemmas they have optimized the
verifier and improved its scalability. They have used their verifier to verify
various high-profile smart contracts like ERC20 token contracts, Ethereum
Casper, and DappHub MakerDAO contracts. In [39] Park, Zhang, and Rosu
consider end-to-end verification of the deposit smart contract and find sev-
eral critical issues as well as also bugs in the Vyper compiler. The work is
again based on KEVM and analysis of a state transition system.

Bai et al. [6] propose formal modeling and verification of smart contracts
using the SPIN model checking tool. Abdellatif et al. [1] use the BIP (Be-
havior Interaction Priorities) framework to model smart contracts implemen-
tation and verify the correctness. This framework uses timed automata to
implement the contract functions. In order to deal with external attacks,
they have also modeled the blockchain execution environment. They use the
Statistical Model Checking (SMC).

Zakrzewski looks at a formalization of the Solidity language [49]. He
points out that the Solidity language has no formal semantics and questions
the appropriateness of several of the language constructs, from a verification
perspective. The paper gives a proposal for a big-step operational semantics
for core elements of Solidity, including modifiers, proposing a clarification/re-
vision of unclear semantical issues.

57

In [8], Bartoletti, Galletta, and Murgia propose a minimal core calculus,
TinySol (for “Tiny Solidity”), for Solidity contracts. The calculus has as-
signments and a call primitive used to transfer currency and invoke contract
procedures. In contrast to our language, the transfer amount is treated as
an independent parameter. This construct is inspired by Solidity “external”
calls and captures the most paradigmatic aspect of smart contracts like the
exchange of digital assets according to programmable rules. They give an
operational semantics of the core language and show how to use it to reason
about aspects such as reentrancy. Like in our approach, the language is ab-
stract and generalized, but is not considering contract specifications, static
verification, security, nor privacy.

In contrast to the works mentioned above, our work does not follow the
approach of translating from Solidity or EVM to a language or formalism
with verification support, nor are we considering model checking based on
an operational semantics or state transition system. Instead, we provide a
more abstract programming language for smart contracts, developed to sup-
port simple verification at the source level, as encouraged in [3, 49]. The
language, its semantics, and verification system are oriented towards sim-
ple verification, and we are able to formulate a system for sequential style
reasoning in a class-wise manner, together with a composition rule, based
on an axiomatic semantics with history-based specifications. Our approach
includes a specification formalism for expressing safety properties, and we
consider safety rather than temporal properties and do not consider time
nor probabilistic methods. Our framework is making use of language-based
methods to provide trust, security, privacy, and reasoning control. In par-
ticular, flexibility and trust are achieved by predefined protected classes for
history objects combined with contract-specific adaptations through a func-
tional specification language.

Compared to earlier work on Creol/ABS [27, 26, 15], our language is
novel in the combination of initial guards for methods and first-class futures.
This combination gives an expressiveness that allows ordering control with
respect to method scheduling, thereby extending the expressiveness of [35].
With respect to reasoning, it gives a simpler event structure than in [15], and
as a result, the reasoning system is simpler than the Creol/ABS reasoning
systems for programs allowing suspension in the middle of a method.

In [9] Bartoletti et al. propose an approach based on static analysis to
improve the performance of blockchains by concurrent execution of transac-
tions, thereby overcoming the limitations of serial execution of transactions

58

on a blockchain node. The work is rooted in a notion of observational equiv-
alence and swappability of transactions. By means of static analysis of the
sets of keys read/written by the transactions, they introduce a static ap-
proximation of swappability. They transform a block of transactions into
an occurrence net, describing the partial order induced by the swappabil-
ity relation. The resulting parallelization preserves semantical equivalence
and leads to more efficient execution. In our setting the history object of
a contract may run concurrently on a separate node, not slowing down the
contract objects and its users. The efficiency of each contract provider could
be improved by means of internal concurrency, following [29].

