
Facilitating Software Reuse

Using Design Science Research To
Develop Design Principles For

Implementing A Component Repository

Anastasia Bengtsson

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Facilitating Software Reuse

Using Design Science Research To Develop
Design Principles For Implementing A

Component Repository

Anastasia Bengtsson

© 2021 Anastasia Bengtsson

Facilitating Software Reuse

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

There is an increase in the development of generic software systems built
to serve multiple organizations and used for different purposes. DHIS2, a
generic web-based health management information system platform, is an
example of such systems and the focus of my thesis. The extensible core of
DHIS2 allows the development of complimentary web applications by outside
parties as a way of contributing to the DHIS2 platform. The challenge
here is that developing these web applications from scratch can be time-
consuming and resource-inefficient when similar applications are developed.
One way of addressing this challenge is by using the component-based
software engineering (CBSE) approach. The main idea behind CBSE is the
development of applications by reusing configurable software components.
However, previous research identified several challenges that pertain to
component reuse, including cataloging and distribution of reusable software
components, their trustworthiness, and discoverability.

My Master’s project’s practical aim was to design, develop, and
evaluate a component repository, DHIS2 Shared Component Platform, that
facilitates component reuse within the DHIS2 platform ecosystem. This
project involved close collaboration with developers in HISP East Africa
and the DHIS2 core team at the University of Oslo. The component
repository consists of a website (built using React) that aggregates
reusable components and two other modules that support the process of
component certification: a command-line interface (built using TypeScript)
to provide functionality for pre-certification, and a GitHub repository with
an automated certification workflow using GitHub Actions workflow.

This study used the Design Science Research (DSR) methodology within
a pragmatic research paradigm to contribute to the body of knowledge by
developing a set of theoretically and empirically grounded design principles.
These principles contribute to the body of knowledge on how component
repositories can be designed and developed in a context of a software
platform ecosystem. The established set of design principles addresses
software reuse challenges identified through empirical data analysis and
challenges discussed in the literature on CBSE. These principles address
component trustworthiness, component discoverability, the role of a certifier,
component repository adoption, its complexity, and maintainability.

Keywords: software reuse, component-based software engineering,
software platform ecosystem, design science research, design principles,
component repository, component certification, DHIS2

i

Where an exploratory researcher says, “Gee, that’s funny,” (...)
and a theoretical researcher shouts, "Eureka!" the successful
AS/E researcher exclaims. "It works!" (...).

(Briggs & Schwabe, 2011, p. 10)

ii

Contents

List of Figures viii

List of Tables ix

Glossary xi

Acronyms xiii

1 Introduction 1
1.1 Research context and motivation 1

1.1.1 DHIS2 Web application development 3

1.1.2 Component-based software engineering 3

1.1.3 Component repository in a software platform ecosystem 4

1.2 Research question . 5

1.3 Research aim . 5

1.4 Research objectives . 5

1.5 Research methodology . 6

1.6 Thesis structure . 6

2 Background 8
2.1 DHIS2 . 8

2.2 The HISP network . 9

2.3 DHIS2 Design Lab . 10

3 Literature review 11
3.1 Digital platforms . 11

3.2 Boundary resources . 14

3.3 Component-based software engineering 16

iii

3.3.1 Software component 19

3.3.2 Component-based software engineering for reuse process 20

3.3.3 Component-based software engineering with reuse
process . 21

3.3.4 Component acquisition 22

3.3.5 Component management and repository 22

3.3.6 Component certification 23

3.3.7 Component-based software engineering processes . . . 24

4 Kernel theories 25
4.1 Installed base cultivation . 25

4.1.1 Motivation for Installed base cultivation strategy . . . 26

4.1.2 Installed base cultivation 27

4.2 Software modularity . 28

4.2.1 Motivation for Software modularization 28

4.2.2 Software modularity 29

5 Research approach 33
5.1 Philosophical foundation . 33

5.2 Research methodology: Design Science Research 35

5.3 Research process . 38

5.4 Development of the design principles 40

5.5 Data collection . 40

5.5.1 Goals . 40

5.5.2 Participants . 41

5.5.3 Interviews and focus groups 41

5.6 Data analysis . 43

5.6.1 Thematic analysis . 43

5.7 Artifact evaluation . 46

5.7.1 Evaluation participants 50

5.7.2 Evaluation methods 53

5.8 Paradigmatic limitations . 56

5.9 Methodological limitations . 56

5.10 Ethical considerations . 57

5.11 Team management and group work 58

iv

5.12 Work distribution . 59

5.12.1 Contribution to SCP Website 59

5.12.2 Contribution to SCP Whitelist 60

5.12.3 Contribution to SCP CLI 60

5.12.4 User documentation 60

6 Artifact description 61
6.1 DHIS2 Shared Component Platform within the DHIS2

platform ecosystem . 61

6.1.1 SCP as a nested transaction platform 61

6.1.2 SCP as a boundary resource 62

6.2 Design considerations . 62

6.2.1 SCP’s design considerations in the context of CBSE
for reuse . 63

6.2.2 SCP’s design considerations in the context of compo-
nent certification . 67

6.2.3 SCP’s design considerations in the context of compo-
nent acquisition . 75

6.3 Software design approach . 76

6.4 The architecture of SCP . 76

6.4.1 SCP Website . 77

6.4.2 SCP CLI . 79

6.4.3 SCP Whitelist . 81

6.4.4 NPM Registry . 83

6.4.5 GitHub . 84

6.4.6 UNPKG . 85

6.5 Design principles . 85

6.5.1 Principle of component trustworthiness 86

6.5.2 Principle of balanced certification 86

6.5.3 Principle of component discoverability 87

6.5.4 Principle of installed base cultivation 87

6.5.5 Principle of orthogonality 88

6.6 Summary of the design principles 88

7 Evaluation 90
7.1 Accuracy . 90

v

7.2 Openness . 91

7.3 Performance . 91

7.4 Efficacy and usefulness . 92

7.5 Evaluation of the application of the design principles 94

7.5.1 Application of Principle of orthogonality 94

7.5.2 Application of Principle of component trustworthiness 95

7.5.3 Application of Principle of component discoverability . 97

8 Discussion 98
8.1 Design principles . 98

8.1.1 Summary of the design principles 98

8.1.2 Principle of component trustworthiness 98

8.1.3 Principle of balanced certification 101

8.1.4 Principle of component discoverability 104

8.1.5 Principle of installed base cultivation 105

8.1.6 Principle of orthogonality 106

8.2 Incentives for component reuse in the DHIS2 ecosystem . . . 107

8.3 Research validity . 110

8.4 Research limitations . 110

8.4.1 Lack of time . 110

8.4.2 Limited access to data 111

8.4.3 Design principles credibility 111

8.4.4 Design principles limitations 112

8.5 Reflection on team management and group work 112

9 Conclusion and future work 115
9.1 Conclusion . 115

9.2 Research contribution . 116

9.3 Future work . 116

9.4 Suggestions for further work on SCP 117

References 118

Appendices 126

A Detailed work distribution 127

vi

B SCP User Documentation 129

C SCP Tutorial 137

D Consent form 139

E Learning goals 143

F Interview guide 145

G Surveys 147

H Conference abstract 168

I Conference abstract 170

vii

List of Figures

3.1 Components of a software platform ecosystem. 13

5.1 DSR cycle diagram. 36

5.2 Research activities timeline. 39

5.3 A thematic map showing the relationship between the codes
and larger themes. 45

5.4 Example of thematic analysis for the global theme Software
reuse, its code and data sections. 46

5.5 Evaluation continuum in DSR. 47

5.6 Hierarchy of DSR goals and evaluation criteria. 48

5.7 Survey questions example. 54

6.1 Certification Process Classification Model. 73

6.2 Context diagram of the SCP’s architecture. 77

6.3 Component representation on SCP Website. 78

6.4 The structure of the list.csv file in SCP Whitelist repository. 82

7.1 SCP CLI unit test coverage report. 90

7.2 Survey result on component representation on SCP Website. 93

A.1 SCP Website work distribution. 127

A.2 SCP Whitelist work distribution. 128

A.3 SCP CLI work distribution. 128

viii

List of Tables

2.1 The HISP network. 9

3.1 Leading definitions of software components in research. 19

4.1 Summary of the concepts with regard to software modularity. 32

5.1 DSR contribution to knowledge. 37

5.2 Data collection methods. 39

5.3 SCP evaluation criteria. 49

5.4 SCP evaluation participants. 52

6.1 Overview of the certification options. 69

6.2 The SCP Website used interfaces. 78

6.3 The SCP CLI used interfaces. 81

6.4 The SCP CLI provided interfaces. 81

6.5 The SCP Whitelist used interfaces. 83

6.6 The SCP Whitelist provided interfaces. 83

6.7 NPM Registry provided interfaces. 84

6.8 GitHub provided interfaces. 84

6.9 UNPKG provided interfaces. 85

6.10 Design principle structure. 86

6.11 Established design principles. 89

ix

List of listings

6.1 Example of dhis2ComponentSearch property structure. . . . 79
6.2 SCP Whitelist workflow file. 82

x

Glossary

The definitions presented in this glossary are properly introduced and cited
in the body of this thesis.

application boundary resource boundary resource that enables interac-
tion between the platform core and third-party applications. 15, 16,
102, 117

boundary resources interfaces between the platform core and third-party
developers, that allow shifting design capabilities from platform owners
towards third-party developers. 3, 13–16, 62, 117

certification formal demonstration that a system or component complies
with its specified requirements and is acceptable for operational use.
i, viii, 18, 23, 24, 38, 41, 55, 60, 67, 68, 70–77, 79–84, 86–88, 90–92,
94–97, 99–104, 106, 107, 111, 115–117

certifier a person or an organization performing the process of component
certification. i, 23, 24, 41, 52, 60, 68–76, 80, 81, 86, 96, 99–102, 106,
107, 111

cohesion the degree to which the elements inside a module belong together,
a qualitative measure of consistency of purpose within a module. 30–
32, 54, 88, 89, 95, 106

component provider a developer that creates components for further
reuse. 4, 17, 21–24, 41, 49–52, 60–62, 65–69, 71–77, 79, 81, 83, 84,
87, 92, 93, 95, 96, 100–102, 104, 106–110, 115, 116

component user a developer that uses reusable components. 4, 21–24,
41, 49–52, 60–62, 66, 68, 70, 75–77, 87, 93, 95, 96, 98, 100, 102–104,
107–109, 115–117

coupling the measure of the strength of association established by a
connection from one module to another. 20, 30–32, 54, 88, 89, 95

development boundary resource boundary resource that support the
third-party development process. 15, 16, 26, 102, 105, 116, 117

xi

maintainability degree of effectiveness and efficiency with which a product
or system can be modified to improve it, correct it or adapt it to
changes in environment, and in requirements. 17, 28, 29, 31, 32, 76,
88, 89, 107

modularity degree to which a system or computer program is composed of
discrete components such that a change to one component has minimal
impact on other components. 19, 25, 28, 29, 40, 88

modularization a software design approach that implies dividing a
software system into multiple independent modules with well-defined
interfaces that describe interactions between the modules. 17, 28, 29,
31, 32, 88, 106, 112

social boundary resources boundary resources that play a supportive
role in third-party development and are usually knowledge-based. 14–
16

technical boundary resources boundary resources that provide technol-
ogy necessary for third-party development including APIs, software
development kits (SDKs), open data, and secure protocols. 14–16

unit testing the process of testing program components, such as methods
or object classes. 6, 49, 55, 90

xii

Acronyms

API Application Programming Interface. 3, 9, 15, 78, 80, 81, 83–85, 94, 95

B2B business-to-business. 12, 62, 108

B2C business-to-customer. 12

C2C customer-to-customer. 12

CBSE component-based software engineering. i, 1, 2, 4, 5, 11, 16–26, 40,
49, 51, 52, 63–68, 76, 88, 89, 96, 98, 103, 105, 107–109, 115–117

CLI command-line interface. viii, ix, 49, 55, 58–60, 67, 71, 76, 77, 79–85,
90–92, 95, 106, 107

CSS Cascading Style Sheets. 9, 59, 78

DHIS District Health Information Software. 8

DHIS2 District Health Information Software 2. i, xv, 1–3, 5, 6, 8–11, 13,
14, 25, 26, 38, 41–43, 50–52, 60–63, 65–72, 74–77, 79, 80, 85–87, 96,
98–102, 105, 107–112, 116, 117

DSR Design Science Research. i, 6, 25, 33, 35–38, 40, 43, 46, 47, 49, 51,
54, 56, 110, 111, 115

HISP Health Information Systems Programme. i, xv, 1–3, 5, 6, 8–10, 26,
34, 38, 41, 50, 58, 60, 62–65, 67, 68, 74, 85, 87, 94, 98, 99, 101, 104,
105, 107–111, 115–117

II information infrastructure. 25–28

NPM Node Package Manager. 55, 60, 64–71, 75–81, 83–85, 87, 91–95, 99,
100, 104, 105, 107, 109, 110, 115

SCP DHIS2 Shared Component Platform. i, viii–x, 2, 4–6, 11, 41, 45, 48–
51, 53–56, 58–63, 66–85, 90–97, 99, 100, 102, 105–107, 110, 112, 115,
116, 127, 128

SDK software development kit. 15

xiii

UI user interface. 38, 66, 69, 73, 78, 102, 105

UiO Universitetet i Oslo. 1–3, 9, 26, 60

xiv

Acknowledgments

First and foremost, I extend my heartfelt appreciation to my supervisor,
Petter Nielsen, for his academic guidance and personal support throughout
the project work and writing of this thesis. Your constructive comments,
insightful discussions, and warm encouragement were instrumental in
helping me finish this thesis.

I would also like to express my gratitude to my co-supervisor, Magnus Li,
for the tremendous amount of support and invaluable insights he gave the
whole DHIS2 Design Lab and me during the past two years. I want to thank
HISP UiO, the DHIS2 core team, the developers from HISP Mozambique
and HISP Tanzania, and the DHIS2 Design Lab for all the help with this
project. I would like to acknowledge my colleagues for all the determination
and effort, all the hard work done, and every line of code written to bring
our project through from conception to completion. My special thanks go to
Håkon André Heskja. Thank you for our fruitful and engaging discussions
and all the support you have given me.

Special thanks to Hanna Kongshem and Anders Brustad for doing all the
work as DHIS2 Design Lab coordinators, for their enthusiasm and optimism.

I am deeply indebted to my four anonymous evaluation participants, all
of whom expressed a genuine interest in my research and helped me conduct
an evaluation at the most inopportune time - during the Christmas season.

Lastly, I would like to thank my family and my sweet cat Wega for their
constant support and unconditional love.

xv

Chapter 1

Introduction

1.1 Research context and motivation

There is an increase in the development of generic software systems built to
serve multiple organizations and used for different purposes. Some generic
software examples are MATLAB, WordPress, Adobe Photoshop, and DHIS2
- a generic web-based health management information system platform
which is the foundation of this research.

The purpose of Health Management Information Systems is to support
routine management and generation of health information data that serves
as a basis for management decisions to foster improvements in health service
provision. Currently, DHIS2 is the world’s largest health management
information system, and it is being used by 73 low- and middle-income
countries (DHIS2, 2021a, para. 1). HISP is a global network that supports
and develops the DHIS2 platform, "the benefits of which will be felt by
all the countries that are part of the network" (PAHO eHealth, 2021,
para. 3). The core DHIS2 software development is coordinated by HISP
at the University of Oslo (HISP UiO) — "a professionalized software
development organization" (Adu-Gyamfi, Nielsen, & Sæbø, 2019, p. 73).
HISP is comprised of independent HISP groups, e.g., HISP South Africa and
HISP Tanzania; Universities, e.g., University of Dar es Salaam in Tanzania
and Universidade Eduardo Mondlane in Mozambique; Ministries of Health,
NGOs, global policy-makers, researchers, students and more (Adu-Gyamfi
et al., 2019, p. 75). One way of contributing to DHIS2 is by developing
additional applications on top of the DHIS2 generic software, extending its
user interface and functionality. One example of these applications is the
WaterpointUserManagement application built by HISP Tanzania (Mpande,
2018).

Building these web applications from scratch can be time-consuming.
It is also not resource-efficient when different HISP groups develop similar
web applications. One way of overcoming this challenge is by building those
web applications from existing components, which are the building blocks
those applications are constructed with, using a component-based software

1

engineering approach (CBSE). The process of software component reuse lies
at the core of CBSE, promising "high quality, low budget software with
shorter time to market" (Kaur & Singh, 2009, p. 1). My research focuses
on facilitating component reuse within the DHIS2 platform ecosystem by
developing a component repository, DHIS2 Shared Component Platform
(SCP). This component repository addresses identified challenges that the
HISP community faces with component reuse.

Modern Web development frameworks, such as React and Angular,
are built around the concepts of components. A common way to use
these frameworks is by building up web applications using components one
created or created by others. The use of these frameworks thus implies a
certain level of component-based software engineering. However, getting
the benefits of CBSE would require not just creating and using components
within one project or web application but reusing them across multiple web
applications.

Several HISP groups use these component-based web frameworks and
reuse components created internally and, in some cases, components created
by other HISP groups. However, there are several known barriers to the
process of component reuse discussed in the literature, e.g., poor component
cataloging and distribution, and lack of certification (Jalender, Govardhan,
& Premchand, 2010). The challenges pertaining to component reuse in the
HISP community identified during this project are limited component reuse
between HISP groups, poor component cataloging and discoverability, and
an absence of component quality assurance.

DHIS2 Design lab, a part of HISP UiO, responded to this challenge
of component reuse in the HISP community by proposing the design
and development of a component repository to facilitate the process of
component reuse in the DHIS2 platform ecosystem (Li, 2020, para. 2).
This task was carried out by me and two other Master’s students, Håkon
André Heskja and Mr. Bingley1, as our Master’s project. My team
and I digitally collaborated with developers in HISP East Africa and the
DHIS2 core team through interviews and focus groups to learn about
their application development process and component reuse practices. We
then applied this knowledge in practice when developing the practical
contribution of this thesis - DHIS2 Shared Component Platform. DHIS2
Shared Component Platform is built to tie the component reuse effort
together for the HISP community by providing functionality that allows
developers to share and find reusable components. Additionally, it provides
capabilities for component quality assurance. The theoretical contribution
of my thesis is a set of design principles for implementing a component
repository in a software platform ecosystem. This knowledge provides value
to the HISP community and can also help others who are building systems
that try to solve similar problems.

1This is a pseudonym that I have given to one of my colleagues to ensure his anonymity
and protect his privacy.

2

1.1.1 DHIS2 Web application development

DHIS2 is a generic open-source software platform designed around the
standard software platform architecture with two major elements - a stable
core and complementary applications. According to Tiwana (2014), "a
software platform is a software-based product or service that serves as a
foundation on which outside parties can build complementary products or
services" (p. 5).

A platform owner responsible for the governance of the platform core
facilitates third-party development through the provision of boundary
resources, such as APIs, open data, and secure protocols. The DHIS2
platform core is owned and governed by HISP UiO (Adu-Gyamfi et al., 2019).
According to Ghazawneh and Henfridsson (2013), boundary resources aim
at promoting third-party application development that is an integral part
of a thriving platform ecosystem. Additionally, their purpose is to give the
ability to platform owners to gain control in situations where third-party
development is harmful to the platform (Ghazawneh & Henfridsson, 2013).

DHIS2 web applications are created to address issues specific to their
context of implementation. Given the open nature of the DHIS2, web
application development is open to many different actors, including students,
the DHIS2 core team developers, implementation-level specialist groups,
etc. According to Ghazawneh and Henfridsson (2010), third-party app
development is "an innovation network distributed across multiple actors
and technologies" (p. 4) and is one of the strategies for value creation in the
ecosystem (Boland, Lyytinen, & Yoo, 2007; Chesbrough, 2003; Lyytinen,
Yoo, & Boland, 2015). This suggests that increasing the ease of third-party
application development will increase the value creation potential, essential
for a successful platform ecosystem - self-reinforcing and bringing long-term
value to its users.

1.1.2 Component-based software engineering

It is quite common for multiple software applications to share similar
functionality, even if the software applications themselves are vastly
different. An example could be functionality that handles file selection,
which can be relevant in many different applications where a user would need
to select a local file on his computer. One approach to improving the software
development process’s efficiency has been to reuse the same implementation
of some functionality, i.e., the code, in multiple software applications.
The idea being that this reused or shared functionality will only have
to be developed once, and the work required to implement the software
applications is reduced by reusing this functionality as it will not have to be
reimplemented by different application developers. Furthermore, with this
approach, maintenance becomes easier because defects and vulnerabilities
can be addressed once in the reusable component, and all developers can
get the updated components. Similarly, this approach makes it simpler

3

to roll out new features and functionality to developers. However, this
approach brings some challenges in that it makes developers dependent on
the continued maintenance of the components they use to develop their
software.

A specific means of achieving the reuse of software functionality is
component-based software engineering (Tiwari & Kumar, 2020). A software
component encapsulates some specific functionality and can be reused
in various applications that require this functionality. Component-based
software engineering covers the creation, maintenance, distribution, and use
of these software components (Capretz, 2005).

CBSE can be further subdivided into CBSE for reuse and CBSE with
reuse (Kotonya, Sommerville, & Hall, 2003). CBSE for reuse is concerned
with the process of creating software components for later reuse, and
CBSE with reuse is concerned with using reusable components to construct
applications (Sommerville, 2011). The concept of component provider refers
to those generally engaged in the process of CBSE for reuse (i.e., creating
components) and the concept component user refers to those generally
engaged in CBSE with reuse (i.e., using components). This study uses
these concepts to distinguish between the web application developers that
create and publish reusable components and the web application developers
that acquire and use reusable components to build web applications. It is
important to note that a developer can have both roles, i.e., creating reusable
components and reusing components to build web applications.

The purpose of DHIS2 Shared Component Platform is to facilitate the
component reuse process that lies at the core of CBSE; thus, the CBSE
body of knowledge played an important role in the design and development
of this platform.

1.1.3 Component repository in a software platform ecosys-
tem

Platform ecosystems are different from traditional businesses when it comes
to their structure, market potential, and management style (Tiwana, 2014).
While the boundaries of value creation in traditional business are well-
defined, platforms gain their value from a vast number of autonomous
participants. According to Tiwana (2014), a platform owner has only partial
control over a platform, thus requiring management through orchestration
and coordination, keeping the balance between platform control and
autonomy of application developers. Contrary to the command-and-control
strategy in traditional businesses, a platform owner should guide and
coordinate application developers, gently leading into desired direction
(Tiwana, 2014). This complex setting also has implications on a component
repository that should operate in it, as a component repository cannot
be adopted through a command-and-control management strategy in this
context. Additionally, within a platform ecosystem, reuse has to occur
between multiple independent organizations that could take on vastly

4

different roles. Thus the context of a platform ecosystem should be
considered during the design and implementation of a component repository
that should operate within this context.

1.2 Research question

In order to investigate how a component repository can be designed to
facilitate the component reuse process, the following research question was
established:

RQ: What are the essential design principles for implementing
a component repository that facilitates component reuse in a
software platform ecosystem?

1.3 Research aim

This project aimed at attaining two aims — a practical one and a theoretical
one. The practical aim was a response to a call to explore the possibility of
designing and developing a component repository that facilitates software
reuse in web application development in a software platform ecosystem.
Therefore a primary focus of the practical work in this project was the
design, implementation, and evaluation of such a repository in collaboration
with the DHIS2 core team and HISP groups’ developers involved in web
application development work.

The theoretical aim of my research was to identify and establish a set of
theoretically and empirically grounded design principles for implementing
a component repository in a software platform ecosystem. These design
principles contribute to the knowledge base on how component repositories
in the context of a software platform ecosystem can be designed and
developed.

1.4 Research objectives

The scope of this research includes the following research objectives that
drove the achievement of the research aims:

• Establish the objectives and requirements of the artifact (i.e., SCP)
by exploring and gaining an understanding of web application
development practices with the focus on component reuse processes
within the HISP community. To attain this objective, I used the
following methods: interviews and focus groups with HISP East Africa
developers and the DHIS2 core team.

• Review of the literature on software platform theory and CBSE in
order to develop a theoretical framework for the research.

5

• Design and develop a component repository in collaboration with
the DHIS2 core team and HISP East Africa developers using the
insights gathered from literature, the objectives, and requirements.
Development work, formative evaluations during focus group sessions,
and prototyping were done to attain this objective. This component
repository is the artifact that serves as the practical contribution of my
project. The design principles were established during this activity.

• Perform a final formative evaluation of the DHIS2 Shared Component
Platform, the artifact, according to several criteria and evaluate the
application of the established design principles. Surveys, expert
evaluation, and unit testing were chosen as evaluation methods.

• Establish the theoretical contribution of my thesis - design principles
for implementing a component repository in a software platform
ecosystem, and discuss them by considering the evaluation and the
literature review.

1.5 Research methodology

I have chosen Design Science Research (DSR) as overarching methodology
to guide the design and development of SCP. It is a problem-solving
methodology, meaning that it can be used to construct a new artifact as a
solution to an existing problem. While engaging in design and development
activities, a researcher is expected to develop knowledge that can be useful
for other researchers and practitioners to solve similar problems.

1.6 Thesis structure

Chapter 1 - Introduction
This chapter includes the research context and motivation, my research
question, research aim and objectives, and the structure of the
remainder of the thesis.

Chapter 2 - Background
This chapter provides additional background pertaining to the
conducted research.

Chapter 3 - Literature review
This chapter includes prior work that is relevant for the research and
the design of the artifact.

Chapter 4 - Kernel theories
This chapter includes theories that influenced the design and develop-
ment process of the artifact.

6

Chapter 5 - Research approach
This chapter includes the description of chosen research paradigm and
methods for the research and work distribution during the design and
development process.

Chapter 6 - Artifact description
This chapter includes a discussion on the artifact’s role in the platform
ecosystem, the artifact’s design considerations and its architecture,
and the set of established design principles.

Chapter 7 - Evaluation
This chapter details the artifact’s evaluation according to various
criteria and evaluation of the application of the established design
principles.

Chapter 8 - Discussion
This chapter presents the answer to the research question and discusses
it in light of the findings, evaluation and literature review.

Chapter 9 - Conclusion and future work
This chapter provides a conclusion to this study and offers suggestions
for future work.

7

Chapter 2

Background

In this chapter, I introduce DHIS2, its historical background, and elaborate
on its technical aspects. I also present DHIS2 Design Lab, which this project
is a part of.

2.1 DHIS2

The government of post-apartheid South Africa in 1994 planned to
reconstruct the health sector in the various provinces of the country; these
reconstruction plans included a project for developing a district-based health
system (Adu-Gyamfi et al., 2019). As part of this initiative, HISP was
founded, initially, as a "collaborative project involving the University of Cape
Town, the University of Western Cape and a Norwegian PhD candidate
from the University of Oslo" (Adu-Gyamfi et al., 2019, p. 74). The goal
was to design and implement a solution "for integrated and decentralized
information support for district health management" (Braa & Sahay, 2017,
p. 2). Braa and Sahay (2017) explain that the challenging part in this
was the extreme fragmentation of health data because of segregation of
healthcare systems as a consequence of racial and geographical segregation
in apartheid South Africa. The first DHIS was developed using Microsoft
Access and Visual Basic; it was first tested in the various districts of the
greater Cape Town area. By 1998 the first DHIS was scaled to the whole
Western Cape province, and in 2001 it was adopted by South Africa’s
Department of Health Care and was later implemented in all districts of
South Africa (Adu-Gyamfi et al., 2019). The expansion of DHIS uncovered
problems caused by the technology that the DHIS was built upon - the
system was dependent on Microsoft Windows and Microsoft Office, each
standalone installation of the system needed maintenance, and thus required
the presence of a large maintenance team (Adu-Gyamfi et al., 2019). In order
to address these challenges, the development of the DHIS2 was started at
the University of Oslo in 2005 and resulted in a system with a client-server
architecture supporting centralized maintenance and distributed software
development.

8

Currently, DHIS2 is used in 73 low- and middle-income countries, and
if its use by NGO-based programs is included in the count, then it is used
in more than 100 countries (DHIS2, 2021a, para. 2). The development of
DHIS2 is lead by HISP UiO, where the DHIS2 core team is based.

DHIS2 is an enterprise system, meaning that each country has to
implement its own local instance of DHIS2, subsequently taking full
ownership of their instance and the data within it (DHIS2, 2021a, para. 11).
DHIS2 is not only open-source and thus free of charge but also a software
platform with a modular layered architecture that allows the development
of applications that extend its core. It is a web application built using Java
technology, which implies that it "runs on any Java enabled web server or
servlet container, and can be accessed via a web browser over the Internet"
(DHIS2, 2021c, para. 2). Furthermore, it can be deployed in various ways
- on an online server, in the cloud, or in an offline setting (DHIS2, 2021c,
para. 2). DHIS2 provides RESTful Web API, allowing the development of
custom applications using web technologies such as JavaScript, HTML5, and
CSS (DHIS2, 2021c, para. 3).

2.2 The HISP network

HISP is "a global movement"(DHIS2, 2021b, para. 1) that provides support
to DHIS2 development, a local implementation that consists of the processes
of configuration, customization, and extension; and various training
programs (DHIS2, 2021b). The HISP network consists of HISP groups
that are "long term and trusted partners located in developing countries"
(Nielsen, 2021, para. 4) working in partnership with HISP UiO. This
collaboration includes various activities, such as the development of DHIS2,
applications for DHIS2; capacity building activities, including arranging
DHIS2 Academies; research and academic activities; and implementation
support (Nielsen, 2021, para. 4). The HISP network consists of different
regional groups as shown in Table 2.1.

HISP regional group HISP groups
HISP East Africa HISP Uganda, HISP Mozambique, HISP Tanzania,

HISP Rwanda, HISP Malawi, and HISP Ethiopia
HISP Southern Africa HISP South Africa
HISP West and Central
Africa

HISP West & Central Africa, and HISP Nigeria

HISP Asia and the
Pacific

HISP Vietnam, HISP Sri Lanka, HISP India, and
HISP Bangladesh

HISP Latin America &
the Caribbean

HISP Colombia

Table 2.1: The HISP network.

9

2.3 DHIS2 Design Lab

The DHIS2 design lab is a generic software design lab which aims at
strengthening "the usability and local relevance of the generic software
DHIS2 for end-users" (Li, 2019, p. 11). According to Li (2019), the DHIS2
design lab is "an entity somewhat independent" (p. 6) from the DHIS2
core team developers and HISP groups; however, the participants of the
lab are part of the projects that involve close collaboration with the HISP
community members including the DHIS2 core team and HISP groups. At
the time of writing this thesis, the lab consisted of one faculty representative,
a Ph.D. researcher, and more than 30 Master’s students studying computer
science at the Department of Informatics at the University of Oslo. As a
member of the DHIS2 design lab, I attended regular meetings to discuss the
lab’s ongoing projects, including practical and theoretical aspects, and share
our experiences. Participation in the lab made it possible to collaborate
with the HISP community members mainly through virtual group and one-
to-one interviews, and focus groups. Additionally, the lab has organized
various activities, such as thesis co-readings, that have helped me better
communicate my research.

10

Chapter 3

Literature review

This chapter introduces the literature of high relevance to this study,
underpinning the research presented in my thesis. Our artifact was built
to facilitate component reuse and, consequently, improve web application
development in the DHIS2 platform ecosystem. Therefore, in Section 3.1
and Section 3.2, I present the concepts and theory for understanding the
research context of our artifact: DHIS2 as a software platform, third-party
development as innovation, and SCP’s role as a boundary resource and as
a nested transaction platform. Section 3.3 on component-based software
engineering serves as the design theory, providing a theoretical foundation
necessary for understanding the process of component reuse, which was
guiding our design and development work.

3.1 Digital platforms

Many of the biggest and successful companies worldwide, such as Apple,
Amazon, and Facebook, have adopted a platform business model. The
main goal of this model as a means to value creation is to bring distinct
users together for interaction and transaction activities. For example,
Apple facilitates interaction between several different actors: third-party
application developers who supply the platform with applications; end-
users who purchase these applications; and different advertising companies
attracted by all the valuable data that can be used for marketing purposes.
Another known example is Steam, a digital game distribution platform
that brings together gamers to engage in multiplayer gaming and social
networking, game developers, and game publishers. A platform that enables
interaction between different kinds of users that bring value to one another is
usually characterized as multi-sided (de Reuver, Sørensen, & Basole, 2018).
Many digital platforms share the following common characteristics: they are
driven by technology, they enable interaction between distinct user groups,
and allow these groups to engage in certain activities (Constantinides,
Henfridsson, & Parker, 2018, p. 9; de Reuver et al., 2018, p. 125; Jacobides,
Cennamo, & Gawer, 2018, p. 5; Koskinen, Bonina, & Eaton, 2019, p. 320).

11

Digital platforms lie at the core of a platform ecosystem. Koskinen
et al. (2019) argue that platforms are "rarely isolated" (p. 323), and in
addition to the end-users, there are always different organizations, actors,
and regulations that surround a platform, forming its ecosystem. The
platform ecosystem model is concerned with the interactions between its
actors, focusing on how they engage with each other and generate value
(Constantinides et al., 2018, p. 1). Constantinides et al. (2018) further
add that digital infrastructures serve as a foundation for platform creation
and cultivation. Digital infrastructures are usually represented by resources
and organizational structures that are necessary for a platform to function.
The Internet, cloud services, and data centers are some examples of digital
infrastructures (Constantinides et al., 2018).

Koskinen et al. (2019) and Gawer (2009) distinguish between three
types of digital platforms: transaction platforms, innovation platforms, and
integration platforms. The first type, transaction platforms, according to
Koskinen et al. (2019), is "sometimes referred to as multi-sided markets
or exchange platforms" (p. 321). The purpose of such platforms is to
facilitate the exchange of products or services among different users, and
one of the most important features of transaction platforms (and digital
platforms in general) is network effects (Koskinen et al., 2019). Tiwana
(2014) defines network effects as a "property of a technology solution
where every additional user makes it more valuable to every other user
on the same side (same-side network effects) or the other side (cross-
side network effects)" (p. 25). In Steam, same-side network effects occur
when every new joining player creates value for the other players enabling
multiplayer gaming. The cross-side network effects in Steam occur when
game publishers publish newly developed games on the platform, attracting
potential players. After conducting a review of research on transaction
platforms in a marketing journal, Hänninen (2020) notes that many articles
focus on three different perspectives on transaction platforms based on the
transaction type. The first type, discussed by Hänninen (2020), is a business-
to-customer (B2C) transaction platform that focuses on intermediating
transactions between businesses and customers. Amazon is an example of a
B2C transaction platform. Second type is a customer-to-customer (C2C)
transaction platform that intermediates transactions between customers.
While Facebook and Finn.no marketplaces are B2C transaction platforms,
they can also be viewed as C2C platforms because their customers can
engage in buying and selling activities. The third type, a business-to-
business (B2B) transaction platform, is designed to enable transactions
between businesses. An example of a B2B transaction platform is the
Amazon Business marketplace that provides a venue for sellers who target
business buyers.

The second type of digital platform is innovation platforms (also known
as software platforms). Tiwana (2014) defines a software platform as
"the extensible codebase of a software-based system that provides core
functionality shared by apps that interoperate with it, and the interfaces
through which they interoperate" (p. 7). The main difference between

12

transaction and software platforms is the ability of software platforms to
provide a basis for innovation in the form of complementary products
developed by third-party developers or complementors. In the case of
DHIS2, web application development is inherently third-party development,
and web application developers are third-party developers.

Tiwana (2014) defines the main elements of a software platform
ecosystem (Figure 3.1) - a platform core (extensible codebase) and
complementary apps that interact with the platform core through interfaces,
namely boundary resources. Boundary resources and their types will be
further discussed in Section 3.2.

Platform core

App
(module, extension)

App
(module, extension)

App
(module, extension)

interface
 (boundary resource)

interface
 (boundary resource)

interface
 (boundary resource)

createscreates creates

Third-party
developer

(complementor)

governs

Platform owner
Platform

ecosystem

Figure 3.1: Components of a software platform ecosystem.
Note. Adapted from The rise of platform ecosystems (p. 6), by A. Tiwana,
MorganKaufmann. Copyright 2014 by Elsevier Inc.

