
Overview
Landscape

From models to programming languages
Summary

Realization of Models in Programming Languages:
Achieving Non-Functional Properties

Derived from the Models

Silvia Lizeth Tapia Tarifa

Precise Modeling and Analysis Group
Department of Informatics

Faculty of Mathematics and Natural Sciences
University of Oslo

sltarifa@ifi.uio.no

07.05.2014

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 1/41

Overview
Landscape

From models to programming languages
Summary

Overview

Software life cycle

Requirements:
Functional and non-functional (NFR)

From design to operation:
Models, systems, modeling languages &
programming languages

From models to programming languages:
Example using a representative concrete approach

Summary

Title of this lecture

Realization of models
in programming languages:

Achieving
non-functional properties
derived from the models

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 2/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Overview

Software life cycle
Requirements: Functional and non-functional (NFR)

From design to operation:
Models, systems, modeling languages & programming languages

From models to programming languages:
Example using a representative concrete approach

Summary

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 3/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Software Life Cycle

Software life cycle typically includes
the following phases:

Requirements

Design

Implementation

Verification/Validation/Test

Delivery/Deployment

Operation & Maintenance

These phases may overlap or be
performed iteratively

Software life cycle

Iterative development process

Source: Software Engineering (7th Edition), Ian Sommerville and ISTQB glossary of testing terms 2.3

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 4/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Overview

Software life cycle

Requirements: Functional and non-functional (NFR)
From design to operation:
Models, systems, modeling languages & programming languages

From models to programming languages:
Example using a representative concrete approach

Summary

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 5/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Requirements

Functional Requirements

Describe what the system should (and should not) do

Usually have localized e↵ect (e.g., they a↵ect only the part part of the

software addressing the functionality defined by the requirement.)

Example - consider an online university registration system:
Students shall be able to apply for courses

Non-functional Requirements (NFRs)

Describe how the system operates or how the functionality is exhibited

Example - from the Online University:
Easy to use, rapid user response, no Heartbleed bug

Source: Software Engineering (7th Edition), Ian Sommerville

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 6/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

More on Non-Functional Requirements (NFRs)

User and system NFRs:

User NFRs: typically stated in natural language by the clients of a
software application (e.g., easy to use)

System NFRs: typically more detail and precise, it may be part of a
contract between developers and clients (e.g., max. training time p.p. is 5h)

Some characteristics of NFRs:

They are often global and often critical (e.g., aircraft systems)

User NFRs are usually abstract and informally stated
(e.g., rapid user response).

They might conflict with each other
(e.g., high performance and low budget)

They might be di�cult to validate even after deployment
(e.g., maintainability)

They are complex to deal with, etc.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 7/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

More on Non-Functional Requirements (NFRs)

Classification:

Product requirement: product behavior (e.g., performance, usability)

Organizational requirements: policies and procedures (e.g., standards)

External requirements: external factors (e.g., interoperability, security)

Whenever possible: quantify NFRs
(e.g., performance by means of response time and throughput),
Example: User NFR: Rapid user response,

System NFR: Average response time, maximum response time

Sometimes it is not obvious how to quantify them
(e.g., maintainability)

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 8/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Predicting Quantifiable Non-Functional Properties (NFPs)

Requirement: A thing that is needed or wanted
Property: An attribute, quality, or characteristic of something.

Model

System

Declare NFP

Observe NFP
} User NFR:

Rapid user response

System NFR:
Performance:
- Response time
 - Average: 4
 - Maximum: 8

Acquire domain-specific

information for predicting NFP

“Measurement and modeling are

intimately linked because accurate

measurement provides the parameter

data which models need in order to

make valuable predictions”

Source: Non-functional properties in the
model-driven development of service-oriented

systems, Gilmore et al.

Example: for performance:
Where will this application be utilized?

What are the performance features of this environment?, etc

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 9/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Dealing with Non-Functional Requirements

Product Oriented Approach

Focus on evaluating the final application
to determine whether it satisfy the NFRs

Most common used approach

May require redesign

Process Oriented Approach

Integrates NFRs into the software
development process

Support for languages, methodologies
and tools is currently on-going research

1x 2x
4x

8x

16x

Requiremenet Design Implement Test After release

C
o
s
t

t
o

R
e
p
a
i
r

Cost to repair: multiplicative increases in cost.

Sources:

Quantifying Non-Functional Requirements: A
Process Oriented Approach, Hill et al.

A Framework for Building Non-Functional
Software Architectures, Rosa et al.