In a recent paper [2], Ahrendt and Bubel present an approach for verifica-
tion of smart contracts, considering a subset of Solidity including reentrance.
They make use of histories to capture the payment history of a contract.
In contrast to our work, this history only covers payment transactions and
may only be used for specification and verification purposes. A complication
of the reasoning system is the possibility of callbacks, which led to serious
verification problems of a majority of the contract examples considered. Ver-
ification of these could be made modulo assumptions on absence of callbacks,
using special rules for this case. This makes the approach less modular as the
presence of callbacks depends on the environment of the considered contract.
In our language with guarded methods, callbacks may only happen when the
contract invariant is satisfied and therefore do not lead to verification com-
plications. In particular we avoid reasoning about havoc) Even when adding
the suspending call mechanism [27], which allows callbacks while suspending,
reasoning is not more complicated (apart from verifying the invariant at the
suspension points), but more events would need to be recorded in the history
objects to allow reproducibility. Invariants in [2] may express restrictions on
the payment history, but may not express conditions over the communication
history. The benefits of our system are related to the fact that our language
is oriented towards simple verification and that invariants in our work are
expressive enough to avoid pre/postconditions, and the complications related
to these in a concurrent setting.

13. Conclusion

We have presented a new approach to lightweight smart contracts where
transparency, immutability, and protection against corruption are guaran-
teed at the source code level, by adding a special kind of protected objects

59

called history objects that record all the calls and future values generated for
each contract. Because of these recorded transactions, a history object can be
seen as a ledger, but local to a given contract. The history objects are instan-
tiated from a set of protected classes, and the code of these history classes
cannot be redefined by user programmers or contract designers. However,
a contract designer can make adaptations of the predefined history classes
in a protected manner, through interfaces and functional definitions written
in an executable side-effect free specification language. This means that a
predefined history class may be specialized with different function definitions
through different adaptations, while the methods of the predefined history
classes are protected and cannot be changed by programmers, whether on
purpose or by accident.

The various history classes provide built-in protection of specified aspects
of safety, privacy, security, and transfer of assets. The history objects are
separated from the contract provider, and can be used by contract parties
through the given interfaces. The approach protects against tampering and
fraud at the software level, each history object is immutable and corruption-
proof, and a user can observe the contract behavior through the history object
to ensure validity. Our approach gives trust and transparency without cen-
tralized control when the underlying runtime system can be trusted, without
the overhead and cost of blockchain. For increased trust the approach may
be combined with blockchain when the runtime system cannot be trusted.

Moreover, we give a theory for formal specification and verification of
smart contracts. In particular, our approach supports class-wise verification,
which is essential in open distributed systems where the contracts interact
in an unknown and open environment. The verification of a class is based
on sequential reasoning augmented with effects on the transaction history.
These advantages have been achieved by defining a version of a high-level
language based on the active object paradigm and interface abstraction. We
support reasoning about multiple inheritance and allow subclasses and redef-
initions without behavioral restrictions from superclasses. The language has
an expressiveness that can be compared to Solidity, but is more high-level,
with more abstract communications mechanisms and a more abstract data
type language. Method guards can be compared to the require mechanism
in Solidity, but give control over the ordering of operations rather than forc-
ing errors. Guards are useful for avoiding undesired contract behavior and
avoiding attacks by an adversary. A major difference is that our language has
a modular semantics and comes with a specification and verification theory.

60

A contract class can be verified with respect to an invariant specified in the
interface of the history object.

Furthermore, we have shown how formal specifications can be checked
automatically by the history objects at runtime, thereby protecting users of
a faulty contract provider, as well as protecting the contract provider from
illegal users. In addition, we have shown how to deal with security and
privacy aspects, something which has been seen as a weakness of traditional
smart contracts based on blockchain. We have illustrated the approach on a
typical smart contract example, namely an auction system. We have verified
the contract implementation and shown various improvements with respect
to added safety, security, privacy, and asset protection. In the current state,
our framework can be used for executable modeling, prototyping, analysis,
verification, and model checking of smart contracts.

The approach may be combined with the notion of dynamic concurrent
object groups [29]. This allows a contract service to appear as a single object
to the outside while internally consisting of a number of cooperating concur-
rent objects. From the environment, an object group is treated like a normal
object, with the benefit that it can serve many contract users in parallel.

Our framework allows runtime roll-backs, since the transaction history
gives sufficient information to rerun a contract service and stop at the last
state before the execution of method that results in error. We have shown
how protected transfer of assets can be handled directly by the history ob-
jects. At compile time, one cannot in general ensure sufficient assets, but
one can consider the possibility of errors due to insufficient assets. We have
considered reasoning about simple error recovery.