Android and Apple are examples of software platforms, which provide a
foundation for platform innovation in the form of third-party applications.
Koskinen et al. (2019) state that studies within information systems and
engineering have a particular focus on this type of digital platforms and
their innovation capabilities. Koskinen et al. (2019) also underscore the
important role of the boundary resources in a software platform ecosystem
and the interplay between platform owners and third-party developers, as
these aspects directly impact platform innovation and value creation.

The third type of digital platform is integration platforms (also referred

13

to as integrated platforms). Koskinen et al. (2019) and Evans and Gawer
(2016) view integration platforms as a combination of the transaction and
software platform types. For example, Apple iOS can be viewed as an
integration platform as it has both the software platform surrounding the
applications for iOS and it has a nested transaction platform in the form of
the Apple App Store, and the Apple App Store would not make much sense
without the existence of Apple iOS. There are, of course, some exceptions
to this view, such as eBay, which is a transaction platform, but which is not
tied to any specific software platform.

My thesis focuses mainly on software platform and its ability to enable
platform innovation through boundary resources because our solution aims
to support third-party application development. Besides, I view the
component repository as a nested transaction platform within the DHIS2
software platform and argue for the importance of network effects (Section
6.1.1).

3.2 Boundary resources

Ghazawneh (2012) emphasizes the fact that recent research recognizes
the importance of third-party development as a contribution to value
creation in a platform ecosystem. Tiwana (2014) argues that the variety of
complementary applications makes platforms more desirable for their target
user groups. Therefore a platform aims to facilitate third-party development
activities and provide resources to support this activity (Ghazawneh,
2012; Tiwana, 2014). Boundary resources can be viewed as interfaces
between the platform core and third-party developers that allow shifting
design capabilities from platform owners towards third-party developers
(Ghazawneh, 2012). On the one hand, provided boundary resources aim
at promoting third-party application development that is an integral part
of a thriving platform ecosystem; on the other hand, their purpose is to
give the ability to platform owners to gain control in situations where third-
party development is harmful (Ghazawneh & Henfridsson, 2013). Therefore,
they play an important role in balancing platform innovation and platform
control and shape platform dynamics. Platform innovation is a key aspect
of generativity; thus, boundary resources play a key role in generativity.
Generativity is defined as "a technology’s overall capacity to produce
unprompted change driven by large, varied, and uncoordinated audiences"
(Zittrain, 2005, p. 1980). Zittrain (2005) indicates that innovative capacity
is driven by technology, while Msiska and Nielsen (2018) point out that
innovation is "always a collective and social activity" (p. 399-400). Given
this, generativity is socio-technical and can be viewed from technology-
oriented and social perspectives (Msiska & Nielsen, 2018). This socio-
technical nature is clearly expressed in boundary resources, as, according
to Ghazawneh (2012), they can be divided into two types: technical
boundary resources and social boundary resources. Technical boundary
resources supply third-party application developers with the necessary

14

technology such as APIs, software development kits (SDKs), open data, and
secure protocols, etc (Bianco, Myllarniemi, Komssi, & Raatikainen, 2014;
Ghazawneh, 2012). Social boundary resources, such as documentation and
guides, play a supportive role in third-party development and are usually
knowledge-based (Bianco et al., 2014). Bianco et al. (2014) argue that
there are two types of technical boundary resources - application boundary
resources and development boundary resources. The main difference between
these two types is that application boundary resources enable interaction
between the platform core and third-party applications, while development
boundary resources aim to support the third-party development process
(Bianco et al., 2014). An API is an example of an application boundary
resources. Tooling that supports application development and testing is
an example of development boundary resources. Bianco et al. (2014) state
that development boundary resources are not required in the ecosystem,
as they only play a supportive role, making software ecosystem "more
attractive" (p. 16).

Ghazawneh (2012) presents the "Boundary resource model" that provides
insights into the balance between the securing and resourcing drivers
behind boundary resource design. Ghazawneh (2012) states that his
research findings uncover four types of insights pertaining to resourcing and
securing - self-resourcing, regulation-based securing, diversity resourcing, and
sovereignty securing.

I will now provide a summary of these insights. The action of
self-resourcing occurs when the third-party developers develop their own
boundary resources. It usually happens because of the limitations of existing
boundary resources and platform governance leaning towards securing. As
an example of self-resourcing, Ghazawneh and Henfridsson (2013) discuss
the case when some developers jailbreaked the iPhone to be able to install
third-party native applications. Regulation-based securing is the act of
limiting third-party development through regulations that affect social
boundary resources. Apple’s application review process is an example of
this, where Apple decides whether or not an application will be published
in the Apple App Store (Ghazawneh & Henfridsson, 2013). Diversity
resourcing can be viewed as actions that extend platform capabilities to
stimulate development in new application areas. Apple’s actions to open
their platform to third-party developers by introducing an API and SDK
is an example of this, which enabled third-party developers to develop
their own applications (Ghazawneh & Henfridsson, 2013). The last insight,
sovereignty securing, is the platform owners’ actions to retain control
over their platform’s evolution. An example of such an action is Apple’s
introduction of additional terms in their license agreement which limited
the programming languages that can be used to develop applications for
the iPhone and thus made Adobe’s "Packager for iPhone," which converted
Flash applications to iPhone applications, obsolete, as applications that use
it would violate the license agreement (Ghazawneh & Henfridsson, 2013,
p. 184-185).

15

To summarize, there are two main types of boundary resources:
technical boundary resources and social boundary resources. Further,
technical boundary resources can be either application boundary resources
or development boundary resources. The role of application boundary
resources is to facilitate interactions between complementary applications
and platform core, while development boundary resources are to support
application development.

3.3 Component-based software engineering

In this section, I provide the review of the literature on component-based
software engineering, which serves as a design theory for the design and
development of our artifact. First, I will explain what CBSE is and why this
approach can be beneficial, elaborate on its challenges, and explain what a
software component is. Then I will discuss the CBSE for reuse process,
which involves creating reusable components, and CBSE with reuse process,
which focuses on using reusable components for building web application.
Additionally, I will discuss the process of component management that
involves various management activities for components and discuss the role
of a component repository. Furthermore, I will discuss the component
certification process and elaborate on its benefits.

Component-based software engineering came to light in the late 1990s
as a software development based on the idea of software reuse (Crnkovic &
Larsson, 2002, p. xxviii; Sommerville, 2011, p. 455). With its philosophy
"buy, don’t build" (Tiwari & Kumar, 2020, p. 21), CBSE aims at reusing
pre-constructed and available components, instead of putting time and
effort on developing them from scratch (Tiwari & Kumar, 2020). The
idea is to develop a software component and then keep reusing the
same component in other applications, instead of developing the same
functionality every time (Tiwari & Kumar, 2020, p. 21). Sommerville (2011)
discusses that the creation of this approach was driven by software designers’
dissatisfaction with object-oriented software development, as it did not
fulfill the expectations of the high occurrence of software reuse, as it was
meant to. Sommerville (2011) explains that in order to reuse object classes,
developers had to have comprehensive knowledge about their inner workings,
which had made the distribution or selling of class objects impractical.
Software components differ from class objects by having a higher level
of granularity, and they are usually larger and composed of multiple
object-classes (Crnkovic & Larsson, 2002; Sommerville, 2011). Software
components are characterized by information hiding (also known as data
hiding). ISO/IEC and IEEE (2017) defines information hiding as a "software
development technique in which each module’s interfaces reveal as little as
possible about the module’s inner workings and other modules are prevented
from using information about the module that is not in the module’s
interface specification" (p. 220). Component-based software engineering is
concerned with the process of developing and integrating loosely coupled

16

independent components into software systems (Sommerville, 2011, p. 453).

Software systems can become large and complex, and adoption of CBSE
approach can reduce its time to market, increase productivity, reliability and
scalability of a system, as well as improve its quality (Crnkovic & Larsson,
2002, p. xxviii; Jalender, Govardhan, & Premchand, 2010, p. 40; Kotonya
et al., 2003, p. 1; Szyperski, 2002, p. xxi; Tiwari & Kumar, 2020, p. 21).
CBSE has the following advantages:

Reusability. CBSE approach "relies on reusing [components] rather
than re-developing them" Tiwari and Kumar (2020, p. 25). Software
reuse is defined as a process of "building a software system at least
partly from existing pieces to perform a new application" (ISO/IEC &
IEEE, 2017, p. 385) and reusability as the "degree to which an asset
can be used in more than one system, or in building other assets"
(ISO/IEC & IEEE, 2017, p. 384).

Shorter development cycle. Tiwari and Kumar (2020) argue that
software reuse and support of modularization results in an increased
development speed and, consequently, a shorter development life cycle.

Maintainability. Software maintenance is a "totality of activities
required to provide cost-effective support to a software system"
(ISO/IEC & IEEE, 2017, p. 420). Such activities include adding new
functionality of removing and updating old features. Since software
components can be added and removed without affecting other parts
of the system, it becomes easier to maintain such a system. Moreover,
it is easier to maintain a system comprised of independent components
than "maintaining monolithic software" (Tiwari & Kumar, 2020, p. 25).

Improved quality and reliability. CBSE can also give an improvement
in quality and reliability of software, but only if reusable components
are pre-tested and qualified for reuse (Tiwari & Kumar, 2020, p. 25-
26).

However, CBSE approach has its challenges. The challenges I have
identified during the literature review are:

The challenge of Component specification. Crnkovic and Larsson
(2002, p. xxxi) assert that there is no universal definition of what a
software component is and how it should be specified. A software
component has two distinct parts - code and interfaces, which
are the only entry points of access to the component. Thus,
component provider must provide all the necessary information about
the component and its operations.

The challenge of Component trustworthiness. According to Som-
merville (2011), this challenge is concerned with software components
being black-boxes for end-users, making it impossible to detect undoc-
umented failure modes, unexpected non-functional behavior, or even

17

malicious code. Reusing such components may put a system at risk.
In order to address this challenge, one can use an approach called
component certification (also referred to as qualification).

The challenge of Component certification. Component certification is
an approach that aims to increase component trustworthiness. But
it is also a challenge in CBSE (Crnkovic & Larsson, 2002; Jalender,
Govardhan, & Premchand, 2010; Sommerville, 2011). For instance, it
is not clear who should take the role of an independent certifier, how
the components should be certified, and what metrics should be used.

The challenge of Composition predictability. Even if the attributes of
a component are completely and correctly specified, the attributes of a
system constructed from these well-specified components are undefined
without some rules of inference that makes it possible to derive system
properties from the attributes of components it is constructed from
(Crnkovic & Larsson, 2002, p. xxxii).

The challenge of Requirements trade-offs. When you build software
using existing components, you might have to make trade-offs between
the ideal requirements and available components. Sommerville (2011)
suggests that there is a need for "a more structured, systematic trade-
off analysis method to help designers select and configure components"
(p. 454).

The challenge of Tools support. Effective CBSE adoption requires
appropriate tooling, e.g., "component selection and evaluation tools,
component repositories, (...) component configuration tools, etc"
(Crnkovic & Larsson, 2002, p. xxxiii). Kotonya et al. (2003) suggest
that there is a need for tooling to support component reuse and
management.

Reusability and usability dissension. Crnkovic and Larsson (2002)
argue that for a component to be widely reusable, it has to be general
and sufficiently scalable, and adaptable, which may become an issue
for usability.

Prejudice against software reuse. Jalender, Govardhan, and Premc-
hand (2010) draw our attention to the fact that reuse is not properly
taught to computer science students, and students begin to associate
code reuse with cheating. "This initial educational bias often manifests
itself later in programmers’ careers as the suspicion of ’if I reuse it,
others will think I’m not smart enough to write it myself’" (Jalender,
Govardhan, & Premchand, 2010, p. 39; Nelson, 1996, p. 3).

Administrative impediments to reuse. Jalender, N.Gowtham, et al.
(2010) state that it is hard to manage, i.e., catalog, archive and
retrieve, reusable components "across multiple business units within
large organizations" (p. 6138). The authors add that developers
find it hard to find reusable components outside of their "immediate
workgroups" (p. 6138).

18

The challenge of Component repository maintenance. Tiwari and
Kumar (2020) state that the maintenance of a component repository
is a challenge in CBSE. The following aspects require attention:

– Process of identification of useful and outdated components.
– Process of publishing new components in a repository and

elimination of outdated components.
– Process of updating component information.
– Proper component versioning, i.e., supporting different versions

and version update of the same components. Szyperski (2002)
argues that there is a need to address the problem of proper
component versioning to ensure component compatibility.

3.3.1 Software component

The concept of a software component is the core element of CBSE. Accord-
ing to Tiwari and Kumar (2020), the Oxford Advanced Learner’s Dictio-
nary defines a component as "one of several parts of which something is
made" (Hornby, 1995), while Merriam-Webster dictionary defines it as "a
constituent part"(Merriam-Webster, 2019). Tiwari and Kumar (2020) view
component as an essential building block or unit in CBSE and present some
leading definitions of a software component by various researchers (Tiwari
& Kumar, 2020, p. 27-28). I have analyzed these definitions and extracted
key component aspects that these definitions comprise: independence/sepa-
ration, composability, deployment, modularity, interfaces, service/function,
encapsulation, deliverability, and replaceability. Based on this, I have chosen
three definitions that cover all these key aspects (Table 3.1).

Definition Source
1 Szyperski: "A software component is a unit of

composition with contractually specified
interfaces and context dependencies only. A
software component can be deployed
separately and is subject to composition by
third parties"

(Szyperski, Gruntz, &
Murer, 2011, p. 41)

2 OMG: "A component is a modular,
deployable, and replaceable part of a system
that encapsulates implementation and exposes
a set of interfaces"

OMG as cited in
Tiwari and Kumar
(2020, p. 27)

3 Brown: "A software component is an
independently deliverable piece of
functionality providing access to its services
through interfaces"

Brown (2000, Chapter
4.4, para.3)

Table 3.1: Leading definitions of software components in research.
Note: Adapted from Component-Based Software Engineering: Methods and
Metrics, (p.27) by Tiwari and Kumar (2020). Taylor & Francis Ltd. Copyright
2020 by CRC Press.

19

The essential properties of a component, namely interfaces, services, and
deployment techniques, should be considered when designing and developing
software components (Kotonya et al., 2003; Lau, 2018; Tiwari & Kumar,
2020). Interfaces define the way software components communicate with the
other parts of the system. They are used for passing data, instructions, and
control sequence between the components and affect the degree of coupling
in the system (Kotonya et al., 2003; Tiwari & Kumar, 2020). According
to Kotonya et al. (2003), a component has two kinds of interfaces: required
interfaces that are needed for a component to properly function and provided
interfaces that the component realizes for interaction with other components.
A software component is developed to serve some specific purpose that serves
as a selection criterion when the component would be chosen for reuse in
a different system or application. Therefore, a component should provide
"some desired and defined service (set of services) or functionality (set of
functionalities)" (Tiwari & Kumar, 2020, p. 29). Kotonya et al. (2003) define
a service as "an abstraction of a set of functions that is designed to achieve
some logical purpose" (p. 3). Kotonya et al. (2003) provide an example of a
printing service that provides functionality related to printing that can be
offered through a set of interfaces, such as printing files, installing a new
printer device and etc. Tiwari and Kumar (2020) conclude that services
must have a well-defined purpose, be robust and reliable, and be efficient
with regard to performance and adaptability. Software components are
deployable units in CBSE, therefore deployment techniques must be in place
which specifies how a component is deployed into a component framework
(Crnkovic, Hnich, Jonsson, & Kiziltan, 2002, p. 38; Szyperski, 2002, p. 41;
Tiwari & Kumar, 2020, p. 30).

3.3.2 Component-based software engineering for reuse pro-
cess

The component-based software engineering for reuse process focuses on two
goals: development of reusable components and taking necessary steps to
make them available for further reuse (Kotonya et al., 2003; Lau, 2018;
Sommerville, 2011; Tiwari & Kumar, 2020).

Reusable components usually emerge during the development of some
applications. CBSE for reuse requires effective mechanisms for component
"harvesting" (Kotonya et al., 2003, p. 4), a process that involves analysis of
software applications to determine whether some parts of the implementa-
tion could be separated into independent, standalone modules suitable for
further reuse (Kotonya et al., 2003). After the extraction of these mod-
ules, it usually necessary to go through a process of generification, removing
"application-specific features and interfaces" (Tiwari & Kumar, 2020, p. 464)
that might not be necessary for another context, increasing component’s
reusability.

When all the necessary work in terms of generification has been done, a
software component should be prepared to be moved to a component storage.

20

Several authors use the term "component repository" to refer to such storage
unit (Crnkovic & Larsson, 2002, p. 321; Kotonya et al., 2003, p. 4; Lau, 2004,
p. 120; Tiwari & Kumar, 2020, p. 30). Some component-based development
models define the process of submission of components to a storage unit as
publishing or archiving (Crnkovic & Larsson, 2002, p. 233; Tiwari & Kumar,
2020, p. 38, 45). Component repository contains both the components and
their metadata, component interfaces, and other necessary information for
proper component cataloguing and further reuse (Sommerville, 2011, p. 461;
Tiwari & Kumar, 2020, p. 30). Therefore, component providers have to make
sure they provide this information before component publishing.

3.3.3 Component-based software engineering with reuse
process

Component-based software engineering with reuse involves the use of
existing components to build software. This process’s main activities are
acquiring reusable components through the process of component acquisition
and integrating them with other components to construct a software
system. The process of CBSE with reuse starts with the development of
user requirements (Sommerville, 2011). Sommerville (2011) recommends
developing a complete set of requirements for a system while maintaining
a high degree of flexibility because it makes it easier to identify as many
components for reuse as possible. The next step is the identification of
candidate components that meet the developed requirements. In some cases,
the initial requirements require modification depending on the components
that are available for reuse, but this approach is considered radical
(Christiansson, 2002). After that, one can proceed to the architectural
design phase. Further, one can repeat the activity of identifying candidate
components because some of the previously identified components may
become unfit for the system.

Similarly to Sommerville (2011), Crnkovic and Larsson (2002) also divide
the development process into several stages, including system requirements
specification, identification of initial components among the component
candidates, performing architectural analysis, and a repeating step to check
whether selected components are a good fit for a system. Moreover,
component users should also assess whether candidate components should
be adapted, or new components should be developed (Christiansson, 2002).

In this project, we only focus on the process of component acquisition,
as our artifact provides the functionality for finding reusable components
and does not cover the process of building web applications using these
components. Thus, I decided to discuss the process of component acquisition
separately in Section 3.3.4.

21

3.3.4 Component acquisition

The component acquisition process involves the acquisition of reusable
components for further reuse in the CBSE with reuse process. The first step,
component search, includes the identification of candidate components that
could satisfy the established set of requirements. Component users would
first look at existing in-house components, then at third-party components
that are already being used or third-party components that are not being
used (Sommerville, 2011). According to Sommerville (2011), third-party
components from trusted sources would usually be preferred as this would
make the component validation process easier. Some software companies
create and manage their own component repositories and exclusively use
these components to avoid components developed by external component
providers (Sommerville, 2011, p. 466). The second step, component
selection, involves selecting a component from the candidates identified
during the component search process (Sommerville, 2011). Tiwari and
Kumar (2020, p. 31) note that developers tend to select the components
based on the requirements without considering other important factors
like the degree of reusability, component testing efforts, the scope of
maintenance, and scalability. Lau (2004) states that level of component
granularity in a component repository impacts component selection because
component users essentially look for components of a similar size to the
problem being solved. The third step, component validation, involves
validating that a selected component fulfills the original requirements and
is suitable in the system being developed (Crnkovic & Larsson, 2002;
Sommerville, 2011). Component validation usually involves testing the
component in some way. Ideally, the component should be tested integrated
with other components that it will interact with to ensure there are no
undesirable emergent properties from such integration.

3.3.5 Component management and repository

Overcoming a challenge of storage and retrieval of reusable software
components is essential to successfully adopting the CBSE approach.
Sommerville (2011) indicates that a component repository is part of the
component management process and suggests that components may be
stored in a component repository that includes both the components and
their specification. Kotonya et al. (2003) argue that there is a need
for a "centralized management of reusable, shareable components" (p.4)
and "establishment of a repository for maintaining the information about
available reusable components" (p. 4). "Component management process
is concerned with management (...) of reusable components, ensuring
they are properly cataloged, stored, and available for reuse" (Sommerville,
2011, p. 461). Tiwari and Kumar (2020) define component repository
as a database that contains the component and its metadata, component
interfaces, and other necessary information. Crnkovic and Larsson (2002)
state that a component repository stores components and their descriptions,

22

including component versioning, and allows component acquisition. Lau
(2018) also states the necessity of a component repository and argues that
the components should be developed, cataloged, and stored in such a way
that allows further retrieval, e.g., as a binary or as a source code. Tiwari
and Kumar (2020) claim that component repositories require maintenance
in order to ensure their consistency and efficiency, and currently, repository
maintenance is one of the challenges in CBSE.

3.3.6 Component certification

The component certification process is part of component management and
focuses on certifying that components have specific attributes or qualities.
In particular, trustworthiness, specifically in that it has no malicious code,
complies with specification and standards, that it has accurate user and
design documentation, specific performance characteristics, and no defects.
Heineman and Councill (2001) explain that if components placed in a
component repository lack a proper description and do not comply with
their specification, it results in a decrease of component trustworthiness
and their extensive reuse. Furthermore, the availability of a component’s
source code would improve the situation, because component user would be
able to inspect component’s source code before taking it in use. However,
if a component provider changes the source code of a component without
documenting these changes in a component specification, it might cause side
effects. Heineman and Councill (2001) claim that introducing component
certification can reduce the risks associated with untrustworthy components.
Sommerville (2011), Crnkovic and Larsson (2002), and Jalender, Govardhan,
and Premchand (2010) agree on that components need to be trustworthy to
make people more comfortable with software reuse.

ISO/IEC and IEEE (2017) defines certification as a "formal demonstra-
tion that a system or component complies with its specified requirements
and is acceptable for operational use" (p. 63), and the person or organization
performing this process is referred to as certifier. Heineman and Councill
(2001) suggest that such formal demonstration could be "a signature on a
test summary form or report, a mark applied to the [component], or a cer-
tificate that accompanies the [component]" (p. 701). Tiwari and Kumar
(2020) indicate the importance of the component quality assessment, which
includes identification and definition of quality attributes, which is "a broad
area with a good deal of scope" (p. 94), and definition of quality metrics.
Crnkovic and Larsson (2002) note that there is "a belief that certification
means absolute trustworthiness, it in fact merely provides the results of tests
performed and a description of the environment in which the tests were per-
formed" (p. xxxii).

Heineman and Councill (2001) and Sommerville (2011) point out the
importance of independent assessors, meaning that a component provider
cannot certify his own components. Previous research shows that component
certification is a major challenge in CBSE, and there is a clear lack

23

of standard procedures and methods to certify component’s validity and
trustworthiness (Crnkovic & Larsson, 2002, p. xxxii; Jalender, Govardhan,
& Premchand, 2010, p. 39; Mohammad, 2011, p. 135; Sommerville, 2011,
p. 455; Tiwari & Kumar, 2020, p. 95). One of the challenges pertaining
to certification is the role of component certifier (Jalender, Govardhan,
& Premchand, 2010). Sommerville (2011) wonders who’s responsibility it
would be, if the component wouldn’t operate as certified - would one blame
component provider or the component certifier? Mohammad (2011) claims
that component certification is a challenging activity and suggests further
research that can address the question of certifier’s trustworthiness, ways
to ensure that the component has not been modifier after certification, and
how component modification affects certification.

3.3.7 Component-based software engineering processes

To summarize the Section on CBSE, I present an overview of the CBSE
processes and roles. The CBSE processes:

The CBSE for reuse process involves the development of components
with the aim that others reuse these components. A person performing
this process is referred to as a component provider.

The CBSE with reuse process involves the use of existing components
(i.e., reuse) to build software. A person performing this process is
referred to as a component user.

The Component acquisition process involves the acquisition of reusable
components for further reuse in the component-based software
engineering (CBSE) with reuse process.

The Component management process involves various management
activities for components, such as ensuring proper cataloging and
storage of the components. Components may be stored in a component
repository.

The Component certification process involves certifying that compo-
nents have some specific attributes or qualities, such as trustworthi-
ness.

The CBSE roles:

Component provider is a developer that creates reusable components
for further reuse and is engaged in the CBSE for reuse process.

Component user is a developer that uses reusable components and is
engaged in the CBSE with reuse process and the process of component
acquisition.

Certifier is an independent third-party (a person or an organization)
that performs certification and is engaged in the component certifica-
tion process.

24

Chapter 4

Kernel theories

Kernel theories are defined as "well-established theories in the natural and
social sciences, which may exert some influence in the design process and
should be considered by the researcher" (Dresch, Lacerda, & Antunes Jr,
2015, p. 78). In Design Science Research methodology, kernel theories are
used in conjunction with the main design theory, which is CBSE in my case,
and influence the design and development of an artifact. In my research,
I introduce two kernel theories - installed base cultivation and software
modularity. In Section 4.1.2, I describe and motivate the installed base
cultivation strategy that we used to increase the likelihood of the artifact’s
adoption. In Section 4.2.2 on software modularity, I present and motivate a
modular approach to software development that was used in our project as
part of the installed base cultivation strategy.

4.1 Installed base cultivation

The theory on installed base cultivation proposed by Hanseth and Lyytinen
(2010) is a design approach for the development of complex IT systems,
namely Information Infrastructures (II). In my research, I view DHIS2
as a software platform; however, it is also possible to look at it from
the information infrastructure perspective. Hanseth and Bygstad (2018)
explain that platforms are discussed based on their "architecture/governance
configuration" (p. 3), i.e., a stable, extensible core governed by a single
owner and peripheral complementing apps created by a large number of
third-party developers. Hanseth and Lyytinen (2010) define II as "a shared,
open (and unbounded), heterogeneous and evolving socio-technical system
(which we call installed base) consisting of a set of IT capabilities and their
user, operations and design communities" (p. 4). According to Hanseth
and Bygstad (2018), information infrastructures are complex socio-technical
systems characterized by a large number of vendors and heterogeneous users.
However, II lacks centralized control, which is not the case for software
platforms.

I will now explain how DHIS2 fits the definition of II proposed

25

by Hanseth and Lyytinen (2010), which will enable the analysis and
interpretation of DHIS2 from the II theoretical lens. First, DHIS2
is shared by multiple actors in the community, such as ministries of
health, universities, developers, end-users, and various non-governmental
organizations. DHIS2 is also open, meaning that "new components can be
added and integrated with them in unexpected ways and contexts" (Hanseth
& Lyytinen, 2010, p. 4) and "there are no clear boundaries between those
that can use an II and those that cannot" (Hanseth & Lyytinen, 2010,
p. 4). DHIS2 is open-source software, and its code can be found on GitHub,
meaning it is fully open for inspection and forking, allowing developers to
copy the source code and engage in independent development. There are no
limitations on who can use DHIS2 and develop extensions for it. Hanseth
and Lyytinen (2010) explain that II are heterogeneous, as they consist of
different components "of very different nature" (Hanseth & Lyytinen, 2010,
p. 4). DHIS2 is a heterogeneous socio-technical system as it includes multiple
actors I previously mentioned and various technical components. Further,
as a platform that is generative in nature, DHIS2 is evolving by virtue of
being extensible, i.e., providing development capabilities to the other actors
in the ecosystem.

Regarding control and governance, DHIS2’s ecosystem is different from
centralized digital platform ecosystems controlled by a single entity. Hein et
al. (2020) explain that in software platform ecosystems like Facebook and
SAP Cloud Platform, the power is centralized, and the platform owner is
a single governance authority. In the case of DHIS2, while the platform
core is controlled and governed by HISP UiO, their governance does not
extend to the ecosystem as a whole due to in-country ownership, control,
and governance of DHIS2 instances.

4.1.1 Motivation for Installed base cultivation strategy

In this section, I motivate the relevance of this strategy to the context of this
project. Our practical research aim was to design and develop a component
repository to be used as a development boundary resource to support web
application development in the HISP community. First, while the DHIS2
core team maintains centralized control of the DHIS2 platform core, there is
a lack of centralized control over web application development. Therefore,
this complex setting only allows for a change in an evolutionary manner, a
bottom-up approach considering the existing infrastructure already used by
web application developers. Second, a component repository is an entity that
does not exist on its own. It is a fundamental part of the CBSE approach,
meaning that the repository would be used by the developers who engage in
CBSE and consequently integrated into their component reuse practices and
technologies, which constitute the installed base. Given that the practical
problem of this study was to build a component repository, I assume the
existence of some level of CBSE in the HISP community. Therefore, such a
repository should not be built from scratch but instead built on top of what
already exists and is already used by developers, or stated differently, built

26

upon the installed base.

4.1.2 Installed base cultivation

Hanseth and Lyytinen (2010) argue that the present IT systems are complex,
thus requiring new design approaches that can guide the development of
these complex IT systems, referred to as information infrastructures. Nielsen
(2006) explains that IIs are complex in a number of ways - they are open
and heterogeneous, and this, combined with the fact that they consist of
numerous diverse components, make them "inherently uncontrollable" (p. 1);
expansion brings new interdependencies to the II. Additionally, they are
often developed in a distributed fashion. Gare (2010) and Nielsen (2006)
argue that

IIs do not develop due to planned and controlled actions by
some developers, but rather in a process imbued with surprises,
blockages, diversions, side effects, and vicious circles, as well as
inherent tensions between the need for universal standards and
locally situated practices. (Gare, 2010, p. 28; Nielsen, 2006, p. 2)

To address the complexity of II, Hanseth and Lyytinen (2010) propose
a design theory with a set of design principles and rules to guide the
development of complex IT systems. As opposed to the ’design from scratch’
strategy, their design theory focuses on the installed base cultivation, i.e.,
building on what already exists, for example, end-users and their practices,
standards, regulations, and technology (Hanseth & Lyytinen, 2010, p. 15).
The theory raises two problems which must be addressed - bootstrap problem
and adaptability problem. With regard to bootstrap problem, Hanseth and
Lyytinen (2010) state that a large number of users increase II’s value;
therefore the designers of II should develop solutions that drive the adoption
when the user base is small or does not exist. This means addressing the
needs of the existing user base before "addressing completeness of (...) design
and scalability" (Hanseth & Lyytinen, 2010, p. 2). When the II is growing,
and its user base is expanding, designers should be able to continuously
improve the existing design based on the users’ demands and needs. This
requires technical and social flexibility of II and is defined as adaptability
problem (Hanseth & Lyytinen, 2010, p. 2).

To address the bootstrap problem, Hanseth and Lyytinen (2010)
encourage designers to follow these design principles (Hanseth & Lyytinen,
2010, p. 9):

1. Design initially for usefulness

2. Build upon the existing installed base

3. Expand the installed base by persuasive tactics to gain momentum

27

According to Hanseth and Lyytinen (2010), designing directly for usefulness
implies focusing on a small group of users and developing a solution that can
be beneficial to this user group. To gain the first adopters, designers should
favor simple solutions that are easy to design, develop, and learn. Further,
building upon the installed base implies utilizing the existing infrastructure
that is in use by the targeted user groups, as this approach decreases
adoption barriers and learning costs (Hanseth & Lyytinen, 2010, p. 10).
With regard to the third design rule of installed base expansion, Hanseth
and Lyytinen (2010) claim the importance of user base growth to generate
positive network effects, while the development of the new functionality
should happen only when it is necessary.

In order to address the adaptability problem, Hanseth and Lyytinen
(2010) encourage designers to follow these design principles (Hanseth &
Lyytinen, 2010, p. 9):

1. Make the organization of IT capabilities simple

2. Modularize the II

According to Hanseth and Lyytinen (2010), the first principle Make the
organization of IT capabilities simple, encourages designers to keep their
architectural designs simple and reduce their technical complexity, e.g.,
by having fewer technical elements and interconnections between them,
adopting encapsulation, and using simple protocols. Further, the authors
encourage designers to develop "loosely coupled sub-infastructures" (Hanseth
& Lyytinen, 2010, p. 14), thus embracing modular design to accommodate
the growth of II. The modular approach allows achieving II design stability,
by "localizing the change and permitting fast and deep change in parts of
the system" (Hanseth & Lyytinen, 2010, p. 7). To summarize, the proposed
theory offers a bottom-up approach to design, focusing on installed base
utilization.

4.2 Software modularity

4.2.1 Motivation for Software modularization

Section 4.2.2 explains how one can use an approach called modularization to
achieve a high degree of software modularity as a way to reduce the system’s
complexity and increase its maintainability. Modularity is chosen as a kernel
theory because this approach is part of the installed base cultivation strategy
to address the adaptability problem. The architecture of a component
repository should be built to allow improvements to the existing design based
on users’ demands and needs. Additionally, this approach was beneficial to
us as developers and is expected to be useful for someone who will eventually
take over this project and continue developing and maintaining it.

28

4.2.2 Software modularity

Designing and developing a high-quality software system is a complex
and demanding task. ISO/IEC 25010 (2011) standard defines quality
of a system as "the degree to which the system satisfies the stated
and implied needs of its various stakeholders, and thus provides value"
(p. 358). The product quality model defined by ISO/IEC 25010 (2011)
consists of eight quality characteristics, and one of them is maintainability.
According to ISO/IEC 25010 (2011), maintainability "represents the degree
of effectiveness and efficiency with which a product or system can be
modified to improve it, correct it or adapt it to changes in environment,
and in requirements" (p. 258). This characteristic is important, as software
is inherently designed, developed, and maintained by people. Even if the
software has a high degree of functional suitability, i.e., meeting the needs
and requirements of its users, poorly designed architecture increases software
complexity, making it difficult for its creators and maintainers to understand
and predict the system’s behavior.

One way of reducing software complexity and increase its degree of
maintainability is by adopting modularization. Modularization is a software
design approach that implies dividing a software system into multiple
independent modules with well-defined interfaces that describe interactions
between the modules (Bourque, Fairley, & IEEE Computer Society, 2014,
p. 2-3). This approach allows achieving a high degree of software modularity,
which is, according to ISO/IEC and IEEE (2017), defined as "a degree to
which a system or computer program is composed of discrete components
such that a change to one component has minimal impact on other
components" (p. 279).

The benefit of composing software from simple and independent modules
has been known since the 1960s when L. Constantine first presented the
idea of software modularization in his paper "Structured Design", written
in collaboration with W. Stevens and G. Meyers (Stevens, Myers, &
Constantine, 1974). The authors observed that software composed of simple
and independent modules was "easiest to implement and change" (p. 116)
because "problem solving is faster and easier when the problem can be
subdivided into pieces which can be considered separately" (p. 116). The
modules used to construct modular systems still need to be connected.
Having fewer and simpler connections between modules brings several
benefits to the overall system. It reduces the impact that changing one
module has on other modules. For example, changing one module would not
require you to change other modules. It prevents errors from propagating
from one module to other modules; for example, if one module is broken, it
would not affect the other modules. Moreover, it makes it simpler to refactor
or change the system. For example, if we have one module that many other
modules depend on, it would be hard to remove it from the system.

The number of connections between the modules and the degree to which
each connection associates two modules impacts the software’s complexity.

29

The degree to which modules are associated with each other is generally
referred to as coupling. Stevens et al. (1974) define coupling as "the measure
of the strength of association established by a connection from one module
to another" (p. 117). Eder and Schrefl (1995) define coupling as "a measure
of the interdependencies between different modules" (p. 2) and state that
a well-designed system has to have loose coupling (also referred to as low
coupling). Loose coupling implies a simpler or weaker association between
two modules and is considered preferable, while the tight coupling is not
(Booch et al., 2001; Hunt & Thomas, 2000; Ingeno, 2018; Tiwana, 2014).

With regard to software design, cohesion is defined as "a measure of the
strength of association of the elements within a module" (ISO/IEC & IEEE,
2017), or, simply put, "the degree to which the elements inside a module
belong together (...), a qualitative measure of consistency of purpose within
a module" (Ingeno, 2018, p. 172). Since cohesion is a degree and not a
binary value, there are different degrees of cohesion; these different degrees
of cohesion also correspond to different types of cohesion (Ingeno, 2018).
As opposed to coupling, a higher degree of cohesion is preferable (Eder &
Schrefl, 1995; Hunt & Thomas, 2000; Ingeno, 2018; Stevens et al., 1974).

