
Implementing Garbage
Collection for Active Objects on
Top of Erlang

Sigmund Hansen
master thesis autumn 2014

Implementing Garbage Collection for Active
Objects on Top of Erlang

Sigmund Hansen

December 15, 2014

Abstract

ABS is a language for modeling and simulating distributed systems.
ABS has been in development at the University of Oslo for a number of
years and has been the technical underpinning for a number of national
and EU-wide research projects such as HATS and Envisage.

The key characteristic of ABS is a semantics of active objects
encapsulating parallel behavior in a safe way. Objects communicate via
asynchronous method calls and future variables.

Modern programming languages typically relieve programmers of
the burden of manually managing memory. Errors due to memory leaks
and dangling pointers has been a headache in low-level languages like
C. ABS has an Erlang back end that has been developed as part of
a master’s thesis by Georg Göri at the Graz University of Technology.
Although Erlang is a garbage collected language, it cannot collect idle
processes.

In this thesis, a garbage collector that stops processes that represent
active objects, future variables and schedulers in the Erlang back end,
has been developed. The thesis discusses measures taken to ensure
correct collection of these processes, as well as strategies employed to
balance completeness and speed.

ii

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Structure of This Thesis . 2

2 The ABS Language 3
2.1 Functional Level . 3

2.1.1 Algebraic Data Types 4
2.1.2 Pure Expressions . 4

2.2 Concurrent Object Level . 6
2.2.1 Interfaces . 6
2.2.2 Classes . 6
2.2.3 Concurrency . 7

2.3 Compiler . 7
2.4 Other tools . 8

3 The Erlang Back End 9
3.1 The Erlang Programming Language 9

3.1.1 The Actor Model . 9
3.1.2 Pattern Matching . 10

3.2 Mapping ABS to Erlang . 11
3.2.1 Algebraic Types . 11
3.2.2 Objects . 11
3.2.3 COGs . 12
3.2.4 Tasks . 13
3.2.5 Futures . 13
3.2.6 Statements and expressions 13

4 Garbage Collection 15
4.1 Reference Counting . 16
4.2 Mark and Sweep . 17
4.3 Mark and Compact . 19
4.4 Copying Collectors . 20
4.5 Generational Collectors . 20
4.6 Distributed and Concurrent Garbage Collection 21

4.6.1 The Lost Object Problem 21

iii

5 Implementing Garbage Collection for the Erlang Back
End 23
5.1 Stopping the World . 24

5.1.1 COG States . 24
5.1.2 Tasks Blocking on Futures 25
5.1.3 Stopping Running Tasks 26
5.1.4 Asynchronous Method Calls on Inactive Objects . . 27
5.1.5 Tasks Created While the World is Stopping 28
5.1.6 An Incomplete View of the World 29
5.1.7 Blocking Object Instantiation 30

5.2 Marking Objects and Futures 30
5.3 Sweeping White References 32
5.4 Reference Counting COGs and Resuming the World 33
5.5 Static Analysis . 34
5.6 Triggering Garbage Collection 34

6 Evaluation 37
6.1 Metrics . 37

6.1.1 Execution Time . 37
6.1.2 Memory Usage . 39
6.1.3 Processes . 39
6.1.4 Obtaining and Processing Measurements 40

6.2 Test Cases . 42
6.2.1 Ping Pong - Basic Test with Cyclic Garbage 42
6.2.2 Sequences - Asynchronous Method Calls in Loops . 44
6.2.3 Prime Sieve - Long-running Tasks 45
6.2.4 Indexing - Resolved Futures Held 45

6.3 Results . 46
6.3.1 Ping Pong - Results . 46
6.3.2 Sequences - Results . 49
6.3.3 Prime Sieve - Results 50
6.3.4 Indexing - Results . 51

7 Conclusion 59
7.1 Future Work . 60

A Ping Pong Test Case 61
A.1 Source Code . 61
A.2 Results . 63

A.2.1 Never Triggering Collection 63
A.2.2 Always Triggering Collection 64
A.2.3 Trigger on Timeout . 65
A.2.4 Trigger on Timeout with Stopping Running Tasks . 67
A.2.5 Trigger on Count . 68
A.2.6 Trigger on Count or Timeout 70
A.2.7 Trigger on Count or Timeout with Stopping Run-

ning Tasks . 71
A.3 Infinitely Looping Ping Pong 73

iv

A.3.1 Never Triggering Collection 73
A.3.2 Triggering on Timeout 74

B Sequences Test Case 77
B.1 Source Code . 77
B.2 Results . 79

B.2.1 Never Triggering Collection 79
B.2.2 Always Triggering Collection 80
B.2.3 Trigger on Timeout . 81
B.2.4 Trigger on Timeout with Stopping Running Tasks . 83
B.2.5 Trigger on Count . 84
B.2.6 Trigger on Count or Timeout 86
B.2.7 Trigger on Count or Timeout with Stopping Run-

ning Tasks . 87

C Prime Sieve Test Case 89
C.1 Source Code . 89
C.2 Results . 90

C.2.1 Never Triggering Collection 90
C.2.2 Always Triggering Collection 91
C.2.3 Trigger on Timeout . 93
C.2.4 Trigger on Timeout with Stopping Running Tasks . 94
C.2.5 Trigger on Count . 96
C.2.6 Trigger on Count or Timeout 97
C.2.7 Trigger on Count or Timeout with Stopping Run-

ning Tasks . 99

D Indexing Test Case 101
D.1 Source Code . 101
D.2 Results . 106

D.2.1 Never Triggering Collection 106
D.2.2 Always Triggering Collection 107
D.2.3 Trigger on Timeout . 108
D.2.4 Trigger on Timeout with Stopping Running Tasks . 110
D.2.5 Trigger on Count . 111
D.2.6 Trigger on Count or Timeout 113
D.2.7 Trigger on Count or Timeout with Stopping Run-

ning Tasks . 114

v

vi

List of Figures

4.1 Heap before and after performing a mark and sweep
collection. 18

4.2 Heap before and after performing a compacting collection. 19
4.3 Heap with semi-spaces before and after copying collection. 20
4.4 The lost object problem. 22

5.1 The COG finite state machine before the garbage collector
was implemented. 25

5.2 The COG finite state machine after the garbage collector
was implemented. 26

6.1 Ping Pong - No collection - Memory and counts plot 47
6.2 Ping Pong - Trigger on count - Memory and counts plot . . 48
6.3 Ping Pong - Timed trigger - Memory and counts plot 49
6.4 Infinite Ping Pong - No collection - Memory and counts plot 50
6.5 Infinite Ping Pong - Timed trigger - Memory and counts plot 51
6.6 Sequences - Timeouts - Memory and counts plot 53
6.7 Sequences - Timeouts with stopping - Memory and counts

plot . 54
6.8 Prime Sieve - Timeouts - Memory and counts plot 55
6.9 Prime Sieve - Timeouts with stopping - Memory and

counts plot . 56

vii

viii

List of Tables

6.1 Ping Pong - Average runtimes for 50 runs 46
6.2 Sequences - Average runtimes for 30 runs 52
6.3 Sequences - Timeouts - Intervals 52
6.4 Sequences - Timeouts with stopping - Intervals 52
6.5 Prime Sieve - Average runtimes for 50 runs 53
6.6 Prime Sieve - Timeouts - Intervals 54
6.7 Prime Sieve - Timeouts with stopping - Intervals 55
6.8 Indexing - Average runtimes for 50 runs 56
6.9 Indexing - Counting trigger - Intervals 57

A.1 Ping Pong - Never Collect - Memory, counts and process
ratio . 63

A.2 Ping Pong - Always Collect - Memory, counts and process
ratio . 64

A.3 Ping Pong - Always Collect - Sweeps 64
A.4 Ping Pong - Always Collect - Intervals 65
A.5 Ping Pong - Collect on time - Memory, counts and process

ratio . 66
A.6 Ping Pong - Collect on time - Sweeps 66
A.7 Ping Pong - Collect on time - Intervals 66
A.8 Ping Pong - Collect on time with stopping processes -

Memory, counts and process ratio 67
A.9 Ping Pong - Collect on time with stopping processes - Sweeps 67
A.10 Ping Pong - Collect on time with stopping processes -

Intervals . 68
A.11 Ping Pong - Collect on count - Memory, counts and process

ratio . 69
A.12 Ping Pong - Collect on count - Sweeps 69
A.13 Ping Pong - Collect on count - Intervals 69
A.14 Ping Pong - Collect on count or time - Memory, counts and

process ratio . 70
A.15 Ping Pong - Collect on count or time - Sweeps 70
A.16 Ping Pong - Collect on count or time - Intervals 71
A.17 Ping Pong - Collect on count or time with stopping

processes - Memory, counts and process ratio 72
A.18 Ping Pong - Collect on count or time with stopping

processes - Sweeps . 72

ix

A.19 Ping Pong - Collect on count or time with stopping
processes - Intervals . 72

A.20 Infinite Ping Pong - Never Collect - Memory, counts and
process ratio . 73

A.21 Infinite Ping Pong - Collect on time - Memory, counts and
process ratio . 74

A.22 Infinite Ping Pong - Collect on time - Sweeps 74
A.23 Infinite Ping Pong - Collect on time - Intervals 75

B.1 Sequences - Never Collect - Memory, counts and process
ratio . 79

B.2 Sequences - Always Collect - Memory, counts and process
ratio . 80

B.3 Sequences - Always Collect - Sweeps 80
B.4 Sequences - Always Collect - Intervals 81
B.5 Sequences - Collect on time - Memory, counts and process

ratio . 82
B.6 Sequences - Collect on time - Sweeps 82
B.7 Sequences - Collect on time - Intervals 82
B.8 Sequences - Collect on time with stopping processes -

Memory, counts and process ratio 83
B.9 Sequences - Collect on time with stopping processes -

Sweeps . 83
B.10 Sequences - Collect on time with stopping processes -

Intervals . 84
B.11 Sequences - Collect on count - Memory, counts and process

ratio . 85
B.12 Sequences - Collect on count - Sweeps 85
B.13 Sequences - Collect on count - Intervals 85
B.14 Sequences - Collect on count or time - Memory, counts and

process ratio . 86
B.15 Sequences - Collect on count or time - Sweeps 86
B.16 Sequences - Collect on count or time - Intervals 87
B.17 Sequences - Collect on count or time with stopping

processes - Memory, counts and process ratio 88
B.18 Sequences - Collect on count or time with stopping

processes - Sweeps . 88
B.19 Sequences - Collect on count or time with stopping

processes - Intervals . 88

C.1 Prime Sieve - Never Collect - Memory, counts and process
ratio . 91

C.2 Prime Sieve - Always Collect - Memory, counts and process
ratio . 92

C.3 Prime Sieve - Always Collect - Sweeps 92
C.4 Prime Sieve - Always Collect - Intervals 92
C.5 Prime Sieve - Collect on time - Memory, counts and

process ratio . 93

x

C.6 Prime Sieve - Collect on time - Sweeps 93
C.7 Prime Sieve - Collect on time - Intervals 94
C.8 Prime Sieve - Collect on time with stopping processes -

Memory, counts and process ratio 95
C.9 Prime Sieve - Collect on time with stopping processes -

Sweeps . 95
C.10 Prime Sieve - Collect on time with stopping processes -

Intervals . 95
C.11 Prime Sieve - Collect on count - Memory, counts and

process ratio . 96
C.12 Prime Sieve - Collect on count - Sweeps 96
C.13 Prime Sieve - Collect on count - Intervals 97
C.14 Prime Sieve - Collect on count or time - Memory, counts

and process ratio . 98
C.15 Prime Sieve - Collect on count or time - Sweeps 98
C.16 Prime Sieve - Collect on count or time - Intervals 98
C.17 Prime Sieve - Collect on count or time with stopping

processes - Memory, counts and process ratio 99
C.18 Prime Sieve - Collect on count or time with stopping

processes - Sweeps . 100
C.19 Prime Sieve - Collect on count or time with stopping

processes - Intervals . 100

D.1 Indexing - Never Collect - Memory, counts and process ratio106
D.2 Indexing - Always Collect - Memory, counts and process

ratio . 107
D.3 Indexing - Always Collect - Sweeps 107
D.4 Indexing - Always Collect - Intervals 108
D.5 Indexing - Collect on time - Memory, counts and process

ratio . 109
D.6 Indexing - Collect on time - Sweeps 109
D.7 Indexing - Collect on time - Intervals 109
D.8 Indexing - Collect on time with stopping processes -

Memory, counts and process ratio 110
D.9 Indexing - Collect on time with stopping processes - Sweeps110
D.10 Indexing - Collect on time with stopping processes -

Intervals . 111
D.11 Indexing - Collect on count - Memory, counts and process

ratio . 112
D.12 Indexing - Collect on count - Sweeps 112
D.13 Indexing - Collect on count - Intervals 112
D.14 Indexing - Collect on count or time - Memory, counts and

process ratio . 113
D.15 Indexing - Collect on count or time - Sweeps 113
D.16 Indexing - Collect on count or time - Intervals 114
D.17 Indexing - Collect on count or time with stopping pro-

cesses - Memory, counts and process ratio 115

xi

D.18 Indexing - Collect on count or time with stopping pro-
cesses - Sweeps . 115

D.19 Indexing - Collect on count or time with stopping pro-
cesses - Intervals . 115

xii

List of Listings

2.1 Examples of algebraic data type definitions. 4
2.2 An example showing different kinds of patterns supported

by ABS’s case expression. 5
2.3 Example of let in a recursive function. 6
3.1 Sketch of a conditional loop in Erlang 14
4.1 Pseudo-code of the mark and sweep algorithm. 18
5.1 A method that illustrates the lost task problem. 28
6.1 Script to produce and choose statistics from 11 simulations. 41
6.2 A simple R script that finds the data set with the median

runtime. 41
6.3 Script that executes a simulation many times. 41
6.4 Extract from the MultiPingPong example. 43
6.5 Extract from the Sequences test case. 44
C.1 Full source code for Prime Sieve Test Case 89
D.1 Indexing Test Case . 101

xiii

xiv

Preface

The feeling is bittersweet as the end of my studies draws near, like it so
often is when one thing ends and another begins.

First and foremost I would like to thank my supervisors: Rudolf
Schlatte for suggesting the project and his technical help throughout
the project; and Ingrid Chieh Yu who helped find me a new master’s
project, all her help improving my writing and for the years teaching
algorithms and data structures.

Thanks to Lars Tveito, who looked over my thesis at the last minute,
finding several cases missing words and silly typos.

I would also like to thank all the people I’ve had the pleasure of
working with here at the University of Oslo. Particularly Roger Anton-
sen, for his unbreakable spirit and incredible dedication to the depart-
ment and students, especially with establishing the Department’s hack-
erspace, Åpen sone for eksperimentell informatikk. Thanks go out to the
student council for the good times we’ve shared, and specifically José
Luis Rojas who pushed me to apply for a teaching assistant position, a
job that has meant a lot to me and helped me grow as a person, all the
students and professors on the 8th floor, to my family and in particular
my brother, who is probably to blame for my interest in computing, and
all my teachers over the years.

Last, but not least, thank you, Tsz Yan Tong, for your love and
support.

xv

xvi

Chapter 1

Introduction

The overall goal of this thesis is to add garbage collection to the ABS
language’s Erlang back end. ABS is a language for creating executable
models of distributed systems using active objects. Adding garbage
collection should allow larger systems, that would have exhausted
resources without it, to be modeled and tested.

Modern computers typically have multiple processing units, which
come in the form of multiple cores on a single chip, multiple CPUs,
virtual cores and GPUs capable of general purpose processing. They
typically run many processes at the same time that may communicate
with one another as part of a larger system.

In addition to modern hardware, virtualization has made large scale
clusters much more available; through the click of a button a new
virtual computer can be brought online via one of many Infrastructure
or Platform as a Service providers. Software systems have increased
greatly in scale and are often used for years or decades. Ensuring that
these systems are maintainable and adaptable throughout their long
lifetimes, is challenging without appropriate prior modeling.

The HATS project (Highly Adaptable and Trustworthy Software
using Formal Methods) was established to research formal modeling
of distributed systems. One of the fruits of this project is a modeling
language called ABS specifically targeting distributed systems, which
is now being developed in the Envisage project (Engineering Virtualized
Services).

Memory is a finite resource that programs must avoid exhausting.
Low level languages, like C, usually leaves this up to the programmer.
While high level languages, like Java, often include automatic memory
management, known as garbage collection. ABS can compile to Erlang,
a garbage collected language that compiles to byte code. Large parts
of the resulting programs, however, are modeled as processes which
are not seen as garbage by the built-in collector, unless they stop
running. Thus there is need for a special purpose garbage collector for
the compiled ABS models to enable freeing memory in these models.

1

1.1 Goals

The garbage collector should be:

• Fast - It should not invoke considerable slowdowns to the system.

• Comprehensive - It should collect all or, at the very least, most
identifiable garbage.

• Correct - It should not collect objects that may be needed in the
future.

For the collector to be fast, it should do as little work as possible.
Collecting nothing, would be the fastest alternative, but obviously would
not improve memory usage. On the other hand, to be comprehensive,
will require more work to ensure garbage is collected. The fastest
alternative that guarantees collecting all garbage, is to skip the analysis
and just collect everything. However, this would also collect objects that
may be needed in the future, resulting in incorrect collection. In this
thesis, I will therefore attempt to strike a balance between speed and
completeness without compromising correctness.

1.2 Structure of This Thesis

Chapter 2 introduces the ABS language. In chapter 3, Erlang and
the Erlang back end for ABS is described. A general introduction to
garbage collection techniques and problems is given in chapter 4. The
implemented garbage collector is described in chapter 5 and evaluated
in chapter 6. Finally, chapter 7 summarizes the findings and concludes
this thesis.