In future work, we may add further mechanisms for error and exception
handling and consider efficient implementation of history objects and roll-
backs. Furthermore, a way to delete old and irrelevant parts of the trans-
action history (without violating invariants) would be useful. Finally, the
preliminary set of predefined history classes considered here can be extended
further. In particular, the security and privacy protection could be improved
by more advanced implementations of SecureHistory and PrivateHistory, and
one may investigate the possibility of cryptographic techniques.

Acknowledgment

We thank the reviewers for significant and valuable feedback, which have lead
to substantial improvements. Our work was supported by the project IoT-

61

Sec, Security in IoT for Smart Grids (248113/O70), funded by the Research
Council of Norway, under the IKTPLUSS program.

Appendix A. Operational Semantics

We give a brief formalization of the operational semantics of the main ele-
ments in our language using a small-step SOS style semantics. A distributed
system of active objects can be represented by a multiset of objects and
messages, reflecting distribution of components in a network where relative
distance and physical placement are abstracted away. A system configuration
is then captured by a term like object1 object2 object3 ... msg1 msg2 msg3 ...
using space as the parallel composition operator, which is associative and
commutative. The messages relevant for our setting are invocation events
and get events as defined in Section 4.5. We consider here first class fu-
tures reflecting future values encapsulated by history objects, as well as local
futures reflecting futures values not encapsulated by history objects. Thus
there are no separate future objects.

Each rule will involve only one object (and possibly a history object)
in addition to consumed and generated messages. This reflects distributed
execution. Interleaving semantics is obtained by adding the rule (A B) −→
(A′ B) if A −→ A′, and similarly (A B) −→ (A B′) if B −→ B′, where −→ is the
execution transition relation and A and B are subconfigurations. We assume
pattern matching modulo associativity and commutativity, which entails that
message passing is non-deterministic.

Appendix A.1. Object Representation
An object is represented by a term

o : obC(δ,X)

where o is the object identity, C its class, δ its state, and X is the current
method execution, represented by either l :: s where l is the method call of the
executing method and s is the remaining list of statements of the executing
method, or idle when there is no method executing. The state of an object
is composed of the attribute state and the local state of the method, and has
the form

(ρ|τ)
where ρ is the attribute state (including class parameters and system vari-
ables such as a runtime stack for local synchronous calls), and τ is the local

62

state of the method (including the state of explicit and implicit parame-
ters and the state of the local variables). Both ρ and τ are mappings from
variable names to values, and we use standard look-up functions M [v] and
update functions M [v 7→ d] for mappings M , where v is a variable name and
d is a value. If d is an error value, the update operation aborts. We define
the state update

(ρ|τ)[v 7→ d]
by (ρ|(τ [v 7→ d])) if v is a name in τ , and otherwise by ((ρ[v 7→ d])|τ) if v is
a name in ρ. Similarly, state look-up

(ρ|τ)[v]

is defined by τ [v] if v is a variable name in τ , and otherwise by ρ[v]. (Type
checking will ensure that each occurrence of a program variable has a bind-
ing). We lift this notation to expressions, to denote evaluation of expres-
sions, letting δ[e] denote the evaluation of an expression e in the object
state δ. The evaluation of expressions is standard, inside-out and left-to-
right. For instance for a function application g(e, e′), we have that δ[g(e, e′)]
is g(δ[e], δ[e′]). The evaluation of an expression with an error handler, say
δ[e#e′], is defined by δ[e] if the value is not an error, otherwise δ[e′]. For
convenience, we introduce the notation δ[v := e] as an abbreviation for
δ[v 7→ δ[e]].

As mentioned, our framework gives privacy control of futures in history
objects, whereas privacy protection, as well as garbage collection, of separate
future objects is challenging [32]. We therefore avoid separate future objects
here, letting futures not related to contracts be restricted to local futures.
Moreover, we restrict local futures to the write-once/read-once discipline in
order to be able to garbage collect futures when read. A future variable may
be assigned once (in connection with a call) and then read at most once
(by a get statement or passed as a parameter in a local call), within the
same branch as the call statement. Similarly, a formal future parameter in a
local method may be read at most once. Local futures can then be handled
by letting the callee send the return value directly to the caller o, by reply
messages of the form get(u, o, d) where u is the future identity and d is the
returned value. When such a return value is read by a get statement the
message may be deleted (and thereby avoiding garbage collection).