Ingeno (2018) discusses various principles and practices that software
architects can use to design high-quality software applications. The author
uses the concept of orthogonal software to refer to well-designed software
comprised of independent modules and states that the modules in orthogonal
software have two key attributes - loose coupling and high cohesion (Ingeno,
2018, p. 168). The concept of orthogonality originally comes from geometry,
where two Euclidean vectors are considered orthogonal if they meet at
the right angle without intersection, thus being independent of each other
(Hunt & Thomas, 2000; Ingeno, 2018). Hunt and Thomas (2000) state
that in computing, the concept of orthogonality came to "signify a kind of
independence and decoupling" (p. 57).

There are several ways to achieve loose coupling between software
modules. When implementing a change in one of the modules, one can
assess how localized this change is, i.e., determining whether this change
would affect only this specific module, or would there be an impact on the
entire system (Hunt & Thomas, 2000). If a change is not localized and
affects the rest of the system, it is an indication of tight coupling, and then
the reasons behind it should be analyzed to determine what changes in the
system’s design should be done to eliminate this issue. Therefore, continuous
assessment of the system could help to achieve loose coupling. Law of
Demeter, or "principle of least knowledge," is a design method to achieve
loosely coupled modules in a system (Ingeno, 2018, p. 171). I. Holland
proposed this guideline in 1978, and its goal "is to organize and reduce
dependencies between [modules]" and the achievement of high modularity
(Lieberherr & Holland, 1989). The main idea behind Law of Demeter is that
a module should only know and communicate with as few other modules
as possible, and only when such knowledge or communication is essential
(Ingeno, 2018; Lieberherr & Holland, 1989). According to Hunt and Thomas

30

(2000), following the guidelines of Law of Demeter will make your system
adaptable and robust, as well as having fewer errors.

As mentioned before, there are various types of cohesion, and each
of them representing a different degree, from lowest and less desirable to
highest and most desirable. High cohesion allows reusability of the module,
increases its maintainability and testability (Ingeno, 2018). According to
Ingeno (2018), to achieve high cohesion, one should make sure that each
module in the system has its own single purpose and that the elements
within that module should all contribute to it. Elements that do not fulfill
these criteria should either be moved to a new module or to one of the other
existing modules that serve the same purpose (Ingeno, 2018). An example of
cohesive software design that is a system composed of high cohesion modules
could be a system for predicting future energy consumption with neural
networks. Such a system would have several independent modules, one for
data pre-processing, one for building a training model, and so forth. A
similar system with a low degree of cohesion within modules would combine
the functionality of pre-processing and for building a data training model in
one module.

In this section, I have described modularization, which aims at reducing
software complexity and increasing its maintainability. I have also outlined
the concepts of coupling and cohesion and the importance of low coupling
and high cohesion in modular systems. A summary of the most important
concepts introduced in this chapter can be seen in Table 4.1.

31

Concept Definition
Quality "The degree to which the system satisfies the stated

and implied needs of its various stakeholders, and
thus provides value" (ISO/IEC 25010, 2011, p. 358)

Maintainability "The degree of effectiveness and efficiency with
which a product or system can be modified to
improve it, correct it or adapt it to changes in
environment, and in requirements" (ISO/IEC 25010,
2011, p. 258)

Modularization A software design approach that implies dividing a
software system into multiple independent modules
with well-defined interfaces that describe
interactions between the modules (Bourque et al.,
2014)

Modularity "Degree to which a system or computer program is
composed of discrete components such that a change
to one component has minimal impact on other
components" (ISO/IEC & IEEE, 2017, p. 279)

Coupling "The measure of the strength of association
established by a connection from one module to
another" (Stevens et al., 1974, p. 117)

Cohesion "The degree to which the elements inside a module
belong together (...), a qualitative measure of
consistency of purpose within a module" (Ingeno,
2018, p. 172)

Orthogonal software Well-designed software comprised of independent
modules (Ingeno, 2018, p. 168)

Table 4.1: Summary of the concepts with regard to software modularity.

32

Chapter 5

Research approach

This chapter introduces the research paradigm of this study and elaborates
on its ontological, epistemological, and methodological assumptions. In
Section 5.2, I provide a general description of DSR methodology, and in
Section 5.3, I explain how it was applied in our project. I also discuss
research methods used for data collection and analysis, while in Section 5.7
I elaborate on the artifact’s evaluation activity.

5.1 Philosophical foundation

A researcher needs to understand the nature of the reality being studied and
various means to obtain knowledge about it. Moon and Blackman (2014)
explain that to be able to understand the nature of knowledge and ways to
acquire such knowledge, it is "necessary to understand the principles and
assumptions of scientific research, in other words, philosophy" (p. 1168).
Two branches of philosophy are important in natural and social sciences:
ontology, which focuses on the study of being, and epistemology, which
focuses on the study of knowledge (Moon & Blackman, 2014). Ontology
and epistemology are ultimately interconnected and create a holistic view of
knowledge, the researcher’s relation to it, and the methodological approach
to developing it. A research paradigm consists of ontology, epistemology, and
methodology and is considered to be a model and an approach to research
that gives a means to understand reality and study it (Rehman & Alharthi,
2016; Schwandt, 2001).

I consider the nature of my research problem and my research aim to
be key factors to establishing my ontological and epistemological positions.
My research aim was to attain two aims - a practical one and a theoretical
one. The practical aim involved designing and developing a component
repository that facilitates component reuse in a software platform ecosystem.
The theoretical aim was to create abstract knowledge valuable for other
researchers and developers - a set of design principles on how a component
repository should be developed in a software platform ecosystem. To achieve
these aims, I have established the following research question: What are the

33

essential design principles for implementing a component repository that
facilitates component reuse in a software platform ecosystem? In order to
attain these aims and answer my research question, my choice was to gain
an understanding of the software reuse practices in the HISP community
and challenges pertaining to them and then use the obtained knowledge to
design and develop an artifact that could improve the current software reuse
process and practices. I view software reuse as a socio-technical activity, as
it clearly has some social aspects in addition to technical aspects and is
heavily impacted by people and their practices. For example, the metadata
specification for a component is highly technical, as it must be exactly
specified and machine-readable to ensure proper component cataloging
in a component repository. There are, however, also social aspects, for
example, the developers’ attitude towards software reuse, which could be
influenced by social factors such as trust and understanding. Even if a
component repository is in place, developers might be reluctant to use
others’ components if there are no reliable methods to ensure component
trustworthiness. Using qualitative methods for learning about software reuse
practices in the HISP community would allow me to deepen my knowledge
on the topic and explore problems, feelings, thoughts, and meanings of
people engaging in software reuse activities. This would be in line with
the interpretivist approach, which, according to Crotty (1998), "looks for
culturally derived and historically situated interpretations of the social life-
world" (p. 79). However, I could also see a clear application for quantitative
methods to measure the utility of our artifact, for example, when measuring
its accuracy, i.e., the degree of agreement between the artifact’s expected
and actual output. For example, if a user runs a command-line interface
command to validate whether his package.json file is structured correctly,
he would expect validation to report the errors found. This would be in line
with the positivist approach that would, among other things, offer "assurance
of unambiguous and accurate knowledge of the world" (Crotty, 1998, p. 27),
which in this case would be testing that the artifact behaves as expected and
is compliant with its technical requirements. Given that both approaches
would be of value, I conclude that I, as a researcher, am open to any approach
that shows its utility for solving my particular research problem. Therefore
I reject the dichotomy of positivism and interpretivism and choose to adopt
a pragmatic research paradigm.

The main idea of pragmatism, "a quintessentially American philosophy"
(Crotty, 1998, p. 85), is to embrace the most beneficial approach in the
circumstances. In some cases, researchers adopt practices that are positivist
in nature, and in other cases, they adopt practices in line with interpretivism.
Some purists advocate incompatibility of different paradigms and even treat
them as religions, engaging in so-called ’paradigm wars’ (Darlington & Scott,
2020; Rehman & Alharthi, 2016). Contrary to them, the pragmatists believe
that the methods should be chosen "on the basis of their suitability to address
specific research needs" (Darlington & Scott, 2020, p. 120) and should be
linked directly to the research problem.

Choosing a pragmatic research paradigm has its implications on my

34

research. Pragmatism is inherently a problem-solving paradigm and does
not seek to address broader philosophical questions. The goal of pragmatism
is to determine what can produce the most utility for solving a concrete
problem, thus embracing any method that could help achieve this goal.

5.2 Research methodology: Design Science Re-
search

The methodological framework chosen for this study is Design Science
Research (DSR). In contrast to other methodologies that have a goal of
understanding reality, DSR’s focus is to "construct new and innovative ways
to solve a class or classes of problems, thus creating new reality" (Iivari &
Venable, 2009, p. 8). Dresch et al. (2015) view DSR as a problem-solving
research method that can be used to construct new artifacts in order to
change the situations to a better or more desirable state. Baskerville, Kaul,
and Storey (2015) and Iivari and Venable (2009) emphasize the dualism of
DSR and explain this dualism as DSR’s two goals: to develop a solution
applicable to generalization and to produce new knowledge beneficial to
other practitioners and researchers. DSR’s dualism presents in the research
aim of this study, which was to develop an artifact, a component repository,
and produce prescriptive knowledge which takes a form of design principles
in this study. Thus, I argue that Design Science Research methodology
can fully support the aim of this study and is appropriate for the targeted
research question.

The DSR process model proposed by Peffers, Tuunanen, Rothenberger,
and Chatterjee (2008) (Figure 5.1) is highly referenced compared to other
existing process models (Brocke, Hevner, & Maedche, 2020). This process
model is cyclical and includes the following activities: "problem identifica-
tion and motivation, definition of the objectives for a solution, design and
development, demonstration, evaluation, and communication" (Brocke et al.,
2020, p. 5). Additionally, it provides four entry points: "problem-centered
initiation, objective-centered solution, design- and development-centered ini-
tiation, and client/context initiation" (Brocke et al., 2020, p. 6).

35

Problem
identification

and motivation

Define problem
&

Show importance

Define objectives of
a solution

What would a better
artifact accomplish?

Design &
Development

Artifact

Demonstration

Find a suitable
context

Use artifact to solve a
problem

Evaluation

Observe how
effective, efficient.

Iterate back to design

Communication

Scholarly publications

Professional
publications

Problem-centered
initiation

Objective-centered
solution

Design &
development

centered initiation

Client/context
initiation

Figure 5.1: DSR cycle diagram.
Note. Adapted from "A Design Science Research Methodology for
Information Systems Research", by Peffers et al. (2008), Journal of
Management Information Systems, 24:3, 45-77. Copyright 2008 by M.E.
Sharpe, Inc.

During the problem identification and motivation activity, the research
problem is identified and defined. According to Brocke et al. (2020), this
activity requires such resources as "knowledge of the state of the problem
and the importance of its solution" (p. 6). Regarding the pragmatic research
paradigm, this activity is concerned with the knowledge of what-is, i.e.,
it aims to explore what already exists and is available for investigation
(Goldkuhl, 2012). The goal of the second activity, definition of objectives
of a solution, is to use the knowledge of what-is and transform it into
the knowledge of to-be, or "prospective knowledge - knowledge about the
possible" (Goldkuhl, 2012, p. 87). The third activity, design and development
of the artifact, includes the development of functional and non-functional
requirements of the artifact, its architectural design, and the actual
implementation process. The goal of the fourth activity, demonstration,
is to show the artifact’s ability to solve the problem it was built to solve.
To perform this activity, a researcher can take in use different methods
considering the artifact’s nature. The fifth activity, evaluation, measures
the artifact’s utility to solve the problem. A. R. Hevner, March, Park,
and Ram (n.d.) and Venable, Pries-Heje, and Baskerville (2016) argue that
this activity is an integral part of DSR and the researchers are expected
to "demonstrate the utility, quality, and efficacy of a design artifact using
well-executed evaluation methods" (p. 77). During the sixth activity,
communication, the researchers communicate all the aspects of their work,
i.e., the research problem and its importance, the artifact, its utility, etc.
Since the DSR process model is cyclical, the researchers can iterate back to
previous activities, as shown in Figure 5.1, and improve the artifact.

vom Brocke and Maedche (2019) explain that DSR has two types of
knowledge - the input knowledge, i.e., prior knowledge that can guide the
DSR project, and the output knowledge, i.e., a contribution in the form
of prescriptive knowledge. vom Brocke and Maedche (2019) distinguish

36

between three types of input knowledge: "kernel theories, design theories,
and design entities" (vom Brocke & Maedche, 2019, p. 381). A design
theory is defined as "a set of principles and knowledge that describes and
guides the development of a design artifact to attain a specific goal in the
material world" (vom Brocke & Maedche, 2019, p. 380). vom Brocke and
Maedche (2019) define design entities as "design artifacts like constructs,
models, methods and instantiations, design processes, and artifact evolution
processes" (p. 380). Further, kernel theories are "well-established theories
in the natural and social sciences, which may exert some influence in the
design process and should be considered by the researcher" (Dresch et al.,
2015, p. 78).

DSR’s contribution to knowledge, as shown in Table 5.1, can be
assessed using three maturity levels (Gregor & Hevner, 2013). Situated
implementation of artifact is on the first maturity level as context-specific
limited and less mature knowledge. Goldkuhl (2012) classifies it as
local functional pragmatism and states, that the artifact is the core local
contribution.

Level Contribution to
knowledge

Example contribution

3 Well-developed design theory
about embedded phenomena

Design theories

2 Nascent design theory -
knowledge as operational
principles/architecture

Constructs, methods, models,
design principles, technological
rules

1 Situated implementation of
artifact

Instantiations (software
products or implemented
processes)

Table 5.1: DSR contribution to knowledge.
Note. Adapted from "Positioning and Presenting Design Science Research
for Maximum Impact", by Gregor and Hevner (2013),(p. 342) MIS
Quarterly, June 2013, Vol. 37, No. 2 (June 2013), pp. 337-355. Copyright
2013 by Management Information Systems Research Center, University of
Minnesota.

The second level of maturity includes more generalized and abstract
knowledge in the form of constructs, methods, models, design principles,
and technological rules (Gregor & Hevner, 2013). Goldkuhl (2012) argues
that the first level of maturity is not enough for a scientific contribution,
and there is a need for abstract, prescriptive knowledge, valuable beyond
local practice. "In the perspective of general functional pragmatism, such
knowledge should be useful for practitioners belonging to different practices"
(Goldkuhl, 2012, p. 91). The third level of maturity includes "well-developed
design theories about the phenomena under study" (Gregor & Hevner,
2013, p. 341). Goldkuhl (2012) states that Design Research, in general,
is conformant with pragmatism and its philosophical foundation, as they

37

both emphasize the importance of the utility of an artifact.

In this section, I have introduced the DSR methodology, explained the
key activities it consists of, and their relation to pragmatism. Additionally,
I have explained types of knowledge in DSR and the maturity levels of the
output knowledge.

5.3 Research process

This section describes how the DSR research methodology was applied in
our project.

The problem identification and motivation activity started at the end
of February 2020. My team and I conducted a focus group discussion
with the DHIS2 core team developers and one developer from HISP East
Africa. Later, as part of the same activity, we conducted a focus group and
two interviews with developers in HISP East Africa. The qualitative data
gathered through these activities was transcribed, analyzed, and used to
define the artifact’s objectives and technical requirements. As seen in Figure
5.2, the second activity, definition of objectives of a solution, was happening
simultaneously with the first activity, as the objectives and requirements
were continuously revised as we obtained more data. In August, we started
to work on the implementation of the artifact. My team and I had at
least one meeting per week to discuss what needed to be implemented and
how and planned various data gathering activities. Otherwise, we worked
independently of each other, sometimes engaging in discussions on Slack.
During the early stage of the design and development activity, I worked on
the implementation of the website; however, later, my main responsibility
was the development of the command life interface and the implementation
of certification functionality. Although, I would still work on the website
from time to time, mostly focusing on the UI.

During the demonstration activity, we conducted several focus groups
with the DHIS2 core team to review what has been done and what still
had to be implemented and improved. These demonstrations could also be
viewed as an evaluation because the data gathered through these activities
was analyzed and allowed us to iterate back to the definition of objectives of
a solution activity. The DHIS2 core team mentioned several times that
they would be interested in participating in the development activities,
specifically taking necessary steps to implement certification functionality.
However, none of this was done, presumably because of resource and time
constraints on their part, and it was hard to establish contact with them.
Therefore, after discussing this with Heskja, we decided to proceed with the
implementation of the certification functionality on our own, and this task
was appointed to me.

In early December 2020, all the development was rapidly stopped as it
was time to move to the next DSR activity - evaluation of the artifact.

38

Figure 5.2: Research activities timeline.

I decided to proceed with this activity on my own because my colleagues
and I had different evaluation aims and foci, and consequently, evaluation
criteria and methods. Doing the artifact evaluation on my own has allowed
me to be more flexible with regard to time management and decision-
making, as I would not need to compromise with my colleagues and could
tailor the evaluation activity to my research question. I will discuss the
evaluation activity, the chosen criteria, methods, and participants in Section
5.7. Table 5.2 shows the list of conducted interviews and focus groups
preceding the artifact evaluation.

Date Data
gathering
method

Participants Number of
partici-
pants

February 26,
2020

Focus group The DHIS2 core team, HISP
East Africa developer

5

July 8, 2020 Interview HISP East Africa developer 1
August 26,
2020

Focus group HISP East Africa developers 2

October 2,
2020

Focus group The DHIS2 core team 2

October 9,
2020

Interview HISP East Africa developers 4

October 28,
2020

Focus group DHIS2 core team developer 1

Table 5.2: Data collection methods.

With regard to the maturity levels discussed in Section 5.2, my
contribution to knowledge is on the second level of maturity. The artifact
belongs to the first level of maturity, while the established design principles
belong to the nascent design theory, and consequently, the second level of
maturity.

39

5.4 Development of the design principles

As discussed in Section 5.2, there are three types of input knowledge in DSR:
kernel theories, design theories, and design entities. My study is guided by
CBSE, which is my design theory, and two kernel theories: modularity and
installed base cultivation. The data gathered during the interviews and
focus groups and our design and development work on the artifact served
as the basis for establishing the design principles, which emerged during the
first four activities of the DSR cycle (Figure 5.1). The design theory and
kernel theories serve as a theoretical grounding for the design principles.

I introduce my design principles in Section 6.5, and provide empirical
evidence to support each of them. Section 7.5 discusses the evaluation results
of the application of the design principles it was possible to evaluate. In
Section 8.1, I discuss the established set of design principles as a contribution
of this research by considering the results from evaluation, literature review,
and kernel theories.

5.5 Data collection

This section will discuss the goals and methods for data collection during
the following DSR activities (Figure 5.1):

• Problem identification and motivation

• Definition of the objectives for a solution

• Design and development of the artifact

• Artifact’s demonstration

and explain how the participants were selected. Data collection methods
and goals for the research evaluation activity will be discussed separately in
Section 5.7.

5.5.1 Goals

The goals of data collection in this study are ultimately linked with
the study’s aim. The first goal of data collection was to learn about
software reuse practices and challenges, impediments to software reuse, and
developers’ attitudes towards reuse. This data helped us to identify the
problem and define the objectives of our solution. The second goal was to
gain feedback from our participants throughout the development and design
activity that could further be used to improve the artifact.

40

5.5.2 Participants

Lopez and Whitehead (2013) explain that an effective sampling selection in
qualitative research is important because it has an impact on the research
findings and outcome. To establish the sampling method for participant
selection of this study, we considered its aim. SCP’s aim was to facilitate
component reuse in web application development in the HISP community.
Therefore, the participants of this study needed to be representative of
SCP’s user group, i.e., they would have to be engaged in web application
development for DHIS2 and be willing to share their experiences with us.
Given this, a non-probability purposive sampling strategy was adopted for
participant selection. Lopez and Whitehead (2013) state that:

purposive sampling is designed to provide information-rich cases
for in-depth study. This is because participants are those who
have the required status or experience or are known to possess
special knowledge to provide the information researchers seek.
(Lopez & Whitehead, 2013, p. 125)

Web application development for DHIS2 is primarily done by developers
in HISP groups and the DHIS2 core team developers; therefore, they were
our target groups for participant recruitment. We tried to establish contact
with several HISP groups and inquire whether they would be interested
in participating in this study. In total, five HISP groups were contacted,
but only two agreed to participate. Some of our emails were left with
no reply, some HISP groups replied but showed no further interest in
participation. Developers from two HISP groups (three developers in total)
in HISP East Africa agreed to participate. Additionally, two DHIS2 core
team developers agreed to participate and collaborate. This allowed us
to explore potential diversity in the interests of HISP groups’ developers
as platform complementors, and DHIS2 core team, as platform owners.
The DHIS2 core team and the HISP East Africa developers are engaged
in web application development; therefore, in our project, they could act
as component providers and component users. Additionally, since it was
the DHIS2 core team who suggested the implementation of component
certification, they were expected to take the role of component certifiers.
The sample size of five participants may be considered relatively small, but
we consider it adequate given it was hard to recruit our participants, and our
collaboration was solely digital due to our inability to travel and engage in
fieldwork as a consequence of the COVID-19 pandemic. Additionally, even
though the DHIS2 core team developers are based in Oslo, our collaboration
was mainly digital due to COVID-19 regulations in Norway.

5.5.3 Interviews and focus groups

Semi-structured interviews and focus groups were used as the main methods
for direct data gathering, which is defined as data that "include recordable

41

spoken or written words and also observable body-language, actions and
interactions" (Lopez & Whitehead, 2013, p. 127).

We have developed an interview guide (Appendix F) containing a set of
questions to ensure that our learning goals are covered. Some examples of
the questions are:

1. Is everything written from scratch, or do you reuse components?

2. What kind of components are you interested in reusing?

3. Where do you store and share components?

Semi-structured interviews have given us flexibility, as we were free to
ask additional or follow-up questions where we felt it was necessary for the
course of the interview and helped us ensure we adhere to the main topic.
Lopez and Whitehead (2013) argue that interviews "provide the researcher
with a valuable opportunity to enter the world of the participant and reflect
on a particular event" (p. 130). We have gained valuable information we
used to define the objectives of the solution. However, further analysis
of the gathered data has shown that a large amount of the data was not
relevant and thus not used in the study. In this case, I would attribute
this to our inability to establish the relevance of our learning goals for the
aim of our research early in the process. When discussing this issue with
Heskja, he noted that "it is clear that we didn’t know exactly what we were
doing" (Heskja, personal communication, March 29, 2021). Although, this
explorative approach was still useful, as it has given us what we needed in
order to develop our artifact and our theoretical contributions.

For our first interview, we established that only one of us would act as
an interviewer, while the two others would only listen and ask follow-up
questions. We aimed to make our participants comfortable and not feeling
as if they are being interrogated by the three of us. However, this strategy
happened to be quite exhausting for the interviewer. Therefore for the
following interview, we decided that all of us would act as interviewers,
taking turns and covering different learning goals. I found our second
interview to be a so-called panic-interview, as it was "intense and mentally
exhausting" (Crang & Cook, 2007, p. 71). First, the participants were
explaining their application development practices, and while doing so,
they often touched upon software reuse practices and the topics that I was
planning to inquire about when my turn to ask questions would come. To
avoid repetitions, I had to fully focus on what was being said, constantly
looking through the checklist with the interview questions and revising them
when necessary. I conclude that it would perhaps be better to conduct a set
of interviews with a more narrow focus rather than cover a relatively large
set of learning goals in one interview.

Our team considered focus groups the most appropriate method for our
interactions with the DHIS2 core team, as we mainly used their expertise
to guide the artifact design and construction. Crang and Cook (2007) view

42

focus groups as "groups of people [that] meet to discuss their experiences
and thoughts about specific topics with the researcher and with each other"
(Crang & Cook, 2007, p. 90). A. Hevner and Chatterjee (2010) argue that
focus groups can be adapted to DSRmethodology. A. Hevner and Chatterjee
(2010) propose the use of focus groups in two situations: (1) incremental
artifact improvement using exploratory focus groups and (2) demonstration
of the artifact’s utility in a field setting using confirmatory focus groups. In
our case, we used the exploratory focus groups, as we either demonstrated or
explained the current state of the artifact and then discussed various aspects
that needed re-design and improvements. Additionally, we discussed the
aspects that we were still to implement.

Participants of our focus groups were the DHIS2 core team developers
who worked together on a daily basis; therefore, one can view them as an
already-existing group. While it is often easier to recruit such groups, Crang
and Cook (2007) recommend avoiding already-existing groups, because "with
members already knowing each other, there may be personal dynamics at
work that the researcher will not be aware of which can have a significant
bearing on what is said and who says it"(Crang & Cook, 2007, p. 91).

The interviews and the focus groups were conducted online using Zoom,
a conference room solution. Zoom’s functionality allowed us to record the
interviews for later transcription and analysis using the thematic analysis
method. One of the disadvantages of video interviews is unstable connection
and background noise, which affected the quality of the gathered data. In
some cases with rather short inaudible segments, we looked at the syntactic
and semantic context to guess what has been said; however, it was not
always possible to identify missing words.

5.6 Data analysis

Data analysis is an essential part of the research process because if a
researcher does not have a good understanding of the methods he used to
analyze the data, it can undermine the trustworthiness of his study (Nowell,
Norris, White, & Moules, 2017). This section will explain how I analyzed
the qualitative data gathered throughout this study.

5.6.1 Thematic analysis

Nowell et al. (2017) state that thematic analysis is a method that guides the
analysis of large qualitative data sets. The main idea behind this method is
finding themes or patterns in the analyzed data that provide the answer to
the research question.

Each interview we conducted during this study was guided by a set
of learning goals or larger themes (Appendix E). These themes were not
used for a deductive approach in thematic analysis; their purpose was only
to ensure that we cover all the necessary topics during the interviews.

43

Therefore, when analyzing the transcribed data from the interviews and
focus groups, an inductive approach was used. Nowell et al. (2017) explain
that the inductive approach is data-driven, where "the themes identified are
strongly linked to the data themselves and may bear little relation to the
specific questions that were asked of the participants" (Nowell et al., 2017,
p. 8). When conducting thematic analysis, I read through the transcribed
data several times to become familiar with it. Subsequently, the sections of
data with relevance to the study were identified, and an initial set of codes
was developed and later used to identify larger themes. Figure 5.3 shows
a global theme of software reuse identified during the analysis alongside its
sub-themes and codes. Figure 5.4 shows some of the codes belonging to the
Component organizing theme and some of their respective data sections.

44

Figure 5.3: A thematic map showing the relationship between the codes and
larger themes.

Thematic analysis was conducted using NVivo 12, a qualitative data
analysis software package. Once the themes were identified, the data related
to the themes most relevant to the SCP were used to guide the design and
development of our solution.

45

Global
theme

Organising
theme Codes

Software reuse Component

Component
discovery

Component
granularity

Component
specification

“not really. In fact we haven't really
found many components from other
HISP groups”

”We have been looking for a
couple of components which
actually are fitting our technology
stack, I mean the Angular, and we
really haven't found them yet. But
probably they may exist somewhere”

“each NPM package is like a
collection of components, there
might be some that only
have one component, but there
might be others that have three or
four””

"I just think it makes the search much
more useful (…) the ability to search
for a specific component”

"The guide that we have is just the
comments, within our own source”

”through the readme, directive on
how you can use the component”

"our components have some readme,
which actually directs you to how
best you can use them”

Figure 5.4: Example of thematic analysis for the global theme Software
reuse, its code and data sections.

5.7 Artifact evaluation

Evaluation of an artifact is an important activity of DSR that aims to
provide feedback for further work on the artifact and establish how well
the artifact achieves its utility (Venable et al., 2016). There are two
important categories of the evaluation discussed in the literature, namely:
"(1) formative evaluation [and] summative evaluation and (2) ex ante [and]
ex post evaluation" (Venable et al., 2016, p. 78). The summative and
formative evaluation is Why the evaluation is being done. According to
Venable et al. (2016), the purpose of formative evaluation is to provide a
basis for further improvements of the artifact, while the purpose of the
summative evaluation is to evaluate the effectiveness and the utility of
the artifact. Ex ante and ex post evaluation refer to the point When the
evaluation is happening in the DSR cycle. Ex ante evaluation happens before
the design and development activity in DSR and addresses the artifact’s
requirement planning. Ex post evaluation usually happens after the artifact

46

construction in order to establish "the value of the implemented system"
(Venable et al., 2016, p. 79). Venable et al. (2016) explain that ex ante and
ex post evaluations are the two "extremes of an evaluation" (p. 79) activity,
while the researchers can perform a set of intermediate evaluations during
the artifact’s construction (Figure 5.5).

DSR cycle

design &
construct

Ex ante

evaluation

Ex post

evaluation

design &
construct

Intermediate

evaluation

design &
construct

Intermediate

evaluation

Figure 5.5: Evaluation continuum in DSR.
Note. Adapted from "FEDS: a Framework for Evaluation in Design Science
Research", by Venable et al. (2016), European Journal of Information
Systems (2016) 25, 77–89. 2016 by Operational Research Society Ltd.

Other important aspects of evaluation are How to evaluate, i.e.,
determining the rights methods for evaluation, and What to evaluate, i.e.,
determining the right evaluation criteria. A. Hevner, Prat, Comyn-Wattiau,
and Akoka (2018) claim that in DSR, "the value of a design artifact is
defined by the goodness of its fit as a solution for the problem or opportunity
presented" (p. 3). A. Hevner et al. (2018) propose a hierarchy of DSR goals
for socio-technical systems solutions, which is based on Maslow’s (1943)
hierarchy of human needs (Figure 5.6).

47

Innovation
goals

Evolution
goals

Functionality
Usefulness
Ease of use
Accuracy

Completeness
Simplicity
Decomposability
Diversity

Security
Integrity
Privacy
Confidentiality

Ethicality
Alignment with business
embeddedness in a design system

Understandability
Openness
Style

Innovativeness
Inventiveness
Research
contribution

Learning
capability
Robustness
Applicability

Performance

Cognitive and
aesthetic goals

Utilitarian goals

Safety goals

Interaction and
communication goals

Figure 5.6: Hierarchy of DSR goals and evaluation criteria.
Note. Adapted from "A pragmatic approach for identifying and managing
design science research goals and evaluation criteria", by A. Hevner et al.
(2018), AIS SIGPrag Pre-ICIS workshop on ”Practice-based Design and
Innovation of Digital Artifacts.”

Figure 5.6 shows that the hierarchy comprises six goals with their
corresponding evaluation criteria. Utilitarian goals at the lowest position
of this hierarchy focus on the artifact’s functionality, utility, and benefits.
A. Hevner et al. (2018) explain that one should be fulfilling the goals starting
at the base of the hierarchy, i.e., the fulfillment of the utility of the artifact
has the highest priority, then comes safety, etc. Similarly, when evaluating
an artifact, it is most critical to evaluate the criteria associated with goals
starting at the hierarchy base.

I establish my evaluation as a formative evaluation because SCP is still
in the development stage and is not yet ready to be put in production.
Therefore the goal of my evaluation, i.e., Why to evaluate, is to obtain
feedback from the users that can help with further development and
improvement of the artifact. With regard to the aspect of When to evaluate,
I establish that my evaluation is intermediate. This is because it is neither
an ex ante evaluation, as development has already been started, nor is it
ex post evaluation, as development has not yet been completed either. To
address the aspect of What to evaluate, I decided to include the criteria from
the utilitarian dimension in Figure 5.6: accuracy, efficacy, usefulness, and
performance. Additionally, my evaluation would also address the criterion
of openness. Due to time, resource constraints, and difficulties finding the
participants for my evaluation, I tailored my evaluation according to the
resources available. A complete set of the established evaluation criteria

48

is shown in Table 5.3. The expert evaluation was used to evaluate the
application of one of my design principles, and I figured out that it was also
possible to address the criteria of openness and performance as part of the
expert evaluation. Criteria of usefulness and efficacy are, perhaps, one of
the most important criteria in DSR, as it is vital to identify whether the
artifact produces its desired effect and is useful to its end users.

Criterion Description
Accuracy The degree of agreement between the artifact’s expected output

and the actual output (A. Hevner et al., 2018).
Efficacy "The degree to which the artifact produces its desired effect

considered narrowly, without addressing situational concerns"
(A. Hevner et al., 2018, p. 14).

Openness "The degree to which artifacts are open to inspection, modifica-
tion, and reuse" (Gill & Hevner, 2013, p. 5:10).

Performance The degree to which the artifact is able to perform its task
within given constraints (ISO/IEC & IEEE, 2017).

Usefulness "The degree to which the artifact positively impacts the task
performance of individuals" (A. Hevner et al., 2018, p. 14).

Table 5.3: SCP evaluation criteria.

Prat, Comyn-Wattiau, and Akoka (2015) recommend to use common
evaluation methods and also generate new evaluation methods taking into
account the aspects of What and How to evaluate. The authors argue
that even though the choice of evaluation methods is usually guided by
What of evaluation, pragmatic considerations such as time constraints and
unavailability of participants may influence the choice of evaluation methods.

The criterion of accuracy is important for a technical artifact like SCP
and impacts its utility because if the artifact does not function according
to its technical requirements, it might negatively affect such criteria as
usefulness and efficacy. The evaluation results might end up not being
truthful. Due to time constraints, I could not measure the accuracy of
SCP as a whole. Thus I focus only on the command-line interface module,
which was mainly developed by me. I consider unit testing an appropriate
method for accuracy evaluation to test that the implemented functionality
of the command-line interface works as intended.

The criteria of efficacy and usefulness were addressed during the
naturalistic empirical evaluation, interpretive in nature. I consider these
criteria essential in DSR, as they can determine the utility of the artifact.
Evaluation of the artifact based on the criteria of usefulness and efficacy
requires an evaluation from a user’s perspective. The component repository
is a complex system that supports several CBSE processes and has three
distinct groups of users: component providers, component users, and
certifiers. Therefore I considered three perspectives of user evaluation:

• Evaluation of SCP from the perspective of component providers

• Evaluation of SCP from the perspective of component users

49

• Evaluation of SCP from the perspective of certifiers

Evaluating SCP as component providers would include component publish-
ing to SCP and their pre-certification, and submission of the published com-
ponents for certification. Evaluating SCP as component users would include
searching for reusable components on the website and testing various search-
related functionality. Lastly, certifiers would need to evaluate SCP Whitelist
and the certification pipeline. I considered using a demonstration as an eval-
uation method, showing the artifact’s usefulness and efficacy for a single test
case. However, since I have actively been involved in the development and
testing of SCP during the design and development activity, the demonstra-
tion method would present a bias risk. If I were to conduct a demonstration,
I would likely exercise the system in ways that feel natural to me and have
already been extensively tested during implementation. Whereas requesting
others to evaluate the system independently, without my guidance, would
be more likely to result in unexpected and novel usage patterns, which may
highlight problems that we did not consider during our design and implemen-
tation process. I concluded that the survey method would be appropriate
for this type of evaluation, as it allowed me to perform a more naturalistic
evaluation.

The criteria of openness and performance focus on the non-functional
properties of the artifact and therefore were not evaluated by the users. It
is unclear whether someone will take over this project and work on further
development, eventually putting it in production. According to Gill and
Hevner (2013), openness "encourages further design evolution" of the artifact
(p. 5:10). In my opinion, a high degree of openness allows other actors in the
HISP community, such as developers in HISP groups and the DHIS2 core
team, to contribute to this project, and help with testing, maintenance, and
improvements. To evaluate the artifact’s openness and performance, I chose
the expert evaluation method, which implies inspecting the artifact by a
specialist with expertise in software architecture.

Additionally, the evaluation also considered the established design
principles, specifically considering how they were applied to the artifact’s
design.

5.7.1 Evaluation participants

The type of evaluation in this study was guiding the choice of participants.
As my evaluation aimed to assess both functional and non-functional
characteristics of the artifact, I established that I needed participants who
could act like real users of the system and participants with expertise
within software architecture for the expert evaluation. The most desirable
choice was to include the developers in HISP East Africa and the DHIS2
core team, as we collaborated with them during the study. However,
due to time constraints, the busy schedule of the DHIS2 core team, and
difficulties in establishing contact with HISP East Africa, I could only
include one DHIS2 core team developer as a participant in my evaluation.

50

He evaluated the component repository from all three perspectives. Another
participant for SCP user evaluation was chosen among the members of the
DHIS2 Design lab. I considered his knowledge of DHIS2 and experience
in web application development. He evaluated SCP from a perspective
of component providers and component users. The third participant was
chosen based on his extensive experience with CBSE, software architecture,
and web application development using React framework. He evaluated
SCP’s functional characteristics as a user from all three perspectives and
acted as an expert evaluator of non-functional characteristics in expert
evaluation. The fourth participant has fifteen years of experience with
software development, of which ten years was as a full-stack developer
developing software for internal and external use. He evaluated SCPWebsite
from the perspective of component users. Table 5.4 shows the participants,
their eligibility basis, corresponding evaluation methods they were involved
in, and the DSR criteria addressed by their evaluation.