2

Chapter 2

The ABS Language

ABS is a modeling language for abstract behavioral specifications, that
targets modeling of concurrent, distributed systems [10]. The syntax is
made to resemble Java’s, making it easy to learn for developers familiar
with Java and similar languages. It uses explicit typing and static type
checking similarly to Java. ABS is divided into two levels, a functional
level and a concurrent object-oriented level, where the OO level builds
on the functional level.

Most specification languages are either design oriented, implemen-
tation oriented or foundational languages. ABS is situated somewhere
between these three types. Like implementation-oriented languages, “it
is designed to be close to the way programmers think, by maintaining a
Java-like syntax and a control flow close to an actual implementation”.
ABS has formally defined semantics like foundational languages. Some
implementation details are abstracted away, such as the details of the
communication environment and scheduling policies [10]. This allows
the modeler to focus on the relationship between classes and the flow
of messages between them, as is the focus of design-oriented languages,
instead of low-level details.

ABS has an associated tool suite with compilers, a unit testing
framework, an Eclipse plug-in, an Emacs mode, debugging and analysis
tools. A specification can be compiled to one of multiple back end
languages. The Maude back end allows verification while other
languages allow simulation.

2.1 Functional Level

A subset of the ABS language is its functional constructs consisting
of pure expressions, pure functions and algebraic data types. Pure
expressions are free of side effects, meaning they cannot modify the
heap, and pure functions consist of pure expressions. Algebraic data
types are often featured in languages that use pattern matching, as
values are literals suited for pattern matching. Unlike most functional
languages, ABS has no higher order functions.

3

2.1.1 Algebraic Data Types

ABS has algebraic data types, which users may define as a set of one
or more constructors. Constructors may take typed arguments, and a
constructor with applied parameters is the literal representation of a
value of such a type. ABS’s algebraic types support polymorphism in
the form of type parameters. Type parameters are given in the same
form as in Java, enclosing a list of type names in angle brackets. There
are several built-in data types such as: Bool, Int, Rat, String and
List<A>. For a full overview of built-in types, their implementations
and associated functions, see The ABS Language Specification [15,
Appendix A].

Two examples of algebraic data types are given in listing 2.1. The
first shows a simple enumeration, where none of the constructors take
arguments. The second shows an example of a general binary tree,
which takes one type parameter for the type of the values. The binary
tree type has two constructors, one takes no arguments and represents
an empty tree. The other constructor, Branch, takes three arguments,
a left sub-tree, a value stored within it and a right sub-tree.

Listing 2.1: Examples of algebraic data type definitions.
/** Graph coloring enumeration. */
data Color = White | Gray | Black;

/** An algebraic type for general binary trees. */
data Tree<V> = EmptyTree

| Branch(Tree<V> left, V value, Tree<V> right);

Note that some types, like Int, are not implemented in ABS, but
depend on the back end language, see section 2.3. These types, which
are sometimes called basic types, are still algebraic types. For instance
Int and String do not use constructors like the typical algebraic types,
but instead have a special syntax for literals. They can still be used in
pattern matching, which is covered in the next section.

2.1.2 Pure Expressions

Pure expressions are expressions without side effects. This includes the
typical arithmetic, logical and comparison expressions. Variable access
including accessing the active object, this, or its fields is a kind of
pure expression. The use of literal values, that is constructing data of
algebraic data types, is a pure expression. Function application is also
a pure expression as function bodies consist of a pure expression. Note
that functions in this context does not include methods, also known as
member functions, in the object-oriented part of the language. Any pure
expression can be parenthesized.

In addition to these simple cases, ABS features a few other kinds
of expressions often found in functional programming languages. The
if-then-else expression, or simply if expression, is one, similar to if

4

statements, but the else branch is not optional. Like all expressions
the if expression returns a value. It works by conditionally evaluating
one of the two expressions. if a > b then a else b is a simple
example that shows how to select the largest of two values.

ABS features pattern matching with its case expressions. This
allows more fine-grained choices of expressions depending on the value
of an expression. There are four kinds of patterns: literal values like
123, variables like x which become bound if they are not, or whose
value is matched similar to literals if they are already bound, _ matches
anything and ignores the value, and lastly, constructor patterns which
use an algebraic constructor where each parameter is matched with a
pattern as well, like Branch(_, x, _).

Listing 2.2: An example showing different kinds of patterns supported
by ABS’s case expression.
/** Inserts an element into a binary search tree. */
def Tree<V> insert<V>(V value, Tree<V> tree) =

case tree {
EmptyTree => Branch(EmptyTree, value, EmptyTree);
Branch(left, v, right) =>

case Pair(value < v, value > v) {
Pair(False, False) => tree;
Pair(True, _) =>

Branch(insert(value, left), v, right);
Pair(_, True) =>

Branch(left, v, insert(value, right));
};

};

The example in listing 2.2 shows several variants of constructor
patterns. Pair<A,B> is a built-in type for two-tuples, and is used
as an alternative to nested if expressions. In the two last patterns,
we ignore the other value in the pair, although we could replace the
underscores with False. The outer case expression shows a slightly
more complex pattern: Branch(left, v, right), which will bind
values to the three variables for use in the following expression. The
example also happens to show the syntax of function definitions, and
recursive application of a function.

Lastly we have the let expression, which binds the value of a pure
expression to a named constant for use in another pure expression.
This avoids evaluating an expression multiple times if it is needed in
different parts of the expression. This is particularly useful for calling
functions that may operate on an entire data structure, and using the
result in an if expression.

5

Listing 2.3: Example of let in a recursive function.
/** Gets the largest number in a list of natural numbers. */
def Int max(List<Int> l) =
case l {
Nil => 0;
Cons(a, tail) => let (Int b) = max(tail) in

if a > b then a else b;
};

2.2 Concurrent Object Level

The functional level is extended by an imperative object-oriented level
with side effects. Objects are separated into concurrent object groups,
abbreviated COGs, where activity in objects within the same group
are handled sequentially. Method calls between COGs are done by
asynchronous message passing.

2.2.1 Interfaces

ABS uses interfaces for object types. Interfaces have a name that is used
as type names. They consist of a set of method declarations, without
method definitions. A class that implements to an interface, must have
implementations of all the methods of the interface. Because interfaces
are the types used for objects, any method that should be accessible from
outside the object, must be declared in one of the interfaces that its class
implements. Therefore ABS specifications typically have a somewhat
larger number of interfaces than traditional systems.

The fact that interfaces are used as types instead of classes also
enforces data encapsulation. Interfaces cannot have member variables,
therefore any access to members must go through a method defined in
an interface.

One limitation to the interfaces in ABS, is that they do not support
type parameters. This can be overcome by the use of algebraic data
types with type parameters for data structures. For other purposes
not easily solvable on the functional level, multiple non-parameterized
types is the only available choice.

2.2.2 Classes

Classes are the specific implementations for objects. Thus they typically
implement one or more interfaces, although they are not required
to implement any interfaces and have publicly available methods.
There are no explicit constructors in ABS, instead classes can take
parameters which are member variables that need to be specified
upon instantiation, similar to how some fields are often specified in
constructors. In addition classes can have an init block for initialization
purposes, which is automatically run upon instantiation after setting

6

parameter fields and initializing other fields to defaults appropriate for
their type.

Additionally one may define a run method that is automatically
executed after initialization has completed. This is called active
behavior, and the run method is added to the set of processes to execute
on the object. ABS processes is covered in the next sub-section.

2.2.3 Concurrency

Objects have attached processes, separated into active and passive
behavior. Objects with active behavior are those that are of a class
that has a run method, which is immediately invoked in a process
attached to the object after instantiation finishes. In addition, passive
behavior are method invocations coming from other processes. Any
method invocation will attach a new process for executing the method
to an object unless the method is invoked from a process in the same
object.

Every COG can only have a single running process. That is, one
object is active, and only one of the processes in the active object is
executing; while all other processes in objects within the same COG
are waiting to run. A process will yield execution to other processes if
it awaits a guard, ABS’s conditional waiting, that is if it waits for an
asynchronous method call to finish executing or for a certain state to be
achieved. This is similar to awaiting a condition object in a loop as long
as the desired state is not achieved. As long as there are processes left
waiting to run in a COG, they will be scheduled.

When an object is instantiated, it is placed in a new COG or in the
same COG as the object whose process instantiates it. Whether the
object should be placed in the same COG must be specified explicitly
in the source code. While ordinary instantiation places the object in
a new group, the programmer can specify that the object is local with
new local Object().

In the rest of this thesis, I will refer to ABS processes as tasks, to
make a clear distinction between ABS and Erlang processes. There
are Erlang processes for every ABS process, but there are many other
Erlang processes as well, which we will see in later chapters. The term
task is used, because it happens to be the name of ABS processes used
in the Erlang back end source code.

2.3 Compiler

The compiler is built into two tiers. A frontend built on JAstAdd, which
compiles an ABS specification into an intermediate representation, an
object-oriented abstract syntax tree. The frontend does lexical, syntax
and semantic analysis. The generated syntax tree is then used by the
back end, which will compile the internal representation into a back end
language. Code generation is plugged into the modular compiler back

7

end, making it possible to build multiple different language back ends.
The currently supported back end languages are Java, Maude, Scala
and Erlang.

2.4 Other tools

In addition to the compiler and back ends for running simulations, there
are tools available to do analysis of simulations in some of the available
back ends. Sequence diagrams of executions in the Java back end can
be produced by connecting a version of the SDEdit tool to a simulation.
The Maude back end allows outputting the state of the entire model
during simulation.

One of the really useful analysis tools, is the cost analyzer. It
makes use of specific annotations, a feature that hasn’t been covered,
to analyze the expected resource usage of an implementation. The tool
is one of the ABS plug-ins for Eclipse.

8

Chapter 3

The Erlang Back End

ABS has an Erlang back end, which consists of a code generator for
the ABS compiler suite and a runtime back end. In this chapter, I will
first give a short overview of some of the features of Erlang, and finish
with a description of the back end. For a more in-depth coverage of the
features, syntax and use of Erlang, readers are referred to Armstrong
[2].

3.1 The Erlang Programming Language

Erlang is a functional language made for distributed, fault-tolerant
systems. It was designed within Ericsson, and is characterized by the
requirements in telecommunications switches; supporting distribution
and recovery from faults in one or more processes in a distributed
context. This can be used to ensure systems have little if any downtime,
which is important in telecommunications and many other server
systems.

Because the language is functional, data is in general immutable.
Data structures in Erlang are therefore also immutable, or persistent,
and changes to a data structure creates a new version of it, which
may reuse parts of the old data structure. ABS also uses algebraic,
immutable data, making for a close similarity between ABS’s functional
aspects and Erlang.

Tuples, an algebraic sum type, is used for implementing most of
the data structures. Erlang has several other first-class types such as
numbers, process IDs, lists and atoms, which are a kind of symbolic
constant similar to algebraic constructors that take no parameters in
ABS.

3.1.1 The Actor Model

The actor model is used for Erlang’s concurrency implementation, that
is programs consist of processes that communicate by asynchronous
messaging. It shares many similarities with the model used in ABS,
which is based on active objects. Erlang’s processes are lightweight, but

9

unlike threads, which are often called lightweight processes, they have
separate heaps. The processes are lightweight in the sense that they
are not implemented as OS threads or processes, but are scheduled by
the Erlang virtual machine which does not require context switches.

Message passing is explicitly handled by the programmer, and any
value can be passed as a message to other processes. ABS on the other
hand has implicit messaging used for calling methods and returning
from methods. However, Erlang’s standard library contains general
purpose modules that handle many of the use cases for messaging,
like remote procedure calls. This can relieve the programmer of re-
implementing common patterns of messaging, and the use of function
calls resembles implicit message passing.

All processes have a mailbox that they may read from using the
receive expression. When a message is sent to a process, it is added to
the mailbox. A process can selectively read specific types of messages,
skipping other messages temporarily, just like a person may choose to
open personal letters before reading ads or checking bills. If a message
does not match the kind the process attempts to read, it is added to a
buffer of skipped messages. These are added back to the mailbox after
the expression has completed from finding a matching message, or from
a timeout specified by the programmer with an after block.

Erlang guarantees that messages from one process to another, are
received in the order they are sent. However, if multiple processes are
involved, it does not guarantee the order of messages between multiple
pairs. For instance, if process A and process B sends a third process, C,
messages, it guarantees that the order of all messages from A to C is
maintained. But messages from both A and B can arrive intermingled.
In other words if A and B both send a single message, there is no
guarantee that the message from A arrives before the message from
B, even if B sends its message after A. The same is true for messages
from one sender to multiple recipients: if A sends a message to both B
and C, there is no guarantee that B receives its message before C or vice
versa.

Fault tolerance is achieved by allowing processes to monitor other
processes for failures. Instead of adding error handling in a defensive
manner to every function in a program, processes can crash upon errors,
and error handling can be delegated to a monitoring process. It is easier
to make a single or a few pieces of error handling code, than extensive
error handling everywhere. The errors are received by the monitoring
process as a message describing the error and which process failed. A
common way to handle errors is to restart the failed process or group of
processes to ensure continuous operation.

3.1.2 Pattern Matching

Pattern matching[7] is used extensively in Erlang. Function definitions
use patterns for parameters, similar to languages like ML and
Maude[13]. Variables are bound through pattern matching with the =

10

operator, which matches the left and right operands, and binds the left
operand if it is an unbound variable. Erlang’s if-expression is a pattern
matching expression, matching one of a selection of Boolean expressions
to true. The case expression matches one expression to one of a group
of patterns, similar to ABS’s case expression. Messages are matched in
the receive expression in a similar way to the case expression.

3.2 Mapping ABS to Erlang

An executable program compiled from an ABS model, consists of two
parts: model-specific code generated by the compiler, and general
runtime code. The compiler and general runtime code makes up the
Erlang back end, and is the subject of the thesis by Göri [8], which is to
be submitted to the Graz University of Technology in 2015. The design
described here is based on a draft of his thesis and the source code he
has written.

3.2.1 Algebraic Types

ABS’s algebraic types are translated into atoms and tuples. If the
constructor has no parameters, they are simply represented as atoms
with the prefix data. When a constructor takes arguments, they become
a tuples with a similar constructor atom as the first element, and each
argument as subsequent elements in the tuple.

The implementation does not carry with it information about types
and their constructors, but relies on the compiler having type checked
expressions and statements during its semantic analysis. If values
cannot have the wrong type, no type information is needed at runtime,
as the code will not bind any values that have the wrong type to
arguments or variables.

Some types like Booleans and integers, which are specified as built-
in in ABS, are simply represented by Erlang’s own versions of those
types. Thus the compiler is able to represent any ABS algebraic type
using atoms, tuples and types built into Erlang.

3.2.2 Objects

Objects are implemented as state machines. These are a special kind
of process with an underlying implementation in the OTP libraries.
The library implements the generic part of the FSM, handling message
passing, synchronization, and function calls based on messages. The
messages passed using the FSM library are called events, as opposed
to ordinarily sent messages. First I will give a brief description of the
generic part of the object implementation, then I will cover the code
that is specific to individual classes and the representation of object
references.

The object module that has been implemented, contains functions for
each state. These functions are called by the generic FSM to handle the

11

events that may be passed to the machine. In the case of ABS objects,
these are new tasks being created, tasks retrieving or setting field
values, committing changes in the object’s fields when a task reaches
a synchronization point or rolling back changes to the object’s fields if
an error occurs in a task.

There are also functions for handling events that can occur in any
state and usually have common handling across states. Prior to the
implementation of the garbage collector, the only event handled this
way is terminating the state machine. Messages sent with the standard
message passing interface can also be handled by its own function; when
a task crashes, objects receive these kinds of messages.

Classes

The general state machine above is identical for all objects, however,
ABS has classes of objects, where the classes describe the functionality
specific to those objects. The code generator builds an Erlang module
for each class, named which contains functions for each method and
some standard callbacks that the object state machine uses to handle
mutating, accessing and initializing field values. It also generates
functions the init block and two general functions for creating field get
and set events for the state machine.

Object References

Object references that can be used by the code generated by the
compiler, must contain the following:

• A reference to the state machine process, to be able to generate
events in the object.

• The name of the class module representing the object’s class.
Without it the object’s methods cannot be called.

• A reference to the COG the object belongs to, to ensure scheduling
of tasks in that COG happen sequentially.

All of these are organized into a tuple, to represent object references.

3.2.3 COGs

COGs are implemented as processes that handle scheduling of tasks
running in the scope of objects within that group. They can be seen as a
sort of state machine, although they are not implemented using Erlang’s
generic finite state machine module. The state is represented as a tuple,
which is passed to a single function, loop, that is implemented using
pattern-matching. When messages arrive, a new state can be generated
based on handling the message, and that state can be entered. A
more detailed discussion on the COG state machine can be found in

12

subsection 5.1.1 of chapter 5, where the necessary changes to support
garbage collection, are also covered.

The COG’s scheduling procedure, ensures that only a single task
is running at any given time. This is done through the use of a
token, passed to tasks to allow them to run. When a task reaches a
synchronization point, the token is returned to the COG and it allows
scheduling of other tasks.

3.2.4 Tasks

ABS processes, or tasks, are naturally represented as Erlang processes.
All tasks have a similar life cycle: create an initial state, report to the
COG that it is ready, and wait to receive the token from the COG. Upon
receiving the token, the task may start execution, returning the token
to the COG at synchronization points and upon finishing execution.
When the task has finished, it also notifies any processes waiting for
it to complete. This feature is currently only used for the main task.

Asynchronous method calls may block while initializing their state,
if the object they are to execute a method on, has not been initialized
yet. As part of finishing execution they send the result of the method’s
execution as a message to the future assigned to holding the result.