In order to be globally unique, a future identity can be represented by the
identity of the generating object o (the caller) and a locally unique counter

63

value i, say by the term (o, i). In our setting when future values are contained
in history objects, we would also need the identity of the history object z. A
future identity in our setting has the form (o, i)@z when it refers to a future
value inside a history object z, and (o, i) otherwise. These are referred to as
generalized futures and simple futures, respectively. In the rules, j ranges
over simple futures and u over both kinds of futures. Only generalized futures
represent first-class futures and may be shared between objects, while simple
futures may not be returned/passed to other objects and not assigned to
other future variables. (This is checked statically.)

More specifically, when a method is called by a contract object o, the
future generated is (o, nextFut)@o.history where nextFut is the internal future
counter. When o is not a contract object nor a history object, but the
callee is a contract object, the future generated is (o, nextFut)@callee.history,
otherwise (o, nextFut). The following function defines the future identity
generated in a state δ for a call with o as the caller and o′ as the callee:

futId(o, o′, i) = if o ∈ Contract ∧ o′ 6∈ History then (o, i)@o.history
elseif o′ ∈ Contract then (o, i)@o′.history else (o, i)

The futId function identifies which futures are simple and which are general-
ized ones, and in the latter case, which history object they belong to. Only
communication events related to generalized futures will be recorded in the
transaction history, since these are the events that involve contracts. Note
that put and get calls will have simple futures. For simplicity, we assume
that two contracts are not interacting.

Appendix A.2. Operational Rules
The present operational semantics is similar to the ones presented in [27,

32] apart from the treatment of future variables, returns, and handlers. We
assume that programs have been type-checked and are statically correct.
The rules for basic statements, shown in Figure A.18, are fairly standard
for active object languages. The skip rule shows that skip is executed in
one step. The assign rule shows how an assignment statement is reflected
by the corresponding state update. A handler has no effect if the preceding
assignment does not give an error, otherwise it executes the statement list of
the handler, without performing the assignment. The if-then and if-false rules
show how the execution selects a branch. The end rule says that when there
are no remaining statements in a method execution, the object becomes idle.
An empty statement list is denoted ε, and an empty map is denoted ∅.

64

skip: o : obC(δ, l :: skip; s)
−→ o : obC(δ, l :: s)

assign : o : obC(δ, l :: v := e; s)
−→ o : obC(δ[v := e], l :: s)

handle1 : o : obC(δ, l :: v := e < s′ >; s)
−→ o : obC(δ[v := e], l :: s) if δ[e] 6= error

handle2 : o : obC(δ, l :: v := e < s′ >; s)
−→ o : obC(δ, l :: s′; s) if δ[e] = error

if-true : o : obC(δ, l :: if b then s1 else s2 fi; s)
−→ o : obC(δ, l :: s1; s) if δ[b] = true

if-false : o : obC(δ, l :: if b then s1 else s2 fi; s)
−→ o : obC(δ, l :: s2; s) if δ[b] = false

end: o : obC((ρ|τ), l :: ε)
−→ o : obC((α|∅), idle)

simple call : o : obC(δ, l :: a!m(e); s)
−→ o : obC(δ[nextFut := next(nextFut)], l :: sync(msg); s)

msg
where u = futId(o, δ[a], next(δ[nextFut]))
and msg = call(u, o, δ[a],m(δ[e]))

async. call : o : obC(δ, l :: f :=a!m(e); s)
−→ o : obC(δ, l :: a!m(e); f := futId(o, δ[a], δ[nextFut]); s)

sync. call : o : obC(δ, l :: v := a.m(e); s)
−→ o : obC(δ, l :: a!m(e); v := get futId(o, δ[a], δ[nextFut]); s)

if o 6= δ[a]

Figure A.18: Operational rules for basic statements reflecting small-step semantics

65

start bool : call(u, o′, o,m(d))
o : obC((α|β), idle)