51

Participant Eligibility basis Evaluation
methods

Criteria
evaluated

Evaluator 1 DHIS2 core team developer,
has experience in web
application development using
React framework.

Survey (as
component
provider,
component
user, and
certifier)

Efficacy,
usefulness.

Evaluator 2 DHIS2 Design Lab member,
Master’s student, and has
experience in web application
development using React
framework. Developed a web
application for DHIS2 as part
of the course IN5320
Development in platform
ecosystems at the University of
Oslo.

Survey (as
component
provider and
component
user)

Efficacy,
usefulness

Evaluator 3 Currently employed as a
principal software engineer in a
Fortune 500 company, was the
lead architect for various
systems during his career, one
of which was a OLTP
provisioning system for mobile
subscribers that was deployed
at more than four mobile
network operators and served
more than 60 million
subscribers. Has experience
with CBSE and React
framework.

Expert
evaluation,
Survey (as
component
provider,
component
user, and
certifier)

Efficacy,
usefulness,
openness,
performance

Evaluator 4 Experience with CBSE and
React framework. Has 15 years
of experience with software
development, of which 10 years
was as a full-stack developer.

Survey (as
component
user)

Efficacy,
usefulness

Table 5.4: SCP evaluation participants.

The sampling technique used to select the evaluation participants is a
mix of convenience sampling and purposive sampling. Lopez and Whitehead
(2013) define convenience sampling as a "form of qualitative sampling
and occurs when people are invited to participate in the study because
they are conveniently (opportunistically) available with regard to access,
location, time and willingness" (Lopez &Whitehead, 2013, p. 124). However,
when recruiting the evaluators, I considered their experience with software
development, specifically web application development, and their knowledge
and experience with CBSE and DHIS2.

52

5.7.2 Evaluation methods

In this section, I discuss the evaluation methods used in this study. The
results of the evaluation are presented in Chapter 7.

5.7.2.1 Surveys

I created three questionnaires (Appendix G) to cover the three categories
of user evaluation. Additionally, I have written SCP User Documentation
(Appendix B) to guide the tasks that users had to perform for this
evaluation. Each of the questionnaires contained the following:

• Description of the survey’s purpose

• Consent form

• Explanation of the task that needs to be performed before proceeding
to answer the survey’s questions

• Link to SCP User Documentation

• Set of questions that the participant should answer

It is important to note that the tasks were not detailed; for example, the
participants were asked to develop a software component and publish it to
SCP, but they were not given the exact steps and instructions to perform
the task. The questionnaires contained open-ended questions allowing free-
form answers and some close-ended questions where I felt it was necessary
that had a fixed set of possible answers. Close-ended questions helped me
conduct a more straightforward comparison of data between the participants
and get an overall sense of the situation. Open-ended questions let the
participants fully express their opinions, give deeper and meaningful insights,
and elaborate on chosen answers to close-ended questions. Although, such
data is often more challenging to analyze, as some of the participants provide
very diverse answers, while others may opt to give very terse and superficial
answers. Figure 5.7 shows a combination of a close-ended question and an
open-ended question taken from one of the questionnaires.

53

Figure 5.7: Survey questions example.

This evaluation method allowed the participants to evaluate SCP in a
more naturalistic way than if they were a part of a demonstration conducted
by me. They engaged in such activities as component creation, publishing,
certification, and discovery using the provided user documentation on their
own without any interference from my side. Additionally, this method
facilitated evaluation of how intuitive the artifact is for the users and the
quality of the documentation. Open-ended answers of each survey were
thematically analyzed, and the insights gained can be used to guide further
development of the artifact.

5.7.2.2 Expert evaluation

Peffers, Rothenberger, Tuunanen, and Vaezi (2012) classify expert evaluation
as one of the evaluation methods in DSR and define it as an "assessment of
an artifact by one or more experts" (p. 402). This study uses this method
to assess the artifact’s non-functional characteristics, namely coupling and
cohesion, and address such evaluation criteria as the artifact’s openness and
performance.

Evaluator 3 and I have discussed various software coupling metrics such
as Fenton and Melton Software Metric and Dhama Coupling Metric (Singh
& Bhattacharjee, 2013). These metrics are mainly quantitative but they
require a qualitative assessment of the system’s dependencies and classifying
them based on the coupling type. However, these metrics are primarily
defined for source code level analysis and not for a system-level analysis. To
use these metrics on a system level, they would have to be reinterpreted,
but such reinterpretation would require further justification, which is outside
of this study’s scope. Additionally, such an assessment would be resource-
intensive and time-consuming. Therefore, we agreed that Evaluator 3 would
perform the analysis of the SCP’s modules and system-level dependencies
to qualitatively determine the degree of coupling and cohesion.

54

In order to proceed with the expert evaluation, I have prepared
the necessary documentation for Evaluator 3. Provided documentation
comprised SCP’s architecture description (Section 6.4) and SCP User
Documentation (Appendix B), published openly on GitHub. Evaluator
3 evaluated SCP without my active participation by first reading the
documentation to understand SCP’s purpose, functionality, and how to
use it. Afterward, he tried out various functions of the component
repository, including validation and pre-certification in the command-line
interface, publishing of NPM packages with web components to the website,
submission of NPM packages for certification, and searching for components
on the website. He also read the architectural description of SCP, selectively
analyzed the source code of the various parts of the component repository
where he felt it was necessary. His evaluation was performed considering
that the nature of evaluation is formative and that future improvements
and development are expected. Evaluator 3 produced a report on the
non-functional aspects of SCP. This report was reviewed and discussed by
Evaluator 3 and me during a two-hour focus group on January 10, 2021.

5.7.2.3 Unit testing

Sommerville (2011) defines unit testing as "the process of testing program
components, such as methods or object classes" (p. 211). As I have mainly
worked on the development of one of our artifact’s modules - a command-line
interface, I used this type of testing to assess its accuracy by validating that
the module behaves as expected. The unit tests were implemented using
Jest, a JavaScript testing framework. The tests consist of two test suites
comprised of 34 unit tests. Each time the tests were run, Jest generated
a code coverage report that included the information about the files that
were included in testing and code coverage percentage for the following code
coverage methods:

• Statement coverage

• Branch coverage

• Function coverage

• Lines coverage

Statement coverage shows how many statements in the code were executed at
least once. Branch coverage shows how many decision conditions in the code
are executed at least once. Function coverage shows how many functions
defined in the code are executed, and line coverage shows how many lines of
code are covered by tests. This evaluation method was used by me during
the development activity and early in the evaluation activity before SCP
was evaluated by the users. I aimed at achieving a test coverage of 70-
80%, which was adequate in my opinion considering the time and resources
available.

55

5.8 Paradigmatic limitations

The philosophy of pragmatism is highly criticized for devaluing the notion
of ’truth,’ or rather for its redefinition of ’truth.’ As Russell (2004) explains,
if the effects of a certain belief increase happiness, this belief is true. Simply
put, the truth is what is useful. One of the challenges pertaining to this
assertion is that one cannot claim that one’s beliefs are true unless one has
determined what a beneficial outcome, for whom it is beneficial, and whether
one has succeeded at measuring the utility. In my case, my prescriptive
knowledge in the form of the design principles would have no value unless
I evaluate the artifact. If a DSR researcher does not continuously measure
the artifact’s utility during design and implementation activity, there is a
risk that he might produce a solution with no utility whatsoever.

5.9 Methodological limitations

In this section, I elaborate on the methodological limitations of this study.

As an alternative to DSR, we could also conduct Action Design Research
in a field setting, closely collaborating with HISP groups’ developers and
working on our prototype. This methodology would also allow us to take into
use other qualitative methods, such as participant observation. However, it
was not possible due to the COVID-19 pandemic.

To obtain the data to guide the design and development of SCP, we
conducted interviews and focus groups. These data collection methods can
introduce research and participant bias. The participants may not provide
honest answers but rather give the answers they think the researchers want
to hear. The researcher’s presence may impact the participants’ responses as
well. We have also not used any other qualitative data collection methods;
thus, it was not possible to perform data triangulation to strengthen this
study’s reliability and eliminate potential biases.

The limitations of surveys are that survey respondents may not be
providing honest and accurate answers. One cannot exclude the possibility
that some of the questions can be misinterpreted, and some of the questions
could be interpreted differently by different survey respondents. I have
included many mandatory questions in my questionnaires, as I feared that
my participants would skip the questions they did not have to answer.
However, when a questionnaire has mandatory questions, respondents may
provide answers only because they must and not because they are willing to
or know what to answer. Questionnaires with close-ended questions may not
be beneficial to a formative evaluation, as they lack the depth of feedback
that could guide further development of the evaluated artifact.

Limitations of expert evaluation are that such evaluation requires
participants with a high level of expertise and can be resource-intensive.
Additionally, to ensure the validity of such an evaluation and reduce a single
expert evaluator’s bias, it is beneficial to recruit several expert evaluators

56

and adopt several evaluation methods. In my case, I did not have the
opportunity to ensure the validity of the expert evaluation by recruiting
additional expert evaluators. Besides, due to time constraints and resource
limitations, the expert evaluator had only used one qualitative evaluation
method, while there was a clear potential for quantitative methods.

5.10 Ethical considerations

According to Creswell and Creswell (2018), "research involves collecting data
from people, about people" (p. 144); thus, the researchers should consider the
importance of the ethical issues related to the conducted research. Creswell
and Creswell (2018) argue that a researcher should respect his participants,
strengthen their trust, protect them from harm, and nurture the integrity
of research.

To ensure that data collection was done ethically and with due
consideration to the research participants’ privacy, the participants in
this study were supplied with a consent form, and they were required to
sign it before participating in the research activities. The consent form
(Appendix D) included the following components:

• Description of the purpose of the project

• Identification of those responsible for the project (my team and our
supervisors)

• Identification of the type of participant involvement

• Notification of the voluntary participation and withdrawal at any time
of the project

• Description on how the data is stored

• Guarantee of confidentiality and anonymity

• Participant’s rights

• Provision of names to contact

We ensured that all our participants were aware that the participation
is voluntary and they are not required to participate if they do not wish to.
There would not be any negative consequences for the participants if they
were to withdraw from the project. Even though we specified in the consent
form that the interviews and focus group discussions would be recorded,
we obtained permission from the participants before starting the recording.
We also followed NSD’s guidelines for research. We did not collect more
data than necessary for this project and aimed to collect data as securely as
possible. The data was stored on Google Drive, and its access was restricted
using Google Drive authentication and authorization system. The data is
to be deleted at the end of this project.

57

Our supervisors helped us establish contact with some of the partici-
pants, and, in my opinion, this might have affected the participants’ volun-
tary participation in the research. It is unknown whether they were inter-
ested in the project and were willing to collaborate of their own accord or
whether they felt obliged to participate. In our consent form, we explicitly
say that participation in the project is voluntary, and there will not be any
negative consequences for those who choose not to participate. However,
we could not guarantee that there would not be any negative consequences
imposed by other community actors, such as their superiors, if they choose
not to participate.

We considered all data that we collected, regardless of whether the data
was in line with the community’s best practices. This was done in order to
conduct good qualitative research "[reporting] the diversity of perspectives
about the topic" (Creswell & Creswell, 2018, p. 152). In this case, it
was important to ensure the participants’ anonymity, i.e., instead of fully
providing each HISP group’s country-specific identifiers, I only specify the
regional group they are part of.

Lastly, I considered it important to preserve the anonymity of one of my
colleagues, providing him with a pseudonym. My thesis has content that
can be seen as critical of our group work and team management, and I do
not want such critical content to affect him negatively. My other colleague,
Håkon André Heskja, has given his approval for using his name in my thesis.

5.11 Team management and group work

Our team can be described as a leaderless self-managing team. Since all of
us are Master’s students, no team member had any authority over others,
and thus it would not be possible for any team member to be a group leader
or a manager. It was assumed that each of us would contribute and work
towards the project’s success without needing a group leader. The approach
we adopted was inspired by Identity Management Method, which works well
in knowledge-oriented teams, and its main idea is to "manage by making
people identify with the goals you’re trying to achieve" (Spolsky, 2008, p.47).
Spolsky (2008) states that the goal is to make your team feel like a family,
cultivate loyalty and commitment to create motivation to work towards the
goals. Each of us had our own reasons for choosing this specific Master’s
thesis topic, but all of us had a common goal of finishing this project as a
requirement to achieve an M.Sc. degree.

We tried to rely on consensus for major decisions with broad and system-
wide implications, for example, SCP Whitelist repository architecture, and
where consensus was not possible for such decisions, we went with a majority
vote. Minor decisions, for example, using TypeScript over JavaScript in
the command-line interface, were delegated to the person who has worked
the most on a specific module. For example, Heskja had made most
minor decisions for the website, while I made most minor decisions for the

58

command-line interface.

We had agreed upon having a group meeting on Zoom at least once a
week, where we discussed the requirements that we were to implement and
planned various data gathering activities. Slack and Mattermost were used
as team communication and collaboration tools. Additionally, Trello was
used to keep track of the various tasks. A distributed version control system,
Git, was used for cooperation on the source code during the development
of SCP. GitHub was used as a code-hosting facility. At first, we did not
divide the tasks among the group members, as it was assumed that each of
us would take up available tasks and work on their implementation. This
approach was changed towards a more formalized process towards the end of
the development process due to its inefficiency. Additionally, we felt it was
necessary to adopt a Daily Scrum meeting format for our weekly meeting,
during which each team member answered the following questions:

1. What did I do since the last meeting?

2. What am I working on now?

3. Do I need help with the tasks?

To make the development process more effective and efficient, we put a lot
more focus on the Trello board by creating and prioritizing various tasks and
assigning these tasks to each of the group members. Moreover, deadlines
were added to each task, and we introduced a meeting to assess the group
work. The following measures were taken to motivate group members to
deliver their tasks within the deadline:

1. The task that is too large can be split into smaller pieces.

2. The task can be exchanged between the group members.

3. One can ask for help to finish the task in good time before the deadline.

I will further reflect on the team management and group work in Section
8.5.

5.12 Work distribution

In this section, I will give a brief account of my contribution to the
implementation of DHIS2 Shared Component Platform. In collaboration
with Heskja, I have created a more detailed overview of the work distribution
amongst the team members (Appendix A).

5.12.1 Contribution to SCP Website

I have contributed to overall responsiveness of SCP Website using Pure CSS
grid system. I did initial prototyping for the page with information about

59

the NPM packages and the landing page (A.1 aspects 2,3). I have refactored
the top navigation bar and made it responsive (A.1 aspect 1). Additionally,
I have implemented the help page and the about us page with information
about the DHIS2 Design Lab and HISP UiO (A.1 aspect 9). I implemented
basic functionality for pagination (A.1 aspect 14), reworked and enhanced
the package list on the search page, and later, the component grid (A.1
aspects 11,13).

5.12.2 Contribution to SCP Whitelist

I have created and set up SCP Whitelist repository on GitHub to host the
list of certified packages (A.2 aspect 1). I have also set up the automated
certification workflow using GitHub Actions and provided necessary user
documentation (A.2 aspect 2,3).

5.12.3 Contribution to SCP CLI

My contribution to SCP CLI involved the creation of a framework for the
implementation of the command-line interface (A.3 aspect 1). Furthermore,
I have developed the functionality for dhis2-component-search keyword
and dhis2ComponentSearch property validation (A.3 aspects 2,3). I have
also implemented the functionality to support the certification process in
SCP Whitelist (A.3 aspects 4,5,6,9). Moreover, I have written unit tests for
the functionality I implemented, and provided a user documentation (A.3
aspects 7,8).

5.12.4 User documentation

For my final formative evaluation I have created SCP User Documentation
(Appendix B) that explains in detail all the activities done by component
providers, component users, and certifiers. I have also outlined the
process of publishing reusable components to SCP and submission for
certification to accommodate the users that prefer tutorials in addition to
the documentation (Appendix C).

60

Chapter 6

Artifact description

This chapter describes my practical contribution in the form of the DHIS2
Shared Component Platform and my theoretical contribution, a set of design
principles established during the design and development activity of the
project.

6.1 DHIS2 Shared Component Platform within
the DHIS2 platform ecosystem

In this section, I explain the role of SCP in the DHIS2 platform ecosystem.

6.1.1 SCP as a nested transaction platform

At some point during the design activity of SCP, we had to decide on the
naming of our artifact. The name DHIS2 Shared Component Platform came
to be when we had not quite determined whether it could fulfill the definition
of a digital platform. I have already established in Section 3.1 that there are
three types of digital platforms - transaction platforms, software platforms,
and integration platforms.

A software platform, by definition, has an extensible core that serves
as a foundation for complementary products (modules, applications). The
components published to SCP do not extend SCP’s functionality - they
are build to constitute DHIS2 web applications. These, in turn, are the
complementary modules that extend the core of the DHIS2. Therefore I
conclude, that SCP cannot be defined as a software platform.

However, for transactions platforms, there is no requirement for an
extensible core, as there is for software platforms. Instead, there is a
focus on the interaction between distinct and mutually interdependent user
groups. In the case of SCP, we have three distinct user groups: component
users, component providers, and component certifiers. There is an evident
interdependence between component users and component providers and
the emergence of network effects. Component user do not gain any value

61

from SCP, if there are no reusable components published by component
providers, while SCP does not bring any value to component providers,
if there are no component users interested in searching for, and reusing,
published components. In turn, component certifiers bring value to SCP
by increasing the level of component trustworthiness, which greatly impacts
software reuse. The proper level of component trustworthiness in SCP may
also increase the number of users interested in reusing components.

Even though we distinguish between component users and component
providers, all of them have the role of web application developers in the
DHIS2 platform ecosystem. Reusable components are used to construct web
applications created for the end-users of DHIS2. Therefore, I conclude that
SCP enables interaction between businesses, i.e., third-party development,
and can be viewed as a nested B2B transaction platform. Given this,
to motivate the growth and success of SCP as such a platform, the
considerations relevant to these types of platforms should be taken into
account. For example, increasing the number of component providers would
not be enough to foster the growth and success of the platform, as such a
platform’s growth and success are predicated on cross-side network effects.

6.1.2 SCP as a boundary resource

Another role that SCP assumes is that of a boundary resource (Section 3.2)
as it provides design capabilities to third-party developers and to facilitate
application development. Given that SCP is a technological resource that
offers technical functionality, it can also be more specifically categorized as
a technical boundary resource. Furthermore, given that SCP is designed
to support the third-party application development process, it can be
categorized as a development boundary resource.

When considering SCP as a development boundary resource, it is also
important to consider its social context. For this, the actors to consider
are the DHIS2 core team, which has the role of platform owners, the
HISP groups developers who act as third-party developers, and also the
DHIS2 Design Lab, which my team and I are part of. Given that the
DHIS2 Design Lab is independent of the DHIS2 core team, I view my
team as third-party developers. Given this social context, the development
of SCP can be classified as self-resourcing under the "Boundary resource
model" presented by Ghazawneh (2012), because SCP is developed by third-
party developers in "response to a perceived limitation of existing boundary
resources" (Ghazawneh, 2012, p. 56).

6.2 Design considerations

When we started to work on this project, we had limited knowledge of
the problem. We knew that there is an interest in building a component
repository, but we did not know anything about code reuse practices in

62

the HISP community. Therefore we conducted several interviews and focus
groups with the DHIS2 core team and developers in HISP East Africa.
We established a set of learning goals to help us obtain the necessary
knowledge for technical requirements specification. From the interviews,
we have learned about:

• application development practices and various aspects of the applica-
tion development process

• motivation for software reuse

• current and prospective software reuse practices

• impediments for software reuse

• tooling

• collaboration in co-located teams (i.e., within one HISP group) and
geographically dispersed teams (i.e., between different HISP groups)

The main goal of SCP is to facilitate component reuse, which includes
component publishing and discovery. It also provides various functions
relevant to the component management process, specifically component
certification, which supports the CBSE for reuse and CBSE with reuse
processes.

In the following sections, I will present the current component reuse
practices in the HISP community that were explored in this project. I will
also explain how they were taken into consideration during the construction
of the artifact in the context of CBSE for reuse, component certification,
and component acquisition.

6.2.1 SCP’s design considerations in the context of CBSE
for reuse

One of the practices discerned during the interviews is software reuse
through the copying of code. One interviewee explained that their reuse
practice involved the creation and maintenance of a skeleton project with
the components that they want to reuse:

What we do - we have a skeleton project where we have the
components running, we have a basic project where we have the
components, so we go there, it is on our bitbucket repository, we
go there and reuse the source at bitbucket. (lead developer in
HISP East Africa, personal communication, July 8, 2020)

This skeleton project is then copied and used as the basis for new
applications that they want to develop. The interviewee mentioned a plan
to create an internal component library, but his team and he were unsure
whether it was a necessity for them, as their current copy-paste practice, in

63

their opinion, enables efficient code reuse. Their reusable skeleton with
components is hosted on Bitbucket, a git-based source code repository
hosting service. The source code in the repository is annotated using
comments that guide component identification when the developers look
for candidate components for reuse purposes.

Even though the interviewee stated that copy-pasting practice makes the
reuse process more effective and can be seen as a practice of code reuse with
minimal effort, there are several issues pertaining to this practice. The code
might have bugs and security vulnerabilities, and copy-pasting would mean
introducing these issues in different applications. Additionally, when the
original source is improved and updated with new functionality or a bug fix,
the copied code would need to be manually updated, which is an inefficient,
error-prone, and time-consuming process. For example, if a component has
been modified in an application and the same component was modified in the
skeleton, someone could inadvertently override the application modifications
when trying and updating it from the skeleton.

Another practice we have encountered during the interviews was the
component-based software engineering approach. Some interviewees stated
that they use GitHub to store their reusable components, and in addition,
they have also published them to NPM Registry as scoped NPM packages
(HISP East Africa developers, personal communication, October 9, 2020).
NPM Registry is "a public collection of packages of open-source code for
(...) front-end web apps, mobile apps, robots, routers, and countless other
needs" (About npm, n.d.). NPM also provides a package manager that helps
developers to publish and install packages. An NPM package is defined
as "a file or directory that is described by a package.json [file]" (What
is a package?, n.d., para. 2). Such package.json file contains metadata
relevant to the component, e.g., component’s name, description, version,
keywords, dependencies, and a link to the location of the component’s
source code. Metadata such as keywords, name, and description are used by
NPM Registry for its search functionality, while metadata such as author,
contributors, and homepage credits everyone involved in the development of
the component and provides additional information. As I have mentioned
earlier, the packages with reusable components published on NPM Registry
by the interviewees are scoped. A scope, in the context of NPM, is defined
as "a way of grouping related packages together and (...) a good way to
signal official packages for organizations" (scope, n.d., para. 2). One of
the advantages of scope is a restriction on who can publish the packages
within the scope. To conclude, it is clear that the interviewees adopted
CBSE approach and NPM Registry functions as a component repository.
While their practice can work well within their HISP group, some of their
technology choices can be an impediment for effective code reuse within the
HISP community. When asked whether they reuse components developed
by other HISP groups, one of the interviewees explained:

Not really. In fact, we haven’t really found many components
from other HISP groups. (...) I guess also because for the most

64

part we are using technology a little bit not used by many. (...)
We have been looking for a couple of components that actually
are fitting our technology stack, I mean the Angular, and we
really haven’t found them yet. But probably they may exist
somewhere, I think we would have used them (...). So for the
most part, we have used ours. (HISP East Africa developer,
personal communication, October 9, 2020)

One can conclude that their use of the Angular framework for the
development of reusable components has somewhat isolated them from
software reuse within the HISP community because the Angular framework
is less prevalent in the community. Diversity of tooling and technology has
been mentioned during focus groups and an interview we have had (DHIS2
core team developers, personal communication, February 26, 2020; HISP
East Africa lead developer, personal communication, July 8, 2020). We
learned that some of the HISP groups use React and Angular frameworks to
develop web applications, while the DHIS2 core team developers use React
framework to develop their web applications and encourage the community
to adopt the same practice. Some interviewees view the concept of diversity
as positive, in that it gives freedom of practice, and claim that there is little
diversity of web-development practices in the HISP community and that this
creates a negative impact on software reuse and collaboration between HISP
groups (HISP East Africa developer, personal communication, October 9,
2020).

The first practice discussed in this section is not CBSE-based, as it does
not involve the creation of reusable components. Therefore it could not be
considered to be the process of CBSE for reuse, and the development of a
component repository would not be able to support this practice of code
reuse. One can argue that developers could still benefit from a component
repository, as they would be able to reuse the components published there
by others; however, they cannot take the role of component providers and
publish their own components to the repository unless they change their
practice.

The other practice based on CBSE approach has made us question
whether there is, in fact, a need for the development of a component
repository given that NPM Registry is already in place. NPM Registry
has recently passed its one millionth package milestone (Tal & Maple,
2019), has a large user base and functionality in place, and is in use by
HISP developers and the DHIS2 core team (DHIS2 core team, personal
communication, February 26, 2020; HISP East Africa developers, personal
communication, October 9, 2020). Given the number of resources dedicated
to the development, maintenance, and operation of NPM Registry and its
long track record, we realized that we would not be able to develop something
better than NPM Registry given our resources and time. We have decided
not to develop an entirely new component repository but rather cultivate the
installed base by reusing and extending the existing infrastructure, which is,
in this case, NPM Registry and GitHub. Our solution’s primary goal would

65

be to support and improve the existing CBSE approach by addressing some
of the challenges we have encountered with existing technologies, services,
and tools. This approach’s benefit is that the resources required for the
maintenance of our solution would be minimal and that our solution would
benefit from future improvements to the installed base that we cultivated.
Since we have taken into use the functionality of NPM Registry, which
operates on package-level, I will often use the concept of an NPM package
when discussing the implementation of SCP as all components that SCP
deals with have to be contained in NPM packages.

When we considered the existing CBSE practice detailed above,
we encountered three challenges that needed addressing: component
designation, component discoverability, and framework diversity.

The component designation issue came to our attention during one of
the interviews when we asked the interviewees to explain how they look
for reusable components. One of them explained that they mainly look
for reusable components in NPM Registry and through Google Search,
and, in his opinion, it is easier to find reusable components when they
include keywords, e.g., dhis2 (HISP East Africa developer, personal
communication, October 9, 2020). It is worth noting that when I have
looked at some of the packages within the organizational scope on NPM of
this interviewee, some of the packages had keywords, and some packages
did not. It was clear that there is no standard way of designating NPM
packages as related to DHIS2.

We encountered the component discoverability issue during one of the
focus groups with the DHIS2 core team developers. A developer explained:

I just think it makes the search much more useful, (...) the
ability to search for a specific component, if I’m developing an
application and I want (...) an org unit tree, and I search for org
unit tree, and there only comes up with the one, or doesn’t even
come up with the one from ui-core because that doesn’t exist as a
package by itself, right, its just a component within a UI package,
and there are maybe three other org unit trees that other people
have developed that are all part of their kind of utility library,
(...) I don’t find it to be super helpful [emphasis added] to me.
(DHIS2 core team developer, personal communication, October
2, 2020).

NPM Registry allows component providers to publish single components
within one NPM package, however in many cases a single NPM package
contains component libraries with multiple components. DHIS2 core team
developer pointed out that NPM Registry search operates on packages and
not on individual components within these packages. Therefore, individual
components are not made discoverable to component users. DHIS2 core
team developer suggested we "find some ways to expand the library and
expose the individual components" (DHIS2 core team developer, personal
communication, October 2, 2020).

66

The third issue, framework diversity, came to light during the discussion
with one of HISP groups detailed above when they noted that different HISP
groups use different frameworks. There is also no standard way of specifying
what framework the components in an NPM package supports, and thus also
no standard way to discover components supporting a specific framework.

To address these challenges we developed an extension to the standard
package.json file format that NPM packages should adhere to for them
to be included in SCP. In the SCP package.json extension we address
the package designation issue by mandating that packages must include
dhis2-component-search keyword in their package.json files. We address
the component discoverability and framework diversity issues by having
an explicit machine-readable specification of components contained in an
NPM package which also includes an explicit specification of the framework
supported by the components. Component providers must specify this
information in the dhis2ComponentSearch property of their package.json
files. The dhis2ComponentSearch property must include a list of reusable
components that are included in the package with the following meta-data:
component name, description, export identifier and optional information
about the supported DHIS2 versions.

Additionally, we also provide tooling, in the form of a command-line
interface (SCP CLI) for automatic validation that an NPM package complies
with the SCP package.json extension.

To conclude, the following design decisions were made with regard to
CBSE for reuse:

1. Our component repository utilized the installed base in the form of
NPM Registry and GitHub and addressed the identified challenges
pertaining to it.

2. We developed an extension to the standard package.json file format
to resolve the challenges of component designation and component
discoverability. This extension allows us to aggregate components
developed for DHIS2 from NPM Registry and then index individual
components that are part of component libraries.

3. We provide a command-line interface to s as a means to validate that
their NPM packages comply with the SCP package.json extension.

6.2.2 SCP’s design considerations in the context of compo-
nent certification

During our first meeting with the DHIS2 core team on February 26, 2020,
some of the core team developers have shown interest in implementing
component certification for the component repository. While discussing
potential functional requirements for SCP, the core team developers stated
that it would be nice "to promote the ones [components] that have a certain

67

level of quality, or that they have a certain level of maturity, and testing"
(DHIS2 core team developer, personal communication, October 2, 2020).

In CBSE, the certification process is concerned with establishing
standards for components, evaluating the components against set standards,
and then marking or designating the component as certified. Given this, we
can use the term certified component to refer to components with a certain
level of quality, maturity, and testing. The request from the DHIS2 core
team then translates to promoting certified components. Furthermore, for
SCP to promote certified components, it would imply that there are two
types of components, certified and not certified. Based on this, our team
decided that the component repository would include both non-certified and
certified components. Allowing non-certified components would also reduce
the barrier to entry for component providers as they would be able to publish
to the platform without understanding the certification process. It would
also reduce turnaround time as the component providers would be able to
release new versions and make new versions available without having to
wait for certifiers. Additionally, as discussed in Section 3.3.6, the need for
certification is reduced when the source code for components is available to
component users, and in most cases, the source code should be available
given the nature of the HISP community.

During our development work on certification, I have identified three
aspects of certification with regard to its implementation: certification
functionality, certification architecture, and the role of a certifier.

Certification architecture is concerned with how component certification
should be designed. The design process of the certification architecture
was driven by two main requirements: the architecture should support
required functionality and it should incorporate the existing infrastructure,
specifically NPM Registry and GitHub. Given the usage of NPM, and given
that NPM Registry operates on packages, and that component user can
only install whole NPM packages, and not individual components from
NPM packages, it seemed most practical for certification to operate on
NPM packages. Thus, in our case, what would be certified is a whole NPM
package and not the individual components inside it. During a focus group
with the DHIS2 core team on October 2, 2020, we have reviewed three
different component certification design options: Unipackage, Unirepo, and
Whitelisting (Table 6.1).

The first two options are relatively similar. Certifiers would be main-
taining a GitHub repository with the source code of certified components.
Certifiers would perform the certification on the source code of a component,
submitted by a component provider. The first option - Unipackage would
imply having one GitHub repository from which a singular NPM package
is published on NPM Registry. To use the components submitted in such a
repository, one would need to install all the components, e.g., npm install
@scope/unipackage_name. This option had clear disadvantages - the users
would not be able to install only a subset of the components or use differ-
ent versions of different components. The user would also not be able to

68

Certification
option

GitHub
repository

NPM package Certification
designation

Unipackage One GitHub
repository owned
by certifiers.

One NPM package
owned by certifiers.

Only certified
components are
included in the
GitHub
repository and
NPM package.

Unirepo One GitHub
repository owned
by certifiers.

Multiple NPM
packages owned by
certifiers.

Only certified
components are
included in the
GitHub
repository.

Whitelisting Different GitHub
repositories owned
by component
providers.

Different NPM
packages owned by
component
providers.

Only certified
components are
included in SCP
Whitelist.

Table 6.1: Overview of the certification options.

use different versions of different components, all components would have
to have a corresponding version, so if a newer version of one component
is desired all other components will also have to be upgraded. This would
be similar to the radiance-ui component library (Radiance UI , 2021) which
is a single NPM package published from a single Git repository but con-
taining multiple React UI components. The second option, Unirepo, would
imply having one GitHub repository containing multiple NPM packages,
each published to NPM Registry as individual NPM packages. To use the
components within this repository, one would need to install only the NPM
packages with these components, e.g., npm install @scope/component-a
@scope/component-b. Users could install a subset of all the components,
as well as different versions of different components. The DHIS2 core team
found the first option to be least effective, as the "Git [GitHub] repository
quickly becomes large and hard to manage" (DHIS2 core team developer,
personal communication, October 2, 2020). The second option was "similar
to what we [the DHIS2 core team] do with dhis2 ui at the moment, and that
could be a decent option I think" (DHIS2 core team developer, personal
communication, October 2, 2020). This would be similar to the Material
UI component library, which consists of multiple NPM packages published
from a single Git repository, each NPM package contains multiple React UI
components (Material-UI , 2021).

The third option, Whitelisting, was designed and suggested by me as an
alternative to the other options. I was dissatisfied with the two first options
because of the high maintenance burden it would place on certifiers, as they
would potentially have to deal with a large number of certified components.
The Whitelisting option would lessen the amount of work required of
certifiers maintaining GitHub repositories with reusable components. This
option would involve having one GitHub repository with a file that contains

69

a list of certified NPM packages with reusable components. Each NPM
package could have its own GitHub repository, and users could use a subset
of all components and different versions of different components. Thus, the
certifiers would only maintain a list of NPM packages instead of maintaining
their source code. The DHIS2 core team agreed that Whitelisting would
be the best choice as it "is much more community-based" (DHIS2 core
team developer, personal communication, October 2, 2020). Taking the
core team’s recommendation into account, we decided to proceed with the
implementation of Whitelisting and set up of SCP Whitelist repository on
GitHub.

There were plans to set up SCP Whitelist under the dhis2 organization
on GitHub; requiring DHIS2 core team’s involvement (DHIS2 core team
developer, personal communication, October 2, 2020). However, we could
not get in touch with them. Due to time constraints, our team decided
to implement the repository on our own (internal team discussion, personal
communication, October 22, 2020). The task and responsibility of setting up
SCPWhitelist repository were assigned to me, and SCPWhitelist repository
was set up under the DHIS2 Design Lab organization on GitHub.

During the implementation of SCP Whitelist, we had to make several
architectural choices. First, a decision had to be made whether we would
certify a specific version of a package or certify a package without regard
to its individual versions. The DHIS2 core team said there is no need
to implement support for specific versions of a package; however, one of
them noted that "it’s more work to whitelist specific versions, but it’s safer"
(DHIS2 core team developers, personal communication, October 2, 2020).
On the one hand, certification of specific versions can require more effort and
time; on the other hand, certifying a package without considering specific
versions could undermine certifiers’ credibility if later versions of they turn
out to be malicious. Another concern we had was that it would be best if the
certifiers had a mechanism to revoke the certification status of a package in
a way that component users of the package would notice such revocation. If
the only way for component users to notice a revocation of the certification
status of a package was to check SCP, this will place a significant burden
on them to perform a tedious and even error-prone manual task. One way
of addressing this problem would be creating an NPM scope for certified
components. Certifiers would own and maintain this scope and would
retain exclusive rights to publish packages to this scope. The package’s
certification status could be revoked by unpublishing the package from the
scope or by marking it as deprecated. In this case, a component user that
uses the package would immediately become aware of the revocation. One
of the core team developers stated that "it’s more work and responsibility
to publish packages under our own NPM scope. I think a single file with
whitelisted/recommended packages is enough" (DHIS2 core team developer,
personal communication, October 22, 2020). Another core team member
noted that "(...) maintaining an NPM scope for all contributed packages
should be avoided for now - we can add it in the future if there is demand"
(DHIS2 core team developer, personal communication, November 13, 2020).

70

I conclude that the DHIS2 core team’s decisions are heavily impacted by the
availability of resources, such as time and effort. We have considered their
advice and decided not to proceed with implementing NPM scope. However,
the package versioning support was implemented, as we were aiming to
increase component trustworthiness.