Foundation of Software Testing (3rd edition),
Black et al.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 10/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Overview

Software life cycle

Requirements: Functional and non-functional (NFR)

From design to operation: Process oriented approach
Models, Systems, Modeling languages & Programming languages

From models to programming languages:
Example using a representative concrete approach

Summary

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 11/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

From Design to Operation: Models and Systems

Model

System

Modeling languages
Example: UML

Programming languages
Example: Java

...

...

Design
phase

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 12/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

From Design to Operation: NFPs

Modeling languages
- Structural & behavioral modeling
- Workload modeling
- Infrastructure/platform characteristics
- Representing NFP

Programming languages
- Structural & behavioral implementation
- Infrastructure/platform information
- Monitoring NFP

...

...

Design
phase

Declare
NFP

Observe
NFP

System

Program
Infrastructure

Clients

Model

Model

Infrastructure
Workload&

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 13/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Models and Modeling Languages

Modeling languages
- Structural & behavioral modeling
- Workload modeling
- Infrastructure/platform characteristics
- Representing NFP

Programming languages
- Structural & behavioral implementation
- Infrastructure/platform information
- Monitoring NFP

...

...

Design
phase

Declare
NFP

Observe
NFP

System

Program
Infrastructure

Clients

Model

Model

Infrastructure
Workload&

Examples: Profiles for UML, UPPAAL, VDM++, etc.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 14/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Models and Modeling Languages (1)

Profiles for UML: extension mechanism for customizing UML models
for particular domains and platforms

Examples:

UML4SOA-NFP:

UML profile enhancing UML4SOA (a profile for service behavior, service
protocols and orchestration) with non-functional properties

UML profile for MARTE (Modeling and analysis of real-time embedded systems):

Support for specification, design, and verification/validation of real-time and
embedded systems. MARTE focuses on performance and schedulability analysis.

UML-SPT:

UML profile for schedulability, performance, and time

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 15/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Models and Modeling Languages (2)

Timed automata: a finite automaton extended with a finite set of real-valued clocks

Example:

UPPAAL:

An integrated tool environment for modeling, validation and verification of

real-time systems modeled as networks of timed automata

Precisely five time units pass between coin insertion and co↵ee collection,
and the time which passes between coin insertion and going back to work

is less than 10 time units

Here x and y are timers representing platform characteristics

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 16/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Models and Modeling Languages (3)

Modeling of embedded systems: system is embedded as part of a complete device,
often including hardware and mechanical parts

Example:

Modeling and Validating Distributed Embedded Real-Time Systems
with VDM++, Verhoef et al., 2006

Extend VDM with new language elements representing deployment

characteristics, to enable the modeling of distributed real-time embedded

systems

Buses and CPUs to represent deployment characteristics

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 17/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Systems and Programming Languages

Modeling languages
- Structural & behavioral modeling
- Workload modeling
- Infrastructure/platform characteristics
- Representing NFP

Programming languages
- Structural & behavioral implementation
- Infrastructure/platform information
- Monitoring NFP

...

...

Design
phase

Declare
NFP

Observe
NFP

System

Program
Infrastructure

Clients

Model

Model

Infrastructure
Workload&

Examples: AspectJ, Java RTS, JRes, reflective middleware, etc.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 18/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Systems and Programming Languages (1)

Aspect-oriented programming: programming methods and tools that support the
modularization of (crosscutting) concerns at the level of the source code.

Examples:

Aspect-Oriented Programming with
AspectJ, Kiselev, 2003

An extension of Java to support
aspect oriented programming

An evaluation of aspect-oriented
programming for
Java-based real-time systems
development, Tsang et al.,2004

CONCERNS

F
U
N
C
T
I
O
N
A
L
I
T
I
E
S

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 19/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Systems and Programming Languages (2)

Real-time & programming languages:
specification of time in programming languages (e.g., hard deadlines)

Examples:

An Approach to Platform Independent
Real-Time Programming:
(1) Formal Description, Hooman and
Roosmalen, 2000

An approach to enable the specification of
timing constraints in programs.
The approach is not language specific and
the extension can be included in many
existing programming languages.

Real-Time Java Programming: With Java RTS, Bruno and Bollella, 2009

Extends Java with various ways to specify time

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 20/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Systems and Programming Languages (3)

Middleware:
support for communication between components deployed in diverse platforms,
implemented in di↵erent programming languages, etc.