−→ o : obC((α|γ′), call(u, o′, o,m(d)) :: s) if (α, γ′)[b] = true
where m is bound to (m, y, γ,when b; s) in C
and γ′ = γ[caller 7→ o′, y 7→ d]

start sfut. : call(u, o′, o,m(d)) get(j, o, d)
o : obC((α|β), idle)

−→ o : obC((α|γ′), call(u, o′, o,m(d)) :: s)
get(j, o, d) if (α, γ′)[f] = j
where m is bound to (m, y, γ,when f ?; s) in C
and γ′ = γ[caller 7→ o′, y 7→ d]

start gfut. : call(u, o′, o,m(d))
o : obC((α|β), idle)
a : obH(δ,X)

−→ o : obC((α|γ′), call(u, o′, o,m(d)) :: s)
a : obH(δ,X) if (α|γ′)[f] = j@z ∧ j ∈ δ[trans]
where m and γ′ as in Rule start sfut, H a history class

ret. simp. : o : obC(δ, call(j, o′, o,m(d)) :: return e; s)
−→ o : obC(δ, call(j, o′, o,m(d)) :: s)

get(j, o′, δ[e])

ret. gen. : o : obC(δ, l :: return e; s)
−→ o : obC(δ, l :: z.put(comp(j, o, o′,m(d), δ[e])); s)

where l = call(j@z, o′, o,m(d))

get simp. : get(j, o, d)
o : obC(δ, l :: v := get j; s)

−→ o : obC(δ, l :: v := d; s)

get gen. : o : obC(δ, l :: v := get j@z; s)
−→ o : obC(δ, l :: v := z.get(j); s)

Figure A.19: Operational rules for future-related statements.

66

A simple call is executed by generating a new future identity (using futId)
and sending a call message to the callee. The local counter nextFut is up-
dated using a function next that gives the next counter value (say by adding
one). In case there is a call to be recorded in a history object z, there must
be a put to z. To handle this, we define a semantic function sync

sync(call(j@z, o, o′,m(d)) = z.put(call(j, o, o′,m(d))
sync(call(j, o, o′,m(d)) = skip

Any call to put is made by a synchronous call to ensure proper ordering in
the transaction history. An asynchronous call is like a simple call except
that is assigns the generated future value to the future variable. A non-
local synchronous call is like a simple call followed by a get statement on
the generated future. The rules for method calls are fairly typical for active
object systems with two-way message passing, as the history objects are
not involved. Local synchronous calls may be handled by adding a run-
time stack, or using the technique in [27]. We do not include rules for local
synchronous (stack-based) calls nor object generation, since these are not
central to the contribution here. Multicast and broadcast can be handled
with the technique in [28].

The rules for future-related statements are shown in Figure A.19, and
here awareness of the history objects matters. The start rules describe how
a new method execution is started, which may only happen when there is a
call message to an object o, o is idle, and when the guard (if any) is satisfied.
The statement list of the called method is prefixed by the call message since
this information is needed in order to deal with the history transaction upon
return. (This call message label is written in blue for better readability.) A
boolean guard is evaluated in the state of the attributes of o combined with
the local state of the called method, including the actual parameters. The
rule for a method without a guard is similar, just without the if-condition,
and is omitted here. A guard on a simple future variable, is satisfied if the
future is resolved, which means that there must be a completion message with
the future available. The completion message stays since the future value is
not yet read. A guard on a generalized is satisfied if the future identity is
found in a transaction recorded in the corresponding history object. Thus
this rule makes a read access to the history object, but otherwise o behaves
as in the case of a simple future (Rule start sfut).

The ret. simp. rule defining method return from a method execution with

67

a simple future identity, reflects the two-way call/reply paradigm since a
simple future cannot be shared. The return from a method execution with a
generalized future is stored in the corresponding history object. This is done
through a synchronous put call to ensure that the appropriate transaction
order in the history object. This rule is non-standard since there is an effect
on the history object (i.e., a synchronous call on put must be handled). An
asynchronous put call could lead to a different ordering of completions in the
history object than in o.

A get statement on a simple future can be performed when the completion
message for this future is available. The future value is assigned to the left-
hand-side variable of the get statement. For a get statement on a generalized
future, the future value is obtained from the history object by means of a
synchronous get call. Note that the synchronous calls in the ret. gen. and
get gen. rules ensure that the order of comp events in the history variable
will be the same as the order of comp events generated by the corresponding
contract objects. In order to save time, the put may return immediately after
being started and continue with the remaining statements since the return
value is known (void), as exploited in class SAFEHISTORY of Figure 9.