The architecture of the certification pipeline in SCP Whitelist was based
on suggestions from the DHIS2 core team:

In terms of the pipeline and the whitelisting and all of that,
I think, it would be very cool to do some of the checks
automatically [emphasis added]. (DHIS2 core team developer,
personal communication, October 2, 2020)

Taking this request into consideration, we decided to implement an
automated event-driven workflow that runs automated certification checks
when a specific component’s certification is requested. For this, we used
the existing feature of GitHub, a workflow system called GitHub Actions.
Our approach’s benefit is that it does not require the overheads involved
with the maintenance of source code; it also allows independent versioning
of components. Besides, it allows component providers to evolve the
components independently from the component certifiers. It makes it easy
for component providers to rapidly evolve their components and still certify
components even after early adopters have already started using them.
Another benefit of this approach is its openness. It provides an open
certification process where both the component providers and the certifiers
can see the certification workflow’s output.

Another consideration for certification architecture came to our attention
when discussing certification functionality with one of the HISP groups. A
senior developer asked us:

What is the [certification] process, have you mapped out, let’s
say a checklist of what you go through to decide that package
is [certified] or not? (senior developer in HISP East Africa,
personal communication, October 9, 2020)

It became clear to us that it is crucial for component providers to
have a clear understanding of the certification requirements so that they
could create and maintain their components in compliance with certification
requirements. One way of addressing this problem was to provide the
functionality to component providers that would allow them to perform
the same certification checks on their components that the certifiers would
do when the components are submitted for certification. To achieve this,
we implemented certification functionality in SCP CLI in such a way that it
could be used by component providers (hereafter pre-certification), and by
both certifiers for certification process in SCP Whitelist.

Certification functionality is another important aspect of component
certification. It is concerned with the capabilities of a software product

71

to fulfill the needs of its user. Different options for certification checks
were discussed with the DHIS2 core team. The first option would consist
of fully automated certification checks, and if all the checks passed, the
package would be marked as certified. If at least one of the automated
checks failed, the package would not be certified. The second option was
a more subjective certification process. It would mean that the output of
the automated certification checks would only serve as a basis for decision-
making. However, whether the package passes certification or not would
be primarily based on human discretion. We decided to adopt the second
option for our initial implementation.

In mid-October 2020, I had to decide what certification checks should
be implemented. I consulted with the DHIS2 core team before making the
final decision and suggested the following checks:

1. Security review check of the dependencies with npm audit, or OWASP
dependency check

2. Static code analysis for problematic code patterns detection with
SonarCloud, ESLint, or Flow

3. Check whether the package is in active development and is actively
maintained, i.e., checking whether the component providers are
working on fixing issues

4. Quality-related check to determine test coverage and other code
metrics

The DHIS2 core team gave non-specific feedback on these options, with one
member saying, "I think you got them [certification checks] all," indicating
that these are all indeed good options to consider (DHIS2 core team
developer, personal communication, October 22, 2020). Another member
chose to not discuss specific checks and stated that "the best option is to start
simple and incrementally add functionality as the component [repository] is
adopted and used, based on the feedback from the users" (DHIS2 core team
developer, personal communication, November 13, 2020). Considering the
time constraints, we opted to limit the implementation of certification checks
to security review check npm audit and static code analysis with ESlint.
These checks were automated, producing the output that would serve as a
basis for certification assessment by the certifiers.

To determine the nature of a certification process, I propose the
Certification Process Classification Model shown in Figure 6.1. This model
decomposes the nature of a certification process into two dimensions, one
of them is how manual or automated the certification process is, and the
other dimension is how objective or subjective the certification process is.
Certification checks can be either fully automated, like npm audit check
and static code analysis with ESLint in the case of SCP. Alternatively,
they can be fully manual, meaning that a certifier could manually perform
various components’ assessments. Additionally, the certification process

72

could be objective, meaning that certification would be performed against
a specific, measurable set of requirements. For example, npm audit can
detect vulnerabilities and assign them a low, moderate, high, or critical audit
level. Based on this, certifiers could state that certification would fail if the
assessed package has a high or a critical audit level. A subjective certification
process would be based on human discretion. For example, the only way to
determine whether a component is designed following UI design guidelines,
i.e., using the right layout, spacing, typography, and colors, is through a
subjective assessment. I have assessed the nature of the SCP certification
process and placed it within the Certification Process Classification Model as
shown in Figure 6.1. I view the SCP process of certification as manual, as it
has a certain level of human discretion despite the checks being automated.
Even though the output of npm audit and static code analysis with ESLint
can be measurable and fully automated, in our case, they only produce an
output for certifiers. I also view the SCP process of certification as as highly
subjective, as there are no clear certification requirements to guide certifiers
on how to analyze the output.

Manual

Objective

Subjective

SCP
certification

process

Automated

Figure 6.1: Certification Process Classification Model.

A more manual process of component certification would be more costly
and time-consuming for certifiers. In contrast, once created, an automated
certification process could be much faster than a manual process and run at
no additional cost. Additionally, an automated certification process could
improve certification accuracy. If the certification process is objective, it
can enable the development of pre-certification functionality for component
providers, allowing them to assess their components beforehand to make sure
they comply with certification requirements. A more subjective certification
process complicates the situation for component providers, as they would
not know how certifiers would assess their components unless the certifiers
are clearly communicating their certification requirements. My Certification
Process Classification Model can be used by practitioners to assess the
nature of their certification processes, better communicate the nature of
their certification process, and it can also provide them with insights into the
consequences and implications of their certification process. For example,
this model would help practitioners understand that the more manual and
subjective the certification process is, the more difficult it becomes to provide

73

a pre-certification mechanism to component providers. It would also help
practitioners to understand that more subjective processes preclude more
automated processes or that the objectiveness of a certification process is
inversely proportional to how automated a certification can be.

The role of a certifier is an important aspect of component certification,
especially in a context of a software platform ecosystem, as it has significant
implications for the whole software platform ecosystem. The DHIS2 core
team has several times shown interest in taking on the role of certifier
(DHIS2 core team developers, personal communication, October 2, 2020;
DHIS2 core team developers, personal communication, February 26, 2020).
However, it would mean that the core team would not be able to certify
their own components, as the previous research on component certification
specifically states that the components should be assessed by an independent
third party. My team and I have not managed to establish who should be
responsible for the certification process in SCP; thus, this issue will have
to be addressed by someone who will take over this project. An important
consideration for the role of a certifier is how the certification requirements
will affect the platform ecosystem. Claiming that the certified components
have a high level of trustworthiness and quality would make certification
requirements a sort of guideline for component providers and impact their
practices and autonomy. Given this, one of the challenges is determining who
should take the role of a certifier and who would be in a position to judge
what characteristics a trustworthy, high-quality reusable component should
possess. The DHIS2 core team, as certifiers, could use certification as a
tool to gain more control over application development and shift component
providers practices in the ecosystem. An example of it could be certification
requirements that state that in order to pass the certification, the reusable
component should be written in React framework and be designed according
to DHIS2 Design System. It would mean that the component providers
that use the Angular framework would have no choice but to migrate from
Angular to React if they want their components to be certified and promoted
on SCP. This was discussed with my supervisor, and he stated:

I agree that ’certifiers’ outside HISP UiO would create more
egalitarism [sic], but it will also take away some ’control’ from
HISP UiO. (supervisor, personal communication, February 4,
2021)

The level of subjectivity in the certification process affects how much power
and influence an individual certifier would have. If there is a lack of
clearly specified certification requirements and the certification process relies
on human discretion, the individual certifiers would introduce their own
prejudices of what a high-quality component is. When choosing individuals
to take on the role of certifiers, one should carefully assess what implications
it might have on a governance balance in a platform ecosystem, given the
level of human discretion in the certification process.

To conclude, the following design decisions were made with regard to

74

component certification:

1. Whitelisting was chosen as the design option for the certification
architecture. This design option implies that component certifiers only
maintain a list of NPM packages and do not have to spend time and
resources maintaining the source code of NPM packages.

2. Certificates are issued for specific component versions to increase
component trustworthiness.

3. A command-line interface was developed to perform some automated
checks for the purpose of certification. Additionally, this command-
line interface is available to be used for the purpose of pre-certification
by component providers.

4. The certification pipeline was automated using the GitHub Actions
workflow.

6.2.3 SCP’s design considerations in the context of compo-
nent acquisition

SCP Website was developed to provide functionality to component
users for component discovery. As I have previously mentioned, we
cultivated the installed base by reusing NPM Registry. This means the
reusable components are stored in NPM Registry as packages, while SCP
Websites acts as an aggregator, indexing these packages and displaying
the components according to their specification provided by component
providers using the SCP package.json extension. Framework diversity is
accommodated with functionality that enables component users to filter the
components based on the framework the components are built with. When
discussing the component search functionality on SCP Website, one of the
DHIS2 core developers explained that:

In some cases, a component might be built in a way that only
supports 2.28 [DHIS2 version] or something (...), and so we
would want to have some way to expose that information in the
search, or maybe be able to filter by the DHIS2 version support
of those individual components. So that would be something
that would be another beneficial enhancement, I think to this
component search functionality. (DHIS2 core team developer,
personal communication, October 2, 2020)

To accommodate this request, we added functionality to SCP Website to
filter components by their DHIS2 version; this version is specified in an NPM
package’s package.json file, again using SCP package.json extension. We
had two options for what set of components to show on SCP Website, we
could show only certified components, or we could show certified and non-
certified components and then provide a visual indication to component

75

users for certified components. We decided that it would be best to show
certified and non-certified components, as this, in our view, would ease and
accelerate the adoption of SCP and make SCP more open to diversity in
the ecosystem. We also wanted to give component users the option to make
their own decisions whether the quality of a component is satisfactory for
them, which they can assess either on trust or by evaluating the source
code of a given component if available. Additionally, we did not want to
limit the variety of components, especially not this early in the life-cycle of
SCP, as we expect the quality standards to evolve as adoption increases.
To accommodate component users that are only interested in using certified
components, we decided to add functionality to SCP Website that enables
them to view only certified components.

To conclude, the following design decisions were made with regard to
component acquisition:

1. We developed a website that aggregates designated NPM packages
published to NPM Registry. This website indexes the components
stored within the packages, displays them, and makes them searchable
for component users.

2. We implemented component filtering based on the framework and
DHIS2 version these components are compatible with.

3. We implemented a visual indicator to show what component versions
are certified.

6.3 Software design approach

A component repository is a part of a component-management process
concerned with reusable components storage and cataloging. It must
provide support for other CBSE processes. During the design activity, we
have established our user roles (component provider, component user, and
certifier), and the functional requirements to support the processes of CBSE
for reuse, component acquisition, and component certification. In order to
reduce the complexity of SCP and assure a high degree of maintainability, we
adopted a modular approach to building an orthogonal system, i.e., highly
cohesive and loosely coupled.

6.4 The architecture of SCP

The overall architecture of DHIS2 Shared Component Platform (Figure
6.2) consists of the following modules: SCP Website, SCP command-line
interface, and SCP Whitelist repository. The platform also uses two external
systems: NPM, a code-sharing platform, and GitHub, a code hosting
platform.

76

NPM Registry stores components published by component providers as
packages. Component providers use SCP CLI for the purpose of validation
of component metadata and pre-certification. SCP Whitelist includes a list
with identifiers and versions of certified components, this module uses SCP
CLI for certification workflow. SCP Website is the interface to component
users. It fetches the components published to SCP from NPM Registry,
then uses UNPKG to retrieve package.json file from each of these packages
and index individual components inside the NPM packages. This module
fetches the certification status from SCP Whitelist repository. This section
will discuss each of these modules, their role and function in the overall
system design, and what interfaces they use and provide.

fetches package.json using

publishes package to
fetches packages

fetches package.json
using

fetches
certification

status

<<Website>>
SCP Website

uses for component
acquisition

Component user

<<Database>>
NPM Registry

<<Service>>
unpkg.com

uses for
 certification

<<Github repository>>
SCP Whitelist

fetches
the package

fetches package info

<<CLI>>
SCP CLI

maintains

Certifier

uses for pre-certification

uses for source code storage

Component provider

Contains:
- File with package
identifiers and
versions

<<Github repository>>
Package repo

Figure 6.2: Context diagram of the SCP’s architecture.

6.4.1 SCP Website

SCP Website serves as the primary interface to component users. Specif-
ically, it allows component users to search through components in NPM
packages published to SCP. The search mechanism also provides the follow-
ing filtering functionality on search result:

• Framework filter

• DHIS2 version filter

• Certified components filter

The framework filter allows filtering components by front-end frameworks,
specifically React and Angular. The DHIS2 version filter allows filtering
components by selecting a specific DHIS2 version components are compat-
ible with. The certified components filter allows component filtering by its
certification status. SCP Website also provides component users with clear

77

and concise information about a component (Figure 6.3), including its name,
description, and exported identifier. Besides, it provides information about
the package the component belongs to, including its identifier, its keywords,
its latest non-certified version, its latest certified version, and a link to its
NPM page.

Figure 6.3: Component representation on SCP Website.

SCPWebsite was built using React, an open-source, front-end JavaScript
library. It uses the Redux library for state management. Redux
makes it easy to manage state consistently and coherently across different
components. Pure CSS framework was used to ensure faster web
development and website responsiveness, i.e., proper rendering across
multiple devices. Pure CSS is a mobile-first responsive grid system that
can be used through CSS class names. We have also used several reusable
UI components from React Bootstrap front-end framework.

SCP Website uses the interfaces shown in Table 6.2.

Interface Interface provider
NPM Registry API npmjs.com
UNPKG API unpkg.com
SCP Whitelist file format SCP Whitelist (GitHub repository)

Table 6.2: The SCP Website used interfaces.

NPM Registry API is used by SCP Website to fetch packages with
a package.json file that contains the dhis2-component-search keyword
and dhis2ComponentSearch property. In the early phase of the project, we
utilized npms.io API to retrieve NPM packages published on NPM Registry.
However, due to instability of npms.io API, a decision was made to migrate
to NPM Registry API.

The UNPKG API is used by SCP Website in order to retrieve an NPM

78

https://docs.npmjs.com/cli/v6/using-npm/registry
https://unpkg.com

package’s package.json file for the purpose of extracting component data.

The SCP Whitelist file format is used by SCP Website in order to
determine the certification status of an NPM package considering its version.
The file conforming to the SCP Whitelist format is fetched from GitHub
using the HTTP protocol.

6.4.2 SCP CLI

SCP command-line interface serves as one of the primary interfaces to
component providers. It provides functionality to component providers that
enables them to validate that their packages are compliant with requirements
for publication on SCP. This functionality is provided by the verify
command and includes the following checks:

• Check to verify whether the package.json file includes dhis2-
component-search keyword.

• Check to verify whether the package.json file includes a correctly
structured dhis2ComponentSearch property.

The dhis2ComponentSearch property contains key/value pairs for
a chosen framework, which are react and angular for the current
implementation, and specification of the exported components. Each
component object requires the exported component’s name, description, and
the exported component’s identifier. The dhis2Version property is optional
and comprises the DHIS2 versions the components are compatible with.
Code listing 6.1 shows an example of dhis2ComponentSearch property
structure.

1 {
2 " dhis2ComponentSearch ": {
3 " language ": "react",
4 " components ": [
5 {
6 "name": " Simple Card",
7 " export ": " SimpleCard ",
8 " description ": "A simple react component

card",
9 " dhis2Version ": [

10 " 31.1.0 ",
11 " 32.0.0 "
12]
13 }
14]
15 }
16 }

Listing 6.1: Example of dhis2ComponentSearch property structure.

79

SCP command-line interface provides additional checks that are part of
certification and pre-certification. First, it lints the code using ESLint, a
static code analysis tool for finding problematic code patterns. The other
check is running a security audit with npm audit that does "an assessment
of package dependencies for security vulnerabilities" (NPM, 2020, para. 1).

Moreover, SCP CLI is a part of the SCP Whitelist certification workflow.
All the functionality described above is being used for package certification,
and the certification workflow is to be assessed by certifiers.

SCP CLI’s pull request certification functionality is provided through
the pr-verify command and includes the following checks:

• Check to verify whether the event is a pull request

• Check to verify that only one file has been modified

• Check that the modified file is list.csv

• Check to validate package identifier and its version

• Check to verify that the package’s package.json file specifies git
repository with current structure

When the checks listed above pass, SCP CLI proceeds to perform the
checks provided by the verify command.

Initially, SCP CLI was built using JavaScript, but later in the
development process, I decided to migrate the project to TypeScript mainly
because of type safety, null safety, type inference. The benefit of type
safety and null safety is that many classes of errors relating to incorrect
usage of variables can be detected without running the code. These safety
mechanisms need to know the types of variables determined by either explicit
type specifications or by type inference. Explicit type specifications are
where the user explicitly specifies the types of variables, arguments, and
return types. Type inference is "the process of determining the types of
expressions based on the known types of some symbols that appear in them"
(Mitchell & Apt, 2001, p. 135). It allows the compiler to infer the types
of variables, arguments, and return types from the types of other variables,
arguments, and return types if the user did not explicitly specify them. I also
sought advice from the DHIS2 core team on whether it would be appropriate
to use TypeScript. The DHIS2 core team developers have stated that it is
fine to use TypeScript if I prefer it, however they do not use it for any of
their CLI modules today.

SCP command-line interface uses the interfaces shown in Table 6.3.

The UNPKG API is used by SCP CLI in order to retrieve an NPM
package’s package.json file to extract the package’s Git repository URL.
Git repository URL is used for the purpose of cloning the source code of a
package for the purpose of certification.

80

Interface Interface provider
UNPKG API unpkg.com
GitHub API GitHub.com
Git protocol The Git repository host of the NPM package

Table 6.3: The SCP CLI used interfaces.

The GitHub API is used by SCP CLI to verify that the changes in a pull
request are only done to one file, namely the list.csv file, and determines
what changes were made to this file.

The Git protocol is used by SCP CLI to clone an NPM package’s source
code for the purpose of certification.

The interfaces provided by SCP CLI are shown in Table 6.4.

Interface Interface users
PR verify command interface SCP Whitelist

Table 6.4: The SCP CLI provided interfaces.

SCP Whitelist uses the PR verify command interface to validate pull
requests. This happens automatically when a pull request is created.
When invoked through the PR verify command interface, SCP CLI
performs validation of the SCP package.json extension and runs automated
certification checks.

6.4.3 SCP Whitelist

SCP Whitelist serves as the primary interface to certifiers and as one of
the interfaces to component providers. It provides the functionality to
component providers that allows them to submit a specific version of their
package for certification. The repository includes a list.csv file (Figure
6.4) that, in turn, includes two columns labeled package_identifier and
package_version. The list.csv file in the master branch of this repository
is the list of certified components. In order to submit a package for
certification, a component provider must create a pull request modifying
this file by adding a new line with an NPM package identifier and its
version separated by a comma, for example, component-card,4.4.1. To
do this, a component provider would need to create a fork of SCP Whitelist
repository and edit the list.csv in the fork and then create a pull request to
merge this fork into the master branch. The GitHub web interface simplifies
this process by automatically creating a fork and pull request when someone
tries to edit this file via the web interface.

81

https://unpkg.com
https://docs.github.com/en/free-pro-team@latest/rest

Figure 6.4: The structure of the list.csv file in SCP Whitelist repository.

As a result of pull request creation, a pull request event triggers
the automated certification workflow implemented using Github Actions.
Github Actions is meant to automate certain tasks, and allows one to run
commands after a specific event has occurred. The certification workflow
is configured and set up in the validate-workflow.yml file. It contains
the name of the workflow, environment it runs on (e.g., ubuntu-latest),
the name of the GitHub workflow event that triggers the workflow, and
information about the steps that are run in this job. In the context of the
SCP Whitelist workflow, it performs the following steps:

1. Write the pull request event to a file named event.json (Code listing
6.2, line 14-16).

2. Get the SCP CLI package and build it (Code listing 6.2, line 17).

3. Run the SCP CLIs pr-verify command in the environment of that
package, passing event.json as an argument (Code listing 6.2, line
17).

1 name: CI - Validate
2 on:
3 pull_request_target :
4 branches : [main]
5
6 jobs:
7 build:
8 name: Validate
9 runs -on: ubuntu - latest

10 steps:
11 - uses: actions / checkout@v 1
12 - uses: ./. github / actions /validate - action
13 - run: |
14 cat - > event.json <<EOF
15 ${{ toJson (github .event) }}
16 EOF

82

17 npx -p "https :// github .com/ haheskja /scp -
cli# master " dhis2-scp -cli -vvv pr -
verify event.json

Listing 6.2: SCP Whitelist workflow file.

The interfaces used by SCP Whitelist are shown in Table 6.5.

Interface Interface provider
GitHub Actions workflow format GitHub.com
PR verify command interface SCP CLI
Git protocol GitHub.com

Table 6.5: The SCP Whitelist used interfaces.

The GitHub Actions workflow format is used by SCP Whitelist to define
the actions that must be taken on a pull request creation. Specifically, it
uses this format to specify that the PR verify command interface must be
invoked.

The PR verify command interface is used by SCP Whitelist to verify a
pull request after being invoked from the GitHub Actions workflow.

The Git protocol is used by SCP Whitelist to retrieve the latest version
of SCP command-line interface and run the pr-verify command for the
purpose of certification.

The interfaces provided by SCP Whitelist are shown in Table 6.6.

Interface Interface users
SCP Whitelist file format SCP Website

Table 6.6: The SCP Whitelist provided interfaces.

SCPWebsite uses the SCPWhitelist file format to determine a package’s
certification status and display it on the website.

6.4.4 NPM Registry

NPM Registry is a package hosting platform and an external module of SCP.
It serves as an interface to component providers and provides functionality
for publishing packages with reusable components. SCP Website uses
NPM Registry to fetch packages that contain the dhis2-component-search
keyword in their package.json file.

NPM Registry provides the interfaces shown in Table 6.7.

NPM Registry API provides other subsystems with functionality to
query published packages. Specifically, it allows retrieval of all packages

83

https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols

Interface Interface users
NPM Registry API SCP Website

Table 6.7: NPM Registry provided interfaces.

with specific keywords. In the current architecture, only SCP Website uses
this interface to fetch packages published by component providers.

6.4.5 GitHub

GitHub is "a code hosting platform for version control and collaboration"
(Github, 2020, para. 2) and an external module of SCP. It provides
developers with Git hosting for their source code. Additionally, it provides
functionality for pull request management. It also has functionality for
executing automated workflows on specific events, such as on pull request
creation, and it provides API that makes it possible for other subsystems to
extract information about repositories and events such as pull requests.

Table 6.8 shows the interfaces provided by GitHub relevant to SCP.

Interface Interface users
GitHub API SCP CLI
Git protocol SCP CLI and SCP Whitelist
GitHub Actions workflow format SCP Whitelist

Table 6.8: GitHub provided interfaces.

The GitHub API provides other modules with a mechanism to retrieve
information about users, repositories, issues, and pull requests, among other
things. In the current SCP architecture, the specific system that uses the
GitHub API is SCP CLI. It uses the GitHub API to check that a pull request
only changes the list.csv file and determine what exact changes were made
to this file.

The Git protocol provides other modules with a mechanism to retrieve
the content of a Git repository. In the current SCP architecture the specific
modules that use the Git protocol is SCP CLI and SCP Whitelist. SCP
Whitelist uses it to fetch the latest version of SCP CLI. SCP CLI, in turn,
uses it to fetch the source code of the package for certification purpose.

The GitHub Actions workflow format provides a mechanism for
specifying actions to perform when specific events occur on GitHub hosted
git repositories and provides infrastructure for executing these commands.
In the current SCP architecture, the specific module that uses the GitHub
Actions workflow format is SCP Whitelist, which uses it to specify that the
pr-verify command from SCP CLI should be run when a pull request is
created.

84

6.4.6 UNPKG

UNPKG is a global content delivery network for NPM (UNPKG, 2020,
para. 1) and an external module of SCP. It is used to retrieve files from
the packages hosted in NPM Registry. It is an external service used by SCP
Website and SCP CLI. UNPKG provides the following interfaces:

Interface Interface users
UNPKG API SCP Website and SCP CLI

Table 6.9: UNPKG provided interfaces.

SCP Website uses the UNPKG API to fetch an NPM package’s
package.json file so it can extract the components provided by the package.
SCP CLI uses the UNPKG API to fetch package.json file and extract
the value of its repository property to be able to clone the package’s
repository.

6.5 Design principles

As a theoretical contribution of my research, I establish a set of essential
design principles for a component repository that facilitates component reuse
in the context of a software platform ecosystem. These design principles can
guide the construction of similar artifacts. I define essential design principles
as principles that are important for a component repository to effectively
fulfill its function in the context of a platform ecosystem, as this is the
context considered in my research question. In the case of the SCP, the
function is to effectively drive component reuse.

When formulating the design principles, I have followed the conceptual
schema for prescriptive knowledge formulation for IT-based artifacts
proposed by Gregor, Kruse, and Seidel (2020). My design principles have
the following structural components: an Aim, a Context, a Mechanism and
a Rationale (Table 6.10).

I do not explicitly define the implementers in the design principles, as
all of them are targeted towards someone who is to implement a component
repository in a similar context. These principles were identified through the
analysis of the qualitative data gathered during the interviews with HISP
East Africa developers and focus groups with the DHIS2 core team, and
during our design and development work. Given this, the empirical data
had a primary role in the establishment of the design principles, while design
theory and kernel theories played a justificatory role in supporting them.

In this section, I introduce the design principles and explain how they
emerged from the empirical data.

85

Design
principle
component

Description

Aim The aim achieved by applying the prescriptive
knowledge

Context Boundary conditions, implementation setting
Mechanism Prescriptive knowledge on how to achieve the aim
Rationale Descriptive justificatory knowledge providing

rationale for the design principle

Table 6.10: Design principle structure.
Note. Adapted from "The Anatomy of a Design Principle" by Gregor et al.
(2020), 2020, Journal of the Association for Information Systems 21(6), p.
1622-1652.

6.5.1 Principle of component trustworthiness

The DHIS2 core team expressed their interest in implementing component
certification to promote the components with a certain quality level.
Relevant literature on component certification that I reviewed in Section
3.3.6 shows that component certification is a method of establishing the
trustworthiness and quality of components. Therefore, when implementing a
component repository in a software platform ecosystem, one should consider
implementing component certification. Consequently, I formulate Principle
of component trustworthiness as follows:

Design Principle (DP) 1 of component trustworthiness:
To increase component trustworthiness in a software platform
ecosystem, consider implementing component certification be-
cause it is a means to establish component trustworthiness, in-
crease component quality and make people more comfortable
reusing components.

6.5.2 Principle of balanced certification

Given the fact that component certification was an initiative of the DHIS2
core team as platform owners, and there were plans for them to take the
role of certifiers, certification could be used as a control mechanism over
component reuse, and consequently, over web application development.
I recommend the researchers and practitioners to look at the role of a
component certifier and the nature of a certification process from a holistic
perspective, assessing the possible implications of their decisions in assigning
this role to balance the interests of the actors involved. Consequently, I
formulate Principle of balanced certification as follows:

Design Principle (DP) 2 of balanced certification: To
increase the likelihood of component repository adoption and

86

cultivate its growth in a software platform ecosystem, implement
component certification with a balance between control and
autonomy because the right governance balance is important for
the ecosystem’s growth and success.

6.5.3 Principle of component discoverability

NPM Registry allows component providers to publish packages that contain
only one component and packages that contain multiple components, i.e.,
component libraries. Landau (2021) explains that developers usually create
component libraries because the creation and maintenance of an NPM
package requires much effort, resulting in high overhead. Thus, it is more
common to create and maintain component libraries. However, as pointed
out by the DHIS2 core team, NPM Registry does not expose individual
components within such component libraries to component users through its
search facility, which has a negative impact on component discovery. This
lack of discoverability reduces the utility of components in a component
library. Therefore, to prevent a potential loss of utility and increase
component discoverability in a component repository, one should provide
a mechanism to index the components that are part of component libraries.
Given this, I formulate Principle of component discoverability as follows:

Design Principle (DP) 3 of component discoverability:
To facilitate component acquisition from a component reposi-
tory in a software platform ecosystem, aim at providing a search
mechanism that can index individual components within com-
ponent libraries because it is important for component discover-
ability and reusability.

6.5.4 Principle of installed base cultivation

My team and I have engaged with the HISP developers to learn about their
software reuse practices and challenges, technology, and tools. We utilized
the existing infrastructure in the form of NPM Registry and GitHub and,
through our solution, addressed the identified challenges in the existing
practices and tooling. According to the kernel theory on installed base
cultivation in Section 4.1.2, this approach has beneficial impacts on adoption
and reduces learning cost. Given this, I formulate Principle of installed base
cultivation as follows:

Design Principle (DP) 4 of installed base cultivation:
To increase the likelihood of component repository adoption
and encourage its growth in a software platform ecosystem,
aim at cultivating the installed base (i.e., utilizing existing
infrastructure) because it lowers learning cost and increases the
likelihood of adoption.

87

6.5.5 Principle of orthogonality

My work on the project and the kernel theory on software modularity in
Section 4.2.2 have led me to conclude that orthogonality is an important
aspect of the architecture of a component repository that is to support
multiple CBSE processes in the context of a platform ecosystem. My team
and I used modularization as a means to achieve orthogonal architecture. It
allowed us to work simultaneously on the same system with a high degree
of independence from each other and with minimal communication. This
choice was also made to make it easier to test, debug and maintain the
system, as the different modules could be debugged, maintained, and tested
independently. Therefore, in my opinion, it should be considered while
building a similar system. I formulate Principle of orthogonality as follows:

Design Principle (DP) 5 of orthogonality: To reduce the
complexity and increase the maintainability of a component
repository that supports multiple CBSE processes in a software
platform ecosystem, aim to achieve a high degree of orthogo-
nality, i.e., loose coupling and high cohesion, in the architecture
of the component repository because it brings the benefits of
modular software design.

6.6 Summary of the design principles

In this section, I present the established design principles (Table 6.11).

Design principle Design principle specification
1 Principle of

component
trustworthiness

To increase component trustworthiness in a
software platform ecosystem, consider
implementing component certification
because it is a means to establish
component trustworthiness, increase
component quality and make people more
comfortable reusing components.

2 Principle of
balanced
certification

To increase the likelihood of component
repository adoption and cultivate its
growth in a software platform ecosystem,
implement component certification with a
balance between control and autonomy
because the right governance balance is
important for the ecosystem’s growth and
success.

88

Table 6.11 continued from previous page
Design principle Design principle specification
3 Principle of

component
discoverability

To facilitate component acquisition from a
component repository in a software
platform ecosystem, aim at providing a
search mechanism that can index
individual components within component
libraries because it is important for
component discoverability and reusability.

4 Principle of installed
base cultivation

To increase the likelihood of component
repository adoption and encourage its
growth in a software platform ecosystem,
aim at cultivating the installed base (i.e.,
utilizing existing infrastructure) because it
lowers learning cost and increases the
likelihood of adoption.

5 Principle of
orthogonality

To reduce the complexity and increase the
maintainability of a component repository
that supports multiple CBSE processes in
a software platform ecosystem, aim to
achieve a high degree of orthogonality, i.e.,
loose coupling and high cohesion, in the
architecture of the component repository
because it brings the benefits of modular
software design.

Table 6.11: Established design principles.

89

Chapter 7

Evaluation

In this chapter, I present the results of the artifact’s evaluation according
to the selected evaluation criteria as described in Table 5.3. These criteria
are accuracy, openness, performance, efficacy, and usefulness. Additionally,
I present findings that address the application of the established design
principles.

7.1 Accuracy

Unit testing was used to measure the criterion of the accuracy of SCP CLI.
The goal was to reach the test coverage of 70-80%. As seen in Figure 7.1,
this goal was partly achieved due to total branch coverage being 68.42%,
which is less than the target coverage.

Figure 7.1: SCP CLI unit test coverage report.

Unit tests were beneficial to error handling, as SCP CLI could properly
handle an incorrectly set up package.json file during the user evaluation.
Evaluator 1 made a typo in his package.json extension. When he
submitted his package for certification, the SCP certification pipeline
rejected his pull request, and the certification workflow failed. This typo

90

was confirmed during the manual inspection of the submitted package.json
file. The developer explained:

This was a mistake. I didn’t see my typo before your workflow
caught the mistake. It’s doing its job and also proves its
usefulness. (Evaluator 1, personal communication, December
16, 2020)

I conclude that unit tests were beneficial for establishing the accuracy of
the technical aspects of the artifact.

7.2 Openness

Evaluator 3 concluded that given all parts of SCP are entirely open-source, it
is easy to inspect SCP, as users can download the source code (Evaluator 3,
personal communication, January 10, 2020). Additionally, where applicable,
such as in the case of the SCP Whitelist certification pipeline, the inputs
for decisions are public and available to all parties, and processes are
conducted in an "open and transparent [emphasis added] way" (Evaluator
3, personal communication, January 10, 2020). Additionally, Evaluator 3
noted that the artifact and its various parts are also open to reuse, given
that they are open source, and some of the modules are highly cohesive
and loosely coupled. SCP CLI, for example, could be used in a CI pipeline
or even a completely different component repository. SCP Website could
function without the presence of SCP CLI and SCP Whitelist, meaning that
certification-related modules can be removed without having an impact on
SCP Website. According to Evaluator 3, the SCP the artifact has a high
degree of openness as it is open to inspection, modification, and reuse.

7.3 Performance

During the expert evaluation of SCP, Evaluator 3 remarked upon the
current implementation of SCP Website with regard to its performance.
He explained that the current approach of client-side indexing, where all
packages are indexed for each visitor to SCP Website in their browser,
provides a decent solution for a low number of packages (Evaluator 3,
personal communication, January 10, 2021). However, it may put a high,
or even excessive, load on external services and may also put a high load
on end-users’ browsers. He explained that if the amount of NPM packages
becomes high enough, this indexing will likely have to be done centrally
(Evaluator 3, personal communication, January 10, 2021). This could be
done by having a central service with a persistent index that is used by SCP
Website. This persistent index would have to be updated, either periodically
or on some event trigger, to include newly published NPM packages.

91

7.4 Efficacy and usefulness

When evaluating SCP from the perspective of component providers, the
evaluators were asked to assess how SCP affects their reusable component
publishing experience. Evaluator 1 and Evaluator 3, who had previously
used NPM Registry for component publishing, stated that SCP makes the
experience better. Evaluator 1 explained that it is "easier to publish, easier
for others to consume and contribute. cli-tool [SCP CLI] makes sure we
follow the conventions." Evaluator 3 argued that "people will be more likely
to notice components." Evaluator 2 stated that SCP does not change it
because the evaluator has "not been a part of the publishing packages [on
NPM]."

Evaluator 1 and Evaluator 3 concluded that publishing reusable
components for SCP takes more or less the same amount of time compared to
their previous experience with publishing reusable components. Evaluator
2 had no relevant or comparable experience. I find this result particularly
interesting because component providers are required to do additional work,
such as manually setting up package.json file in order to publish their
components to SCP. However, none of the evaluators stated that it "took a
little bit longer" to publish the components. It was clear for all evaluators
what components should be listed in package.json file, and one of them
explained: "it is rather clear to me that I had to list components that I
expect others to use."

To investigate whether the evaluators understand the purpose of
certification in the component repository, I asked them to describe their
understanding of it and its purpose in SCP. Evaluator 1 explained that pre-
certification checks the list of components specified in package.json file and
checks for "typos and missing fields." He also understood that the success
of pre-certification would mean that the package would pass SCP Whitelist
certification pipeline. However, he did not mention two other certification
checks - npm audit and ESLint and their purpose in certification. Evaluator
2 stated that the purpose of certification is to "to verify that the packages
contains [sic] the required fields." Evaluator 3 explained:

Firstly it checks the basics that is [sic] required for the
components from my npm package to be searchable on the
website. The second thing it does is to check the quality of
my package.

Given this, I conclude that we have failed to effectively communicate the
purpose of certification and pre-certification in SCP to our users.

Two of the evaluators stated that the component representation on SCP
Website was apparent to them, while two others found it to be clear enough
(Figure 7.2).

92

Figure 7.2: Survey result on component representation on SCP Website.