3.2.5 Futures

Futures are represented as processes that serve the result of tasks after
the task has been completed. The future also creates the task on the
COG that the callee belongs to, monitoring the COG for crashes until
the task has been added to the scheduler. If the COG were to crash
before the task could be created, an error will be stored in the future
instead of the result of the task’s execution.

Until the task has finished, the future will simply wait for the result
of the task, not responding to other messages. As soon as the result
becomes available, any requests to get the result are handled. If the
task crashes, the error is stored and served by the future instead.

3.2.6 Statements and expressions

Most statements and expressions map easily to Erlang, as there are
similar Erlang expressions, e.g. case and if. However, assignments
are not so simple, because Erlang only has binding values to variables,
that is single assignment. Therefore a unique name has to be used for
every assignment. To do this, a counter is added to all variables in
the current scope. Erlang does not have a local scope for branching
expressions, the scope of variables are function-wide. As a result,
the numbers for each variable have to be unified across branches, to
the highest number of that variable across the branches. The value
available at the end of each branch, is then assigned to the unified
variable name at the end of the branch, unless the branch had the

13

same count as the maximum. Then the high number can be used for
generating accesses regardless of which branch was executed.

Loops are also problematic, as there are no loops in Erlang. Instead
the functional equivalent of tail recursive functions are used, that is
functions that call themselves as their last operation. Loops in ABS,
must therefore be translated into a tail recursive function, but an
unnamed function does not usually have access to call itself. A small
trick is used to ensure this is possible: a function that takes the
recursive function as an argument, is used for the initial application
of the recursive function with the recursive function as an argument to
itself. A sketch of such a set of functions is given in listing 3.1.

Listing 3.1: Sketch of a conditional loop in Erlang
Values = ((fun (Inner) ->

fun (Params) ->
Inner(Inner, Params)

end
end)(fun (Self, Params) ->

case loopCondition() of
true ->

NewParams = doStuff(),
Self(Self, NewParams);

false ->
Params

end
end))(OldValues)

Note that the outer-most function in the group, takes only the
looping function as an argument. It then returns a function that takes
all local variables as a parameter. This function in turn calls the looping
function, with the looping function and the variables as arguments.
Because the looping function now has a reference to itself, it is able
to call itself continuously.

14

Chapter 4

Garbage Collection

In this chapter, I will give a brief introduction to garbage collection and
garbage collection algorithms in general. The material here is mainly
based on the book by Jones, Hosking, and Moss [11], which readers
are recommended to consult if they need a deeper understanding of the
techniques described here.

Garbage collection is the process of automatically freeing memory
allocated for data when it is no longer going to be used. It is in general
not possible to know which references will be accessed ahead of time.
Instead garbage collectors identify accessible and inaccessible data by
analyzing what references exist globally or in the scope of one of the
program’s execution stacks. If there are no references to some piece of
data, it is no longer possible for the program to access it in the future,
and it can be safely considered garbage and expunged from memory.

Most modern programming languages like Erlang and Java have
garbage collectors. This frees the programmer from the burden of
explicitly handling allocation and freeing memory as is common in low
level languages like C. When memory is allocated for temporary data,
but never freed, will result in increased memory usage throughout the
lifetime of a program. This is a common bug when programmers are
responsible for handling memory, known as memory leaks, and can be
hard to track down. The other common problem is known as dangling
pointers, where references to data that has been freed and is no longer
available, are still in use, which can lead to crashes or, worse still, data
corruption if the same memory area is allocated for something else later.
Automatic memory management seeks to eliminate these kinds of bugs.

It is common to view objects as a graph, where references are
edges and the objects are vertices. Most collection schemes involve a
graph traversal algorithm, followed by a run through all objects to free
the memory used by inaccessible objects. Collectors that traverse the
object graph are known as tracing collectors. The choice of traversal
algorithms may affect the order in which memory is read, which affects
paging and caching. It is preferable to access memory linearly, or at the
very least without moving between pages or cache lines. Objects that
are referenced from an object are likely to be allocated around the same

15

time and be located close together, which means a depth-first traversal
is likely to traverse memory in a close to linear fashion. The stage
at which the collector actually frees memory, varies greatly between
collector types.

A garbage collector typically runs in a separate thread from the
program. The program threads are known as mutators in garbage
collection terminology, because they alter state. It is generally simpler
to do garbage collection by stopping the mutators before the collector
goes to work, known as stopping the world. This ensures that the
mutator cannot change references while the collector is working, which
could lead to problems where the collector loses sight of accessible
objects due to changes in the object graph.

4.1 Reference Counting

Some non-tracing collectors, which can be simple to implement, use a
technique known as reference counting. Reference counting means that
whenever a variable is set to reference an object, that object’s count is
incremented. Likewise it is decremented when the variable is changed
or moves out of scope. If there are no more references to an object, it
is considered garbage and can be collected because there is no way to
access it.

Because the mutator is actively incrementing and decrementing the
counts, it may also be responsible for freeing the occupied memory.
Although, it is common to run a separate collector thread, particularly
as part of taking measures to handle cyclic garbage. Leaving the
responsibility of collection up to the mutators, can be considered
a simple form of concurrent collection, i.e. collection that runs
simultaneously with mutators, but it can be argued that the mutator
is not performing work while it is freeing memory.

Yet, collecting garbage in multithreaded and particularly in dis-
tributed programs can be problematic. One must protect against in-
crements arriving late, i.e. after decrementing the count to zero, which
could lead to premature collection of objects. First atomic increment
and decrement operations are necessary when multiple threads may al-
ter the count. Then if a reference to an object is passed to a different
node, the passing thread must increase the count, to ensure that the
passing thread does not decrease the count to zero before the receiver
can increment the count.

The Java EE distributed collector uses a variation of reference
counting known as reference listing, where it considers sets of nodes
that may have references to objects. Long delays are added before
collecting objects, due to the possibility of latency in the communication
with nodes that have references, obscuring these nodes. This leads to
garbage staying uncollected for a long time.

Reference counting cannot handle object graphs containing cycles
without adding some kind of special handling of this. One option

16

is to have the programmer account for it using what is known as
weak references, that is references that are not considered by the
garbage collector. There are also algorithms that attempt to determine
automatically if a reference should be considered weak or strong, but
they may incorrectly deem some references weak, leading to premature
collection of some objects.

Another option is to use a hybrid collector, using a tracing algorithm
to take care of cyclic garbage. The tracing collector can be a full tracing
collector that is only run rarely. This yields fast operations most of the
time, but longer delays when the tracing collector runs, which can be
undesirable if predictable pauses are required.

A full trace may not be necessary, as the cycles in the object graph
usually make up a small sub-graph. Therefore it can be sufficient to
only trace the sub-graph, starting in a node that has had its count
decremented. If the node can be traced back to itself, and no other
references to it exists, a garbage cycle has been found.

4.2 Mark and Sweep

The simplest form of collector that actually traverses the object graph
to account for whether objects are accessible, is the mark and sweep
collector. It consists of two phases, one for traversing the graph and
marking the objects that are encountered, and one for freeing, or
sweeping, the garbage.

The marking phase uses a tri-coloring system similar to other graph
traversal algorithms that avoid processing vertices multiple times using
a two or three colors. The colors or marks are used to denote three
sets of objects. Objects colored white are objects that have not yet
been encountered, all objects start out white. Gray objects have been
encountered before, but have not been processed for references. Those
colored black are objects that have been processed, meaning all objects
they reference have been colored gray.

The marking phase starts by processing the root set, which are
usually made up of the references from mutators’ execution stacks, but
programming languages and software systems may define additional
roots. Objects currently in use by one or more mutators cannot be
collected, and makes for a root, or starting point, of the graph traversal.
Finding the roots requires processing the stack and identifying the
references. Similarly when processing references in an object, the
references it contains must be identified. The identification process
is largely language dependent, as different languages represents
references differently.

After the roots have been marked gray, or added to the gray set, they
can be processed for references. The object is colored black, then all
references in the objects are followed, and all white objects referenced
are colored gray. When the gray set is empty, there are no more objects
to process, and all white objects can be collected. Pseudo-code for

17

the algorithm is given in listing 4.1. Note that it is common to use
variables to denote sets in the objects instead of applying set operations
like union, intersections and complements. In this example ∆ is the
universal set of the garbage collection domain, i.e. all objects.

Listing 4.1: Pseudo-code of the mark and sweep algorithm.
Gray := findRoots()
While Gray 6= ; Do
X := getElement(Gray)
Black := {X} ∪ Black
Gray := (Gray ∪ references(X)) \ Black

End

White := ∆ \ Black
sweep(White)

Sweeping consists of running iterating over the heap, and freeing
all white objects. This leaves the memory area fragmented, as holes are
scattered throughout the heap. When allocating memory for new data,
these spaces may be hard to utilize, and different allocation strategies
have to be considered. Figure 4.1 illustrates the results of collecting
garbage by sweeping.

Before GC

After GC

Live Garbage Free

Figure 4.1: Heap before and after performing a mark and sweep
collection.

18

4.3 Mark and Compact

The mark and sweep algorithm can leave memory fragmented as free
memory is not necessarily a contiguous area. This can lead to slower
allocation due to searching for blocks of suitable sizes for new data. It
may even require increasing the heap size, even though the sum of free
memory on the heap is large enough to fit the new data. Instead of
simply freeing the objects that are garbage, leaving holes of different
sizes in memory, it is of interest to ensure that free areas are kept
contiguous. Compacting is the process of moving the accessible objects
to one side of the heap, overwriting the objects that are no longer
needed.

Before GC

After GC

Live Garbage Free

Figure 4.2: Heap before and after performing a compacting collection.

Because objects are moved, there’s a need to change references to
reflect the new address of the object. This requires that the new address
is stored temporarily, and that all references are updated. It is therefore
common for compacting collectors to iterate over the heap multiple
times, although it is possible to do it only once by keeping forwarding
addresses in a table.

19

4.4 Copying Collectors

Compacting can be quite slow, compared to sweeping, requiring multiple
traversals of the heap. It does have the desired property of fast
allocations, which the fragmented heap left over by a sweeping collector,
hinders. Copying collectors achieves similar compaction, but splits the
heap in two semi-spaces. When collecting garbage, all non-garbage is
copied to the other half of the heap. There’s no danger of overwriting
objects in the from space, the part of the heap the collector is copying
from, in the process of copying objects. The forwarding address can
therefore be stored safely in the space the object used to occupy, allowing
updating references without the need for additional traversals. This
yields faster compaction at the expense of requiring twice the heap
space of a normal compacting collector.

Before GC

After GC

Live Garbage Free

Figure 4.3: Heap with semi-spaces before and after copying collection.

As is illustrated in the figure above, a copying collector is free to
reorder objects in memory. Thus a copying collector can optimize the
memory layout of objects to help mutators with caching and paging.

4.5 Generational Collectors

A copying collector has to copy all black objects every time a collection
cycle completes (sometimes there are objects that cannot be moved, but

20

I will not cover this here). This can lead to copying taking unnecessarily
long. Marking a large amount of objects can also take long. Instead, one
can partition the heap based on the longevity of objects, avoiding having
to mark and copy objects that are unlikely to be garbage. Long-lived
objects can be moved to a partition that holds only long-lived objects
based on surviving garbage collection cycles. A partition for old objects,
doesn’t have to be considered by the garbage collector at every collection
cycle.

For different generations, different garbage collectors can be used.
If a slower collector is used for an old generation, it may not affect
runtimes much, as this generation is not collected as often. There is
one issue with only looking at a smaller part of the heap at a time,
and that is references between objects in different generations. Some
additional overhead is added, because there’s need to track these. But
this overhead should be low compared to the benefits of a partitioned
heap.

4.6 Distributed and Concurrent Garbage Col-
lection

Concurrent garbage collection is when mutators are allowed to run
alongside the garbage collector. It has also been called parallel
collection, but that term is usually used for multithreaded garbage
collectors. Because concurrent collectors do not stop the world for the
duration of the collection cycle, mutators may change references while
the garbage collector is tracing objects. This can lead to what is known
as the lost object problem discussed in subsection 4.6.1.

Distributed collectors are collectors used in distributed systems.
Often one collector runs on every node in the system, requiring
collectors to come to a consensus. One example of a distributed collector
is the mark and sweep collector in Emerald, which uses a 2-phase
commit to ensure consensus [12]. However, distributed collection can
also be done by a single global collector, that handles garbage on all
nodes. This is slower and can require more memory for the collector to
have a complete view of objects across nodes.

Distributed collectors are sometimes designed specifically for certain
models of distribution, like active objects or actors. One such collector
found in [3], uses frequent, evenly spaced messaging between active
objects to detect garbage. It has an interesting approach to cyclic
garbage, where the active objects forming the cycle, come to a consensus
between themselves to determine that they are garbage.

4.6.1 The Lost Object Problem

The invariant used in tri-coloring, is that no black objects have
references to white objects. This holds because an object that is black,
has had its references added to the gray set. Marking is monotonic in

21

the sense that objects that have been colored gray, can never become
white, and objects colored black can never become gray or white. This is
needed for the invariant to hold, and can be stated simply as “no object
object can become lighter” [5]. The monotonicity property is necessary
to ensure the invariant holds, as if a gray or black object could become
white, obviously a non-white object pointed to be a black object could
become white.

If mutators are running simultaneously with the garbage collector,
they may alter the object graph by assigning references to fields in
objects. Should a black object have one of its fields set to reference
a white object, then the invariant above ceases to hold. This is a
problem, because other references to that white object may be deleted,
although there is now a reference to the white object in an object
that will not have its references traversed by the collector in the
current marking cycle. Figure 4.4 illustrates how an object, C, could
become invisible to the garbage collector, if a mutator copies the
reference and deletes the reference it copied it from, with code such
as : A.C = A.B.C; A.B.C = null;

AA

AB

C

AA

AB

C

AA

AB

C

Figure 4.4: The lost object problem.

A concurrent collector has to protect against this. One way to do
this is to apply a write lock to black objects. Disallowing changes to its
variables if the newly assigned value is a reference to a white object.
The referenced object, would first have to be added to the gray set.
Another option is to make gray objects read protected with a lock. No
variables in a gray object could be accessed without first adding them
to the gray set. This can be done as a conditional wait, waiting for the
object to become black before accessing it. Marking of the gray object the
mutator is trying to access, can be prioritized by the garbage collector
in its marking strategy as in [12].

22

Chapter 5

Implementing Garbage
Collection for the Erlang
Back End

The Erlang virtual machine, BEAM, has a concurrent copying garbage
collector [16], but ABS’s Erlang back end uses long-lived processes for
every COG, object and future. These processes will not be stopped until
the entire simulation is complete, that is if there are no more tasks
to be scheduled on any COG, or optionally if such processes encounter
errors and crash. Since these processes are not stopped, any data they
reference cannot be collected by Erlang’s garbage collector, as it is still
available to a process.

There is also a limit to the number of processes that may exist
in the VM at any given time, although this is configurable and can
be set higher or lower than the default of 262,144 (large parts of the
documentation still indicate the default is 32,768, but the number can
be found in the emulator manual). Even if memory consumption is not
an issue during a simulation, the system may create too many processes
leading to a crash.

The garbage collector’s task will therefore be to stop the processes
that represent COGs, objects and futures, which will allow Erlang’s
collector to free the memory used by them. Stopping these processes,
allows new objects to be created; whether it releases the memory
required for it, or just lowers the number of running processes to keep
within the VM’s limit.

The garbage collector that has been implemented in this thesis,
is a mark and sweep collector that stops the world as described in
section 4.2. Algorithms that rely on moving objects, are not applicable,
since we’re collecting processes and not ordinary objects. Processes
do not have memory locations that we may access or move. Erlang’s
own collector will handle the collection of the memory occupied by the
process.

The processes that implement object state have references to the
COG responsible for scheduling tasks on that object. Because COGs

23

are not first-class citizens in ABS, they can only be referenced by the
objects they contain. Therefore, simple reference counting can be used
for COGs.

Mark and sweep could be used for COGs as well, but has been
restricted to objects and futures. Using the mark and sweep collector
would add more elements in the messages sent to the garbage collector
when it retrieves references, and more memory used by the garbage
collector as it builds sets of gray and black objects. Using reference
counting for COGs requires only minimal changes to handle messages
regarding the creation and termination of objects.

It should be possible to implement a concurrent garbage collector for
the back end, and this will especially be of interest if the back end is
made distributed. Stopping the world was chosen because of the limited
time frame of this thesis. This avoids some of the added complexities of
adding locks or other protections against the lost object problem.

5.1 Stopping the World

Stopping the world involves pausing every mutator while the garbage
collector performs a collection cycle. After the cycle is complete mutators
can be resumed. Because the garbage collector is implemented on
top of a virtual machine without access to low-level instructions like
interrupts, mutators cannot be stopped arbitrarily. First we shall see
how the back end can be changed to stop COGs from scheduling tasks,
and then I will present the problems that were found and solved to
ensure that the garbage collector stops mutators correctly and does not
collect anything that is not garbage.

5.1.1 COG States

Before the addition of the garbage collector, COGs could be in one of the
following states: no runnable tasks, not running or running. If there are
no runnable tasks, the COG waits for new tasks or a change in a waiting
task. Regardless of what kind of change occurs, it transitions to the not
running state, to attempt scheduling a task. In the not running state,
it will still check for incoming new tasks or changes to tasks’ states, but
will immediately try to schedule a task if there are no such messages
waiting in its inbox. When there are no tasks to schedule, it will go
from the not running state to the no runnable tasks state. If there is a
task running on one of the COG’s objects, it will continue running until
that task reaches a synchronization point or fails. The COG will still be
able to add new tasks to its set of tasks or update the state of waiting
tasks. The described machine is illustrated in Figure 5.1.