Since each update on an object state is done by the state update opera-
tion, we note that an object state cannot contain error since that will abort
the current method execution. In this case a rollback could be made. A for-
malization of this would be beyond the scope of this paper. For the sake of
accountability, we have added get events in the transaction history to record
which party has looked at which future values. This is done by including a
put call in the implementation of the get method.

68

Appendix B. Notational conventions for lower case characters

a object expression (for callee) and also auction contract
b boolean condition
c contract
d data
e expression
f future variable
g function
h history
i index
j simple future identity
k index
l call event label
m method
n method
o object
p party
q sequence/list
r result
s statement
t transaction
u future identity
v variable
w field
x variable
y local variable or formal parameter
z history object

References

[1] T. Abdellatif and K.-L. Brousmiche. Formal verification of smart con-
tracts based on users and blockchain behaviors models. In 2018 9th
IFIP International Conference on New Technologies, Mobility and Security
(NTMS), pages 1–5. IEEE, 2018.

[2] W. Ahrendt and R. Bubel. Functional verification of smart contracts via
strong data integrity. In S. B. Margaria T., editor, Leveraging Applications
of Formal Methods, Verification and Validation: Applications. ISoLA 2020,

69

volume 12478 of Lecture Notes in Computer Science, pages 9–24. Springer,
2020.

[3] W. Ahrendt, G. J. Pace, and G. Schneider. Smart contracts: A killer appli-
cation for deductive source code verification. In P. Müller and I. Schaefer,
editors, Principled Software Development, pages 1–18. Springer, 2018.

[4] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum
smart contracts (SoK). In M. Maffei and M. Ryan, editors, Principles of
Security and Trust, volume 10204 of Lecture Notes in Computer Science,
pages 164–186. Springer, 2017.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

[6] X. Bai, Z. Cheng, Z. Duan, and K. Hu. Formal modeling and verification of
smart contracts. In Proceedings of the 2018 7th International Conference on
Software and Computer Applications, pages 322–326. ACM, 2018.

[7] H. C. Baker and C. Hewitt. The incremental garbage collection of processes.
SIGPLAN Not., 12(8):55–59, 1977.

[8] M. Bartoletti, L. Galletta, and M. Murgia. A minimal core calculus for So-
lidity contracts. In C. Pérez-Solà, G. Navarro-Arribas, A. Biryukov, and
J. Garcia-Alfaro, editors, Data Privacy Management, Cryptocurrencies and
Blockchain Technology, volume 11737 of Lecture Notes in Computer Science,
pages 233–243. Springer, 2019.

[9] M. Bartoletti, L. Galletta, and M. Murgia. A true concurrent model of smart
contracts executions. In S. Bliudze and L. Bocchi, editors, Coordination
Models and Languages, volume 12134 of Lecture Notes in Computer Science,
pages 243–260. Springer, 2020.

[10] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, et al. For-
mal verification of smart contracts: Short paper. In Proceedings of the 2016
ACM Workshop on Programming Languages and Analysis for Security, pages
91–96. ACM, 2016.

[11] F. D. Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C. Din, E. B.
Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes, and A. M. Yang.
A survey of active object languages. ACM Comput. Surv., 50(5):1–39, 2017.

70

[12] V. Buterin. Critical update re: DAO vulnerability. Ethereum Blog, June,
2016.

[13] V. Buterin et al. Ethereum white paper. GitHub repository, pages 22–23,
2013.

[14] O.-J. Dahl and O. Owe. Formal methods and the RM-ODP. In NWPT’98:
Nordic Workshop on Programming Theory, Turku, Finland 1998, 1998. Avail-
able as Research Report 261, Dept. of Informatics, Univ. of Oslo (18 pages).

[15] C. Din and O. Owe. Compositional reasoning about active objects with shared
futures. Formal Aspects of Computing, 27:551–572, 2014.

[16] J. Ellul and G. J. Pace. Runtime verification of Ethereum smart contracts.
In 2018 14th European Dependable Computing Conference (EDCC), pages
158–163. IEEE, 2018.