Evaluator 3 noted that "It [representation] is fairly detailed." Evaluator
4 explained that the representation is "good, but largely depending on
component creator making a good description." Some component cards link
to NPM modules with multiple components, which should maybe have
an indication on the card." He makes a good point, because SCP relies
heavily on the component descriptions provided by component providers
in a package.json file, and if a component provider fails to describe his
components, it will negatively impact component representation on SCP
Website and component users experiences.

The evaluators were asked to describe their understanding of the version
indicators on the component cards. Evaluator 1, Evaluator 2, and Evaluator
3 understood that the green dot represents the certified version of the
package, while the grey dot represents the non-certified version of the
package. However, Evaluator 2 found this representation to be "a little
bit confusing." Evaluator 4 explained that "[dot] with color [emphasis added]
showing ’current’ version. I am color blind, so addional [sic] indicator would
be useful." In my opinion, there is a clear need to re-design the component
version indicators on SCP Website, also improving the color accessibility for
colorblind users. While the component representation and version indicators
are explained in detail in the SCP Documentation, we cannot expect that
the users have already read through it when they access SCP Website to find
reusable components. Given this, I conclude that we should aim at creating
a more intuitive design.

The evaluators were asked to reflect on how SCP Website affects their
experience of finding reusable components. Evaluator 1 explained that one
"can search for components instead of libraries. more [sic] in tact with actual
dev work." Evaluator 2 said that "SCP website would make it easier to find
components." Evaluator 3 explained:

I do not think it affects my experience at this point, since I do
not think I would use it as it is today. But if more functionality

93

for filtering was provided as well as showing images of the
components, then I think I would use it if I am looking for a
new component.

Evaluator 4 expressed a desire for additional search and browse functionality
on SCP Website:

Being able to reuse code for common components is a major plus.
As component list grows it makes it more challenging to find
what you need, so more advanced search/browse functionality
would help.

To conclude, most evaluators agreed that SCP makes their component
publishing and component discovery experience better and that it takes more
or less the same amount of time compared to their previous experiences
with component publishing. However, the evaluators either do not quite
understand the purpose of certification and pre-certification or fail at
explaining their understanding of it. Evaluator 3 seems to have a clear
understanding of it, although it is expected because he became familiar
with SCP design and architecture while performing the expert evaluation.

7.5 Evaluation of the application of the design
principles

The design principles were first introduced in Chapter 6. The purpose
of the evaluation was to assess the application of the established design
principles by evaluation participants. In this section, I present and discuss
the evaluation results of the application of the following design principles:
Principle of orthogonality, Principle of component trustworthiness, and
Principle of component discoverability. When the evaluation was performed,
it was not possible to assess the application of Principle of balanced
certification because we have not established who would take a role of a
certifier, what certification criteria would be used, and what certification
requirements would entail. Additionally, the application of Principle of
installed base cultivation should be assessed by the target user group, the
developers from HISP East Africa, which was not possible to do during this
formative evaluation due to the difficulties establishing contact.

7.5.1 Application of Principle of orthogonality

To assess the SCP’s orthogonality, I have chosen expert evaluation as an
evaluation method because it is a non-functional architectural characteristic
that cannot be assessed by the users of SCP.

The expert evaluator’s assessment of SCP Website’s efferent dependen-
cies has shown that the usage of UNPKG REST API and NPM Registry API

94

is not dependent on the specific implementations but only dependent on the
protocols which are stable and well-defined (Evaluator 3, personal communi-
cation, January 10, 2021). The expert evaluator argues that SCP Whitelist
is tightly coupled with GitHub, as it is implemented on top of existing
GitHub functionality, specifically the pull request system and GitHub Ac-
tions (Evaluator 3, personal communication, January 10, 2021). According
to Evaluator 3, there is no separation between SCP Whitelist and GitHub,
no interfaces that can be reimplemented. The benefit of this design choice
is that it reduces the overall footprint, complexity, and maintenance burden
of SCP. Therefore, according to Evaluator 3, it seems like a reasonable or
even preferable design choice. Additionally, SCP Whitelist uses SCP CLI
by calling it as a command. This can be considered loosely coupled as this
usage is not dependent on the SCP CLI implementation and the SCP CLI
implementation can be changed without having to change SCP Whitelist
repository. The expert’s assessment of SCP CLI coupling shows that SCP
CLI interacts with UNPKG through REST API, and GitHub through the
Git protocol. The usage of these systems is not dependent on the specific
implementations but only depends on the stable and well-defined proto-
cols. This design is optimal and qualifies as loose coupling. While assessing
the degree of cohesion of SCP CLI, the expert evaluator concludes that all
functions of this module relate to validation and certification of an NPM
package (Evaluator 3, personal communication, January 10, 2021). They
are usable and relevant to component providers in their workflows for de-
veloping, maintaining, and publishing NPM packages containing reusable
components. Additionally, SCP Website can be considered highly cohesive
because its functions fit well together and have a unified purpose, which is
to allow component users to find the components published according to
the SCP guidelines. Similarly, SCP Whitelist repository can be considered
highly cohesive as all of its functions fit well together and have a unified
purpose, which is to host the SCP Whitelist and facilitate changes to it.

To summarize stated above, my formative evaluation suggests that we
have achieved a moderately high degree of orthogonality in SCP and that
this has resulted in a simple and maintainable system.

7.5.2 Application of Principle of component trustworthiness

Evaluation of SCP from the perspective of certifiers was performed by
Evaluator 1 and Evaluator 3. First, when asked to elaborate on their
understanding of the purpose of component certification, Evaluator 1 stated
that "[certification] makes sure only high quality non-malicious convention-
following packages are marked as [certified]." Evaluator 3 explained that
certification is necessary to "establish that the component had some baseline
of quality." Further, the participants were asked to give their opinion on the
fact that SCPWhitelist certifies only the individual versions of the packages.
Evaluator 1 explained:

Good approach. Lots of stuff break or gets worse over time. We

95

can only verify what we have here and now.

It should be pointed out that earlier, during one of the focus groups with the
DHIS2 core team, the core team developers argued that there was no need to
implement support for specific versions of a package (Section 6.2.2). Despite
this, we have chosen to implement it, and it seems like Evaluator 1, a member
of the DHIS2 core team, found this solution acceptable. Evaluator 3 noted
that it "makes sense" because it is not clear how one deals with older and
newer versions of the packages. He makes a good point because certifying a
package without considering its version can be risky, as there is no guarantee
that the older or newer versions of the package are of an appropriate level of
quality and trustworthiness. Additionally, the participants were asked what
certification checks should be part of the certification process. Evaluator 1
has listed the following checks:

• usefulness

• predictable behavior (do the components behave as documented)

While predictable behavior is something that has been mentioned in the
reviewed literature on CBSE and is an aspect of component trustworthiness,
the criterion of usefulness is not a known quality attribute. It is also
unclear what metrics can measure this criterion, as it is very subjective.
Another concern I have is whether it should be up to certifiers to decide
what components are useful and which are not. In my opinion, certifiers do
not possess knowledge about the prospective use context of every component
and therefore cannot determine their usefulness beforehand. I suggest
that component usefulness should be determined by component users when
they are engaged in component acquisition. Evaluator 3 suggested such
certification checks as dependency analysis or software composition analysis,
software management analysis, code analysis, code style analysis, and
automated test analysis.

The participants were asked to provide suggestions for the improvements
of the certification workflow. Evaluator 1 stated:

I think it’s quite nice. The PR [pull request] acts as a
discussion platform [emphasis added] when we maintainers want
the component [provider] to make changes also puts the whole
thing [certification process] open and public [emphasis added].

He seemed to like the open nature of the certification process in SCP
Whitelist. Additionally, he suggests that there is a possibility for component
providers and certifiers to engage in an open discussion as part of the
certification process. In my opinion, the openness of the certification process
makes certification transparent to both component providers and component
users, making it more clear what this process entails. Evaluator 3 noted:

If there is a way to make it clearer on the pull request pages
itself that warnings occurred it would be nice, not sure if Github

96

actions provides such a mechanism. Overall though I really like
the way it works.

Furthermore, I asked the participants to reflect on the nature of the
component certification process. They were asked whether the package
certification process should have minimal human discretion and thus be
objective or subject to certifiers’ opinions. The reported results showed
diversity in opinions. Evaluator 1 noted:

I think it should be subjective. Otherwise we’ll end up with
many [obscenity] libraries with a [certified] tag. The discussion
of approval should be public [emphasis added] (the PR thread).

Evaluator 3, on the other hand, suggested minimal human discretion:

I think it is best to have minimal human discretion. That way
[certification] can be quicker and more predictable.

None of the evaluators have experienced any issues during the evaluation.
To conclude, the evaluation results show that both evaluators find the
certification of individual versions of the packages as a good approach.
Furthermore, both evaluators like the architecture of the certification
workflow and its openness. However, it is also clear that the certification
process and its nature still have some challenges that we have not managed
to address adequately.

In summary, my formative evaluation suggests that the certification
mechanism in SCP is reasonably good means to establish component trust-
worthiness and make people more comfortable with reusing components.

7.5.3 Application of Principle of component discoverability

When reflecting on the component discoverability of SCP, Evaluator 1
explained that "when developing you’re looking for components that do what
you want the component is tied to the library, not the other way around."
Evaluator 3 noted that "it is nice to have a place where all components are
searchable." Evaluator 4 explained that "depending on use case, but having a
uniform way to present information of a specific type across multiple different
systems is very valuable." Evaluator 2 chose not to answer this question.
Given this, the consensus amongst evaluators seem to be that we managed
to address the issue of component discoverability.

In summary, my formative evaluation suggests that the search mech-
anism in SCP makes it easy to find and subsequently acquire individual
components that are part of component libraries.

97

Chapter 8

Discussion

This chapter will present and discuss the established set of design principles
considering the empirical data of this study and evaluation results and
elaborate on how the design principles inform the existing research.

8.1 Design principles

8.1.1 Summary of the design principles

The following research question was asked: What are the essential
design principles for implementing a component repository that facilitates
component reuse in a software platform ecosystem? To provide the answer
to the research question, I presented a set of the established design principles
(Table 6.11). Further in this section, I will discuss each of them to underline
the significance of my findings in light of the existing research.

8.1.2 Principle of component trustworthiness

Previous research shows that component trustworthiness is a significant
challenge in CBSE and some researchers, inter alios Crnkovic and Larsson
(2002), Heineman and Councill (2001), Sommerville (2011), Tiwari and
Kumar (2020), indicate the importance of certification as a means for
component users to determine the level of quality and trustworthiness of
a component.

Given my research question, it is important to establish why this
principle addresses the particular context of a software platform ecosystem.
In the case of DHIS2, component reuse can take place at an intra-group level,
within an individual HISP group, meaning that developers in a certain HISP
group create reusable components for their own use. Component reuse can
also take place within the greater HISP community, at an inter-group level,
meaning that developers from one HISP group use components made by
another HISP group or made by the DHIS2 core team. The case when

98

the HISP developers reuse components developed by third-parties that are
not part of DHIS2 ecosystem can be viewed as Internet-wide reuse. In
the first case, intra-group reuse, more mechanisms are available to control
the quality of the components being made and reused, as HISP groups are
unified organizations and can institute organizational policies, for example,
mandating that code must be reviewed and require automated tests with
some specific minimum code coverage. In the second case, inter-group
reuse, even though reuse is happening within the HISP community - at the
ecosystem level, there can be different quality outcomes because the HISP
groups are inherently independent organizations with different policies. The
same concern would apply to the case of Internet-wide reuse. The developers
in one HISP group may be reluctant to reuse the components developed by
a different organization, as indicated by Jalender, N.Gowtham, et al. (2010)
in Section 3.3, especially if they are unsure if these components will meet
their quality expectations. Therefore, establishing a means to determine
the level of component trustworthiness and quality is critical for facilitating
component reuse in cases other than intra-group reuse, which includes reuse
in a software platform ecosystem.

Considering that certification is still a challenge and that there is a lack
of standard procedures and methods for certification, I contribute to the
body of knowledge by providing insights and recommendations regarding
certification functionality and certification architecture by presenting our
implementation of certification.

First, the certification process should consider component versioning. As
Szyperski (2002) notes, there is a need for proper component versioning to
ensure component compatibility. Additionally, Tiwari and Kumar (2020)
argue that a component repository should support different versions of
different components and handle proper version updates. Furthermore, our
research also showed that taking component versioning into consideration
can be useful for certification. Certification done on a version-specific basis
may require more time and effort because later versions of components
would have to be certified again. However, if certification is done on
a per-component basis without considering the version, then regressions
of the component quality in future versions of a component can call the
certification’s validity into question. Even though the practitioners indicated
that there is no need to implement version-specific certification given its
drawbacks mentioned above, my evaluation showed that version-specific
certification is a good and preferable solution. It is also a safer choice
for component certifiers, as they cannot guarantee that the older and
future versions of a component maintain the same level of quality. Our
implementation of version-specific certification also addressed the challenge
mentioned by Mohammad (2011) in Section 3.3.6 - component modification
after certification. NPM Registry, one of the existing systems that we used
as a basis for SCP, prevents published NPM package versions from being
changed after they were published (npm-publish, n.d.); this restriction is
also present in SCP itself, thus ensuring that versions we certify do not
change after certification was performed. Given this, it is important to

99

implement version-specific certification when implementing a component
repository with certification and ensure that specific component versions
are immutable and cannot be changed once published.

Another question raised by Mohammad (2011) in Section 3.3.6 is
how component modification affects certification. In our case, given the
immutability of component versions, a change in a component results in an
entirely new entity that has to be certified again. However, our approach
may lead to significantly more certifications being conducted. Practitioners
could consider some middle ground between certifying specific component
versions and certifying components without consideration of versions. One
option would be to certify according to specific elements of a component’s
version number, provided semantic versioning adheres to (About semantic
versioning, n.d.). They could for example certify a component for a specific
Major and Minor version elements, such as 1.3, and then all Patch versions
with the same Major and Minor version elements would be considered
certified, so 1.3.0, 1.3.5 and 1.3.50 would all be certified. However, a problem
with this approach is that there is no guarantee that component providers
correctly follow the semantic versioning guidelines, and this approach also
has no protection against malicious actors which may intentionally break
semantic versioning guidelines.

Furthermore, one should consider implementing functionality that gives
certifiers a mechanism to directly integrate with the development and
continuous integration flow of component users. This is especially important
when certifiers want to revoke a component’s certification status and make
component users aware of the revocation. In our case, we considered creating
an NPM scope maintained by certifiers. Certified components would be
republished within such scope, guaranteeing that the certified components
have not been modified after certification. This would also give certifiers
a way to revoke the certification status of components so that component
users would notice revocation without requiring the use of specialized tools
or procedures such as checking SCP Whitelist. Usage of an NPM scope or
other similar functionality could also provide a mechanism to ensure the
immutability of component versions. This insight contributes to the future
research suggested by Mohammad (2011) discussed in Section 3.3.6.

Additionally, one should consider implementing a certification process
that is open and transparent to component providers, and even component
users. SCP Whitelist certification workflow is open to anyone who is
registered on GitHub and, as a DHIS2 core team developer has mentioned
during evaluation, it acts as a platform for discussion for the involved actors.
It can also be beneficial to component users, as they can gain knowledge
on how the certification requests are being assessed and what assessment
metrics are used as a basis for certification. This openness can provide
all users with much deeper insight and practical knowledge that they could
not easily obtain from the documentation. Openness could also lead to more
innovation as a deeper awareness and understanding in the community could
give users new ideas and inspirations on improving and optimizing various

100

aspects of the system.

Certification requirements should be communicated to component
providers to ensure they can create the components that comply with these
requirements. I suggest that certifiers clearly define quality attributes and
metrics; they should also analyze the nature of the metrics, i.e., examine the
level of human discretion the metrics require and how much automation can
be done for assessing the metrics. Automated checks are faster and more
accurate if implemented correctly, and they also require fewer of certifier’s
resources. These automated checks with minimal human discretion allow
the implementation of a more objective certification process, enabling
the possibility to provide more rigorous and accurate pre-certification
functionality for component providers. This means component providers
could perform the same certification procedures locally to determine if
their components are compliant with certification requirements before they
proceed with publishing and submission for certification. Metrics that
require some level of human discretion and cannot be fully automated
and implemented as part of pre-certification should be communicated to
component providers in another manner, appropriate to the nature of
the metrics. One good option would be to clearly document the metrics
that require human discretion so that component providers have explicit
knowledge of these criteria and give them the ability to perform a self-
assessment for these criteria. In order to communicate the certification
process’s nature, the Certification Process Classification Model (Figure 6.1)
can be used.

To sum up, when implementing a component certification, one should
issue the certificates for specific component versions, and these versions
should be immutable. Additionally, the implemented certification process
should be open and transparent and also automated where it is possible.

8.1.3 Principle of balanced certification

A certifier’s role is an aspect of the certification process that should be
considered in the context of a software platform ecosystem. Certifiers
specify quality attributes and metrics and define what characteristics a
trustworthy high-quality component should possess in order to be certified.
These decisions have implications for component reuse and web application
development in a software platform ecosystem. First, as several researchers
point out, certification should be performed by independent assessors.
Given this, because the HISP groups are independent organizations, one
can assume that certifiers from one group could certify the components
developed by another HISP group. However, ecosystem actors might pursue
their self-interest, and it is unclear how these can be set aside in the
context of certification. For example, the DHIS2 core team could act as
an independent assessor of the components developed by one of the HISP
groups in HISP East Africa while pursuing their own interests with regard
to development practices in the community. One way the DHIS2 core team

101

could pursue their own interest is by limiting the diversity of practices
by promoting the components built with the web development framework
preferable to them.

Since it was the DHIS2 core team, as platform owners, who expressed
their interest in component certification and taking the role of certifier, I will
now bring my own critical perspective on this situation and discuss it in the
light of theory on governance and control in a software platform ecosystem.

Platform owners cannot exercise control over application development in
the ecosystem using development boundary resources in the same manner
it can be done through application boundary resources. SCP is inherently
a development boundary resource, meaning that it does not provide any
direct interaction with the platform core, and our end-users are not required
to use it to access the functionality of the DHIS2 platform. If component
providers perceive that certification requirements limit the diversity of their
practices and affect their development experiences negatively, they might
avoid submitting their components for certification, and, in the worst-case
scenario, abandon SCP. This would also negate any potential benefits that
component users could gain from SCP as some level of certification is better
than no certification.

The role of a component repository as a development boundary resource
can be further explored with regard to governance and control in the
ecosystem. Tiwana (2014) explains that third-party application developers
in an ecosystem are independent of a platform owner; therefore, good
governance in a platform ecosystem should respect developers’ autonomy
and should be done through shaping and influencing, rather than direct
control. Tiwana (2014) distinguishes between two types of decision rights
in a platform ecosystem. The first is platform decision rights, which cover
the decisions pertaining to the platform, while app decision rights cover the
decisions pertaining to the applications that extend the platform (Tiwana,
2014). It should be noted that app decision rights do not sit exclusively
with app developers; some of these rights can be held by platform owners
(Tiwana, 2014). SCP, as a development boundary resource, is meant to
support web application development; therefore, platform owners could
use certification as a means to extend their app decision rights. Further,
according to Tiwana (2014), decision rights can be either strategic or related
to implementation. Tiwana (2014) explains that strategic decision are
meant to set a direction, while implementation decision rights are about
functionality, UI, features pertaining to applications. Governance over the
reusable components can thus further be categorized as implementation
decision rights.

Tiwana (2014) argues that platform owners can take in use three formal
control mechanisms, which are gatekeeping, process control, and metrics.
The first control mechanism, gatekeeping, is app-centric, meaning that
platform owners decide what applications can be allowed to a platform
ecosystem. This type of control mechanism could be exercised in a
component repository, for example, by limiting component storage only to

102

certified components. According to Tiwana (2014), there are three pre-
requisites for this control mechanism:

1. Platform owners must have a certain level of competency to judge

2. Evaluation should be fair and fast

3. This control mechanism should be accepted by application developers

Given this, it is not guaranteed that this control mechanism will produce
expected results as platform owners have no control over component reuse
and what type of components are used in web applications. Application
developers do not have to accept this control mechanism. However, this
control mechanism could potentially be effective if application developer
interests are taken into considerations.

The second control mechanism, process control, refers "to the degree to
which a platform owner rewards or penalizes app developers based on the
degree to which they follow prescribed development methods, rules, and
procedures that it believes will lead to outcomes desirable from a platform
owner’s perspective" (Tiwana, 2014, p. 124). Component certification
process could allow platform owners to exercise this control mechanism,
for example, by issuing component certificates to the components that
adhere to a certain level of quality. Search functionality in a repository
could be constructed in such a way that promotes certified components by
making them more visible to component users. This mechanism has two
pre-requisites:

1. Platform owner must have the expertise to be able to instruct
application developers

2. Work conducted by application developers has to be monitored and
observed

Given this, with regard to component reuse, platform owners must have
knowledge about component reuse practices in the ecosystem and be able
to give instructions that could improve this process. It would be resource-
intensive to monitor CBSE for reuse process, but certification can be used
to verify whether the components were developed according to a set of
requirements provided by platform owners.

The third, metric control mechanism is defined as "the degree to which
the platform owner rewards or penalizes app developers based on the degree
to which the outcomes of their work achieve predefined target performance
metrics" (Tiwana, 2014, p. 124). Tiwana (2014) discusses mainly app-level
metrics, such as performance and memory utilization, and market-oriented
metrics, such as downloads and user ratings. With regard to component
reuse, it would be possible for platform owners to introduce component-
oriented metrics for the purpose of certification. They would be similar
to app-oriented metrics, just at a different level of abstraction. Tiwana

103

(2014) claims that for this mechanism to be viable, those metrics must
be set by platform owners, they should be pre-defined and objectively
measurable. In my opinion, there are similarities with gatekeeping, as this
control mechanism would not be viable without clearly specified objectively
measurable metrics.

Furthermore, Tiwana (2014) argues that there is a difference between
"control attempts" (p. 126) by platform owners and their actual ability to
realize these control attempts. Tiwana (2014) claims that for a control
attempt to be successful, two requirements must be met. First, pre-
requisites pertaining to each control mechanism must be met. Second, the
established control mechanism must be perceived by application developers
as "legitimate, fair, and reasonable" (Tiwana, 2014, p. 126) and require "the
consent of the governed" (Tiwana, 2014, p. 126).

Considering the aspects discussed above and the fact that platform
owners cannot exercise direct control over web application development, and
specifically component reuse in our case, I conclude that platform owners
should adopt rewarding techniques as a way to influence component reuse
practices rather than trying to enforce direct control through penalization.
I suggest that platform owners, who have an interest in being in charge of
component certification, design the process in collaboration with component
providers, and define clear and objective metrics to perform a fair
certification.

8.1.4 Principle of component discoverability

This study’s empirical data showed that the component repository that
is already in use by some parts of the HISP community, namely NPM
Registry, allows components to be stored individually or as component
libraries containing multiple components. However, NPM Registry does not
provide a mechanism for searching through individual components within
component libraries, which means it is not properly cataloged as explained
in Section 3.3.5. Component discoverability is essential for the component
acquisition process that includes component search and component selection.
If a component repository’s search functionality does not make it possible
to search through all the available components in a repository, including
the ones within component libraries, then component users might end up
with fewer candidate components to choose from. This has a negative
impact on component reuse by reducing the visibility of potentially suitable
components.

When component reuse is happening in-house, i.e., within one organi-
zation, it is easier for component users and component providers to have
an overview of the components that are available for reuse. An organiza-
tion, in our cause, an individual HISP group, could use an established set of
tools and technology for component management and follow some common
standard for designating components made by the organization to facilitate
component discovery. For example, as was discussed in Section 6.2.1, one

104

of the HISP groups we collaborated with uses GitHub to store their source
code and an organizational scope on NPM Registry for component storage
and designation. On the contrary, when component reuse happens on the
ecosystem level, developers do not possess the same knowledge about the
components developed by others and do not necessarily know what desig-
nation mechanisms the other groups use; thus, they have to rely on search
functionality provided by component repositories or search engines. Similar
problems exist on an Internet-wide level of component reuse. For example, a
popular React UI framework Material-UI has a vast number of reusable com-
ponents, such as grids, button groups, sliders, progress bars, etc. However,
one cannot discover those individual components using the current search
functionality of NPM Registry. To discover them, I would need to open
the Material-UI homepage and look for components in there. To conclude,
this principle is relevant for component reuse in general but has higher im-
portance for component reuse happening within larger organizations with
distributed teams, within platform ecosystem, and Internet-wide, as these
contexts are where discoverability is the biggest problem.

8.1.5 Principle of installed base cultivation

While platform owners are in control over some specific parts of a platform
ecosystem, such as a platform core, they do not have the ability to directly
control third-party application development and mandate what development
boundary resources are to be used. Given this, the adoption of a component
repository in a platform ecosystem cannot be done through a planned and
controlled action, and therefore needs a different approach to innovation,
such as installed base cultivation presented in Section 4.1.2. Our practical
aim was to build a component repository to support the existing CBSE
process in the DHIS2 platform ecosystem. These existing processes, such as
component reuse, are performed by people, shaped by practices, governed by
standards, and supported by some specific technology and tooling. Within
a platform ecosystem, these aspects constitute an installed base; therefore,
when designing and developing a component repository, this installed base
should be considered.

We applied this principle during the design and implementation of SCP.
First, in the initial stage of our project, we established our target user
group, which are two HISP groups in HISP East Africa and the DHIS2
core team. To drive the adoption of SCP, we developed it in such a way
that addresses the challenges we had identified during the interviews and
focus groups, which was explained in detail in Chapter 6, thus making the
artifact beneficial to them and designing initially for usefulness, as suggested
by Hanseth and Lyytinen (2010). Furthermore, we have considered the
technology and tooling that is already in use and built SCP upon the
existing installed base, because, according to Hanseth and Lyytinen (2010),
it decreases adoption barriers and learning costs. These strategies aimed to
address the bootstrap problem discussed in Section 4.1.2.

105

To address the adaptability problem and accommodate the future growth
of SCP we have adopted modularization. According to Hanseth and
Lyytinen (2010), such an approach helps to achieve stability in the system,
reducing error propagation between the modules. Our modular architecture
with small modules and simple interfaces also makes it simple for future
maintainers to organize their IT capabilities.

8.1.6 Principle of orthogonality

When designing SCP, we aimed to achieve an orthogonal system with logical
architecture to embrace the benefits offered by modular software design
discussed in Section 4.2.2. This approach was beneficial to us during our
development process, allowing us to work independently on different modules
of SCP, lowering the risk of collisions and error propagation. Additionally,
modularization made it possible for us to deepen our specialization in specific
parts of the system without requiring us to be familiar with all the other
modules of SCP. It allowed us to be more efficient overall when making a
contribution.

Our goal was to ensure that each module of SCP would be loosely coupled
and have a single and well-defined purpose. According to Ingeno (2018),
the functionality inside each module should be related and contribute to
its established purpose. SCP Website’s primary purpose is to aggregate
reusable components and provide an interface for component acquisition by
component providers. SCP CLI module provides package validation and
pre-certification functionality to component providers, and this module is
also used in SCP Whitelist for the purpose of certification by certifiers.
The purpose of SCP Whitelist is to store the list of certified components,
and facilitate component certification using GitHub Actions. Ingeno (2018)
discusses that modules with low cohesion serving many different purposes
are less likely to be reused, while "a module that works together as a logical
unit with a clear purpose is more likely to be reused" (p.172). This is in line
with our experience when developing the artifact as it seemed natural to us
to reuse the SCP CLI in two contexts that required the same functionality
that was in line with the highly cohesive purpose we intended for it.

When developing a component repository for a software platform
ecosystem, one problem that must be addressed, according to the literature
reviewed in Section 4.1.2, is the adaptability problem. Specifically, this
problem is that solutions must be technically and socially flexible to adapt to
a growing user base. Hanseth and Lyytinen (2010) prescribe modularization
as a way to address the adaptability problem. Designers are encouraged to
develop loosely coupled modules to accommodate the growth of the system.
A high degree of orthogonality has a significant impact on the system’s
evolution, as each of the modules can evolve in a decentralized way, i.e.,
the modules can be modified, updated, and removed independently of each
other. This provides technical flexibility, but it also enables social flexibility.
An orthogonal solution could allow ownership and maintenance of various

106

modules to be allocated to different ecosystem actors. For example, in
the case if SCP, while SCP Website could be maintained by third-party
application developers, the DHIS2 core team could act as certifiers and take
over maintenance the certification related modules.

The expert evaluation showed that the modules of SCP are highly
cohesive. SCP Website and SCP CLI are also loosely coupled, as they are
dependent on the stable and well-defined protocols. However, SCPWhitelist
and its certification workflow are tightly coupled with GitHub, a design
choice we have made considering all the benefits of GitHub’s functionality.

8.2 Incentives for component reuse in the DHIS2
ecosystem

Szyperski et al. (2011) explain that the creation of reusable components
is a demanding and time-consuming task because, contrary to bespoke
solutions, components have to be generalized in order to be used in different
contexts. Additionally, a component provider has to create a proper
component specification, documentation, and various tutorials. Given this,
"components are thus viable only if the investment in their creation is
returned as a result of their deployment" (Szyperski et al., 2011, p. 17).
I will now discuss component reuse in the HISP community and elaborate
on the possible return of investments.

Component reuse in the HISP community can take place on three levels.
The first level is in-house reuse, which means that components are created
and reused within one organization. In our case, this would be reuse within
an individual HISP group. As Szyperski et al. (2011) note, in-house reuse
brings the benefits of component-based software engineering, such as reduced
time to market, increased maintainability, and configurability. Additionally,
with in-house component reuse, the incentives of component providers and
component users are aligned, as the benefits of component-based software
engineering accrue to the same organization that invests in creating reusable
components. Furthermore, with in-house reuse, trustworthiness is less of a
problem than it is with the reuse of components created by third parties
because it is easier to implement uniform standards and quality control
within an organization. As Sommerville (2011) notes, some companies
create their own internal component repositories and exclusively use the
components they have developed, avoiding third-party components. One
of the HISP groups we collaborated with publish their components within
an organizational scope on NPM Registry. Using a component repository
for in-house reuse facilitates better component distribution, cataloging, and
discovery. There are, of course, large organizations with distributed teams.
However, contrary to ecosystems, it is typical for organizations to exercise
a command-and-control management strategy, making it easier to facilitate
component reuse even within large organizations.

The second level of component reuse occurs at the ecosystem level. This

107

happens when one organization within an ecosystem reuses components
created by another organization within the same ecosystem. I will refer
to this level of reuse as inter-group reuse, as these organizations are HISP
groups in the case of the HISP community. This study aimed to create
a component repository to facilitate component reuse on the ecosystem
level, aiming to increase the utility of components developed by individual
HISP groups by making them more accessible to other developers that are
part of the DHIS2 ecosystem. Previous literature on CBSE sees component
markets as a means to gain return on investment (Crnkovic & Larsson, 2002;
Kotonya et al., 2003; Seacord, 1999; Szyperski et al., 2011). The potential for
profit from selling components on such markets can incentivize component
providers to invest their resources in the creation of reusable components.
However, if the components are open source, as is the case for the DHIS2
ecosystem, this incentive is no longer applicable. Strictly defined markets
involve the exchange between parties, whether this exchange is for money
or something else (CFI, 2021). However, many markets involve exchanging
goods for money and are closely tied to a monetary profit incentive. By
virtue of being a B2B transaction platform, our artifact is inherently a
marketplace for component exchange, just without an exchange for money
and thus without a direct monetary profit incentive for component providers.
Szyperski et al. (2011) argue that components within markets will exist only
when component providers and component users will "join forces (...) to
reach a ’critical mass’" (p. 17). What he discusses is essentially indirect
network effects, one of the important features of transaction platforms.
Tiwana (2014) notes that if a platform is two-sided from the start, one has
to attract both user groups to get the platform "off the ground" (Tiwana,
2014, p. 145). Given this, to drive the success of a component repository,
one has to attract both user groups. This, in turn, raises the question, what
are the incentives for component reuse on the inter-group level compared to
the intra-group level?

Component users would gain access to a larger number of components,
which could positively impact the process of component selection, and make
web application development process more effective, as fewer components
would be written from scratch. Inter-group reuse is more demanding
for component providers because they would spend more time creating a
component specification, documentation, and tests. Although, component
providers would benefit from it if their components are exposed to and
used by a larger number of developers. It increases the chance for
component users to notice bugs and other issues, report these issues to
component providers, and even help with bug fixing, maintenance, and
further improvements of a component, thus reducing the maintenance
burden and improving the quality of the components. This is, of course,
predicated on component users also taking a role as component providers,
i.e., not just reusing components, but also developing them.

Another incentive for component providers in inter-group reuse is
developer reputation. Cai and Zhu (2016) state that a large number of
studies explore developers’ motivation within an open-source project and

108

some of these motivations are altruism, career opportunities, enjoyment, and
a "desire for reputation" (p. 103). Reputation is defined as "a distribution
of opinions, estimations, or evaluations about an entity, such as people,
item and organization, in an interest group" (Cai & Zhu, 2016, p. 103).
Cai and Zhu (2016) explain that it is beneficial for developers in an open-
source community to work with someone intelligent and experienced. Several
aspects can increase a developer’s reputation: his coding performance
and code quality, community experience, and collaboration experience
(Cai & Zhu, 2016). Developers that create high-quality components and
expose these components to other developers in a platform ecosystem
could gain an increase in reputation both within a community and more
universally among all software developers. Community interaction and
collaboration experiences, such as participating in discussions and helping
other developers, and participating in various inter-group projects, could
also benefit developers. As Cai and Zhu (2016) mention, collaboration
experience can also increase trust between developers, indirectly affecting
component trustworthiness. Component trustworthiness is a particular
challenge in CBSE, and even more so on the ecosystem level, as the
developers may not be willing to reuse the components developed by third
parties. If a component provider becomes known in the ecosystem for
delivering high-quality code and has been successfully collaborating with
other developers, components developed by him would be more trusted.

The third level of reuse, Internet-wide reuse, happens when the
developers reuse components developed by third parties that are not part
of the DHIS2 ecosystem. NPM Registry could be viewed as a component
repository part of the Internet-wide reuse, as it is entirely open to anyone
who wants to publish their components and contains a large number of
components that were not developed for DHIS2. The incentives and
challenges of Internet-wide reuse for component users and component
providers are similar to the incentives offered by inter-group reuse, with some
notable differences. The advantage of Internet-wide reuse is that component
users gain access to an even larger number of components to choose from.
However, many of these components are created for different domains and
may not be suitable for reuse in web applications in the context of a health
management information system. Moreover, different component providers
may make use of different services to store their reusable components, and
it may become difficult for component users to discover and acquire these
components. As I have mentioned in Section 6.2.1, the developers we
collaborated with mainly look for components through the NPM Registry, a
component repository they use in their practice, and through Google Search.
The fact that they use Google search shows that the HISP community
neither has a common component repository nor a common designation
system for their components, i.e., a means of making it clear that their
components were developed for DHIS2. Additionally, with such a large
number of components, the success of the component acquisition process
is largely dependent on the functionality provided by NPM Registry and
the quality of specification of the published components. A component

109

developed by HISP that is poorly documented and specified could become
lost among all the other components in large Internet-wide repositories like
NPM Registry. Additionally, component trustworthiness is even more of
a challenge in Internet-wide reuse. From the point of view of component
providers, there is more potential for sharing the maintenance burden in
Internet-wide reuse as there are more developers on that level than on
the inter-group level, but most of these developers are not likely to be
interested in components designed for DHIS2 or components relating to
health management information systems. What matters to component
providers is not just that their components are available to the largest
possible audience, but that it is available to those operating in the domain
the components were developed for, and that they stand out more inside
that domain. SCP thus creates a greater incentive for component providers
than the one that exists on Internet-wide level reuse.

To summarize what has been said, component reuse can occur on three
levels: in-house level reuse (intra-group reuse), ecosystem-level reuse (inter-
group reuse), and Internet-wide reuse. It is easier to make components
trustworthy within one organization, as more strategies are available to
organizations for implementing uniform standards and quality assurance.
Ecosystem-level reuse can be more demanding for component providers, as
the creation of high-quality components is time-consuming and resource-
intensive. On the other hand, ecosystem-level reuse exposes components to
a larger audience within the same domain, potentially leading to increased
quality and reduced maintenance burden. Thus, ecosystem-level reuse could
have positive implications for developers’ reputations. Internet-wide reuse
has the potential for similar benefits as ecosystem-wide reuse; however,
this level has drawbacks for more domain-specific components due to poor
cataloging functionality in some internet-wide component repositories.