There is a need for an own state where the garbage collector is
running, that does not allow scheduling tasks, i.e. a stopped world state.
To do this, we add a state where a record is kept of the state the COG
should enter when it is resumed after garbage collection is finished. The

24

Figure 5.1: The COG finite state machine before the garbage collector
was implemented.

stopped state will be entered if a message from the garbage collector to
stop the world is received. However, the only obvious places where the
world could be stopped, is when no task is running, i.e. when tasks
have reached synchronization points and yielded execution, which may
include having finished running.

The rest of sub-sections will discuss issues with stopping the
world, and stopping the world at other points than the standard
synchronization points. We will see yet another state added to the COG
state machine, leading to a machine as shown in Figure 5.2.

5.1.2 Tasks Blocking on Futures

Tasks that are trying to get the result of a future, do not yield execution,
but will block until the future is resolved. This leads to possible
deadlock situations in a few scenarios in ABS. Two cases of logical errors
in models can result in deadlocks. If a task blocks on a future associated
with a task on a local object, that future can never be resolved, because
only one task can run in a COG at a time. If a task blocks waiting
for a task on another COG, and a task on the other COG is blocked,
a deadlock can occur. If they are mutually blocking on futures with
tasks on each other’s COGs, it is an error in the model. The task could
also be waiting for a task to finish on a COG that has been stopped by
the collector. The latter situation would lead to the garbage collector
waiting for the COG to stop, while that COG cannot stop before the
future is resolved. The future cannot resume until garbage collection is
complete. Then the world cannot stop.

To handle this situation, we add an additional state to COGs for
blocked tasks. If a task is blocked, no tasks can be scheduled. When the

25

Figure 5.2: The COG finite state machine after the garbage collector
was implemented.

future the task is waiting for, is resolved, the COG can schedule that
task again and return to the running state. While a task is blocked,
the COG can be stopped and the task will respond to messages from the
garbage collector to get its local variables. The additional state is shown
in Figure 5.2.

5.1.3 Stopping Running Tasks

Long-running tasks pose a potential problem if they do not contain
synchronization points. Recursive functions or methods, other long
chains of synchronous method calls and loops are all problematic in that
they slow down stopping the world considerably. The worst case would
be an infinite loop such as: while (True) { new Object(); }
There are no synchronization points or any blocking statements as part
of this loop, which would lead to the collector waiting indefinitely for
this mutator to finish. To deal with this situation, there is a need to be
able to stop running tasks, without yielding execution in favor of other
tasks and without slowing down execution time considerably.

By checking the task’s mailbox with an instant timeout for a stop
message, the delay imposed by the check will be kept minimal. Task’s
are only sent messages when they are in non-running states, except for

26

the stop messages introduced here and a notification message for the
main task that is kept in the mailbox until it completes execution. This
ensures checking the mailbox runs in constant time as there is at most
one message to skip before reaching the end or the stop message. This
is subject to change if future revisions of the Erlang back end add more
observers waiting for notifications of tasks completing.

It is desirable to respond quickly to stop messages, but to add as
few such checks as possible. Checking for stop messages between every
expression would be easy to implement, but would add excessive delays.
The other easily implementable option, would be to add these checks to
the beginning or end of functions, methods and loops. Adding them to
the beginning seems more appropriate as the ends are often followed
by tasks ending or reaching synchronization points in an outer scope.
By placing the check at the beginning, any function application, method
call or loop iteration can be immediately stopped.

5.1.4 Asynchronous Method Calls on Inactive Objects

When a method is called asynchronously a new task is created. The task
will not finish its own initialization until it receives a message from the
object that the object has been activated. An object is active once its
init block has completed execution, and its active and passive behaviors
can be allowed to start running. However, if the object’s COG has been
stopped, initialization cannot complete, and the tasks will block until
the world is resumed.

Although, the COG has been stopped, the tasks for executing
the asynchronous method calls have not been initialized yet. The
task registers with the object using the finite state machine API’s
synchronous event. Because this is a synchronous event, the sender has
to wait until a result is produced. An FSM is not required to complete
event handling at the same time as it starts handling the event. Instead
the object FSM keeps track of all tasks that are waiting for it to become
active, and produces an event result for all of them when it does.

This blocking is problematic because tasks make up the mutators,
and as such their execution stacks contain parts of the root set. The
garbage collector will therefore try to retrieve references from these
blocked tasks, but they are unable to respond to any messages until
they receive responses to the events they produced for the object FSM.

A change in the blocking behavior is required, so they also accept
messages from the garbage collector. There are two options for how
this can be achieved. One is producing a result for the event whether
the object has become active, and if it is not yet active, wait for a
message from the object or the garbage collector. The other is to use
an asynchronous event and wait for messages just like in the case of
inactive objects in the former technique. The downside of asynchronous
events, is that they do not produce any errors if the FSM has stopped,
like the synchronous events do. Therefore I have chosen to keep the
synchronous event, and instead handle the event result according to

27

the state reported.

5.1.5 Tasks Created While the World is Stopping

If the world is in the process of being stopped, some tasks may continue
to run for a while until they reach a synchronization point. While they
are running, they may produce new objects, including new COGs if the
objects are not local, and new tasks. If a reference that is only available
as a local variable in a task is passed on to a new task and then the
first task returns, the reference could be lost due to a race condition.
A short ABS example is shown in listing 5.1. If this method finishes
execution before the task to perform anotherMethod has been added
to someObject, there will be no references to anotherObject in the
part of the graph visible to the collector.

Listing 5.1: A method that illustrates the lost task problem.
Unit someMethod(SomeType someObject) {
SomeOtherType anotherObject = new local SomeOtherClass();
someObject ! anotherMethod(anotherObject);

}

When an asynchronous method call is made, first a future process
is created. The calling task receives a PID for the future, which it
passes on to the garbage collector to inform it of the future’s existence.
The future then sends a message to the COG of the object the method
will run on, to create the task. If scheduling and/or latency delays
this message, all COGs may have been able to stop in the meantime.
The garbage collector could then retrieve references before the task is
created. The retrieved references would not include the parameters of
the yet to be created task, leading to potentially sweeping objects that
will later be used in the new task.

Before the task itself is created, the future for holding the result
is created in the calling task. This future will be registered with the
collector when it is created, which happens before the task finishes or
reaches a synchronization point. The calling task’s COG cannot stop
until the task reaches such a point. If the future is considered a root by
the garbage collector until the task has been created successfully, the
parameters passed to the task can be made available from the future.

Message ordering, however, is not guaranteed. The calling task first
sends a message to the garbage collector informing it of the future’s
creation, before it may communicate with the COG to allow it to stop.
The COG cannot possibly send its message to the collector before the
task does, due to the COG waiting for a subsequent message from the
task before it can stop. This gives a kind of weak guarantee that the two
messages will be received in order, as long as the process of multiplexing
messages into a stream on the sender side, and demultiplexing the
stream into messages on the receiving side does not re-order messages.
Although it is unlikely the order of these messages can be switched,
Erlang does not provide guarantees that they will not be re-ordered.

28

It is desirable to have strong guarantees, however, which means
future creation must be synchronized with the garbage collector. This
requires waiting for a reply from the garbage collector before the task
can continue execution after the future has been created.

5.1.6 An Incomplete View of the World

Because the garbage collector depends on messages to register COGs,
futures and objects, its world view might not be up to date at all times.
There may be COGs that have been created, but are not known by
the collector yet. Having a complete view of COGs is important when
stopping the world, as without it, some COGs may not be stopped when
the collector starts its marking phase. Then parts of the root set will
not be visible, and some objects may not be marked as they should. It is
equally important that the collector has a complete view of root futures,
for the very same reason.

If the collector cannot find all roots, objects could have had every
reference to them removed from objects in known COGs and futures.
Yet their references may have been passed on to objects on new COGs.
With the references out of view from the collector, they could be collected
prematurely.

Note that a complete view of objects is not necessary, as they cannot
be roots. Should there be objects that remain unknown to the garbage
collector in the current cycle, their collection would simply be delayed
until a later cycle when they are known.

We can use similar arguments about message ordering as was used
in the discussion on lost tasks above. The same reasoning applies
to creation of COGs and stopping them. If the garbage collector
attempts to stop a COG that has a running task creating new far
objects, the messages reporting the creation of the COGs for the new
objects, will be sent by the task before it may reach a synchronization
point. This requires that creation of COGs also synchronize with the
garbage collector to guarantee that the world view is complete. The
synchronization on future creation above guarantees a complete view
of root futures, and with similar synchronization for COGs, we can
guarantee a complete view of COGs as well.

While the collector is stopping the world, it must tell new COGs
to stop as well. This could potentially lead to an increased wait time
before the marking phase can begin, particularly if these COGs are
able to start tasks before the garbage collector can send them messages
to stop. If the tasks they run create new far objects, which in turn
manage to run some code before their COGs are stopped and so on,
potentially the collector and all COGs that are stopped could end up
waiting indefinitely for the rest of the ever-expanding world to stop.
This problem is unlikely to occur in a non-distributed version of the
back end. Introducing latency increases the likelihood as the collector
could have a slow connection to the nodes the COGs exist on.

One solution to this problem, is to have COGs wait for confirmation

29

from the garbage collector before they are allowed to start scheduling.
COG initialization would slow down slightly from this solution, but it
would guarantee that the stop message arrives before any tasks can be
scheduled. Note that this is messaging between the garbage collector
and the new process representing the COG, and not the same as the
task creating the COG synchronizing with the garbage collector. Both
messages from the garbage collector can be sent as part of handling the
creation event, but to two different receivers: the process representing
the COG and the process representing the creating task.

5.1.7 Blocking Object Instantiation

When objects are instantiated on a new COG, they add a task for
running the object’s init block. The instantiation does not complete,
until the COG has accepted the task into its queue of tasks to schedule.
This is common for all tasks being added to a COGs scheduler, whether
they are asynchronous tasks added by a newly created future process,
the main task added by the runtime environment or an initialization
task added by a task running on another COG.

Both futures and tasks adding new tasks to another COG need to
be able to respond to the garbage collector while waiting for the task
to be added for scheduling. Unlike a future, a task creating an object,
has to make sure its own COG is possible to stop while the task is being
added. For this, the blocked state added to COGs is used. The task
enters the blocked state, then waits for the new COG to accept the task,
before becoming ready for execution again. The new COG may have
been entered into the stopped state instantly, as per the communication
described in the previous section.

5.2 Marking Objects and Futures

When the world has stopped, the garbage collector can move on to the
marking phase, where it will traverse the object graph to separate all
reachable objects from unreachable objects. In the implementation,
actual sets are used instead of a table of marks or marks in the objects.

The mark phase begins by getting references from tasks and root
futures, which represent tasks that have not yet been created/executed.
Tasks and root futures are special in that they cannot be garbage
collected and as such do not need to be placed in the black set. Instead
the first iteration of the mark phase starts with an empty black set, and
a gray set consisting of all references from the tasks and root futures.
COGs contain lists of tasks, so the work of collecting references from
tasks are delegated to the COGs, while the root futures’ references are
collected directly by the garbage collector. Note that the use of an empty
black set is a flaw. The black set should start as the set of all root
futures to avoid retrieving references from them twice, should there be
references to them in the graph.

30

In each iteration of the garbage collector, if the gray set is not empty,
it will be processed by polling objects in the gray set for references.
These references must be cross-checked against the black set, so we
do not reprocess objects. When references have been retrieved from an
object, it is added to the black set and removed from the gray set. Then
the newly discovered references are added to the gray set. The mark
phase is over when there are no more gray objects.

Erlang can process a list of objects in parallel, evaluating a function
on all the elements and returning a list of the results. Because
retrieving references from an object is not dependent on other objects,
this step can be done in parallel. If the gray set is large, this should
speed up the marking phase. Then the entire previous gray set can be
added to the black set, the retrieved sets of objects can be combined into
a single set and filtered for elements of the new black set. This way the
entire wave front is handled at the same time.

The traversal would then be a breadth-first traversal of the graph,
which is often undesirable in low-level garbage collectors because these
objects tend to be spaced farther apart in memory. The order should not
be as important in the context of the ABS back end, because references
are not memory addresses. It may nonetheless affect paging, because it
affects scheduling of these processes. The Erlang scheduler will be very
active, to handle messages being retrieved and sent by many different
processes. This could result in a lot of paging regardless of traversal
order, because the garbage collector processes as well as the object
processes would be needed in interleaved patterns.

Instead of using sets a mark table could be used and might lower
the memory usage of the garbage collector during the mark phase.
Changing to a mark table, should be easy, as the set of all known objects
could be changed to a key-value store with objects as keys and marks
as values. There are some issues to consider if a mark table is to be
used, for instance balanced trees have slow and fast functions for most
operations depending on whether you know if a key is in the structure
already. Which functions to use would depend on whether you could
guarantee that all objects are known to the garbage collector before the
mark phase.

Yet another option for marking, is to delegate the task to the
objects themselves. The garbage collector could initiate marking with
a message to all mutators and root futures. They could then pass the
message on to all their references. There would need to be some kind of
barrier within all objects as they pass on the marks, so they only return
after all their referenced objects have been successfully marked. When
all mutators and roots have completed marking, the garbage collector
could send a message to sweep all white objects and resume the rest.
This would require as many messages as there are references in the
graph, which would increase the number of messages, but all messages
could be kept small. Without experiments, it’s difficult to say if this
could improve the speed of marking.

31

5.3 Sweeping White References

When the gray set becomes empty, any object that has not been seen
by the collector during the mark phase, may be collected. Sweeping
involves sending messages to all the objects that remain white. Because
we have a set of all known objects, including non-root futures, and a set
of black objects, the white set is simply the black set subtracted from
the set of objects: W hi te = ∆ \ Bl ack. Erlang’s set data structures have
standard set operations like difference, union and intersection, which
are used.

Once the white set has been obtained, all white objects are to be
removed. Removal is done by sending a message asking the Erlang
process that represents the object, to stop. There is no need for the
garbage collector to wait for a reply as we have no further interest in
these objects. As there should be no other messages sent from other
processes to these white objects, otherwise they would be in the black
set, the process should stop reasonably quickly.

Before resuming the world, the new set of all objects must be built.
Because the black set may also contain root futures, which should not
be collected in the next pass if they remain roots, it cannot be used as
the new set of all objects the garbage collector knows of. One of three
options exist for the calculation of the new set of objects:

1. Remove root futures from the black set.

2. Remove white objects from the old set of all objects.

3. Intersect the old set of all objects with the black set, which is a
variation of the first option.

The effect of the different variations have not been tested. The
best option, would be to choose the option that would give the fastest
operation. The speed of the operation, depends on the sizes of
the sets, although how much it varies depends on the choice of set
implementation discussed below. In the implementation, option three
was chosen arbitrarily. Because sweeping has been one of the faster
parts of the collector, the other options have not been tested.

To perform set operations, sets must be of the same type, either
ordered lists, ordsets, or balanced trees, gb_trees. If the two are
of different types, one has to be converted to the other, which adds an
additional pass over the data structure, typically with linear complexity.
Balanced trees use algorithms of the following complexities O (|S|) and
O (|T | × log |S|) for all set operations, where S is the largest of the two
sets T and S. The algorithm chosen, is the one that achieves the faster
execution of the two for the given trees.

Trees are slower than ordered lists when the sizes of the sets are
almost equal, but have faster insertion times for single elements. This
makes them a natural choice for the set of all objects, which have single
objects inserted often. If the sizes of the sets are very different, the

32

set operations are considerably faster with trees. That means, if there
are many objects to collect, trees will be faster. However, if almost all
objects are black, it will be slower.

Lists have a smaller memory footprint, and make for shorter
messages when sending references. It’s also necessary to use lists for
the parallel mark, without writing the parallel mapping function from
scratch. In the end, a combination of ordered lists and trees were used,
but this can easily be changed by exchanging the module names, as only
functions common to all set modules are used.

5.4 Reference Counting COGs and Resuming
the World

The only objects that may contain references to COGs, are the objects
that belong to the COG. Therefore a COG can simply contain a count
of the number of objects in the group, i.e. it can be reference counted.
However, COGs are not aware of the objects they contain, but the objects
keep reference of which COG they belong to. When an object is created,
a message is sent to its COG to tell it to increase the count. The first
object created on a COG, the only object that is not created locally, does
not send such a message. Instead the COG starts its count at 1. This
ensures that the garbage collector cannot start and kill the COG before
its count is first initialized. When an object is killed, either from the
garbage collector sweeping it away or from an error in a task, it sends a
message to its COG to have it decrease its count.

The messages to increase the count are sent by the task in which
objects are instantiated. These tasks run on the same COG as the
object being created. Because only local object creation involves an
increase message, the COG cannot be stopped before the task sends
another message. Message ordering between pairs of tasks therefore
guarantees that the reference count is up to date before any garbage
collection occurs.

When the garbage collector finishes sweeping objects and futures,
it will ask COGs to resume scheduling. The COG at this point should
check its number of referencers, and if the number has reached zero
there are no more objects in the group, which can therefore stop
running. Before it stops it must inform the garbage collector that it
has been removed by sending a message. One possible issue here, is
if the message does not reach the garbage collector prior to the next
garbage collection cycle, the collector may attempt to stop the COG that
no longer exists. If resuming the world is synchronous, i.e. the garbage
collector waits for all COGs to resume or die before it continues its
normal execution, its world view will not include dead COG processes.