Example:

An Architecture for Next Generation
Middleware, Blair et al., 2009

Design and implementation for a

next generation reflective middleware

platform to provide the desired level

of configurability and openness

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 21/41

Overview
Landscape

From models to programming languages
Summary

Software life cycle
Requirements
From design to operation

Systems and Programming Languages (4)

Resource-aware programming frameworks

Examples:

Resource Aware Programming, Moreau and Queinnec, 2005

A framework which allows users to monitor the resources used by their programs
and to express policies for the management of such resources in the program.

JRes: A Resource Accounting Interface for Java,
Czajkowski and von Eicken, 1998

A flexible resource accounting interface for Java. The interface allows to

account for heap memory, CPU time, and network resources consumed by

individual threads or groups of threads.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 22/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Overview

Software life cycle

Requirements: Functional and non-functional (NFR)

From design to operation: process oriented approach
Models, Systems, Modeling languages & Programming languages

From models to programming languages:
Example using a representative concrete approach

Summary

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 23/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

From Models to Programming Languages

Model

System

Modeling
 languages

Programming
languages

...

...

ACHIEVE
NFPs

Outline

Service oriented architecture (SOA)

Model driven development (MDD)

Representative Example
from On-Going Research in
Software Engineering Practices (2011)

Non-functional properties in the model-driven
development of service-oriented systems

Stephen Gilmore and László Gönczy and

Nora Koch and Philip Mayer and

Mirco Tribastone and Dániel Varró

Journal in Software & Systems Modeling, 2011

A model-driven approach for the development of

service-oriented systems with explicit support for

the specification of non-functional properties

High-level understanding of the approach

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 24/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Service Oriented Architecture (SOA)

About SOA:

Pattern for designing software
and software architecture

Separate functions into distinct
software units called services

Allow users to combine functionalities
to form ad hoc web-based applications
built almost entirely from existing
software services

Define how to integrate widely disparate applications for a web-based
environment (independent of any vendor, product or technology)

Aim at a loose coupling of services by means of the orchestration

Orchestration:
describe the arrangement and coordination of the di↵erent services

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 25/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Service Oriented Architecture (SOA)

About the services:

Each service is designed to perform one
or more functionalities

Services are o↵ered through interfaces

The service interface describes the set
of interactions supported by a service

Service descriptions are published by service providers and services are
invocable by a service requester according to a set of access policies

About the example approach:

The orchestration is also defined as a service

Modeling of NFP as contracts associated to the services

NFP: security, performance and reliable connection

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 26/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Model Driven Development (MDD)

Platform
Independent
Model (PIM)

Platform
Specific

Model (PSM)

Code

Model2Model
(M2M)

Model2Text
(M2T)

In MDD, models are the predominant artifacts of
the development process.

MDD process consists of a chain of model
transformations which starts with the models of
the application (so-called PIM) and ends with a
(sort of) code generation

MDD uses di↵erent languages: modeling
languages for the specification of the applications,
and model transformation languages required for
generating other models or code.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 27/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Modeling of Service Oriented Systems (SOS) - Approach

For functional requirements:

SoaML: UML profile for describing the structure of SOS
UML4SOA(proposed): SoaML + behavioral modeling + orchestration

For non-functional requirements:

UML4SOA-NFP(proposed): UML4SOA + NFP

Some NFPs can be directly implemented by using web service standards
(e.g., reliable messaging, security, logging, etc.)

other NFPs are e↵ected by the underlying platform (e.g., performance)

For NFPs a↵ected by the underlying platform:
MARTE: UML + performance requirements annotations
PEPA: quantitative analysis

For the WS-standards: generation of deployment descriptors (XML files)
based on standards (e.g., WS-Security, WS-ReliableMessaging, WS-Reliability)

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 28/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Running Example: eUniversity Case Study

eUniversity: all courses and paperwork are handled online

Example focus: processing of a student application for a course of study

Scenario: eUniversity website acts as a client to a service providing the
functionality for handling a student application

ApplicationCreator(Service): this functionality requires the orchestration
of a set of di↵erent external services, e.g. student o�ce, a service for the
upload of documents, and a service to check the application (validation
service)

ApplicationValidator(Service): is itself also an orchestration of other
services

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 29/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

eUniversity (UML4SOA)

 ApplicationCreator

 ApplicationValidator

ApplicationCreator : orchestration with student o�ce, service for the upload of
documents, ApplicationValidator , etc.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 30/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Extension: Adding NFP to SOS models
(UML4SOA-NFP Metamodel)

ApplicationCreator

Performance Security

Response
time Throughput ...