[17] E. Fazeldehkordi, O. Owe, and T. Ramezanifarkhani. A language-based ap-
proach to prevent DDoS attacks in distributed financial agent systems. In
A. P. Fournaris, M. Athanatos, K. Lampropoulos, S. Ioannidis, G. Hatzi-
vasilis, E. Damiani, H. Abie, S. Ranise, L. Verderame, A. Siena, and J. García-
Alfaro, editors, Computer Security - ESORICS 2019 International Workshops,
IOSec, MSTEC, and FINSEC, Revised Selected Papers, volume 11981 of
Lecture Notes in Computer Science, pages 258–277. Springer, 2019.

[18] M. Fröwis and R. Böhme. In code we trust? In J. Garcia-Alfaro, G. Navarro-
Arribas, H. Hartenstein, and J. Herrera-Joancomartí, editors, Data Privacy
Management, Cryptocurrencies and Blockchain Technology, volume 10436 of
Lecture Notes in Computer Science, pages 357–372. Springer, 2017.

[19] L. García-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber. Optimized
execution of business processes on blockchain. In J. Carmona, G. Engels, and
A. Kumar, editors, Business Process Management, pages 130–146. Springer,
2017.

[20] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu. On legal contracts, imperative and declarative smart contracts, and
blockchain systems. Artificial Intelligence and Law, 26(4):377–409, 2018.

[21] I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic framework for
the security analysis of Ethereum smart contracts. In L. Bauer and R. Küsters,
editors, International Conference on Principles of Security and Trust, volume
10804 of Lecture Notes in Computer Science, pages 243–269. Springer, 2018.

71

[22] Á. Hajdu and D. Jovanović. SMT-friendly formalization of the Solidity mem-
ory model. In P. Müller, editor, Programming Languages and Systems, volume
12075 of Lecture Notes in Computer Science, pages 224–250. Springer, 2020.

[23] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, et al. KEVM: A complete for-
mal semantics of the Ethereum virtual machine. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 204–217. IEEE, 2018.

[24] Y. Hirai. Defining the Ethereum virtual machine for interactive theo-
rem provers. In A. Kiayias, editor, International Conference on Financial
Cryptography and Data Security, volume 10204 of Lecture Notes in Computer
Science, pages 520–535. Springer, 2017.

[25] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor. Evaluation of logic-
based smart contracts for blockchain systems. In J. J. Alferes, L. Bertossi,
G. Governatori, P. Fodor, and D. Roman, editors, Rule Technologies.
Research, Tools, and Applications, volume 9718 of Lecture Notes in Computer
Science, pages 167–183. Springer, 2016.

[26] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS:
A core language for abstract behavioral specification. In B. K. Aichernig,
F. S. de Boer, and M. M. Bonsangue, editors, International Symposium on
Formal Methods for Components and Objects, volume 6957 of Lecture Notes
in Computer Science, pages 142–164. Springer, 2010.

[27] E. B. Johnsen and O. Owe. An asynchronous communication model for dis-
tributed concurrent objects. Software & Systems Modeling, 6(1):39–58, 2007.

[28] E. B. Johnsen, O. Owe, J. Bjørk, and M. Kyas. An object-oriented component
model for heterogeneous nets. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W. P. de Roever, editors, Formal Methods for Components and Objects,
6th International Symposium, FMCO 2007, volume 5382 of Lecture Notes in
Computer Science, pages 257–279. Springer, 2007.

[29] E. B. Johnsen, O. Owe, D. Clarke, and J. Bjørk. A formal model of service-
oriented dynamic object groups. Sci. Comput. Program., 115-116:3–22, 2016.

[30] E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A dynamic class construct for
asynchronous concurrent objects. In M. Steffen and G. Zavattaro, editors,
Formal Methods for Open Object-Based Distributed Systems, 7th IFIP WG
6.1 International Conference, FMOODS 2005, volume 3535 of Lecture Notes
in Computer Science, pages 15–30. Springer, 2005.

72

[31] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented
model for distributed concurrent systems. Theoretical Computer Science,
365(1-2):23–66, 2006.

[32] F. Karami, O. Owe, and T. Ramezanifarkhani. An evaluation of interaction
paradigms for active objects. J. Log. Algebr. Meth. Program., 103:154–183,
2019.