Instead of synchronizing resumption, we rely on the message from
the COG regarding its death, to arrive while the garbage collector waits
for it to stop. Sending a message to a dead process simply leads to the
message disappearing, and the collector will wait for a message from the

33

COG before starting its next marking phase. Therefore we can be sure
the COG will be removed from the set of COGs before marking begins
in the next cycle, and that marking will be able to begin, as the number
of stopped COGs will match COG total.

5.5 Static Analysis

Some changes had to be made to the collector. Particularly generating
the representation of the stack to give the collector access to all
references in local variables in any of the calls on the stack. Instead of
placing every local variable in this representation, it is preferable to try
and minimize it by only including variables that may contain references.
Therefore variables’ types have to be checked for whether they may
contain references. Reference types, that is references to objects,
necessarily contain references unless they are set to null. Because
futures is one of the referencable types the collector collects, any future
variable is considered a reference types. Additionally, algebraic types
may take reference types as type parameters, or have constructors that
take reference types. Therefore all type parameters and constructor
arguments are checked for reference types as well.

It is also of interest to avoid blocking unnecessarily. Analysing
whether getting future results would block or not, was also added.
This can be seen as a variation of an analysis known as the reaching
definitions, which analyses which assignments of variables, may reach
a statement [14]. This variation becomes which assignments of future
variables, that have not been awaited, may reach this statement.
Instead of using the typical framework for doing static analysis, that
is building a set based on a work list, a simple analysis of variable
counters was used. Recall the counting used for variables in the Erlang
back end which was covered in Statements and Expressions.

It could be beneficial to add more static analyses to the compiler,
like checking whether functions are recursive or at least deep, to
remove being able to stop a task while executing code that will not
take long. Similarly loops could be checked for whether they contain
synchronization points to avoid bloating them with multiple places
where they may be stopped.

5.6 Triggering Garbage Collection

One of the issues of running garbage collection, which will slow down
the system somewhat, is when to perform garbage collection. In the
case of collecting data, one obvious choice is to collect when there’s not
enough room for new objects. The equivalent in our case, would be if
process limit is reached. The garbage collector doesn’t have such fine-
grained control, as processes aren’t spawned by the collector. The ratio
of processes to the process limit, which I will denote Φ, is used instead.
If this ratio exceeds a threshold, garbage collection is triggered. The

34

threshold adapts linearly after every garbage collection cycle, from 50%
to 90%. This trigger is more like an emergency trigger, that is unlikely
to be used in most simulations, but could become necessary for the most
aggressive models.

In chapter 6 different triggers will be tested. They may only be
triggered upon events that the garbage collector sees, like futures being
resolved, objects or futures being created, etc. Another place to look,
when basing collection on the amounts of processes running that it may
collect, is threshold’s on the number of objects and/or futures. One such
trigger was tested, where the threshold doubled after every collection if
the count was within 75% of it. The threshold would also halve if the
number of objects and futures fell below 10% of it.

A timed trigger was also tested, where the garbage collector would
run if an event occurred and 100 ms had passed since the last collection
finished. The chosen timeout of 100 ms may very well be too low or
too high. Possibly the timer should also be made adaptive, so it could
become longer if there’s little garbage to collect.

All triggers can be combined, and the baseline trigger based on the
process ratio is always there, except when testing never collecting or
always collecting. Combining timers and counters, could be a good idea,
if the count threshold gets too large to ever collect any garbage, the
timer can deal with the situation. So this combination was also tested.

35

36

Chapter 6

Evaluation

In this chapter, I will evaluate the implementation according to the
goals that were set for the garbage collector:

• Fast - The garbage collector should not invoke considerable
slowdowns to the system.

• Comprehensive - The garbage collector should collect all or, at the
very least, most identifiable garbage.

• Correct - The garbage collector should not collect objects that may
be needed in the future.

Speed is relatively easy to test for, measuring the running time of
simulations. Comprehensiveness is somewhat more difficult to show,
but may be seen in some test cases from the memory usage and number
of objects collected. However, the choice of a mark and sweep collector,
ensures completeness as long as there are no unnecessary roots. The
choice of roots has been covered in the implementation chapter, and
has been kept minimal while maintaining correctness. If the garbage
collector collects objects that are needed in the future, crashes should
occur occasionally from the use of dangling pointers. No such crashes
have been observed in the final version of the collector.

6.1 Metrics

Before presenting the results, I will introduce the different metrics
used, how they are obtained and why they are used.

6.1.1 Execution Time

One of the goals set for the collector, is to avoid excessively slowing
down the execution speed of simulations. Therefore it is essential to
measure execution time. The total time spent running a simulation
before and after adding the garbage collector, gives a good indication of
the total processing overhead. Some of this overhead will come from

37

added synchronization, additional use of resources in mutators to be
able to respond to the collector’s requests, as well as the pauses invoked
by the collector during collection cycles.

There are two sides to the execution overhead, the work done by the
collector while pausing the mutators and added work for mutators. It is
of interest to not only measure total execution time, but also to measure
the time spent in garbage collection cycles to get a better view of the
overhead. The garbage collection cycle consists of the following phases:
stopping the world, marking objects, sweeping objects and resuming
the world. The start of each phase of the garbage collection cycle is
registered with timestamps of microsecond accuracy. The timestamps
marking the start of one phase, marks the end of the previous phase,
and allows us to find the time spent in each phase. These intervals give
an indication of where the garbage collector spends the most time, and
what parts could benefit from optimizations. In addition to the intervals
of the above phases, three intervals are calculated:

1. The total collection cycle time.

2. Collector only time - the mark and sweep phases alone.

3. Mutator only time - the time between garbage collection cycles.

The total collection cycle time, that is the sum of the phases, gives
us an indicator of how much overhead the garbage collector incurs.
Throughout the stop the world phase, however, mutators can continue
running, and only when the mark phase is reached is the garbage
collector working alone. Because of this, the total may be too high, and
collector only time is recorded as well. The intervals between collection
cycles is important for mutators, as this is their time to perform work.
Note that resumption is asynchronous by way of messaging, thus COGs
will not resume instantly upon the time registered as the resumption
time. Also during this time, tasks may send messages to the garbage
collector to register new objects, futures and COGs, so the collector may
still perform some work in this interval. Still, the mutator only time is
a good indicator of how much time the mutators have to execute.

All time intervals are registered by the garbage collector, when
garbage collection statistics logging is enabled. The I/O involved
in logging, incurs some additional overhead for the collector, but is
necessary for the evaluation. When measuring total execution time,
however, the back end is compiled with this logging disabled. The
execution time is then measured with Linux time tool, which measures
overall execution time, time spent executing regular code and time
spent on system calls.

It is important to note that the simulator shuts down by observing
that the simulation has been idle for one second. Therefore the total
execution time of a simulation will always exceed one second. The
garbage collector may or may not continue to register some statistics
early on in this one second idle time, but as mutator events will come to

38

a stop, the logging will stop shortly after. Therefore there may be a small
discrepancy between the observations made by the garbage collector
and the overall execution time, which will be longer. This means that
comparing the total execution time of different simulations, with and
without garbage collection, may have a larger relative difference than
at first sight. The relative execution time is therefore given with and
without idle time, i.e. deducting one second.

6.1.2 Memory Usage

The point of garbage collection is to make memory available for data
without the programmer having to manually reclaim it. Therefore
measuring memory usage throughout the program is essential. The
measurements should happen regularly, and should work well also for
relatively short-lived simulations. For long-lived simulations, it would
suffice to use standard OS tools, but it would be hard to catch details
of short-lived simulations. The reason for this is that most external
tools have intervals that are longer, or require that the process ID
is known before they can monitor the program. Starting monitoring
after the simulator has started running, may lead to early data not
being recorded. Longer intervals between measurements sacrifices
accuracy for reduced noise. The garbage collector will already be
logging collection events. The same logging capabilities can be used for
registering memory usage, and the collector can produce a detailed view
of the anatomy of the simulation in terms of objects, futures and COGs
as well. Measuring it within the program would therefore be preferable.

Erlang makes information about dynamically allocated memory
available through the erlang:memory() function. Some memory
allocated by the virtual machine is not returned by this call, but it
should give an adequate overview of the memory used in the simulation.
“Shared libraries, the code of the emulator itself, and the emulator
stack(s) are not supposed to be included. . . . Furthermore, due to
fragmentation and pre-reservation of memory areas, the size of the
memory segments which contain the dynamically allocated memory
blocks can be substantially larger than the total size of the dynamically
allocated memory blocks” [6].

6.1.3 Processes

The limits set on the number of processes, makes it likely the
simulation will run out of processes before memory unless the limit
is increased. Particularly for models where objects and futures are
numerous compared to their size, the process limit can be crippling.
Therefore the number of processes is an important factor to measure.
The number of processes created by the back end is directly related to
the number of objects, futures and COGs. Until a future is resolved,
there is also a process for the task whose result the future is to hold.

39

There are additional processes, which make up the underlying
system of the back end, and the number of processes in total are made
available by Erlang and registered in the log along with memory usage
and the number of objects, futures and COGs.

6.1.4 Obtaining and Processing Measurements

Because operating systems typically reduce CPU clock speed and
voltage to reduce power consumption, it is necessary to run many
simulations in a loop to reduce variability in measurements. This can
be done in two ways, either by running the code many times within a
program, or running the program many times in a shell script. The
former is good for measuring the speed of algorithms or expectations
for a program when run on large data sets. While the latter gives a
good indication of expected running time of a program overall, as any
startup and termination costs are included. I have opted for the latter
to measure average execution time, but will also show the time spent
on a large loop variant of one of the test cases to show the overhead in
a long-running simulation.

To get representable data for memory usage, process counts and GC
events, multiple runs are also performed. The reason for doing multiple
simulations is to avoid reporting statistics from particularly good or bad
runs, i.e. avoiding bias. Each simulation is executed an odd number of
times, and the statistics from the simulation with the median running
time is chosen to be presented. The number of simulations is much
lower when obtaining memory statistics than when finding average
execution times, because of the amount of I/O operations for outputting
the statistics, and then converting the log files to CSV for processing in
R, takes up quite a long time.

The execution of simulations and finding the median result is
scripted. The shell script in listing 6.1 is used for generating statis-
tics and picking the median. The script is executed as follows:
./create_stats.sh Simulation experiment
where Simulation is the name of the model to simulate and experiment
is the name of the garbage collection experiment. The two along with
the number of the execution are used for the names of the output data
sets. Finding the median runtime for a logged execution is done with an
R script that finds the earliest and latest logged event, see listing 6.2.
It is therefore based on the execution from the viewpoint of the garbage
collector, and does not take VM startup and termination into account.

The script for measuring execution time is similar to the previous
shell script, but simply runs the simulation without any logging or
processing of logs, see listing 6.3. The script’s entire execution is timed
by executing it as follows
time ./runmany.sh Simulation 50
where the number after the model name is the number of times the
simulation is executed.

40

Listing 6.1: Script to produce and choose statistics from 11 simulations.
#!/bin/bash

for i in {1..11};
do

./run -g $1 > $1-$2$i.txt

./gcstats_as_csv.erl $1-$2$i.txt
done

./find_median_runtime.R $1-$2

Listing 6.2: A simple R script that finds the data set with the median
runtime.
#!/usr/bin/env Rscript

runtimes <- c(0)
prefix = commandArgs(TRUE)[1]
i <- 1
while (file.exists(

paste(prefix, i, "-mem.csv",sep=""))) {
times <- read.csv(

paste(prefix,i, "-mem.csv",sep=""))[,1]
times <- append(times, read.csv(

paste(prefix, i, "-events.csv", sep=""))[,1])
times <- append(times, read.csv(

paste(prefix, i, "-sweeps.csv", sep=""))[,1])
runtimes[i] <- max(times) - min(times)
i <- i + 1

}

print(order(runtimes)[round(length(runtimes) / 2)])

Listing 6.3: Script that executes a simulation many times.
#!/bin/bash

for i in ‘seq 1 $2‘;
do

./run $1
done

The log files are then processed with another R script which
generates a plot of memory usage, the number of objects, COGs and
futures. It calculates the intervals from the timestamps in the log.

41

The data is then processed into summaries and output into tables with
minimum, maximum, mean and median values for intervals, sweeps
and the plotted data along with the number of processes. This gives a
good overview of an execution, and what work the garbage collector has
performed. The minimum values are mostly of interest for the intervals,
as they are almost always zero for other reported values like the number
of objects. Therefore the minimum is removed from the other tables in
this report.

All experiments were run on workstations at the University of Oslo
with the following software and hardware:

Operating System Red Hat Enterprise Linux Workstation release 6.6

CPU Intel Core i7 CPU 870 2.93 GHz

RAM 2 × 4 GB DDR3 1333 MHz

Erlang Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:8:8] [async-
threads:10] [hipe] [kernel-poll:false]

6.2 Test Cases

There are four test cases that have been run. The purpose of the
numerous test cases is to test how well the garbage collector deals with
different types of programs. Below I present each of the models, and
why they have been used.

6.2.1 Ping Pong - Basic Test with Cyclic Garbage

This is the most basic test case, and is similar to a "Hello, world!"
program, but illustrates message passing. It is one of the example
programs in the ABS distribution, and comes in two flavors. The
first simply has two objects, Ping and Pong, which exchange a set of
messages: hello, how are you, fine, bye and bye. The number
of objects and futures involved in the simple flavor, is so low, it
does not really produce any interesting results. The second flavor
establishes sessions within the Pong object, for exchanging messages
with a number of Ping objects. I will present the results of running the
second flavor, creating many Ping objects, which will be able to show the
garbage collector working.

The Ping Pong example is also a good test case for garbage collection,
because it is one of the simplest examples of cyclic garbage. Ping objects
reference PongSession objects, which reference their respective Ping
objects. When they finish executing, they should be collectible, if the
garbage collector can identify cyclic garbage. We will see that this is the
case in the experiments performed.

For the basic run, that is used for comparison of running times. I
have used a loop that creates one hundred Ping objects. There will
also be two futures for each session throughout the communication,

42

one for the Ping object’s calls to the PongSession, and one for the
PongSession object’s calls to the Ping object. The Ping object waits
for its calls to finish, but it does not finish until the session has made a
call to the Ping object. See listing 6.4 for an extract of the code, showing
the communication between the Ping object and its session.

Listing 6.4: Extract from the MultiPingPong example.
class PingImpl(Pong pong) implements Ping {

PongSession pongSession;
Unit run(){

Fut<PongSession> fu = pong!hello(this);
pongSession = fu.get;

}

Unit ping(PingMsg msg){
PongMsg reply = case msg {

HelloPing => HowAreYou;
Fine => ByePong;
ByePing => NoMsg;

};

if (reply != NoMsg) {
Fut<Unit> fu = pongSession!pong(reply);
fu.get;

}
}

}

class PongSessionImpl(Ping ping, [Near] PongIntern pong)
implements PongSession {

// init block
{

ping!ping(HelloPing);
}

Unit pong(PongMsg msg){
if (msg == HowAreYou) {

ping!ping(Fine);
} else {

ping!ping(ByePing);
pong.sessionFinished(this);

}
}

}

Additionally, a run with many more objects is made, to show that the
garbage collector enables continuous operations. By setting it to create
Ping objects infinitely, a simulation with the simulator before garbage
collection was implemented, crashes after a few seconds. It takes much
longer to crash with the garbage collector running with collection turned
off. This comes from the synchronous creation of COGs and futures,
which is the main work performed in the program. Logging also slows
the entire simulation down considerably.

Because a garbage collected version could run for a very long time, I

43

set up the script to automatically kill the simulation after one minute.
Running the simulation much longer, would create very large log files.
Each second of runtime yields approximately 1 MiB of logged data for
this particular test on the workstation used. The purpose of the test
is just to show that the garbage collector works, and for this, the one
minute run is sufficient. However, there are some issues with the
collector that this test highlights, but due to time, adequate solutions
have not been found for these issues.

6.2.2 Sequences - Asynchronous Method Calls in Loops

To show the use of being able to stop running tasks, a simple model
was constructed that calls methods asynchronously in a loop without
synchronization points. The example consists of objects that generate
a value in a sequence, when they receive a method call. This example
can be seen as an implementation of a lazily evaluated generator, which
can be used to implement streams in ABS. Streams are a kind of list
where the elements are generated only when they are needed, and may
be infinite [1].

The extract in listing 6.5 illustrates how this test case works. A loop
runs for several iterations without yielding, and makes asynchronous
calls on an object on another COG. This creates many futures in quick
succession. Should the garbage collector attempt to stop the world, the
loop main COG will not stop until the loop has completed. This leads to
a long pause, where the Sequence object’s COG is paused and doesn’t
allow any work to be performed, while the main task continues to
produce more work. The full version can be found in Appendix B, which
has multiple types of Sequence objects that receive asynchronous calls,
yielding a slightly higher load than this example.

Listing 6.5: Extract from the Sequences test case.
class NaturalNumbers implements Sequence {

Int i = 0;

Int next() {
i = i + 1;
return i;

}
}

{
Int i = 0;
Sequences s = new Fibonacci();
while (i < 1000) {

s ! next();
i = i + 1;

}
}

44

6.2.3 Prime Sieve - Long-running Tasks

An example of long-running tasks is needed to show the usefulness of
using a timed trigger. First of all long-running tasks should be left
alone, to do their work as long as there is no other reason to collect
garbage. Triggering by counting objects, would achieve this, but it
would likely not react to tasks completing after a long time, because the
count would be likely to not reach the threshold. A timed trigger, would
detect that garbage collection is overdue when a task is complete and
the associated future stops being a root. Thus it would trigger garbage
collection whether there has been a significant rise in processes.

The chosen example is a simple number crunching program, that
calculates prime numbers. It checks primality, by dividing the number
by all primes lower than it. To avoid long insertion times of new primes,
it adds them in reverse order. This also makes it likely to take longer to
calculate that a number is not a prime number, because it is more likely
to be divisible by a lower prime, than a higher prime. Thus even if fast
insertions are used, the sieve is rather slow, leading to long-running
tasks.