8.3 Research validity

Design Science Research establishes the evaluation of DSR criteria as a
mechanism to assess the validity of the contribution. My evaluation shows
that the artifact we built through the application of the established design
principles is efficacious, useful, open, sufficiently performant for its current
life-cycle phase, and accurate in aspects evaluated for accuracy.

8.4 Research limitations

In this section, I will discuss the identified limitations of my research.

8.4.1 Lack of time

As students, we had limited time to conduct our research. DSR includes
many activities for researchers to engage in, often simultaneously. We had

110

to arrange data gathering activities, collect and analyze the gathered data,
and design and develop our artifact. As a consequence of the COVID-
19 pandemic, digital collaboration with practitioners slowed us down, as
it sometimes took weeks before we would get any reply. Additionally, it
took a long time to arrange the interviews and focus groups. We had to
stop the development process earlier than planned so that we could perform
an evaluation and then communicate our research. DSR is an appropriate
research methodology when researchers aim at solving real-world practical
problems; however, due to limited time and resources, we were unable to
go through all the activities in the DSR cycle, i.e., putting the artifact in
production and conducting an ex post evaluation.

8.4.2 Limited access to data

We collaborated with two HISP groups in HISP East Africa, and they
were our target user base during this study. We tried to reach out to
several other HISP groups, but did not manage to recruit more participants.
Considering that the HISP community is large, we were not able to cover
all the practices and aspects with regard to software reuse prevalent in
the community. Besides, digital collaboration excluded the possibility for
conducting fieldwork and the possibility to use other qualitative methods,
such as participant observations.

8.4.3 Design principles credibility

When assessing the validity of Design Science Research, it is essential to
consider not only the truth and trustworthiness of the findings that guide
the design and development of an artifact but also the utility of the artifact
(Iivari, Hansen, & Haj-Bolouri, 2018). An ideal outcome of the DSR
project is putting the artifact into production and assessing its utility in
a naturalistic setting with the target user base. Due to the lack of time and
resources, we could not reach this goal; thus, this could limit the credibility
of the established design principles. As I have previously mentioned in
Chapter 7, it was not possible to assess the application of the installed
base cultivation strategy. It would require assessing the artifact in use by
our target user group, i.e., how it integrates with the existing technology
and practices and whether we have succeeded in addressing the previously
identified problems. Additionally, there were plans that the DHIS2 core
team would be involved in the implementation of the certification process
and take the role of certifier. Unfortunately, these plans were not fulfilled.
Therefore I discuss what implications the DHIS2 core team being certifiers
have based on my interpretation of the gathered data during focus groups
and evaluation.

111

8.4.4 Design principles limitations

DHIS2 is open source software developed on a non-profit basis and is
targeted at a global user base. Additionally, DHIS2 is an enterprise
software platform with multiple instances which are subject to in-country
ownership. The design principles I established are intended to be relevant to
practitioners developing a component repository in the context of a platform
ecosystem. However, these principles were developed in the context of
DHIS2. As such, they may be biased towards this context and may have
limited applicability to other types of software platform ecosystems.

8.5 Reflection on team management and group
work

This section provides a reflection on team management and is partly based
on the discussions I had with Håkon André Heskja. First, I will reflect on
the aspects of the group work that, in my opinion, turned out well.

Successful collaboration during the COVID-19 pandemic. Because of
the coronavirus, many universities worldwide had to establish new study
routines and rely heavily on digital teaching. The coronavirus affected our
daily activities, and we had to find good ways of working together and tailor
the communication practices of our team to make sure the coronavirus would
have minimal impact on our project and its overall quality. We collaborated
on code using Git and GitHub, we arranged our meetings on Zoom, and
used Slack and Mattermost for daily communication. Our data collection
activities had to be remote due to coronavirus-related restrictions and relied
heavily on digital tools. Despite these challenging times, we have done a
significant amount of work and completed the planned activities.

Modularization in software development. We adopted modularization
to achieve a high degree of independence. This approach also allowed
individual team members to make decisions that are limited in scope to the
implementation of a module without the other team members’ involvement.
Separation of the SCP modules into different GitHub repositories helped us
to reduce and avoid collisions during the development of SCP.

I have assessed our group work, and the following challenges were
identified: self-managing team and lack of leadership, avoidance of
accountability, lack of formalized development process, and limited use of
collaboration and communication tools. I will now discuss these challenges
and explain what measures were taken to overcome them.

Self-managing team and lack of leadership. In my opinion, having
flat-structured teams is a good approach, as it empowers each individual
and involves everyone within a team in a decision-making process. It
cultivates diversity of thought by allowing each member to realize his
ideas, increasing productivity because individual team members can make
decisions independently and without involving the other members or team

112

leaders. Although, major decisions cannot be made by individual members,
and if no person has clear authority for making major decisions, they
have to be made in slower ways. However, my experience has shown that
a flat structure does not produce value when teamwork expectations are
misaligned, and some members are unwilling to contribute equally and put
as much effort as the other members do. If there are no or insufficient
incentives or positive consequences for contribution and no, or insufficient
negative consequences for lack of contribution, some team members may be
underperforming. If this occurs, it can result in unequal contribution, missed
deadlines, and resentment among team members with different performance.
One way in which negative consequences and positive consequences could be
imposed is by a leader with authority for imposing them; however, for our
Master’s project, it is not clear that we could assign such a leader ourselves.

A leaderless team can bring a dysfunction of a team called avoidance of
accountability. Lencioni (2002) defines avoidance of accountability as "the
unwillingness of team members to tolerate the interpersonal discomfort that
accompanies calling a peer on his or her behavior and the more general
tendency to avoid difficult conversations" (p. 212-213). The author suggests
that the best solution to overcome this dysfunction is peer pressure. One
way of doing it is to set up clear goals for the team and clarify what needs
to be done to achieve them. Lencioni (2002) also indicates the importance
of regular peer reviews, where each team member gives feedback on his
teammates’ performance. In my experience, there was a case of unequal
contribution and avoidance of accountability in our project. We did not
pay much attention to the Trello board’s tasks and did not divide them
between team members because we thought it was an unnecessary effort.
Additionally, we did not assess and did not keep track of our performance.
Adopting the Daily Scrum meeting format for our weekly meeting and group
work assessment helped to detect underperformance in the team. Once
we detected underperformance, we decided to improve the situation by the
formalization of our development process. This formalization involved more
frequent and attentive usage of the Trello board and more explicit task
distribution between group members. However, there was still a lack of
leadership to impose negative consequences for underperformance, so the
measures had limited impact.

Lack of formalized development process. We did not adopt any formal
process for our meetings, breakdown, and division of tasks, and enforcement
of deadlines. The lack of clearly delineated tasks made it difficult for us to
assess our progress and contributions of individual team members and made
it difficult to determine whether we would meet deadlines.

Limited use of collaboration and communication tools. Lomas, Burke,
and Page (2008) argue that "good technology (...) should allow users to
extend the boundaries of what they are able to achieve and, at the very
least, help people to perform better" (p. 3). In my opinion, collaboration
and communication tools improve group work performance only if all the
members in a team frequently use these tools. During our development

113

process, the tasks on our three-column Trello board were seldom moved or
updated, and thus it was unclear what is under implementation and what
is finished. To increase usage of the Trello board in our team, we have
established that a task would be counted as completed if its respective
Trello card has not been marked as completed. Due to the COVID-19
pandemic, our decision-making process was conducted mainly on Slack.
Therefore it was important for each group member to check Slack frequently
to participate in conversations. Unfortunately, some member(s) of the group
did not frequently use Slack, and as a consequence, these members were left
out in some sense, as they did not participate or contribute to the decision-
making process and brainstorming.

To conclude, I would recommend that teams engaging in similar
development activities adopt a more formal development process from the
start. This process should include more frequent group meetings, possibly
in a Daily Scrum meeting format. The process should also make it
easier to assess project status and progress and individual team members’
contributions. It would also be advantageous to have a clear authority figure,
possibly a supervisor, that can motivate underperforming team members.
The use of a Kanban board to track the backlog, tasks in progress, and
completed tasks, is also helpful, as it gives a visual representation of the
project progress and status.

114

Chapter 9

Conclusion and future work

This chapter summarizes the work done with regard to the study aim and
the research question and presents some suggestions for future research.

9.1 Conclusion

Design Science Research allowed us to conduct engaged research in the
HISP community, exploring the current state of component reuse. Our
findings show that even though web application developers use component-
based frameworks such as React and Angular, they do not necessarily adopt
component-based software engineering in their daily practice.

The practical aim of this project was fulfilled by developing a component
repository, DHIS2 Shared Component Platform, that utilizes the existing
infrastructure - NPM Registry, a repository of open-source software
packages, and GitHub, a code hosting platform.

Design and development of a component repository in a software
platform ecosystem was a difficult task. First, because we had to address and
overcome the general challenges of CBSE, such as proper component storage,
distribution, discoverability, trustworthiness, and certification. Secondly,
because there were challenges brought by the context the repository was
built within, a software platform ecosystem. We built a small and
simple solution beneficial to our target user group and took the existing
infrastructure into consideration. Our target user group was relatively small
considering the number of the HISP groups and the number of developers
involved in web application development in the HISP community. Given
the diversity of practices and tooling identified throughout this study, I
assume there are many practices, tooling, and technology in the community
that we have not considered in our solution and which are yet to be
explored. However, the orthogonal design that we adopted should reduce the
resources required to add support for these additional technologies. Another
challenging aspect of a component platform is its multisidedness, as it is
vital to attract component providers and component users to achieve critical

115

mass. Component users do not gain value from a component platform if it
lacks reusable components, and component providers will be less interested
in making an effort to publish their components to a repository that is
not being used by component users. What makes this issue even more
complex is the fact that repository adoption cannot be done through a
command-and-control management model, as there is no single authority
that could mandate what development boundary resources are to be used
by web application developers.

The research question of this thesis was formulated as follows: What are
the essential design principles for implementing a component repository that
facilitates component reuse in a software platform ecosystem? To answer
this research question and fulfill my theoretical research aim, I presented
the following design principles: Principle of component trustworthiness,
Principle of balanced certification, Principle of component discoverability,
Principle of installed base cultivation, and Principle of orthogonality
(Table 6.11). The established design principles are abstract and aim to
guide the researchers and practitioners who are to implement a component
repository in a software platform ecosystem.

9.2 Research contribution

My design principles address challenges pertaining to component-based
software engineering identified in the reviewed literature and provide
valuable insights on how to facilitate component reuse in a software platform
ecosystem.

Section 6.2 is a contribution to the HISP community and the DHIS2
Design Lab participants. It provides insights on component reuse practices
and challenges we have identified and describes how they were addressed
in our solution. Chapter 6, and specifically, Section 6.4 can be used by
practitioners who are to build a component repository and wish to gain
insight into its architectural design.

I also communicated my research results in two conferences for students
and young scientists. My conference abstracts can be found in Appendix H
and Appendix I.

9.3 Future work

First, future research should continue to explore the social aspect of software
reuse, such as software reuse practices and knowledge, motivation, and
impediments to reuse, because component repositories such as SCP are
essentially built to improve software reuse practices which are inherently
social in nature.

Second, future research should further explore component trustworthi-
ness and certification process, which showed to be a challenge by the CBSE

116

body of knowledge and was challenging for the practitioners in this study.
The identified aspects concerning the implementation of certification dis-
cussed in Section 6.2.2 can be considered, as well as the proposed Certifica-
tion Process Classification Model in Figure 6.1.

Lastly, there is some research on the role of boundary resources in
a platform ecosystem with regard to resourcing and securing, but this
research does not explore these aspects considering the differences between
application boundary resources and development boundary resources.
Specifically, whether they could be used by platform owners to directly
or indirectly affect practices in the ecosystem. Platform owners could
provide resources exclusively for a particular framework, for example, React,
making it more attractive for the community to adopt. While not providing
resources for other frameworks, for example, Angular, which could make
these less attractive.

9.4 Suggestions for further work on SCP

I suggest that the developers who will take over this project keep working on
the improvements of the component repository considering the results from
the evaluation I have conducted. I also suggest a discussion on whether
it would be feasible to allocate resources to the certification process at
this stage, while it is not clear whether the repository will be adopted
by developers. One potential pathway would be putting the repository
in production and populating it with reusable components, i.e., making it
attractive to component users. Additionally, one should continue to explore
software reuse practices in the other HISP groups to attract more users.
With regard to certification, it would be interesting to explore further what
component certification metrics the DHIS2 core team would adopt, and
whether their perception of components quality differs from the perceptions
of web application developers who engage in CBSE.

117

References

About npm. (n.d.). https://www.npmjs.com/about.
About semantic versioning. (n.d.). Retrieved 2021-04-12, from https://

docs.npmjs.com/about-semantic-versioning
Adu-Gyamfi, E., Nielsen, P., & Sæbø, J. (2019, 11). The dynamics of a global

health information systems research and implementation project. In
The dynamics of a global health information systems research and
implementation project.

Baskerville, R. L., Kaul, M., & Storey, V. C. (2015). Genres of inquiry
in design-science research: Justification and evaluation of knowledge
production. MIS Quarterly, 39 (3), 541–564. Retrieved from https://
www.jstor.org/stable/26629620

Bianco, V. D., Myllarniemi, V., Komssi, M., & Raatikainen, M. (2014,
April). The Role of Platform Boundary Resources in Software Ecosys-
tems: A Case Study. In 2014 IEEE/IFIP Conference on Software
Architecture (pp. 11–20). Sydney, Australia: IEEE. Retrieved 2020-
11-22, from http://ieeexplore.ieee.org/document/6827094/ doi:
10.1109/WICSA.2014.41

Boland, R., Lyytinen, K., & Yoo, Y. (2007, 08). Wakes of innovation
in project networks: The case of digital 3-d representations in
architecture, engineering, and construction. Organization Science, 18 ,
631-647. doi: 10.1287/orsc.1070.0304

Booch, G., Engle, M. W., Maksimchuk, R. A., Conallen, J., Young, B. J.,
& Houston, K. A. (2001). Object-oriented analysis and design with
applications. Addison-Wesley Professional.

Bourque, P., Fairley, R. E., & IEEE Computer Society. (2014). Guide to
the software engineering body of knowledge. IEEE Software. (OCLC:
973217192)

Braa, J., & Sahay, S. (2017, 04). The dhis2 open source software platform:
Evolution over time and space..

Briggs, R., & Schwabe, G. (2011). On expanding the scope of design science
in is research. In Desrist.

Brocke, J. v., Hevner, A., & Maedche, A. (2020, 09). Introduction to design
science research. In (p. 1-13). doi: 10.1007/978-3-030-46781-4_1

Brown, A. (2000, 01). Large-scale, component-based development / a.w.
brown. OAI .

Cai, Y., & Zhu, D. (2016, November). Reputation in an open source software
community: Antecedents and impacts. Decision Support Systems, 91 ,

118

https://www.npmjs.com/about
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://www.jstor.org/stable/26629620
https://www.jstor.org/stable/26629620
http://ieeexplore.ieee.org/document/6827094/

103–112. Retrieved 2021-04-30, from https://linkinghub.elsevier
.com/retrieve/pii/S0167923616301403 doi: 10.1016/j.dss.2016.08
.004

Capretz, L. (2005, 01). Y: A new component-based software life cycle model.
Journal of Computer Science, 1 . doi: 10.3844/jcssp.2005.76.82

CFI. (2021). What is a market? Retrieved 2021-05-
02, from https://corporatefinanceinstitute.com/resources/
knowledge/economics/market/

Chesbrough, H. W. (2003). Open innovation: the new imperative for creating
and profiting from technology. Boston, Mass: Harvard Business School
Press.

Christiansson, B. (2002). Software Components — difficulties with
acquisition. Karlstads universitet, 12.

Constantinides, P., Henfridsson, O., & Parker, G. G. (2018, June).
Introduction—Platforms and Infrastructures in the Digital Age.
Information Systems Research, 29 (2), 381–400. Retrieved 2021-
02-18, from http://pubsonline.informs.org/doi/10.1287/isre
.2018.0794 doi: 10.1287/isre.2018.0794

Crang, M., & Cook, I. (2007). Doing ethnographies. Los Angeles: SAGE.
Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative,

Quantitative, and Mixed Methods Approaches.
Crnkovic, I., Hnich, B., Jonsson, T., & Kiziltan, Z. (2002, October). Spec-

ification, implementation, and deployment of components. Commu-
nications of the ACM , 45 (10), 35–40. Retrieved 2021-02-04, from
https://dl.acm.org/doi/10.1145/570907.570928 doi: 10.1145/
570907.570928

Crnkovic, I., & Larsson, M. (Eds.). (2002). Building reliable component-
based software systems. Boston: Artech House.

Crotty, M. (1998). The foundations of social research: meaning and
perspective in the research process. London ; Thousand Oaks, Calif:
Sage Publications.

Darlington, Y., & Scott, D. (2020). Qualitative research in practice
Stories from the field (1st ed.). Routledge. Retrieved 2021-03-10,
from https://www.taylorfrancis.com/books/9781000250862 doi:
10.4324/9781003117025

de Reuver, M., Sørensen, C., & Basole, R. C. (2018, June). The
Digital Platform: A Research Agenda. Journal of Information
Technology, 33 (2), 124–135. Retrieved 2020-05-07, from http://
journals.sagepub.com/doi/10.1057/s41265-016-0033-3 doi: 10
.1057/s41265-016-0033-3

DHIS2 (Ed.). (2021a). About dhis2. Retrieved 2021-01-26, from https://
www.dhis2.org/about

DHIS2 (Ed.). (2021b). Global hisp network. Retrieved 2021-04-07, from
https://dhis2.org/hisp-network/

DHIS2 (Ed.). (2021c). Technology platform. Retrieved 2021-04-07, from
https://dhis2.org/technology/

Dresch, A., Lacerda, D. P., & Antunes Jr, J. A. V. (2015). Design
Science Research: A Method for Science and Technology Advancement.

119

https://linkinghub.elsevier.com/retrieve/pii/S0167923616301403
https://linkinghub.elsevier.com/retrieve/pii/S0167923616301403
https://corporatefinanceinstitute.com/resources/knowledge/economics/market/
https://corporatefinanceinstitute.com/resources/knowledge/economics/market/
http://pubsonline.informs.org/doi/10.1287/isre.2018.0794
http://pubsonline.informs.org/doi/10.1287/isre.2018.0794
https://dl.acm.org/doi/10.1145/570907.570928
https://www.taylorfrancis.com/books/9781000250862
http://journals.sagepub.com/doi/10.1057/s41265-016-0033-3
http://journals.sagepub.com/doi/10.1057/s41265-016-0033-3
https://www.dhis2.org/about
https://www.dhis2.org/about
https://dhis2.org/hisp-network/
https://dhis2.org/technology/

Cham: Springer International Publishing. Retrieved 2020-11-28, from
http://link.springer.com/10.1007/978-3-319-07374-3 doi: 10
.1007/978-3-319-07374-3

Eder, J., & Schrefl, M. (1995, 05). Coupling and cohesion in object-oriented
systems. IBM Systems Journal.

eHealth, P. (Ed.). (2021). Best practice: The health information system with
dhis2 in cauca. Retrieved 2021-01-19, from https://www.paho.org/
ict4health/index.php?option=com_content&view=article&id=
192:good-practice-the-health-information-system-with
-dhis2-in-cauca&Itemid=204&lang=en

Evans, P. C., & Gawer, A. (2016). The Rise of the Platform Enterprise.
The Emerging Platform Economy Series No. 1 , 30.

Gare, K. (2010). Formative Infrastructure for IT-Adoption Understanding
the Dynamics of IT-Use in SME’s. AIS Electronic Library (AISeL),
37.

Gawer, A. (2009). Platforms, Markets and Innovation. Edward Elgar
Publishing. Retrieved 2020-05-07, from http://www.elgaronline
.com/view/9781848440708.xml doi: 10.4337/9781849803311

Ghazawneh, A. (2012). Towards a boundary resources theory of software
platforms. Jönköping: Jönköping International Business School. (Diss.
(sammanfattning) Jönköping : Högskolan i Jönköping, 2012)

Ghazawneh, A., & Henfridsson, O. (2010). Governing third-party
development through platform boundary resources. In R. Sabherwal
& M. Sumner (Eds.), Proceedings of the international conference on
information systems, ICIS 2010, saint louis, missouri, usa, december
12-15, 2010 (p. 48). Association for Information Systems. Retrieved
from http://aisel.aisnet.org/icis2010_submissions/48

Ghazawneh, A., & Henfridsson, O. (2013, 03). Balancing platform control
and external contribution in third-party development: The boundary
resources model. Information Systems Journal, 23 . doi: 10.1111/
j.1365-2575.2012.00406.x

Gill, T., & Hevner, A. (2013, 08). A fitness-utility model for design science
research. ACM Transactions on Management Information Systems,
4 , 5-24. doi: 10.1145/2499962.2499963

Goldkuhl, G. (2012). Design Research in Search for a Paradigm: Prag-
matism Is the Answer. In M. Helfert & B. Donnellan (Eds.), Prac-
tical Aspects of Design Science (Vol. 286, pp. 84–95). Berlin, Hei-
delberg: Springer Berlin Heidelberg. Retrieved 2021-03-05, from
http://link.springer.com/10.1007/978-3-642-33681-2_8 (Se-
ries Title: Communications in Computer and Information Science)
doi: 10.1007/978-3-642-33681-2_8

Gregor, S., & Hevner, A. R. (2013, February). Position-
ing and Presenting Design Science Research for Maximum Im-
pact. MIS Quarterly, 37 (2), 337–355. Retrieved 2020-11-
16, from https://misq.org/positioning-and-presenting-design
-science-research-for-maximum-impact.html doi: 10.25300/
MISQ/2013/37.2.01

Gregor, S., Kruse, L., & Seidel, S. (2020, November). Research Perspectives:

120

http://link.springer.com/10.1007/978-3-319-07374-3
https://www.paho.org/ict4health/index.php?option=com_content&view=article&id=192:good-practice-the-health-information-system-with-dhis2-in-cauca&Itemid=204&lang=en
https://www.paho.org/ict4health/index.php?option=com_content&view=article&id=192:good-practice-the-health-information-system-with-dhis2-in-cauca&Itemid=204&lang=en
https://www.paho.org/ict4health/index.php?option=com_content&view=article&id=192:good-practice-the-health-information-system-with-dhis2-in-cauca&Itemid=204&lang=en
https://www.paho.org/ict4health/index.php?option=com_content&view=article&id=192:good-practice-the-health-information-system-with-dhis2-in-cauca&Itemid=204&lang=en
http://www.elgaronline.com/view/9781848440708.xml
http://www.elgaronline.com/view/9781848440708.xml
http://aisel.aisnet.org/icis2010_submissions/48
http://link.springer.com/10.1007/978-3-642-33681-2_8
https://misq.org/positioning-and-presenting-design-science-research-for-maximum-impact.html
https://misq.org/positioning-and-presenting-design-science-research-for-maximum-impact.html

The Anatomy of a Design Principle. Journal of the Association for
Information Systems, 21 , 1622–1652. Retrieved 2021-02-11, from
https://aisel.aisnet.org/jais/vol21/iss6/2/ doi: 10.17705/
1jais.00649

Guides, G. (Ed.). (2020). Hello world. Retrieved 2020-12-07, from
https://guides.github.com/activities/hello-world/

Hanseth, O., & Bygstad, B. (2018, 06). Platformization, infrastructuring
and platform-oriented infrastructures. a norwegian e-health case.
Working papers in Information Systems.

Hanseth, O., & Lyytinen, K. (2010, March). Design Theory for Dynamic
Complexity in Information Infrastructures: The Case of Building
Internet. Journal of Information Technology, 25 (1), 1–19. Retrieved
2021-04-06, from http://journals.sagepub.com/doi/10.1057/jit
.2009.19 doi: 10.1057/jit.2009.19

Hein, A., Schreieck, M., Riasanow, T., Setzke, D. S., Wiesche, M., Böhm,
M., & Krcmar, H. (2020, March). Digital platform ecosystems.
Electronic Markets, 30 (1), 87–98. Retrieved 2021-02-18, from http://
link.springer.com/10.1007/s12525-019-00377-4 doi: 10.1007/
s12525-019-00377-4

Heineman, G. T., & Councill, W. T. (Eds.). (2001). Component-based
software engineering: putting the pieces together. Boston: Addison-
Wesley.

Hevner, A., & Chatterjee, S. (2010). Design Research in Information
Systems (Vol. 22). Boston, MA: Springer US. Retrieved 2021-03-
29, from http://link.springer.com/10.1007/978-1-4419-5653-8
doi: 10.1007/978-1-4419-5653-8

Hevner, A., Prat, N., Comyn-Wattiau, I., & Akoka, J. (2018). A pragmatic
approach for identifying and managing design science research goals
and evaluation criteria. HAL, 16.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (n.d.). Design Science in
Information Systems Research. MIS Quarterly, 33.

Hornby, A. S. (Ed.). (1995). Oxford advanced learner’s dictionary of current
english. Fifth edition. Oxford, England : Oxford University Press,
1995.

Hunt, A., & Thomas, D. (2000). The pragmatic programmer: from
journeyman to master. Addison-Wesley.

Hänninen, M. (2020, March). Review of studies on digital transac-
tion platforms in marketing journals. The International Review of
Retail, Distribution and Consumer Research, 30 (2), 164–192. Re-
trieved 2020-11-22, from https://www.tandfonline.com/doi/full/
10.1080/09593969.2019.1651380 doi: 10.1080/09593969.2019
.1651380

Iivari, J., Hansen, M. R. P., & Haj-Bolouri, A. (2018). A Framework for
Light Reusability Evaluation of Design Principles in Design Science
Research. DESRIST 2018 , 16.

Iivari, J., & Venable, J. R. (2009). Action research and design science
research - Seemingly similar but decisively dissimilar. AISeL, 13.

Ingeno, J. (2018). Software architect’s handbook: become a successful soft-

121

https://aisel.aisnet.org/jais/vol21/iss6/2/
https://guides.github.com/activities/hello-world/
http://journals.sagepub.com/doi/10.1057/jit.2009.19
http://journals.sagepub.com/doi/10.1057/jit.2009.19
http://link.springer.com/10.1007/s12525-019-00377-4
http://link.springer.com/10.1007/s12525-019-00377-4
http://link.springer.com/10.1007/978-1-4419-5653-8
https://www.tandfonline.com/doi/full/10.1080/09593969.2019.1651380
https://www.tandfonline.com/doi/full/10.1080/09593969.2019.1651380

ware architect by implementing effective architecture concepts. Birm-
ingham, UK: Packt Publishing. Retrieved 2021-01-23, from http://
proquestcombo.safaribooksonline.com/9781788624060 (OCLC:
1078373548)

ISO/IEC, & IEEE. (2017, September). ISO/IEC/IEEE 24765:2017 Systems
and software engineering — Vocabulary. ISO/IEC/IEEE.

ISO/IEC 25010. (2011). ISO/IEC 25010:2011, systems and software engi-
neering — systems and software quality requirements and evaluation
(square) — system and software quality models.

Jacobides, M. G., Cennamo, C., & Gawer, A. (2018, August). Towards a
theory of ecosystems. Strategic Management Journal, 39 (8), 2255–
2276. Retrieved 2021-02-18, from https://onlinelibrary.wiley
.com/doi/abs/10.1002/smj.2904 doi: 10.1002/smj.2904

Jalender, B., Govardhan, D., & Premchand, P. (2010, 01). Breaking the
boundaries for software component reuse technology. International
Journal of Computer Applications, 13 . doi: 10.5120/1782-2458

Jalender, B., N.Gowtham, Kumar, K.Praveen, K.Murahari, & K.Sampath.
(2010, 11). Technical impediments to software reuse. International
Journal of Engineering Science and Technology, 2 .

Kaur, K., & Singh, H. (2009, December). Candidate Process Models
for Component Based Software Development. Journal of Software
Engineering, 4 (1), 16–29. Retrieved 2021-02-15, from https://
www.scialert.net/abstract/?doi=jse.2010.16.29 doi: 10.3923/
jse.2010.16.29

Koskinen, K., Bonina, C., & Eaton, B. (2019). Digital Platforms in the
Global South: Foundations and Research Agenda. In P. Nielsen &
H. C. Kimaro (Eds.), Information and Communication Technologies
for Development. Strengthening Southern-Driven Cooperation as a
Catalyst for ICT4D (Vol. 551, pp. 319–330). Cham: Springer
International Publishing. Retrieved 2021-02-18, from http://link
.springer.com/10.1007/978-3-030-18400-1_26 (Series Title:
IFIP Advances in Information and Communication Technology) doi:
10.1007/978-3-030-18400-1_26

Kotonya, Sommerville, & Hall. (2003). Towards a classification model
for component-based software engineering research. In Proceedings
of the 20th IEEE Instrumentation Technology Conference (Cat No
03CH37412) EURMIC-03 (pp. 43–52). Belek-Antalya, Turkey:
IEEE. Retrieved 2021-01-28, from http://ieeexplore.ieee.org/
document/1231566/ doi: 10.1109/EURMIC.2003.1231566

Landau, T. (2021). How to install a single component from
any ui library with npm + bit. Retrieved 2021-04-14, from
https://blog.bitsrc.io/how-to-install-a-single-component
-from-any-ui-library-8d0519544d7b

Lau, K.-K. (Ed.). (2004). Component-based software development:
case studies (No. v. 1). New Jersey: World Scientific. (OCLC:
ocm55849387)

Lau, K.-K. (Ed.). (2018). An introduction to component-based software
development: 3. World Scientific.

122

http://proquestcombo.safaribooksonline.com/9781788624060
http://proquestcombo.safaribooksonline.com/9781788624060
https://onlinelibrary.wiley.com/doi/abs/10.1002/smj.2904
https://onlinelibrary.wiley.com/doi/abs/10.1002/smj.2904
https://www.scialert.net/abstract/?doi=jse.2010.16.29
https://www.scialert.net/abstract/?doi=jse.2010.16.29
http://link.springer.com/10.1007/978-3-030-18400-1_26
http://link.springer.com/10.1007/978-3-030-18400-1_26
http://ieeexplore.ieee.org/document/1231566/
http://ieeexplore.ieee.org/document/1231566/
https://blog.bitsrc.io/how-to-install-a-single-component-from-any-ui-library-8d0519544d7b
https://blog.bitsrc.io/how-to-install-a-single-component-from-any-ui-library-8d0519544d7b

Lencioni, P. M. (2002). The five dysfunctions of a team. Jossey-Bass
Inc.,U.S.

Li, M. (2019). An Approach to Addressing the Usability and Local Relevance
of Generic Enterprise Software. AISeL, 16.

Li, M. (2020). Facilitating collaborative meta-design: Building a shared
component library for web-app development. Retrieved 2021-01-23,
from https://www.mn.uio.no/ifi/studier/masteroppgaver/is/
dhis2-design-lab/dhis2-design-lab-component-library.html

Lieberherr, K. J., & Holland, I. M. (1989). Assuring good style for
object-oriented programs. IEEE Software, 6 (5), 38-48. doi: 10.1109/
52.35588

Lomas, C., Burke, M., & Page, C. L. (2008). Collaboration Tools. ELI
paper , 12.

Lopez, V., & Whitehead, D. (2013, 01). Sampling data and data collection
in qualitative research. In (p. 123-140).

Lyytinen, K., Yoo, Y., & Boland, R. (2015, 01). Digital product innovation
within four classes of innovation networks. Information Systems
Journal, 26 , n/a-n/a. doi: 10.1111/isj.12093

Material-ui. (2021). Retrieved 2021-04-14, from https://github.com/
mui-org

Merriam-Webster. (2019). Component. In Merriam-webster.com dictio-
nary. Merriam-Webster, Incorporated. Retrieved 2021-02-03, from
https://www.merriam-webster.com/dictionary/component

Mitchell, J. C., & Apt, K. (2001). Concepts in programming languages.
USA: Cambridge University Press.

Mohammad, M. S. (2011). A formal component-based software engineering
approach for developing trustworthy systems. (Unpublished doctoral
dissertation). Library and Archives Canada = Bibliothèque et Archives
Canada, Ottawa. (ISBN: 9780494634172 OCLC: 769258225)

Moon, K., & Blackman, D. (2014, October). A Guide to Understanding
Social Science Research for Natural Scientists: Social Science for
Natural Scientists. Conservation Biology, 28 (5), 1167–1177. Retrieved
2021-03-04, from http://doi.wiley.com/10.1111/cobi.12326 doi:
10.1111/cobi.12326

Mpande, L. C. (2018). Simple user management app for water point
users. Retrieved 2021-01-26, from https://github.com/hisptz/
user-mananger

Msiska, B., & Nielsen, P. (2018, April). Innovation in the fringes of software
ecosystems: the role of socio-technical generativity. Information
Technology for Development, 24 (2), 398–421. Retrieved 2020-05-09,
from https://www.tandfonline.com/doi/full/10.1080/02681102
.2017.1400939 doi: 10.1080/02681102.2017.1400939

Nelson, M. L. (1996). Barriers to Software Reuse and the Projected Impact
of World Wide Web on Software Reuse. CiteSeer , 10.

Nielsen, P. (2006). A conceptual framework of information infrastructure
building (Unpublished doctoral dissertation). University of Oslo.

Nielsen, P. (Ed.). (2021). Hisp groups. Retrieved 2021-04-07, from https://
www.mn.uio.no/ifi/english/research/networks/hisp/groups/

123

https://www.mn.uio.no/ifi/studier/masteroppgaver/is/dhis2-design-lab/dhis2-design-lab-component-library.html
https://www.mn.uio.no/ifi/studier/masteroppgaver/is/dhis2-design-lab/dhis2-design-lab-component-library.html
https://github.com/mui-org
https://github.com/mui-org
https://www.merriam-webster.com/dictionary/component
http://doi.wiley.com/10.1111/cobi.12326
https://github.com/hisptz/user-mananger
https://github.com/hisptz/user-mananger
https://www.tandfonline.com/doi/full/10.1080/02681102.2017.1400939
https://www.tandfonline.com/doi/full/10.1080/02681102.2017.1400939
https://www.mn.uio.no/ifi/english/research/networks/hisp/groups/
https://www.mn.uio.no/ifi/english/research/networks/hisp/groups/

Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017,
December). Thematic Analysis: Striving to Meet the Trustworthiness
Criteria. International Journal of Qualitative Methods, 16 (1),
160940691773384. Retrieved 2021-03-11, from http://journals
.sagepub.com/doi/10.1177/1609406917733847 doi: 10.1177/
1609406917733847

NPM. (2020). Auditing package dependencies for security vulnerabili-
ties. Retrieved 2020-12-04, from https://docs.npmjs.com/auditing
-package-dependencies-for-security-vulnerabilities

npm-publish. (n.d.). Retrieved 2021-04-12, from https://docs.npmjs.com/
cli/v6/commands/npm-publish

Peffers, K., Rothenberger, M., Tuunanen, T., & Vaezi, R. (2012). Design
Science Research Evaluation. In D. Hutchison et al. (Eds.), Design
Science Research in Information Systems. Advances in Theory and
Practice (Vol. 7286, pp. 398–410). Berlin, Heidelberg: Springer Berlin
Heidelberg. Retrieved 2020-11-26, from http://link.springer.com/
10.1007/978-3-642-29863-9_29 (Series Title: Lecture Notes in
Computer Science) doi: 10.1007/978-3-642-29863-9_29

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S.
(2008, December). A Design Science Research Methodology for
Information Systems Research. Journal of Management Information
Systems, 24 (3), 45–77. Retrieved 2020-11-16, from https://www
.tandfonline.com/doi/full/10.2753/MIS0742-1222240302 doi:
10.2753/MIS0742-1222240302

Prat, N., Comyn-Wattiau, I., & Akoka, J. (2015, July). A Tax-
onomy of Evaluation Methods for Information Systems Artifacts.
Journal of Management Information Systems, 32 (3), 229–267. Re-
trieved 2021-03-25, from http://www.tandfonline.com/doi/full/
10.1080/07421222.2015.1099390 doi: 10.1080/07421222.2015
.1099390

Radiance ui. (2021). Retrieved 2021-04-14, from https://www.npmjs.com/
package/radiance-ui

Rehman, A. A., & Alharthi, K. (2016). An Introduction to Research
Paradigms. nternational Journal of Educational Investigations, 10.