Contract

Characteristic

Dimension

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 31/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Running Example: eUniversity Case Study (NFR)

The Client and the ApplicationCreator should communicate via a secure
and reliable connection

The document UploadService might be under heavy workload, therefore
its throughput should be at least 10 requests/second with a 4s average
response time

All requests sent to the ApplicationValidator should be acknowledged

As the validation service handles confidential data, all requests should be
encrypted in order to protect the privacy of the students

NFP for security, reliable connections and performance

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 32/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Adding NFP to eUniversity (UML4SOA-NFP)

ApplicationCreator

Performance

Response time
+Average
+Maximum

Throughput
+Guaranteed
+Maximum

...

Contract

Characteristic

Dimension

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 33/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Adding NFP to eUniversity: Concrete Configuration

ApplicationCreator

Performance

Response time
+Average: 4
+Maximum: 8

Throughput
+Guaranteed: 10
+Maximum: 20

...

Contract

Characteristic

Dimension

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 34/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Early Estimation & Evaluation of Performance - Approach

Automatic translation from UML4SOA-NFP and MARTE models
into PEPA (as system equations)

MARTE models include workloads and
the execution rate (measurements) of actions

PEPA is a formal language which allows the definition of models
as a composition of interacting automata

For the quantitative analysis, PEPA models are interpreted as
continuous-time Markov chains

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 35/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

eUniversity: Performance Evaluation

Fixed rates, varying workload (Left): Workload analysis studies how the user population a↵ects performance of the
system. Non-degrading performance is observed for population sizes less than 93

Fixed workload, varying rates (right): Increasing the activity rate corresponds to an increase in the system
performance. Although the relationship is not linear. For the example an optimal gain is obtained for values around
50. Further increases, give smaller and smaller improvement.

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 36/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

Automating Service Deployment by Model Transformation

PIM
UML4SOA(-NFP)

PSM
UML4SOA-NFP

MARTE
PEPA

Code
XML descriptors

M2M
VIATRA2

M2T
VIATRA2

Automated Transformations were implemented in the
VIATRA2 framework

VIATRA2: tool that supports the design and execution of
model transformations

Transformations are defined by graph transformation rules and
abstract state machines

NFP are captured at a low implementation-level by using
dedicated XML deployment descriptors

PIM models: input UML4SOA(-NFP) Profile

PSM models: internal service models are generated within the
model transformation tool. These are then processed in order
to create descriptor models

Target XML files: descriptor models are the basis of XML file
generation. XML files are directly usable as configuration
descriptors on standard platforms

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 37/41

Overview
Landscape

From models to programming languages
Summary

Overview
Background information
Example approach

eUniversity: Deployment Descriptor Fragment in XML

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 38/41

Overview
Landscape

From models to programming languages
Summary

Overview

Software life cycle

Requirements: Functional and non-functional (NFR)

From design to operation: process oriented approach
Models, Systems, Modeling languages & Programming languages

From models to programming languages:
Example using a representative concrete approach

Summary

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 39/41

Overview
Landscape

From models to programming languages
Summary

Summary

Achieving NFRs derived from models is an
on-going research field

NFRs are often global, critical, not
compositional and might conflict
with each other

For achieving NFPs derived from models
a process oriented approach is needed

Modeling languages need a way to represent
infrastructure/platform characteristics for some NFPs

For quantitative NFPs, system measurements are needed to make predictions
(e.g., for performance these measurements capture the
infrastructure/platform characteristics)

Programming languages need a way to obtain
infrastructure/platform information for some NFPs

Monitors could be used to observe that systems respect NFPs (contracts)

We have looked at a concrete example from a representative approach to an
on-going research topic

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 40/41

Overview
Landscape

From models to programming languages
Summary

Main Sources

Software Engineering (7th Edition),
Ian Sommerville, 2004

Foundations of Software Testing ISTQB Certification (3rd edition),
Rex Black and Erik van Veenendaal and Dorothy Graham, 2012

Non-functional Properties in the Model-Driven Development of Service-Oriented
Systems,
Stephen Gilmore and László Gönczy and Nora Koch and Philip Mayer and

Mirco Tribastone and Dániel Varró,
Journal of Software and Systems Modeling, 2011

A Framework for Building Non-functional Software Architectures,
Nelson S. Rosa and George R. R. Justo and Paulo R. F. Cunha,
ACM Symposium on Applied Computing, 2001

THANK YOU

S. Lizeth Tapia Tarifa Realization of Models in Programming Languages 41/41