[33] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 254–269. ACM, 2016.

[34] A. Mavridou and A. Laszka. Designing secure Ethereum smart contracts: A
finite state machine based approach. In S. Meiklejohn and K. Sako, editors,
International Conference on Financial Cryptography and Data Security, vol-
ume 10957 of Lecture Notes in Computer Science, pages 523–540. Springer,
2018.

[35] O. Owe. Verifiable programming of object-oriented and distributed systems.
In L. Petre and E. Sekerinski, editors, From Action Systems to Distributed
Systems - The Refinement Approach, pages 61–79. Chapman and Hall/CRC,
2016.

[36] O. Owe, E. Fazeldehkordi, and J.-C. Lin. A framework for flexible program
evolution and verification of distributed systems. In S. Hammoudi, L. F. Pires,
and B. Selić, editors, Model-Driven Engineering and Software Development,
volume 1161 of Communications in Computer and Information Science, pages
320–349. Springer, 2020.

[37] O. Owe and G. Schneider. Wrap your objects safely. Electron. Notes Theor.
Comput. Sci., 253(1):127–143, 2009.

[38] Parity Technologies. A postmortem on the parity multi-sig library self-
destruct, 2018. https://www.parity.io/a-postmortem-on-the-
parity-multi-sig-library-self-destruct/.

[39] D. Park, Y. Zhang, and G. Rosu. End-to-end formal verification of Ethereum
2.0 deposit smart contract. In S. K. Lahiri and C. Wang, editors, Computer
Aided Verification, volume 12224 of Lecture Notes in Computer Science, pages
151–164. Springer, 2020.

[40] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu. A formal verification
tool for Ethereum VM bytecode. In Proceedings of the 2018 26th ACM Joint

73

https://www.parity.io/a-postmortem-on-the-
parity-multi-sig-library-self-destruct/

Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2018, pages 912–915.
ACM, 2018.

[41] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev.
Verx: Safety verification of smart contracts. In 2020 IEEE Symposium on
Security and Privacy, SP, pages 18–20. IEEE, 2020.

[42] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. Runtime verification
for business processes utilizing the Bitcoin blockchain. Future Generation
Computer Systems, 107:816–831, 2020.

[43] I. Sergey and A. Hobor. A concurrent perspective on smart contracts. In
A. Kiayias, editor, Financial Cryptography and Data Security, volume 10322
of Lecture Notes in Computer Science, pages 478–493, 2017.

[44] soliditylang.org. Solidity documentation, 2019. https://solidity.
readthedocs.io/.

[45] N. Szabo. Formalizing and securing relationships on public networks. First
Monday, 2(9), 1997.

[46] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling.
Untrusted business process monitoring and execution using blockchain. In
M. La Rosa, P. Loos, and O. Pastor, editors, Business Process Management,
volume 9850 of Lecture Notes in Computer Science, pages 329–347. Springer,
2016.

[47] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, pages 1–32, 2014.

[48] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press,
1990.

[49] J. Zakrzewski. Towards verification of Ethereum smart contracts: A formal-
ization of core of Solidity. In R. Piskac and P. Rümmer, editors, Verified
Software: Theories, Tools, and Experiments, volume 11294 of Lecture Notes
in Computer Science, pages 229–247. Springer, 2018.

74

https://solidity.readthedocs.io/
https://solidity.readthedocs.io/

	Introduction
	Smart Contracts and Blockchain
	History Objects
	Histories as a Generalization of Futures

	A High-Level Language for Active Object systems
	Interface Definitions
	Data Type and Function Definitions
	Class Declarations for Active Objects
	Method Definitions and Imperative Code
	The Transaction Type Corresponding to an Interface

	The Implementation of History Objects
	Contract Specifications and Safety
	Implementation of SafeHistory
	Specification of the Auction Example

	Verification
	Verification of the Auction Example

	Adding Privacy Aspects
	Adding Security Aspects
	Adding Transfer of Assets
	Evaluation
	Difference between our Language and Solidity
	Difference between our Framework and Blockchain

	Related Work
	Conclusion
	Operational Semantics
	Object Representation
	Operational Rules

	Notational conventions for lower case characters