6.2.4 Indexing - Resolved Futures Held

The last test consist of an example of MapReduce, used as motivating
examples for variability modeling in ABS [9]. In the paper they used the
variability modeling capabilities of ABS to produce different versions of
MapReduce examples. The deployments differed in terms of number
of computers, the computers’ capacity to perform work and the cost of
jobs. Variability modeling has not been covered in this thesis, but the
example models from the paper are still useful. However, during the
simulations, no limits were set on the number of workers or capacity of
workers, i.e. no changes were made through the use of ABS’s variability
modeling capabilities.

MapReduce performs work over large key value data sets across
a number of computers. When the work is complete, the results are
treated in parallel over a number of computers to combine the results
into a single result. The two tasks performed, performing work over
a data set and combining the results, are called map and reduce
respectively. A full description of MapReduce can be found in [4].

Unfortunately, very little garbage is produced by the MapReduce
examples, because the model holds on to the results until they have
been reduced. It is a good test to see if the garbage collector does any
incorrect collection, as it produces a lot of objects and slightly more
complex tasks than the other test cases. It also holds on to futures that
must not be collected, even if they have been resolved. Some collection is
still possible towards the end of the simulation, but then the processes
are going to be stopped along with the simulation ending anyway.

The Indexing example consist of a model of a part of a search engine.
In this case, it is an example of indexing documents based on occurences

45

of sub-strings, generating what is known as an inverted index.

6.3 Results

The experiments performed, used the different triggers mentioned in
section 5.6. In addition, a select few were tested both with the ability
to stop running tasks and without. I will present the results by test
case. Because of the large amount of data collected, all the results can
be found in the appendices, while a selection has been made for this
presentation here.

6.3.1 Ping Pong - Results

Let us first have a look at the overall runtimes for the Ping Pong case.
To be able to fit the table, I have not included user and system time,
which reveal very little about the garbage collector anyway. The last
column, Relative without idle, contains the time relative to the baseline,
i.e. before garbage collection was added, after deducting one second of
the time. This second is spent by the system to ensure that there are
no tasks on the air, waiting to be added to COGs. After the second has
passed it shuts down the simulator.

Table 6.1: Ping Pong - Average runtimes for 50 runs

Collection scheme Real time Relative Relative without idle

Before GC 1274 ms 100.0 % 100.0 %
Never collect 1257 ms 98.6 % 93.5 %
Always collect 1854 ms 145.5 % 311.3 %
Collect on count 1293 ms 101.4 % 106.7 %
Collect on time 1261 ms 98.9 % 94.9 %
+ Stop running 1265 ms 99.2 % 96.5 %
Collect on either 1290 ms 101.2 % 105.5 %
+ Stop running 1298 ms 101.8 % 108.4 %

In some of the cases in Table 6.1, runtimes have decreased from the
baseline. This tells us there is at least some noise in the samples,
even if they have been run multiple times and averaged. Therefore
we can assume that measured times may vary by around 10 ms in
either direction, possibly more. The one thing we can deduce from the
numbers, is that collecting on every event is not a viable choice. The
other runs stay within the noise range.

In Figure 6.1 we can see what the progression of a simulation looks
like, if the trigger is set to never initiate garbage collection. As is
expected, the number of objects, futures and COGs all rise throughout
this program, as does memory usage. Have a look at Appendix A if you
want to compare the results of more triggers.

46

0

250

500

750

14

16

18

Total
M

em
ory in M

iB

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms
Time

variable

cogs

objects

futures

Figure 6.1: Ping Pong - No collection - Memory and counts plot

In the case of the Ping Pong example, being able to stop running
tasks does not do much for the garbage collector. Therefore the counting
trigger and timed trigger are presented instead in Figure 6.2 and
Figure 6.3 respectively. We can see that the counting trigger is more
aggressive than the timed trigger. The spikes in futures, tells us that
many futures are regularly collected, but new ones are soon allocated
again, triggering a new collection. Because of the eager behavior
brought on by this trigger, there’s not much reason to look at the
combined timer and counter. The counter would collect so eagerly, the
timer would never be needed to trigger collection. We will see this across
most of the experiments that have been run.

The timed trigger had slightly faster runtimes than the counting
trigger, but the counting trigger clearly has lower object counts.
Memory-wise they are only about 1 MiB apart. There is no obvious
cadidate just from looking at these data. Comparing the interval times,
objects and futures swept per cycle, and amount of memory and objects
used, does not help much either, these are found in Appendix A. As we
have already seen, the timed collector comes out on top in terms of time
spent, while the counting collector comes out on top in memory usage
and process counts.

47

0

20

40

60

13.5

14.0

14.5

15.0

15.5

Total
M

em
ory in M

iB

0 ms 140 ms 280 ms 420 ms 560 ms 700 ms
Time

variable

cogs

objects

futures

Figure 6.2: Ping Pong - Trigger on count - Memory and counts plot

Infinite loops

When changing the loop to an infinite loop, instead of the hundred
iterations in the basic test. The garbage collector doesn’t cope quite
as well with this test case. The back end as it was before the
garbage collector implementation, only executes for a few seconds before
crashing. However, with the garbage collector implemented, but with
garbage collection turned off, it takes much longer, as seen in Figure 6.4.

This could be due to a combination of many things: the logger takes
up a lot of time and resources, large sets of messages are being passed
around, and a close inspection of the raw data shows that steadily the
number of futures that are resolved declines. This means futures cannot
be collected as quickly, which impacts the collection of objects, which
are waiting for the futures to be resolved. This could be a sign that
the overhead on tasks is too high, leading to slower execution when the
number of processes becomes very large. The problems with a growing
root future set can be seen in Figure 6.5.

However, this test case is designed to be harder to cope with than
most real models. It will be shown in subsection 6.3.4 that it can cope
well with a large real world model.

48

0

50

100

150

200

13.5

14.0

14.5

15.0

15.5

16.0

16.5

Total
M

em
ory in M

iB

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms
Time

variable

cogs

objects

futures

Figure 6.3: Ping Pong - Timed trigger - Memory and counts plot

6.3.2 Sequences - Results

The sequences example was specifically designed to show the need for
being able to stop running tasks. First, let us look at the overall
runtimes in Table 6.2. We can see that garbage collection comes out
much worse in this example. Just enabling the mutator changes and
record-keeping parts of the garbage collector leads to an increase of over
10%, after deducting idle time. The counting trigger does not do very
well at all in this particular test, taking about the very least nine times
as long. The timed collector does much better, and enabling stopping
running tasks, makes it even better, although the time increase is still
significant.

For comparison purposes, I present the plots for the timed collectors,
with and without stopping running tasks in Figure 6.7 and Figure 6.6
respectively. The timeline indicates that logging severely impacts the
garbage collector. The graph spans about three times as long an interval
compared to the runtimes recorded, even with the graph not showing
the idle time at the end.

The first collection made by the timed collector without stopping
tasks, takes a very long time. This can be seen as a very long straight
line from around the one second mark, until just before the 2.5 second

49

0

50000

100000

150000

0

300

600

900

1200

Total
M

em
ory in M

iB

0 ms 31120 ms 62240 ms 93360 ms 124480 ms 155600 ms
Time

variable

cogs

objects

futures

Figure 6.4: Infinite Ping Pong - No collection - Memory and counts plot

mark. Very little collection occurs until the second and third collection
cycles, which are also delayed longer than the regular 100 ms. This may
be due to a lack of events in parts of the timespan, with fewer events,
less changes are seen in the memory usage graph.

With the ability to stop running tasks, it fares much better. It
collects garbage regularly and the pauses are much shorter. Memory
usage has also been halved in this result. Looking at the length of
intervals in the garbage collection cycles, Table 6.3 and Table 6.4, also
show that stopping the world and marking both take only about 10% of
the time after adding the ability to stop the world. The garbage collector
runs many more cycles, but increasing the timeout would likely bring
down execution time even more.

6.3.3 Prime Sieve - Results

The prime sieve test case was designed to see what happens when
processes that take a long time to execute are added to a model. The
results here are quite interesting, both counting and timed triggers have
approximately the same runtimes as is shown in Table 6.5. However,
adding the ability to stop running tasks, does not improve the execution
time in this case. Instead it slows down the computation of prime

50

0

2000

4000

6000

8000

50

100

Total
M

em
ory in M

iB

0 ms 11900 ms 23800 ms 35700 ms 47600 ms 59500 ms
Time

variable

cogs

objects

futures

Figure 6.5: Infinite Ping Pong - Timed trigger - Memory and counts plot

numbers because the tasks are interrupted. These tasks do not produce
new tasks, which would benefit from stopping as was seen in the
sequences test. As more resources are freed, new tasks would be allowed
to run unhindered.

There is one benefit to stopping the tasks while they run, even if it
leads to slightly longer execution times. The collectors that do not do
so, have to wait for all the tasks to finish, which makes for the entire
duration of the execution. The versions that stop tasks, are able to
collect garbage during the collection. This also results in a much shorter
stop the world phase, see Table 6.7.

6.3.4 Indexing - Results

The MapReduce test case keeps references to futures until they have
been reduced. This results in almost no garbage being collected. The
different triggers, come out with similar results, except when always
triggering events. The runtimes are shown in Table 6.8.

The most interesting part, is therefore the time spent in the garbage
collector. The counting trigger comes out with the shortest amount of
time spent in the garbage collector overall. Being able to stop running
tasks, is not necessary in this case, as there’s mostly a large amount of

51

Table 6.2: Sequences - Average runtimes for 30 runs

Collection scheme Real time Relative Relative without idle

Before GC 1395 ms 100.0 % 100.0 %
Never collect 1439 ms 103.2 % 111.2 %
Always collect 39159 ms 2807.2 % 9662.1 %
Collect on count 16801 ms 1204.4 % 4001.0 %
Collect on time 1622 ms 116.3 % 157.5 %
+ Stop running 1530 ms 109.7 % 134.1 %
Collect on either 17054 ms 1222.6 % 4065.1 %
+ Stop running 12614 ms 904.3 % 2940.8 %

Table 6.3: Sequences - Timeouts - Intervals

Mean Median Max Total

Stop world 582425 µs 648370 µs 931294 µs 2329700 µs
Mark 364064 µs 26022 µs 1404118 µs 1456258 µs
Sweep 2632 µs 2304 µs 5169 µs 10530 µs

Collection cycle 949122 µs 678765 µs 2336164 µs 3796488 µs

Collector only 366697 µs 30394 µs 1404870 µs 1466788 µs
Mutator only 100543 µs 100312 µs 101469 µs 402171 µs

short-lived tasks to stop.

Table 6.4: Sequences - Timeouts with stopping - Intervals

Mean Median Max Total

Stop world 54606 µs 42809 µs 182148 µs 1146725 µs
Mark 7033 µs 5109 µs 22563 µs 147699 µs
Sweep 457 µs 415 µs 926 µs 9601 µs

Collection cycle 62096 µs 53257 µs 183463 µs 1304025 µs

Collector only 7490 µs 5849 µs 22775 µs 157300 µs
Mutator only 101705 µs 100169 µs 132022 µs 2135811 µs

52

0

1000

2000

3000

4000

5000

20

30

40

50

60

Total
M

em
ory in M

iB

0 ms 860 ms 1720 ms 2580 ms 3440 ms 4300 ms
Time

variable

cogs

objects

futures

Figure 6.6: Sequences - Timeouts - Memory and counts plot

Table 6.5: Prime Sieve - Average runtimes for 50 runs

Collection scheme Real time Relative

Before GC 1448 ms 100.0 %
Never collect 1453 ms 100.3 %
Always collect 1903 ms 131.4 %
Collect on count 1482 ms 102.4 %
Collect on time 1454 ms 100.4 %
+ Stop running 1542 ms 106.5 %
Collect on either 1472 ms 101.6 %
+ Stop running 1545 ms 106.7 %

53

0

200

400

600

16

20

24

Total
M

em
ory in M

iB

0 ms 700 ms 1400 ms 2100 ms 2800 ms 3500 ms
Time

variable

cogs

objects

futures

Figure 6.7: Sequences - Timeouts with stopping - Memory and counts
plot

Table 6.6: Prime Sieve - Timeouts - Intervals

Mean Median Max Total

Stop world 222588 µs 222588 µs 222588 µs 222588 µs
Mark 272 µs 272 µs 272 µs 272 µs
Sweep 151 µs 151 µs 151 µs 151 µs

Collection cycle 223011 µs 223011 µs 223011 µs 223011 µs

Collector only 423 µs 423 µs 423 µs 423 µs
Mutator only 113730 µs 113730 µs 113730 µs 113730 µs

54

0

10

20

30

40

50

13.5

14.0

14.5

15.0

Total
M

em
ory in M

iB

0 ms 60 ms 120 ms 180 ms 240 ms 300 ms
Time

variable

cogs

objects

futures

Figure 6.8: Prime Sieve - Timeouts - Memory and counts plot

Table 6.7: Prime Sieve - Timeouts with stopping - Intervals

Mean Median Max Total

Stop world 2055 µs 1773 µs 2881 µs 6165 µs
Mark 235 µs 197 µs 344 µs 704 µs
Sweep 100 µs 88 µs 148 µs 301 µs

Collection cycle 2390 µs 2035 µs 3373 µs 7170 µs

Collector only 335 µs 262 µs 492 µs 1005 µs
Mutator only 131047 µs 139763 µs 152415 µs 393142 µs

55

0

10

20

30

40

50

14

15

16

Total
M

em
ory in M

iB

0 ms 100 ms 200 ms 300 ms 400 ms
Time

variable

cogs

objects

futures

Figure 6.9: Prime Sieve - Timeouts with stopping - Memory and counts
plot

Table 6.8: Indexing - Average runtimes for 50 runs

Collection scheme Real time Relative Relative without idle

Before GC 1356 ms 100.0 % 100.0 %
Never collect 1373 ms 101.2 % 104.7 %
Always collect 5043 ms 371.8 % 1134.2 %
Collect on count 1408 ms 103.9 % 114.7 %
Collect on time 1398 ms 103.1 % 111.7 %
+ Stop running 1405 ms 103.6 % 113.9 %
Collect on either 1410 ms 104.0 % 115.3 %
+ Stop running 1434 ms 105.7 % 121.9 %

56

Table 6.9: Indexing - Counting trigger - Intervals

Mean Median Max Total

Stop world 14376 µs 6106 µs 54589 µs 100632 µs
Mark 3298 µs 1161 µs 13353 µs 23084 µs
Sweep 175 µs 87 µs 572 µs 1227 µs

Collection cycle 17849 µs 7354 µs 68514 µs 124943 µs

Collector only 3473 µs 1248 µs 13925 µs 24311 µs
Mutator only 76180 µs 60382 µs 239159 µs 533257 µs

57

58

Chapter 7

Conclusion

In this thesis a garbage collector for the Erlang back end of ABS has
been described and developed. It has been designed according to the
criteria set in the introduction, speed, completeness and correctness:

• It should not invoke considerable slowdowns to the system.

• It should collect all or, at the very least, most identifiable garbage.

• It should not collect objects that may be needed in the future.

In chapter 5, the necessary steps to ensure the collector correct
and complete were taken. While in chapter 6, we saw that collecting
based on timeouts gave satisfactory results in general. It was able
to keep memory usage and the number of processes in acceptable
ranges overall, and usually it performed better than the other garbage
collection triggers. In some cases, stopping running tasks was necessary
to get acceptable collection results and avoid long pauses, althoughwhile
in other cases the running time increased by a small amount.

The infinite loop version of the Ping Pong test, did display some
issues with the garbage collector. The exact reasons for this is not easily
determined, but some factors indicated it was due to overhead placed on
mutators. This could make the garbage collector problematic in use, but
further experimentation is required. Preferrably with real models, such
as the Indexing test case, which would apply realistic loads, instead of
simple tight loops leading to large amounts of objects and futures being
created.

In the Indexing test case, which was taken from an Envisage case
study, the garbage collector did not invoke any considerable slowdowns.
This test case has a high load for real models with a large amount of
parallel processes. Although the model creates many processes, the
garbage collector is able to stop and resume the world in a short amount
of time. This indicates it is likely to work well for the kinds of models
normally simulated with ABS.

59

7.1 Future Work

Some of the unexplored areas in this thesis, are the implementation of
concurrent collection and the consequences of developing a distributed
version of the Erlang back end. When the Erlang back end eventually
is made to run simulations over multiple nodes, latency will negatively
impact the garbage collector, as it needs to communicate with all
the nodes involved. A distributed version of the collector, where one
collector runs on each node or for each COG, could be of interest to
develop. Such a collector may be able to lower the number of messages
between nodes, by grouping such messages into fewer slightly larger
messages.

Concurrent collection would minimize the time spent exclusively
by the garbage collector, but could require added locking mechanisms
to avoid collecting objects prematurely. The active object collector
developed in {caromel}, might be a good fit for ABS. How its use of
additional active objects to ensure references in passive objects are
seen, and its applicability to the Erlang back end would require further
investigation. A distributed, concurrent mark and sweep, like the one
used in Emerald [12], might prove a better fit.

The above experiments may be able to cope better with extreme
cases, like the infinitely looping Ping Pong test case. Changing marking
to an asynchronous model, possibly delegated to the other processes
instead of the collector itself, might also help and shares similarities
with the active object collector mentioned. If mutator overhead could
be lowered, more tasks are likely to finish, allowing collection of more
futures. This would require further investigation of the guarantees
made to ensure correct collection.