Russell, B. (2004). History of western philosophy. Taylor & Francis. Re-
trieved from https://books.google.no/books?id=81Zz27fQuvsC

Schwandt, T. A. (2001). Dictionary of qualitative inquiry (2nd ed. ed.).
Thousand Oaks, Cal: Sage.

scope. (n.d.). https://docs.npmjs.com/cli/v7/using-npm/scope.
Seacord, R. C. (1999). Software Engineering Component Repositories.

Proceedings of the International Workshop on Component-Based
Software Engineering, 7.

Singh, V., & Bhattacharjee, V. (2013, 08). Identifying coupling metrics and
impact on software quality. International Journal of Engineering and
Technology, 5 , 3433-3438.

Sommerville, I. (2011). Software engineering (9th ed ed.). Boston: Pearson.
(OCLC: ocn462909026)

Spolsky, J. (2008). More joel on software. Berkeley, Calif: Apress.

124

http://journals.sagepub.com/doi/10.1177/1609406917733847
http://journals.sagepub.com/doi/10.1177/1609406917733847
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://docs.npmjs.com/cli/v6/commands/npm-publish
https://docs.npmjs.com/cli/v6/commands/npm-publish
http://link.springer.com/10.1007/978-3-642-29863-9_29
http://link.springer.com/10.1007/978-3-642-29863-9_29
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
http://www.tandfonline.com/doi/full/10.1080/07421222.2015.1099390
http://www.tandfonline.com/doi/full/10.1080/07421222.2015.1099390
https://www.npmjs.com/package/radiance-ui
https://www.npmjs.com/package/radiance-ui
https://books.google.no/books?id=81Zz27fQuvsC
https://docs.npmjs.com/cli/v7/using-npm/scope

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design.
IBM Systems Journal, 13 (2), 115-139. doi: 10.1147/sj.132.0115

Szyperski, C. (2002). Component software: Beyond object-oriented
programming (2nd ed.). USA: Addison-Wesley Longman Publishing
Co., Inc.

Szyperski, C., Gruntz, D., & Murer, S. (2011). Component software: beyond
object-oriented programming (2nd ed ed.). London: Addison-Wesley.
(OCLC: 838151413)

Tal, L., & Maple, S. (2019, June 4). npm passes the 1 millionth package
milestone! what can we learn? https://snyk.io/blog/npm-passes
-the-1-millionth-package-milestone-what-can-we-learn/.

Tiwana, A. (2014). Platform ecosystems: aligning architecture, governance,
and strategy. Amsterdam ; Waltham, MA: MK.

Tiwari, U., & Kumar, S. (2020). Component-based software engineering:
Methods and metrics. Chapman and Hall/CRC. doi: 10.1201/
9780429331749

UNPKG. (2020). Hello world. Retrieved 2020-12-07, from https://
unpkg.com

Venable, J., Pries-Heje, J., & Baskerville, R. (2016, January). FEDS:
a Framework for Evaluation in Design Science Research. European
Journal of Information Systems, 25 (1), 77–89. Retrieved 2020-11-
28, from https://www.tandfonline.com/doi/full/10.1057/ejis
.2014.36 doi: 10.1057/ejis.2014.36

vom Brocke, J., & Maedche, A. (2019, September). The DSR grid: six core
dimensions for effectively planning and communicating design science
research projects. Electronic Markets, 29 (3), 379–385. Retrieved
2021-04-06, from http://link.springer.com/10.1007/s12525-019
-00358-7 doi: 10.1007/s12525-019-00358-7

What is a package? (n.d.). https://npm.github.io/how-npm-works
-docs/theory-and-design/what-is-a-package.html.

Zittrain, J. (2005). The Generative Internet. Harvard Law Review, 119 .

125

https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://unpkg.com
https://unpkg.com
https://www.tandfonline.com/doi/full/10.1057/ejis.2014.36
https://www.tandfonline.com/doi/full/10.1057/ejis.2014.36
http://link.springer.com/10.1007/s12525-019-00358-7
http://link.springer.com/10.1007/s12525-019-00358-7
https://npm.github.io/how-npm-works-docs/theory-and-design/what-is-a-package.html
https://npm.github.io/how-npm-works-docs/theory-and-design/what-is-a-package.html

Appendices

126

Appendix A

Detailed work distribution

Detailed work distribution during the design and development of SCP 1.

Figure A.1: SCP Website work distribution.
1Written in collaboration with Håkon André Heskja.

127

Figure A.2: SCP Whitelist work distribution.

Figure A.3: SCP CLI work distribution.

128

Appendix B

SCP User Documentation

129

Appendix C

SCP Tutorial

137

Appendix D

Consent form

139

Are you interested in taking part in the research project

”Shared Component Platform”?

This is an inquiry about participation in a research project where the main purpose is designing,
developing, and evaluating a platform that facilitates the sharing of reusable web components for use
in web-based app development for the DHIS2 software platform. In this letter, we will give you
information about the purpose of the project and what your participation will involve.

Purpose of the project
Practically, this research project is about designing, developing, and evaluating a platform that
facilitates this sharing of reusable web-based components. Features that may be relevant are typical
aspects from open source community projects such as the ability to upload components, facilitate
automatic peer-reviews, and motivational mechanisms such as badges, rewards, and rankings based on
contributions. Theoretically, knowledge about the process and result of the practical work can
contribute with interesting findings to research on generic software implementation, open-source
communities, and software platform design.
This research project will serve as a basis for the master’s thesis of master’s students at the University
of Oslo.

Who is responsible for the research project?
The Department of Informatics at the University of Oslo is responsible for the project. The project is
undertaken by ---
-----------------------------------. These master’s students are supervised by ---------------------------------
--.

Why are you being asked to participate?
You are selected for participation in the interview on the basis of your role and position, and activities
related to the development of DHIS2 applications.

What does participation involve for you?
If you choose to take part in the project, this will involve ongoing cooperation, including, but not
limited to:

- Interviews
- Prototype evaluations
- Discussions

Depending on the situation, some or all of these meetings will be recorded electronically. The
cooperation period will start from the signing of this consent form and last until the 1st of July 2021.
The period can be prolonged upon negotiation by both parties.

Participation is voluntary
Participation in the project is voluntary. If you choose to participate, you can withdraw your consent at
any time without giving a reason. All information about you will then be made anonymous. There will
be no negative consequences for you if you choose not to participate or later decide to withdraw.

Your personal privacy – how we will store and use your personal data

We will only use your personal data for the purpose(s) specified in this information letter. We will
process your personal data confidentially and in accordance with data protection legislation (the
General Data Protection Regulation and Personal Data Act).
The recorded interview will be transcribed and the transcription will be limited to the Component
Team and their supervisors.
The data that includes PII will be stored on Google drive and access to it will be restricted using
Google Drive authentication and authorization system. The transcript of the interview will be
anonymized by replacement of the names of the participants with pseudonyms and care will be taken
to ensure that other information in the interview that could identify the participant is not revealed. The
anonymized interview transcript may be used in academic publications which include the Component
Team’s master’s theses.

What will happen to your personal data at the end of the research project?
The project is scheduled to end before the 1st of January 2022. Any data containing PII will only be
stored until the 1st of January 2022.

Your rights
So long as you can be identified in the collected data, you have the right to:

- access the personal data that is being processed about you
- request that your personal data is deleted
- request that incorrect personal data about you is corrected/rectified
- receive a copy of your personal data (data portability), and
- send a complaint to the Data Protection Officer or The Norwegian Data Protection Authority

regarding the processing of your personal data

What gives us the right to process your personal data?
We will process your personal data based on your consent.

Based on an agreement with the University of Oslo, NSD – The Norwegian Centre for Research Data
AS has assessed that the processing of personal data in this project is in accordance with data
protection legislation.

Where can I find out more?
If you have questions about the project or want to exercise your rights, contact:

● The Component ---.
● The University of Oslo --.
● Our Data Protection Officer: Roger Markgraf-Bye by email: personvernombud@uio.no or by

telephone +47 90 82 28 26.
● NSD – The Norwegian Centre for Research Data AS, by email: (personverntjenester@nsd.no)

or by telephone: +47 55 58 21 17.

Yours sincerely,

The Component Team and their supervisors

Consent form

I have received and understood information about the project Shared Component Platform and have
been given the opportunity to ask questions. I give consent:

◻ to participate in the project
◻ for my personal data to be processed outside the EU

I give consent for my personal data to be processed until the end date of the project, approx. 1st of
January, 2022.

--
(Signed by participant, date)

Appendix E

Learning goals

143

Learning goals
1. Understanding when and why web-based DHIS2 apps are developed.
2. Understanding the general DHIS2 web app development practices and process.

- Understand technical aspects of the app development process
- Understanding social aspects of the app development process (collaboration

in co-located teams and between geographically dispersed teams), project
member roles, and level of prioritization.

- Understanding the standards and principles you must or want to comply with.
3. Understanding the process of making apps generic (relevant beyond a single

implementation/ user organization).
4. Understanding if, how, why, and what web components, frameworks, tools,

repositories, etc. take part in their app development practices.
5. Understanding current and prospective reuse practices (e.g., use of react/npm

components).
- Understanding motivations for reuse.
- Understanding pertinent improvements that could be made and their

plausibility.
- What are the impediments for reuse?

6. Understanding how we can collaborate further on app development resources/
component libraries.

Appendix F

Interview guide

145

Interview Guide
1. Your role in the organization and what are you working with?
2. What is the structure of the org/group?

a. Developer background
b. Academic influence
c. Hierarchy

3. Please take us through the process of app development, focusing both on technical
and social aspects. This may include:

● Project management framework - Agile, different teams,
● Tools you’re using for development and collaboration
● Is everything written from scratch or do you reuse components?
● What kind of components are you interested in reusing?
● Where do you store and share components?
● What design principles and standards do you comply with?

○ Does the client want you to adhere to certain standards?
○ Who is enforcing the standards? Internally? Externally?
○ DHIS2 core standards, apps similar to generic apps.

How do you experience the design infrastructure set up for DHIS2?
4. Can you explain how a project is set up?

a. Are there many project members?
b. Are there any ongoing projects at the same time?
c. Do you collaborate and talk across projects?

5. Can you tell us a bit about your typical workday?
a. When do you start/end? Breaks? Social events?

6. How do you currently communicate with?
a. Hisp groups?
b. Internally?
c. What about the core team?
d. Which barriers, if any, impede this communication?
e. From your perspective, what could be done about this?

7. Why do you want to participate in this project? From your perspective; what
improvement do you consider plausible?

8. Do you have anything else you want to share that you feel relevant to our study?

- Can you take us through the process from starting a new project/app and to
completion?

- More technical, can you explain how you start developing? What do you focus on?
Do you use any tools?

- Do you have any mechanisms for trying to reuse code across apps?

Appendix G

Surveys

147

Component owner evaluation
DHIS2 Shared Component Platform is a platform for sharing and reuse of software components created by the HISP community. The
components hosted on this platform are React or Angular UI components and can be used as building blocks for a web application.

In this task you take the role of a component owner - a developer who creates reusable ui components and shares them for further reuse.
Your goal is to publish one or several reusable components and make them appear on the SCP website.
Additionally, you have to use the DHIS2 SCP command line interface to verify your package locally, and then submit your package for
verification on the DHIS2 Whitelist repository.

Link to the SCP website: https://dhis2designlab.github.io/scp-website/
Link to the SCP command line interface: https://github.com/dhis2designlab/scp-cli
Link to the SCP whitelist repository: https://github.com/dhis2designlab/scp-whitelist

You can proceed with this task by looking at the SCP documentation available here:
url

After you have finished, you can begin answering this survey.

1.

Mark only one oval.

Other:

Student at the UiO

DHIS2 core team member

HISP groups local developer

2.

Mark only one oval.

< 1 year

1-2 years

2-5 years

> 5 years

DHIS2 Shared Component pla�orm evaluation
survey for component owners
This survey is for the evaluation of the DHIS2 Shared Component Platform and is part of my master’s thesis at the
University of Oslo. The tasks and questions in this survey are meant to cover the process of sharing reusable
components and making them available on the SCP.

Participation in the project is voluntary. If you choose to participate, you can withdraw your consent at any time
without giving a reason. All information about you will then be made anonymous. There will be no negative
consequences for you if you choose not to participate or later decide to withdraw. By filling out this survey, you
agree to participate in this project.

Before proceeding with the survey, you need to make sure you have an account on https://github.com (to store your
code) and an account on https://www.npmjs.com (for publishing npm packages).

*Required

What is your occupation? *

How much experience do you have in software development? *

3.

Mark only one oval.

No experience

Very little experience

Some experience

A lot of experience

4.

5.

6.

Mark only one oval.

Not clear

Somewhat clear

Clear enough

Very clear

7.

How much experience do you have with the DHIS2? *

Give a brief account of your previous reusable component creation experience *
Your answer should include the nature of the components (e.g. web components, backend components), what process you used and
what tools, frameworks and platforms you used.

What aspects of the reusable component creation experience do you find the most challenging and
why? *

Was it clear to you what part of the DHIS2 SCP documentation covered your task and your role as a
component owner? *

Optionally, provide some reflection on the clarity of the documentation and suggest improvements

8.

Mark only one oval.

Not important

Somewhat important

Important

Very important

9.

Mark only one oval.

Not intuitive

Somewhat intuitive

Intuitive enough

Very intuitive

10.

11.

Mark only one oval.

Makes it worse

Does not really change it

Makes it better

12.

How important is documentation to a system like SCP, in your opinion? *

How intuitive was the process of listing the components in the package.json file? *

Optionally, provide feedback on how intuitive the process of listing the components in package.json
file was

How does the DHIS2 SCP affect the reusable component publishing experience in your opinion? *

Reflect on how the DHIS2 SCP affects the reusable component publishing experience *

13.

Mark only one oval.

No relevant or comparable previous experience

Publishing the components for the SCP took significantly longer

Publishing the components for the SCP took a little bit longer

More or less the same amount of time

Publishing the components for the SCP was a little bit faster

Publishing the components for the SCP was significantly faster

14.

Mark only one oval.

Not clear

Somewhat clear

Clear enough

Very clear

15.

16.

Compare the time spent publishing reusable components to the DHIS2 SCP with your previous
experience with publishing reusable components *

Was it clear to you what components you should list in package.json file? *

Optionally, provide some reflection on the clarity on what components to list in the package.json and
suggest improvements

The SCP focuses on web components as the level of abstraction (specifically React and Angular web
components) as opposed to focusing on NPM packages like npmjs.com does. Do you think the focus
on web components is the appropriate level of abstraction? Reflect on it. *

17.

Mark only one oval.

Not easy

Somewhat easy

Easy enough

Very easy

18.

19.

20.

21.

Mark only one oval.

Not easy

Somewhat easy

Easy enough

Very easy

How easy was it to perform local verification? *

Describe any issues you have experienced while perfoming local verification.

Describe your understanding of verification in the DHIS2 SCP and its purpose. *

Describe your understanding of the purpose of local verification with the SCP CLI. *

How easy was it to apply for package verification in the SCP Whitelist repository? *

22.

23.

Mark only one oval.

Not clear

Somewhat clear

Clear enough

Very clear

24.

Mark only one oval.

Not confident

Somewhat confident

Confident enough

Very confident

25.

Mark only one oval.

Not important

Somewhat important

Important

Very important

Optionally, describe any issues you have experienced while applying for verification in the SCP
whitelist.

How clear are the requirements for package verification to you? *

How confident are you that your package will be verified if it meets all the verification requirements? *

How important is it to have clear and objective verification requirements for a system like the DHIS2
SCP? *
Objective verification requirements would imply that the requirements are not open to different interpretations or the opinion of any
specific person.

26.

27.

Mark only one oval.

Not standard and pervasive

Somewhat standard and pervasive

Standard and pervasive enough

Very standard and pervasive

28.

29.

Mark only one oval.

Not important

Somewhat important

Important

Very important

Reflect on the processing of applying for verification in the SCP whitelist and how it could be
improved. *

In your opinion, how standard and pervasive are the technologies that the DHIS2 SCP requires you to
use when publishing reusable components? *
The technologies would be Git, npm, Node.js, GitHub, etc...

Optionally, provide some reflection on the technology that the DHIS2 SCP requires you to use when
publishing reusable components.

In your opinion, is it important to use standard and pervasive technologies in a platform like the DHIS2
SCP? *

30.

31.

32.

Thank you for your participation

This content is neither created nor endorsed by Google.

Optionally, reflect on the importance of the use of standard and pervasive technologies in a platform
like the DHIS2 SCP.

Is there anything else you would want to mention?

Do you have any comments on this survey?

 Forms

1.

Mark only one oval.

Other:

Student at UiO

DHIS2 core team member

HISP group local developer

2.

Mark only one oval.

< 1 year

1 - 2 years

2 - 5 years

> 5 years

DHIS2 Shared Component pla�orm evaluation
survey for component consumers
This survey is for the evaluation of the DHIS2 Shared Component Platform and is part of my master’s thesis at the
University of Oslo. The tasks and questions in this survey are meant to cover the process of finding reusable
components.

Participation in the project is voluntary. If you choose to participate, you can withdraw your consent at any time
without giving a reason. All information about you will then be made anonymous. There will be no negative
consequences for you if you choose not to participate or later decide to withdraw. By filling out this survey, you
agree to participate in this project.

DHIS2 Shared Component Platform is a platform for sharing and reuse of software components created by the HISP
community. The components hosted on this platform are React or Angular UI components and can be used as
building blocks for a web application.

For this survey you take a role of a component consumer - a developer who uses reusable ui components to build
web-applications. The SCP website will show all available ui components submitted to SCP.

Before proceeding with the survey, you should browse through the SCP website:
https://dhis2designlab.github.io/scp-website/

and look through the documentation

Evaluate the website as if you are using it to find components for reuse in a web-application you are developing.

*Required

What is your occupation? *

How much experience do you have in software development? *

3.

Mark only one oval.

No experience

Very little experience

Some experience

A lot of experience

4.

5.

6.

Mark only one oval.

Not clear

Somewhat clear

Clear enough

Very clear

7.

How much experience do you have with the DHIS2? *

Give a brief account of your previous experience of finding and using reusable components *

What aspects of finding and using reusable components you find most challenging and why? *

Was it clear to you what part of the DHIS2 SCP documentation covered your task and your role as a
component consumer? *

Optionally, reflect on the clarity of the documentation and suggest improvements

8.

Mark only one oval.

Not important

Somewhat important

Important

Very important

9.

Mark only one oval.

Not easy

Somewhat easy

Easy enough

Very easy

10.

11.

Mark only one oval.

Not clear

Somewhat clear

Clear enough

Very clear

12.

How important is the documentation of a system like SCP for component consumers in your opinion? *

How easy was it to find components on the SCP website? *
Taking into account that currently there is a limited amount of the components available.

Optionally, provide additional feedback on how easy it was to find components on the SCP website.

How clear was the component representation on the SCP website? *

Optionally, reflect on the clarity of the component representation of the SCP website.

13.

14.

15.

16.

17.

How can we improve the SCP website? *

Describe your understanding of the purpose of the "Show only verified components" filter on the SCP
website *

Describe your understanding of the version indicators on the component cards. *
If this question is unclear, see the documentation.

Please provide some feedback on your component search experience on the SCP website. *

Please provide some feedback on the filtering experience on the SCP website. *

18.

19.

Mark only one oval.

Makes it worse

Does not change it

Makes it better

20.

21.

22.

Please provide some feedback on the clarity of the information presented on the SCP website. *

How does the SCP affect experience of finding reusable components in your opinion? *

Reflect on how the SCP affects your experience of finding reusable components *

Describe any issues you have experienced while using the SCP website?

The SCP focuses on web components as the level of abstraction (specifically React and Angular web
components) as opposed to focusing on NPM packages like npmjs.com does. Do you think the focus
on web components is the appropriate level of abstraction? Reflect on it.
If you have previously answered this question in a different survey, you can skip it.

23.

24.

Thank you for your participation ❤

This content is neither created nor endorsed by Google.

Is there anything else you would want to mention?

Do you have any comments on this survey?

 Forms

1.

Mark only one oval.

Other:

Student at UiO

DHIS2 core team member

HISP group local developer

2.

Mark only one oval.

<1 year

1-2 years

2-5 years

>5 years

DHIS2 Shared Component pla�orm evaluation
survey for whitelist maintainers
This survey is for the evaluation of the DHIS2 Shared Component Platform and is part of my master’s thesis at the
University of Oslo. The tasks and questions in this survey are meant to cover the process of maintaining the SCP
whitelist.

Participation in the project is voluntary. If you choose to participate, you can withdraw your consent at any time
without giving a reason. All information about you will then be made anonymous. There will be no negative
consequences for you if you choose not to participate or later decide to withdraw. By filling out this survey, you
agree to participate in this project.

DHIS2 Shared Component Platform is a platform for sharing and reuse of software components created by the HISP
community. The components hosted on this platform are React or Angular UI components and can be used as
building blocks for a web application.

For this survey you take a role of a whitelist maintainer - a person responsible for processing component verification
submissions.

Before proceeding with the survey, you should read the SCP documentation, that you can find here
https://github.com/goudbes/scp-evaluation/blob/master/documentation/documentation.md

You should also look at the SCP whitelist repository https://github.com/dhis2designlab/scp-whitelist

and check the open pull requests and the verification output.
For example: https://github.com/dhis2designlab/scp-whitelist/pull/17/checks?check_run_id=1546505461

If you have answered any of the questions before, just state that in the answer instead of answering it again.

*Required

What is your occupation? *

How much experience do you have in software development? *

3.

Mark only one oval.

No experience

Very little experience

Some experience

A lot of experience

4.

5.

6.

7.

How much experience do you have with the DHIS2? *

Give a brief account of your previous experience with component reuse *

Describe your understanding of the purpose of package verification *

DHIS2 SCP verifies individual versions of the packages instead of verifying only a package without any
specific version. What do you think of this approach? *

In your opinion, what checks would be important in package verification? *

8.

9.

10.

Mark only one oval.

Not clear

Somewhat clear

Clear enough

Very clear

11.

12.

Describe any issues you have experienced while assessing the whitelist and the verification workflow *

Do you have any suggestions for improvements of the verification workflow? *

How clear it for you whether a package verification request should be accepted or rejected? *

What assessment criteria (that is not implemented in the SCP) would you use to decide whether or not
a package should be added to the list of verified packages? *

What additional checks should the verification pipeline perform in your opinion? *

13.

14.

Mark only one oval.

Not clear

Somewhat clear

Clear enough

Very clear

15.

16.

Mark only one oval.

Not important

Somewhat important

Important

Very important

Do you think that the package verification process should have minimal human discretion and thus be
objective, or should it be subject to the opinions of whitelist maintainers? Please reflect on it. *
Objective verification example in the SCP: check that package.json file includes the keyword. If it does not, the verification pipeline
fails. Subjective verification examples in the SCP: npm audit. Another examples of subjective verification: considering the experience
of the component owner, looking through the issues on the package's github repository without any well-defined criteria on what
would be acceptable or not. Subjective would also imply that different whitelist maintainers might have a different opinion whether a
package should be whitelisted or not.

Was it clear to you what part of the DHIS2 SCP documentation covered your task and your role as a
whitelist maintainer? *

Optionally, reflect on the clarity of the documentation and suggest improvements

How important is the documentation of a system like SCP for whitelist maintainers in your opinion? *

17.

Mark only one oval.

Not standard and pervasibe

Somewhat standard and pervasive

Standard and pervasive

Very standard and pervasive

18.

19.

Mark only one oval.

Not important

Somewhat important

Important

Very important

20.

21.

In your opinion, how standard and pervasive are the technologies that the DHIS2 SCP requires you to
use when verifying the packages? *
Technologies: Github and Github Actions, CSV and etc.

Optionally, provide some reflection on the technology that the DHIS2 SCP requires you to use when
verifying the packages

In your opinion how important is it to use standard and pervasive technologies in a platform like SCP? *

Optionally, reflect on the importance of the use of standard and pervasive technologies in a platform
like the DHIS2 SCP

Is there anything else you would like to mention?

22.

Thank you for your participation

This content is neither created nor endorsed by Google.

Do you have any comments on this survey?

 Forms

Appendix H

Conference abstract

168

Anastasia Bengtsson

(University of Oslo, Oslo)

FACILITATING SOFTWARE COMPONENT REUSE IN THE

DHIS2 PLATFORM ECOSYSTEM

В данной работе рассматривается разработка репозитория для хранения и

сертификации компонентов для повторного использования кода в экосистеме

платформы и информационной системы здравоохранения DHIS2.

There is a growing trend towards using the component-based software

engineering (CBSE) approach in development of web applications.

Software reuse is the central part of this approach and the main idea behind

it is development of applications by reusing configurable software

components. However, there are several barriers for component reuse, and

one of them is poor cataloguing, distribution of reusable software

components and a lack of component certification. This will have

considerable impact on component discovery and trustworthiness and make

the process of component reuse less effective.

This study focuses on DHIS2, a generic web-based health

management information system platform and the process of development

of web applications on top of it, as an extension of its functionality. The

practical aim of this project was to design, implement, and evaluate a

component repository to improve component reuse in the DHIS2 ecosystem.

The project involved a close collaboration with DHIS2 developers who

provide support to DHIS2 in East Africa region, as well as with the members

of the DHIS2 core team at the University of Oslo. The component repository

consists of a website (built using React) that aggregates reusable

components, and two other modules that support the process of component

certification: a command line interface (built using TypeScript) to provide

functionality for local certification, and a GitHub repository with an

automated certification workflow using GitHub Actions workflow. The

component repository aims to increase productivity of DHIS2 developers

and shorten the development life cycle. Component certification improves

component trustworthiness and thus, improves quality and reliability of the

developed web applications.

The process of design and development of the component repository

was guided by the Design Science Research methodology. The theoretical

aim of the research was to establish a set of theoretically and empirically

grounded design principles that contribute to the knowledge base of CBSE

on how to implement component repositories in a platform ecosystem.

Appendix I

Conference abstract

170

FACILITATING SOFTWARE COMPONENT REUSE IN THE DHIS2

PLATFORM ECOSYSTEM

A. Bengtsson

University of Oslo

Oslo, Norway

Scientific advisors P. Nielsen and M. Li

There is an increase in the development of generic software systems that are developed to

serve multiple organizations and used for different purposes. Some examples of generic

software are the Microsoft Office 365 suite, Adobe Photoshop, and DHIS2 - a generic web-

based Health Management Information System (HMIS) platform, which is the focus of my

study. The purpose of HMIS is to routinely manage and generate health information data that

would serve as a basis for management decisions to foster improvements in health service

provision. DHIS2 is currently the world's largest health management information system, and

it is in use by 73 low- and middle-income countries [1]. HISP is a global network that

develops and supports the DHIS2 platform. The network is comprised of HISP groups –

organizations based in developing countries, providing support to DHIS2.

One way of contributing to the DHIS2 is through the development of additional modules or

web applications on top of generic software, which are extensions of the user interface and the

functionality in the case of the DHIS2. Building these web applications from scratch can be

time-consuming. It is also not resource-efficient if different HISP groups are developing

similar modules. One way of addressing this problem is by building software from existing

components using a component-based software engineering (CBSE) approach. Software reuse

is the central focus of this approach, and the main idea is a development of applications by

reusing configurable software components. However, there are several barriers to component

reuse, and one of them is the poor cataloging and distribution of reusable software

components. This has a considerable impact on component discovery and makes the process

of component reuse less effective.

This study aimed at attaining two goals — a practical one and a theoretical one. The

practical goal was to conduct engaged research with the HISP community exploring the

possibility of creating a component repository that facilitates component reuse in web-based

application development. Therefore, a primary focus of the work in this project was the

design, implementation, and evaluation of such a repository in collaboration with the DHIS2

core team and members of HISP groups involved in application development work. The

theoretical goal of my research was to identify and establish a set of theoretically and

empirically grounded design principles for implementing a component repository that

facilitates component reuse in a software platform ecosystem. These design principles are a

theoretical contribution to the knowledge base on how component repositories can be

designed and developed. They are prescriptive in nature and are meant to give value beyond

local practice. Given the above, the paper addresses the following research question: What are

the essential design principles for implementing a component repository that facilitates

component reuse in a software platform ecosystem?

Guided by the nature of the research problem, this study was situated within the pragmatic

research paradigm. Software reuse is a socio-technical activity, as it clearly has some social

aspects in addition to technical aspects. For example, the specification of metadata for a

component is highly technical, as it must be exactly specified and machine-readable to ensure

proper component cataloging in a component repository. There are, however, also highly

social aspects, for example, the developers’ attitude towards software reuse, which could be

influenced by social factors such as trust and understanding. Given this, I could see a clear

application for the pragmatic research paradigm that advocates embracing the approach that

gives most utility in the circumstances. I have chosen Design Science Research (DSR) as an

overarching methodology to guide the design and development of the component repository.

Contrary to other methodologies that have a goal of understanding reality, DSR is a problem-

solving approach with the aim of changing situations to a better or more desirable state. DSR

offers a cyclical process model that includes such activities as problem identification,

definitions of the objectives, design and development of the artifact, demonstration,

evaluation of the artifact, and, finally, communication of the conducted research.

To identify the problem, my team and I have conducted focus group discussions with the

members of the DHIS2 core team at the University of Oslo. Additionally, we conducted a set

of interviews with developers in HISP East Africa. Our goal was to learn about application

development practices, motivation for software reuse, current and prospective reuse practices,

impediments for reuse, tooling, and collaboration in co-located teams (i.e., within one HISP

group) and geographically dispersed teams (i.e., between different HISP groups). Analysis of

the gathered data has shown that there is diversity in technology, tooling, and software reuse

practices. One of the practices discerned during the interviews is software reuse through the

copying of code, and while it can be seen as code reuse with minimal effort, there is a number

of issues pertaining to such a practice. The code might have bugs and security vulnerabilities,

and copy-pasting would mean introducing these issues in different applications. Another

practice we have encountered during the interviews was CBSE, which involved the creation

of reusable components which were stored on Github and as NPM packages in NPM

Registry. This has made us question whether there is, in fact, a need for the development of a

component repository given that NPM Registry is already in place. We have decided not to

develop a completely new component repository but rather cultivate the installed base by

reusing and extending the existing infrastructure. The main goal of our solution would be to

support and improve the existing CBSE approach by addressing some of the challenges we

have encountered with existing technologies, services, and tools.

As a practical contribution to this study, a component repository called the DHIS2 Shared

Component Platform (SCP) was developed. The component repository consists of a website

(built using React) that aggregates reusable components and two other modules that support

the process of component certification: a command-line interface (CLI, written in TypeScript)

to provide functionality for local certification, and a GitHub repository with an automated

certification workflow using GitHub Actions workflow that invokes the command line

interface. During the development phase, SCP was evaluated by the DHIS2 core team

members with the intention to improve SCP’s functionality and develop a higher quality

artifact. SCP aims to increase the productivity of DHIS2 developers and shorten the

development life cycle. Component certification improves component trustworthiness and

thus, improves the quality and reliability of the developed web applications. The established

set of design principles, a theoretical contribution of this study, attempts to address the

challenging aspects of the implementation of a component repository that facilitates

component reuse in a software platform ecosystem. These principles can serve as guidance for

the construction of a similar artifact.

The first design principle, Principle of installed base cultivation, advocates the utilization

of the existing infrastructure to increase the likelihood of component repository adoption. The

process of design and development should not start from scratch; it must consider the existing

infrastructure, e.g., attitude towards software reuse, software reuse practices and process,

technology, and tooling. Instead of creating a radical change, one should cultivate the

installed base towards better practice.

The second design principle, Principle of component trustworthiness, advocates the

implementation of component certification as an integral part of software reuse in order to

increase component trustworthiness and make developers more comfortable reusing software.

The review of the previous literature on CBSE has shown that component certification is an

important aspect of CBSE, and the DHIS2 core team has also expressed the need for

certification functionality to promote components with a certain level of quality. When

implementing certification, one must take into consideration the level of human discretion in

the certification process. A certification process with a low level of human discretion can be

automated and more accurate, while a manual process with a high level of human discretion

can be subjective, time-consuming, and less accurate.

The third design principle, Principle of balanced certification, emphasizes the importance

of governance balance in a software platform ecosystem when choosing individuals for the

role of component certifiers. If the DHIS2 core team, as platform owners, takes this

responsibility, it might have a significant impact on the autonomy of third-party developers. If

the team of certifiers is entirely comprised of third-party developers, it brings more

egalitarianism to the platform ecosystem but reduces the platform owners’ control over the

platform.

The fourth design principle, Principle of component granularity, advocates providing the

right level of component granularity in a component repository as it has a high impact on a

component’s discoverability and usability. NPM packages have an arbitrary level of

component granularity, i.e., some packages might contain only one reusable component,

while some packages act as component libraries and contain multiple components. This has a

negative effect on the component discovery, as NPM registry does not search for components

within packages. SCP addresses this challenge by indexing reusable components inside the

packages and thus, improves their discoverability.

The fifth design principle, Principle of orthogonality, guides the researchers and

developers in their work on architecting and implementing a component repository. A

component repository is part of the component-management process and must provide

support for other processes such as component publishing, component acquisition, and

certification. Adopting a modular approach with the aim of building an orthogonal system,

i.e., highly cohesive and loosely coupled, can reduce the complexity of the system and

increase its maintainability. A high degree of orthogonality has a significant impact on the

system’s evolution, as each of the modules can evolve in a decentralized way (i.e., the

modules can be modified, updated, and removed independently from each other).

Bibliography

1 About DHIS2 [Electronic resource]. – 2021. – Access mode: https://dhis2.org/About/. –

Accessed: 14.02.2021.

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Research context and motivation
	DHIS2 Web application development
	Component-based software engineering
	Component repository in a software platform ecosystem

	Research question
	Research aim
	Research objectives
	Research methodology
	Thesis structure

	Background
	DHIS2
	The HISP network
	DHIS2 Design Lab

	Literature review
	Digital platforms
	Boundary resources
	Component-based software engineering
	Software component
	Component-based software engineering for reuse process
	Component-based software engineering with reuse process
	Component acquisition
	Component management and repository
	Component certification
	Component-based software engineering processes

	Kernel theories
	Installed base cultivation
	Motivation for Installed base cultivation strategy
	Installed base cultivation

	Software modularity
	Motivation for Software modularization
	Software modularity

	Research approach
	Philosophical foundation
	Research methodology: Design Science Research
	Research process
	Development of the design principles
	Data collection
	Goals
	Participants
	Interviews and focus groups

	Data analysis
	Thematic analysis

	Artifact evaluation
	Evaluation participants
	Evaluation methods

	Paradigmatic limitations
	Methodological limitations
	Ethical considerations
	Team management and group work
	Work distribution
	Contribution to SCP Website
	Contribution to SCP Whitelist
	Contribution to SCP CLI
	User documentation

	Artifact description
	DHIS2 Shared Component Platform within the DHIS2 platform ecosystem
	SCP as a nested transaction platform
	SCP as a boundary resource

	Design considerations
	SCP's design considerations in the context of CBSE for reuse
	SCP's design considerations in the context of component certification
	SCP's design considerations in the context of component acquisition

	Software design approach
	The architecture of SCP
	SCP Website
	SCP CLI
	SCP Whitelist
	NPM Registry
	GitHub
	UNPKG

	Design principles
	Principle of component trustworthiness
	Principle of balanced certification
	Principle of component discoverability
	Principle of installed base cultivation
	Principle of orthogonality

	Summary of the design principles

	Evaluation
	Accuracy
	Openness
	Performance
	Efficacy and usefulness
	Evaluation of the application of the design principles
	Application of Principle of orthogonality
	Application of Principle of component trustworthiness
	Application of Principle of component discoverability

	Discussion
	Design principles
	Summary of the design principles
	Principle of component trustworthiness
	Principle of balanced certification
	Principle of component discoverability
	Principle of installed base cultivation
	Principle of orthogonality

	Incentives for component reuse in the DHIS2 ecosystem
	Research validity
	Research limitations
	Lack of time
	Limited access to data
	Design principles credibility
	Design principles limitations

	Reflection on team management and group work

	Conclusion and future work
	Conclusion
	Research contribution
	Future work
	Suggestions for further work on SCP

	References
	Appendices
	Detailed work distribution
	SCP User Documentation
	SCP Tutorial
	Consent form
	Learning goals
	Interview guide
	Surveys
	Conference abstract
	Conference abstract