60

Appendix A

Ping Pong Test Case

A.1 Source Code

/*
* An extended PingPong example

* where Pong can handle multiple Pings

*/
module PingPong;

data PingMsg = Fine
| HelloPing
| ByePing
;

data PongMsg = NoMsg
| Hello(Ping)
| HowAreYou
| ByePong
;

interface Ping {
Unit ping(PingMsg m);

}

interface Pong {
PongSession hello(Ping ping);

}

interface PongSession {
Unit pong(PongMsg m);

}

class PingImpl(Pong pong) implements Ping {
PongSession pongSession;
Unit run(){

Fut<PongSession> fu = pong!hello(this);
pongSession = fu.get;

}

Unit ping(PingMsg msg){
PongMsg reply = case msg {

HelloPing => HowAreYou;

61

Fine => ByePong;
ByePing => NoMsg;

};

if (reply != NoMsg) {
Fut<Unit> fu = pongSession!pong(reply);
fu.get;

}
}

}

class PongSessionImpl(Ping ping, [Near] PongIntern pong)
implements PongSession {

// init block
{

ping!ping(HelloPing);
}

Unit pong(PongMsg msg){
if (msg == HowAreYou) {

ping!ping(Fine);
} else {

ping!ping(ByePing);
pong.sessionFinished(this);

}
}

}

interface PongIntern {
Unit sessionFinished(PongSession s);

}

class PongImpl implements Pong, PongIntern {
List<[Near] PongSession> sessions = Nil;
PongSession hello(Ping ping) {

PongSession s = new local PongSessionImpl(ping,this);
sessions = appendright(sessions,s);
return s;

}

Unit sessionFinished(PongSession s) {
sessions = without(sessions,s);

}
}

{
Pong pong = new PongImpl();
Int i = 0;
while (i < 100) {

new PingImpl(pong);
i = i + 1;

}
}

62

A.2 Results

A.2.1 Never Triggering Collection

0

250

500

750

14

16

18

Total
M

em
ory in M

iB

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms
Time

variable

cogs

objects

futures

Table A.1: Ping Pong - Never Collect - Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 16.9 MiB 16.8 MiB 19.3 MiB
COGs 0 56.9 54 102
Objects 0 106.6 103 201
Futures 0 289.3 295.5 600
Root futures 0 9.4 9 20
Processes 24 560.4 544 1037
Φ 0.9 %%% 21.4 %%% 20.8 %%% 39.6 %%%

63

A.2.2 Always Triggering Collection

0

100

200

300

12.5

15.0

17.5

20.0

22.5

Total
M

em
ory in M

iB

0 ms 1220 ms 2440 ms 3660 ms 4880 ms 6100 ms
Time

variable

cogs

objects

futures

Table A.2: Ping Pong - Always Collect - Memory, counts and process
ratio

Min Mean Median Max

Memory 12.4 MiB 19.2 MiB 19.7 MiB 22.1 MiB
COGs 0 65.3 71 88
Objects 0 110.3 125 145
Futures 0 1.9 2 5
Root futures 0 108.7 123 144
Processes 24 529.7 588 645
Φ 0.9 %%% 20.2 %%% 22.4 %%% 24.6 %%%

Table A.3: Ping Pong - Always Collect - Sweeps

Min Mean Median Max

Objects swept 0 0.7 0 3
Objects kept 0 93.6 107 144
Futures swept 0 1.9 2 5
Futures kept 0 0.8 1 1

64

Table A.4: Ping Pong - Always Collect - Intervals

Mean Median Max Total

Stop world 16444 µs 15396 µs 57757 µs 5064852 µs
Mark 2778 µs 3092 µs 11305 µs 855609 µs
Sweep 113 µs 116 µs 265 µs 34898 µs

Collection cycle 19336 µs 19014 µs 63027 µs 5955359 µs

Collector only 2891 µs 3238 µs 11411 µs 890507 µs
Mutator only 318 µs 248 µs 7482 µs 97798 µs

A.2.3 Trigger on Timeout

0

50

100

150

200

13.5

14.0

14.5

15.0

15.5

16.0

16.5

Total
M

em
ory in M

iB

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms
Time

variable

cogs

objects

futures

65

Table A.5: Ping Pong - Collect on time - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 15.5 MiB 15.6 MiB 16.4 MiB
COGs 0 20.2 20 29
Objects 0 29.4 28 50
Futures 0 57.2 57 130
Root futures 0 8.2 8 24
Processes 24 210.8 209.5 321
Φ 0.9 %%% 8 %%% 8 %%% 12.2 %%%

Table A.6: Ping Pong - Collect on time - Sweeps

Min Mean Median Max

Objects swept 36 39.5 40 42
Objects kept 7 7.8 8 8
Futures swept 111 119.2 118.5 129
Futures kept 0 0.2 0 1

Table A.7: Ping Pong - Collect on time - Intervals

Mean Median Max Total

Stop world 5998 µs 6093 µs 6498 µs 23992 µs
Mark 330 µs 328 µs 340 µs 1319 µs
Sweep 750 µs 747 µs 813 µs 2998 µs

Collection cycle 7077 µs 7139 µs 7570 µs 28309 µs

Collector only 1079 µs 1070 µs 1153 µs 4317 µs
Mutator only 105024 µs 106213 µs 107620 µs 420098 µs

66

A.2.4 Trigger on Timeout with Stopping Running Tasks

0

50

100

150

200

13.5

14.0

14.5

15.0

15.5

16.0

Total
M

em
ory in M

iB

0 ms 120 ms 240 ms 360 ms 480 ms
Time

variable

cogs

objects

futures

Table A.8: Ping Pong - Collect on time with stopping processes - Memory,
counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 15.5 MiB 15.5 MiB 16.3 MiB
COGs 0 20.4 21 30
Objects 0 29.4 29 51
Futures 0 56.7 57 129
Root futures 0 8.6 8 20
Processes 24 212 216 338
Φ 0.9 %%% 8.1 %%% 8.2 %%% 12.9 %%%

Table A.9: Ping Pong - Collect on time with stopping processes - Sweeps

Min Mean Median Max

Objects swept 36 38.8 38 42
Objects kept 6 8.8 8 13
Futures swept 105 116.6 114 129
Futures kept 0 0 0 0

67

Table A.10: Ping Pong - Collect on time with stopping processes -
Intervals

Mean Median Max Total

Stop world 7721 µs 5522 µs 13227 µs 38605 µs
Mark 333 µs 323 µs 422 µs 1667 µs
Sweep 755 µs 747 µs 905 µs 3776 µs

Collection cycle 8810 µs 6516 µs 14461 µs 44048 µs

Collector only 1089 µs 1021 µs 1250 µs 5443 µs
Mutator only 102550 µs 100300 µs 106219 µs 512750 µs

A.2.5 Trigger on Count

0

20

40

60

13.5

14.0

14.5

15.0

15.5

Total
M

em
ory in M

iB

0 ms 140 ms 280 ms 420 ms 560 ms 700 ms
Time

variable

cogs

objects

futures

68

Table A.11: Ping Pong - Collect on count - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 15.2 MiB 15.2 MiB 15.8 MiB
COGs 0 12.1 12 16
Objects 0 14.9 15 24
Futures 0 9.4 10 23
Root futures 0 9.1 9 22
Processes 24 141.7 138 200
Φ 0.9 %%% 5.4 %%% 5.3 %%% 7.6 %%%

Table A.12: Ping Pong - Collect on count - Sweeps

Min Mean Median Max

Objects swept 0 4.7 6 10
Objects kept 3 12.4 12 22
Futures swept 2 14.2 15.5 22
Futures kept 0 0.8 1 1

Table A.13: Ping Pong - Collect on count - Intervals

Mean Median Max Total

Stop world 6958 µs 7587 µs 14215 µs 292253 µs
Mark 327 µs 323 µs 587 µs 13721 µs
Sweep 111 µs 119 µs 219 µs 4669 µs

Collection cycle 7396 µs 8040 µs 14572 µs 310643 µs

Collector only 438 µs 436 µs 635 µs 18390 µs
Mutator only 8904 µs 6508 µs 32655 µs 373969 µs

69

A.2.6 Trigger on Count or Timeout

0

30

60

90

13.5

14.0

14.5

15.0

15.5

16.0

Total
M

em
ory in M

iB

0 ms 140 ms 280 ms 420 ms 560 ms 700 ms
Time

variable

cogs

objects

futures

Table A.14: Ping Pong - Collect on count or time - Memory, counts and
process ratio

Min Mean Median Max

Memory 13.5 MiB 15.2 MiB 15.2 MiB 15.9 MiB
COGs 0 12.8 12 20
Objects 0 15.9 15 32
Futures 0 10.6 10 37
Root futures 0 9.4 8 27
Processes 24 145.8 145 207
Φ 0.9 %%% 5.6 %%% 5.5 %%% 7.9 %%%

Table A.15: Ping Pong - Collect on count or time - Sweeps

Min Mean Median Max

Objects swept 0 5.4 6 20
Objects kept 3 12.3 11 26
Futures swept 2 16.1 17 36
Futures kept 0 0.9 1 1

70

Table A.16: Ping Pong - Collect on count or time - Intervals

Mean Median Max Total

Stop world 7590 µs 7286 µs 16702 µs 280813 µs
Mark 349 µs 328 µs 682 µs 12920 µs
Sweep 124 µs 120 µs 354 µs 4573 µs

Collection cycle 8062 µs 7725 µs 17355 µs 298306 µs

Collector only 473 µs 440 µs 719 µs 17493 µs
Mutator only 10247 µs 8300 µs 29275 µs 379132 µs

A.2.7 Trigger on Count or Timeout with Stopping Run-
ning Tasks

0

25

50

75

100

13.5

14.0

14.5

15.0

15.5

16.0

Total
M

em
ory in M

iB

0 ms 140 ms 280 ms 420 ms 560 ms 700 ms
Time

variable

cogs

objects

futures

71

Table A.17: Ping Pong - Collect on count or time with stopping processes
- Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 15.3 MiB 15.4 MiB 16.1 MiB
COGs 0 12.8 13 19
Objects 0 16.1 16 30
Futures 0 9.5 8 40
Root futures 0 10.3 10 25
Processes 24 148.1 148 212
Φ 0.9 %%% 5.6 %%% 5.6 %%% 8.1 %%%

Table A.18: Ping Pong - Collect on count or time with stopping processes
- Sweeps

Min Mean Median Max

Objects swept 0 4.8 4 20
Objects kept 4 13.3 14 25
Futures swept 2 14.4 14 40
Futures kept 0 0.2 0 1

Table A.19: Ping Pong - Collect on count or time with stopping processes
- Intervals

Mean Median Max Total

Stop world 8039 µs 8509 µs 17128 µs 321560 µs
Mark 357 µs 374 µs 650 µs 14286 µs
Sweep 115 µs 111 µs 361 µs 4613 µs

Collection cycle 8511 µs 8944 µs 17881 µs 340459 µs

Collector only 472 µs 462 µs 753 µs 18899 µs
Mutator only 8508 µs 6662 µs 31302 µs 340323 µs

72

A.3 Infinitely Looping Ping Pong

A.3.1 Never Triggering Collection

0

50000

100000

150000

0

300

600

900

1200

Total
M

em
ory in M

iB

0 ms 31120 ms 62240 ms 93360 ms 124480 ms 155600 ms
Time

variable

cogs

objects

futures

Table A.20: Infinite Ping Pong - Never Collect - Memory, counts and
process ratio

Min Mean Median Max

Memory 13.5 MiB 530.9 MiB 514.1 MiB 1149.3 MiB
COGs 0 15240 14349 35021
Objects 0 22430.2 21692.5 49051
Futures 0 25099.1 26530 42097
Root futures 0 16250.1 15017 39971
Processes 24 118586 113985 262143
Φ 0.9 %%% 4523.7 %%% 4348.2 %%% 10000 %%%

73

A.3.2 Triggering on Timeout

0

2000

4000

6000

8000

50

100

Total
M

em
ory in M

iB

0 ms 11900 ms 23800 ms 35700 ms 47600 ms 59500 ms
Time

variable

cogs

objects

futures

Table A.21: Infinite Ping Pong - Collect on time - Memory, counts and
process ratio

Min Mean Median Max

Memory 13.5 MiB 68.2 MiB 69.3 MiB 137.1 MiB
COGs 0 919.9 1006 2021
Objects 0 1342.5 1477 2929
Futures 0 54.2 55 184
Root futures 0 1327.2 1465 2919
Processes 24 8309.3 9234 16409
Φ 0.9 %%% 317 %%% 352.2 %%% 626 %%%

Table A.22: Infinite Ping Pong - Collect on time - Sweeps

Min Mean Median Max

Objects swept 6 27.9 28 80
Objects kept 3 609.1 28 2877
Futures swept 48 92.5 100 183
Futures kept 0 0.7 1 1

74

Table A.23: Infinite Ping Pong - Collect on time - Intervals

Mean Median Max Total

Stop world 107914 µs 12538 µs 678306 µs 18669067 µs
Mark 131812 µs 1737 µs 805210 µs 22803489 µs
Sweep 1128 µs 893 µs 4927 µs 195218 µs

Collection cycle 240854 µs 16132 µs 1362937 µs 41667774 µs

Collector only 132941 µs 2423 µs 807442 µs 22998707 µs
Mutator only 101906 µs 100964 µs 113549 µs 17629734 µs

75

76

Appendix B

Sequences Test Case

B.1 Source Code

module Sequences;
export *;

// Interface for generation of sequences
interface Sequence {

Int next();
}

class NaturalNumbers implements Sequence {
Int i = 0;

Int next() {
i = i + 1;
return i;

}
}

class Factorials implements Sequence {
Int seq = 1;
Int fact = 1;

Int next() {
fact = seq * fact;
seq = seq + 1;
return fact;

}
}

class Fibonacci implements Sequence {
Int prev = 0;
Int prevPrev = 1;

Int next() {
Int n = prev + prevPrev;
prevPrev = prev;
prev = n;
return n;

}
}

77

class Squares implements Sequence {
Int seq = 0;

Int next() {
seq = seq + 1;
return seq * seq;

}
}

class Cubes implements Sequence {
Int seq = 0;

Int next() {
seq = seq + 1;
return seq * seq * seq;

}
}

{
List<Sequence> sequences = Nil;
Sequence s = new NaturalNumbers();
sequences = Cons(s,sequences);
s = new Fibonacci();
sequences = Cons(s,sequences);
s = new Factorials();
sequences = Cons(s,sequences);
s = new Squares();
sequences = Cons(s,sequences);
s = new Cubes();
sequences = Cons(s,sequences);

// Generate 1000th element of all sequences
while (sequences != Nil) {

Int i = 0;
s = head(sequences);
while (i < 1000) {

s ! next();
i = i + 1;

}

sequences = tail(sequences);
}

}

78

B.2 Results

B.2.1 Never Triggering Collection

0

1000

2000

3000

4000

5000

20

30

40

50

60

70

Total
M

em
ory in M

iB

0 ms 720 ms 1440 ms 2160 ms 2880 ms 3600 ms
Time

variable

cogs

objects

futures

Table B.1: Sequences - Never Collect - Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 35.7 MiB 33.1 MiB 68.2 MiB
COGs 0 6 6 6
Objects 0 5 5 5
Futures 0 2029.5 1898.5 5000
Root futures 0 935.5 967 2000
Processes 24 3137.9 3371 6037
Φ 0.9 %%% 119.7 %%% 128.6 %%% 230.3 %%%

79

B.2.2 Always Triggering Collection

0

1000

2000

3000

4000

5000

25

50

75

Total
M

em
ory in M

iB

0 ms 3560 ms 7120 ms 10680 ms 14240 ms 17800 ms
Time

variable

cogs

objects

futures

Table B.2: Sequences - Always Collect - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 41.6 MiB 33.7 MiB 86.5 MiB
COGs 0 5.3 5 6
Objects 0 4.9 5 5
Futures 0 6 2 96
Root futures 0 2439.2 2411.5 5000
Processes 24 3890.3 3459 10040
Φ 0.9 %%% 148.4 %%% 132 %%% 383 %%%

Table B.3: Sequences - Always Collect - Sweeps

Min Mean Median Max

Objects swept 0 0 0 1
Objects kept 0 4.2 5 5
Futures swept 0 9.9 6 96
Futures kept 0 0 0 0

80

Table B.4: Sequences - Always Collect - Intervals

Mean Median Max Total

Stop world 4829 µs 1981 µs 1107051 µs 2443238 µs
Mark 29599 µs 18345 µs 1473534 µs 14977267 µs
Sweep 312 µs 300 µs 1244 µs 157869 µs

Collection cycle 34740 µs 21858 µs 2575248 µs 17578374 µs

Collector only 29911 µs 18692 µs 1474075 µs 15135136 µs
Mutator only 519 µs 239 µs 54419 µs 262574 µs

B.2.3 Trigger on Timeout

0

1000

2000

3000

4000

5000

20

30

40

50

60

Total
M

em
ory in M

iB

0 ms 860 ms 1720 ms 2580 ms 3440 ms 4300 ms
Time

variable

cogs

objects

futures

81

Table B.5: Sequences - Collect on time - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 35.4 MiB 32.3 MiB 61.2 MiB
COGs 0 5.5 6 6
Objects 0 5 5 5
Futures 0 551.8 93 2647
Root futures 0 2402 2401 4907
Processes 24 3754.8 3902 9847
Φ 0.9 %%% 143.2 %%% 148.8 %%% 375.6 %%%

Table B.6: Sequences - Collect on time - Sweeps

Min Mean Median Max

Objects swept 0 1.2 0 5
Objects kept 0 3.8 5 5
Futures swept 93 1250 1130 2647
Futures kept 0 0 0 0

Table B.7: Sequences - Collect on time - Intervals

Mean Median Max Total

Stop world 582425 µs 648370 µs 931294 µs 2329700 µs
Mark 364064 µs 26022 µs 1404118 µs 1456258 µs
Sweep 2632 µs 2304 µs 5169 µs 10530 µs

Collection cycle 949122 µs 678765 µs 2336164 µs 3796488 µs

Collector only 366697 µs 30394 µs 1404870 µs 1466788 µs
Mutator only 100543 µs 100312 µs 101469 µs 402171 µs

82

B.2.4 Trigger on Timeout with Stopping Running Tasks

0

200

400

600

16

20

24

Total
M

em
ory in M

iB

0 ms 700 ms 1400 ms 2100 ms 2800 ms 3500 ms
Time

variable

cogs

objects

futures

Table B.8: Sequences - Collect on time with stopping processes -
Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 21.6 MiB 22.4 MiB 27.3 MiB
COGs 0 4.2 4 6
Objects 0 3.1 3 5
Futures 0 125.3 104 507
Root futures 0 193 166 643
Processes 24 446.6 393 1318
Φ 0.9 %%% 17 %%% 15 %%% 50.3 %%%

Table B.9: Sequences - Collect on time with stopping processes - Sweeps

Min Mean Median Max

Objects swept 0 0.2 0 1
Objects kept 0 2.9 3 5
Futures swept 0 238.1 224 507
Futures kept 0 0 0 0

83

Table B.10: Sequences - Collect on time with stopping processes -
Intervals

Mean Median Max Total

Stop world 54606 µs 42809 µs 182148 µs 1146725 µs
Mark 7033 µs 5109 µs 22563 µs 147699 µs
Sweep 457 µs 415 µs 926 µs 9601 µs

Collection cycle 62096 µs 53257 µs 183463 µs 1304025 µs

Collector only 7490 µs 5849 µs 22775 µs 157300 µs
Mutator only 101705 µs 100169 µs 132022 µs 2135811 µs

B.2.5 Trigger on Count

0

1000

2000

3000

4000

5000

20

40

60

Total
M

em
ory in M

iB

0 ms 1080 ms 2160 ms 3240 ms 4320 ms 5400 ms
Time

variable

cogs

objects

futures

84

Table B.11: Sequences - Collect on count - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 38.5 MiB 32.1 MiB 71.2 MiB
COGs 0 5.4 5 6
Objects 0 4.9 5 5
Futures 0 45.8 41 221
Root futures 0 2478.7 2479 4959
Processes 24 3818.4 3468 9952
Φ 0.9 %%% 145.7 %%% 132.3 %%% 379.6 %%%

Table B.12: Sequences - Collect on count - Sweeps

Min Mean Median Max

Objects swept 0 0 0 2
Objects kept 2 4.8 5 5
Futures swept 21 81.6 71.5 221
Futures kept 0 0 0 0

Table B.13: Sequences - Collect on count - Intervals

Mean Median Max Total

Stop world 31129 µs 12796 µs 987860 µs 1867761 µs
Mark 54358 µs 29976 µs 1403626 µs 3261471 µs
Sweep 592 µs 646 µs 1196 µs 35545 µs

Collection cycle 86080 µs 46778 µs 2392099 µs 5164777 µs

Collector only 54950 µs 30538 µs 1404239 µs 3297016 µs
Mutator only 4310 µs 2492 µs 50948 µs 258629 µs

85

B.2.6 Trigger on Count or Timeout

0

1000

2000

3000

4000

5000

20

40

60

Total
M

em
ory in M

iB

0 ms 1080 ms 2160 ms 3240 ms 4320 ms 5400 ms
Time

variable

cogs

objects

futures

Table B.14: Sequences - Collect on count or time - Memory, counts and
process ratio

Min Mean Median Max

Memory 13.5 MiB 37.9 MiB 32 MiB 70.9 MiB
COGs 0 5.4 5 6
Objects 0 4.9 5 5
Futures 0 35.1 18 277
Root futures 0 2471 2464 4982
Processes 24 3793.4 3373 9990
Φ 0.9 %%% 144.7 %%% 128.7 %%% 381.1 %%%

Table B.15: Sequences - Collect on count or time - Sweeps

Min Mean Median Max

Objects swept 0 0.1 0 1
Objects kept 0 4.4 5 5
Futures swept 16 74.6 66 277
Futures kept 0 0 0 0

86

Table B.16: Sequences - Collect on count or time - Intervals

Mean Median Max Total

Stop world 27904 µs 11374 µs 984836 µs 1869601 µs
Mark 47796 µs 23160 µs 1446317 µs 3202303 µs
Sweep 512 µs 464 µs 1201 µs 34271 µs

Collection cycle 76212 µs 35753 µs 2431724 µs 5106175 µs

Collector only 48307 µs 23622 µs 1446888 µs 3236574 µs
Mutator only 4198 µs 2646 µs 53475 µs 281262 µs

B.2.7 Trigger on Count or Timeout with Stopping Run-
ning Tasks

0

100

200

300

400

14

16

18

20

Total
M

em
ory in M

iB

0 ms 720 ms 1440 ms 2160 ms 2880 ms 3600 ms
Time

variable

cogs

objects

futures

87

Table B.17: Sequences - Collect on count or time with stopping processes
- Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 18.5 MiB 18.5 MiB 21.3 MiB
COGs 0 4.1 4 6
Objects 0 3.1 3 5
Futures 0 10.5 8 49
Root futures 0 114 96 402
Processes 24 246.5 197 848
Φ 0.9 %%% 9.4 %%% 7.5 %%% 32.3 %%%

Table B.18: Sequences - Collect on count or time with stopping processes
- Sweeps

Min Mean Median Max

Objects swept 0 0 0 1
Objects kept 0 3.2 3 5
Futures swept 9 26.2 25 49
Futures kept 0 0 0 0

Table B.19: Sequences - Collect on count or time with stopping processes
- Intervals

Mean Median Max Total

Stop world 8264 µs 5673 µs 69794 µs 1578457 µs
Mark 2304 µs 1687 µs 10172 µs 440101 µs
Sweep 87 µs 84 µs 193 µs 16651 µs

Collection cycle 10656 µs 8035 µs 80100 µs 2035209 µs

Collector only 2391 µs 1774 µs 10306 µs 456752 µs
Mutator only 8109 µs 3260 µs 143453 µs 1548880 µs

88

Appendix C

Prime Sieve Test Case

C.1 Source Code

Listing C.1: Full source code for Prime Sieve Test Case
module PrimeSieve;
export *;

// Tests primality by division with list of earlier primes
def Bool is_prime(Int n, List<Int> earlierPrimes) =
case earlierPrimes {
Nil => True;
Cons(p, rest) => if (n % p == 0)

then False
else is_prime(n, rest);

};

interface PrimeSieve {
Int getPrime();

}

// Sieve that generates the nth prime
class PrimeSieve(Int n) implements PrimeSieve {
Int nthPrime = 0;

{
List<Int> primes = Cons(2, Nil);
Int i = 1;
Int x = 3;
while (i < n) {

if (is_prime(x, primes)) {
primes = Cons(x, primes);
i = i + 1;

}
x = x + 2;

}
nthPrime = head(primes);

}

Int getPrime() {
return nthPrime;

}

89

}

// Main block
// Creates 16 sieves, then waits of them to finish
{
List<Fut<Int>> primes = Nil;
Int i = 1;
while (i <= 16) {
PrimeSieve sieve = new PrimeSieve(i * 64);
Fut<Int> result = sieve!getPrime();
primes = Cons(result, primes);
i = i + 1;

}

while (primes != Nil) {
Fut<Int> next = head(primes);
await next?;
primes = tail(primes);

}
}

C.2 Results

C.2.1 Never Triggering Collection

0

10

20

30

40

50

13.5

14.0

14.5

15.0

Total
M

em
ory in M

iB

0 ms 60 ms 120 ms 180 ms 240 ms 300 ms
Time

variable

cogs

objects

futures

90

Table C.1: Prime Sieve - Never Collect - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 14.6 MiB 14.6 MiB 15.2 MiB
COGs 0 10.8 11 17
Objects 0 9.5 10 16
Futures 0 2.9 2 16
Root futures 0 6.3 6.5 12
Processes 24 78.1 82.5 114
Φ 0.9 %%% 3 %%% 3.1 %%% 4.3 %%%

C.2.2 Always Triggering Collection

0

5

10

15

20

13.6

13.8

14.0

14.2

14.4

14.6

Total
M

em
ory in M

iB

0 ms 220 ms 440 ms 660 ms 880 ms 1100 ms
Time

variable

cogs

objects

futures

91

Table C.2: Prime Sieve - Always Collect - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 14.3 MiB 14.3 MiB 14.6 MiB
COGs 0 4.2 5 6
Objects 0 2.7 3 4
Futures 0 7.2 7 16
Root futures 0 1.5 2 3
Processes 24 54.8 58 67
Φ 0.9 %%% 2.1 %%% 2.2 %%% 2.6 %%%

Table C.3: Prime Sieve - Always Collect - Sweeps

Min Mean Median Max

Objects swept 0 0.7 1 2
Objects kept 0 2 2 3
Futures swept 0 0 0 1
Futures kept 0 7.7 7.5 16

Table C.4: Prime Sieve - Always Collect - Intervals

Mean Median Max Total

Stop world 50272 µs 16308 µs 226339 µs 1105979 µs
Mark 167 µs 160 µs 360 µs 3677 µs
Sweep 38 µs 34 µs 98 µs 830 µs

Collection cycle 50477 µs 16464 µs 226501 µs 1110486 µs

Collector only 205 µs 192 µs 367 µs 4507 µs
Mutator only 817 µs 248 µs 4522 µs 17975 µs

92

C.2.3 Trigger on Timeout

0

10

20

30

40

50

13.5

14.0

14.5

15.0

Total
M

em
ory in M

iB

0 ms 60 ms 120 ms 180 ms 240 ms 300 ms
Time

variable

cogs

objects

futures

Table C.5: Prime Sieve - Collect on time - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 14.7 MiB 14.8 MiB 15.3 MiB
COGs 0 12 13 17
Objects 0 9.9 9 16
Futures 0 4.8 3 16
Root futures 0 6.2 7 13
Processes 24 80.8 78 116
Φ 0.9 %%% 3.1 %%% 3 %%% 4.4 %%%

Table C.6: Prime Sieve - Collect on time - Sweeps

Min Mean Median Max

Objects swept 7 7 7 7
Objects kept 9 9 9 9
Futures swept 0 0 0 0
Futures kept 7 7 7 7

93

Table C.7: Prime Sieve - Collect on time - Intervals

Mean Median Max Total

Stop world 222588 µs 222588 µs 222588 µs 222588 µs
Mark 272 µs 272 µs 272 µs 272 µs
Sweep 151 µs 151 µs 151 µs 151 µs

Collection cycle 223011 µs 223011 µs 223011 µs 223011 µs

Collector only 423 µs 423 µs 423 µs 423 µs
Mutator only 113730 µs 113730 µs 113730 µs 113730 µs

C.2.4 Trigger on Timeout with Stopping Running Tasks

0

10

20

30

40

50

14

15

16

Total
M

em
ory in M

iB

0 ms 100 ms 200 ms 300 ms 400 ms
Time

variable

cogs

objects

futures

94

Table C.8: Prime Sieve - Collect on time with stopping processes -
Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 14.9 MiB 15 MiB 16.5 MiB
COGs 0 10.4 10 17
Objects 0 8.9 9 16
Futures 0 5.8 7 16
Root futures 0 6.2 6 13
Processes 24 82.5 88 116
Φ 0.9 %%% 3.1 %%% 3.4 %%% 4.4 %%%

Table C.9: Prime Sieve - Collect on time with stopping processes -
Sweeps

Min Mean Median Max

Objects swept 3 4.7 4 7
Objects kept 2 5.7 6 9
Futures swept 0 0 0 0
Futures kept 7 10.3 10 14

Table C.10: Prime Sieve - Collect on time with stopping processes -
Intervals

Mean Median Max Total

Stop world 2055 µs 1773 µs 2881 µs 6165 µs
Mark 235 µs 197 µs 344 µs 704 µs
Sweep 100 µs 88 µs 148 µs 301 µs

Collection cycle 2390 µs 2035 µs 3373 µs 7170 µs

Collector only 335 µs 262 µs 492 µs 1005 µs
Mutator only 131047 µs 139763 µs 152415 µs 393142 µs

95

C.2.5 Trigger on Count

0

10

20

30

40

13.5

14.0

14.5

15.0

Total
M

em
ory in M

iB

0 ms 80 ms 160 ms 240 ms 320 ms 400 ms
Time

variable

cogs

objects

futures

Table C.11: Prime Sieve - Collect on count - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 14.6 MiB 14.7 MiB 15.4 MiB
COGs 0 11 13 15
Objects 0 9.4 11 14
Futures 0 4.1 3 16
Root futures 0 5.7 5 10
Processes 24 77 84.5 101
Φ 0.9 %%% 2.9 %%% 3.2 %%% 3.9 %%%

Table C.12: Prime Sieve - Collect on count - Sweeps

Min Mean Median Max

Objects swept 3 3 3 3
Objects kept 11 11 11 11
Futures swept 0 0 0 0
Futures kept 3 3 3 3

96

Table C.13: Prime Sieve - Collect on count - Intervals

Mean Median Max Total

Stop world 112374 µs 112374 µs 112374 µs 112374 µs
Mark 350 µs 350 µs 350 µs 350 µs
Sweep 78 µs 78 µs 78 µs 78 µs

Collection cycle 112802 µs 112802 µs 112802 µs 112802 µs

Collector only 428 µs 428 µs 428 µs 428 µs
Mutator only 40875 µs 40875 µs 40875 µs 40875 µs

C.2.6 Trigger on Count or Timeout

0

10

20

30

40

13.5

14.0

14.5

15.0

15.5

Total
M

em
ory in M

iB

0 ms 80 ms 160 ms 240 ms 320 ms 400 ms
Time

variable

cogs

objects

futures

97

Table C.14: Prime Sieve - Collect on count or time - Memory, counts and
process ratio

Min Mean Median Max

Memory 13.5 MiB 14.9 MiB 15 MiB 15.6 MiB
COGs 0 11.1 13 15
Objects 0 9 11 14
Futures 0 5.9 3 16
Root futures 0 5.3 4 10
Processes 24 77.9 86 101
Φ 0.9 %%% 3 %%% 3.3 %%% 3.9 %%%

Table C.15: Prime Sieve - Collect on count or time - Sweeps

Min Mean Median Max

Objects swept 3 6 6 9
Objects kept 4 7.5 7.5 11
Futures swept 0 0 0 0
Futures kept 3 7.5 7.5 12

Table C.16: Prime Sieve - Collect on count or time - Intervals

Mean Median Max Total

Stop world 111046 µs 111046 µs 114434 µs 222091 µs
Mark 298 µs 298 µs 360 µs 595 µs
Sweep 132 µs 132 µs 177 µs 265 µs

Collection cycle 111476 µs 111476 µs 114882 µs 222951 µs

Collector only 430 µs 430 µs 448 µs 860 µs
Mutator only 88203 µs 88203 µs 144370 µs 176406 µs

98

C.2.7 Trigger on Count or Timeout with Stopping Run-
ning Tasks

0

10

20

30

40

13.5

14.0

14.5

15.0

15.5

16.0

Total
M

em
ory in M

iB

0 ms 100 ms 200 ms 300 ms 400 ms
Time

variable

cogs

objects

futures

Table C.17: Prime Sieve - Collect on count or time with stopping
processes - Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 15.1 MiB 15.1 MiB 15.9 MiB
COGs 0 10.2 10 16
Objects 0 8.8 9 14
Futures 0 5.4 3 16
Root futures 0 6.6 7 13
Processes 24 83.3 88 110
Φ 0.9 %%% 3.2 %%% 3.4 %%% 4.2 %%%

99

Table C.18: Prime Sieve - Collect on count or time with stopping
processes - Sweeps

Min Mean Median Max

Objects swept 3 3.5 3.5 4
Objects kept 2 6.8 7 11
Futures swept 0 0 0 0
Futures kept 3 8.8 9 14

Table C.19: Prime Sieve - Collect on count or time with stopping
processes - Intervals

Mean Median Max Total

Stop world 2019 µs 2038 µs 2678 µs 8077 µs
Mark 267 µs 266 µs 377 µs 1069 µs
Sweep 92 µs 94 µs 115 µs 370 µs

Collection cycle 2379 µs 2410 µs 3123 µs 9516 µs

Collector only 360 µs 371 µs 445 µs 1439 µs
Mutator only 97820 µs 101641 µs 147563 µs 391281 µs

100

Appendix D

Indexing Test Case

D.1 Source Code

Listing D.1: Indexing Test Case
module Indexing;
import * from ABS.DC;
import * from ABS.Meta;

// * Prefix indexing

// A model of a MapReduce job. The input is a list of docments
// represented as a pair of (filename, contents),
// where contents is a wordlist. The output is a list of
// (prefix, filenames), giving the occurrences of all prefixes
// of all words.

// The code follows the general pattern of MapReduce
// and is decomposed for easy modification via deltas.
// Product lines and deltas are not included in this copy.

type InKeyType = String; // filename
type InValueType = String; // file contents
type OutKeyType = String; // prefix
type OutValueType = String; // filename

def Int max_prefix_length() = 12;

def String listToString(List<String> l) =
case l {
Nil => "";
Cons(x, rest) => x + ", " + listToString(rest);

};
def String resultToString(Pair<String, List<String>> p) =
case p {
Pair(x,y) => x + ": " + listToString(y);

};

interface Worker {
// invoked by MapReduce component
List<Pair<OutKeyType, OutValueType>>
invokeMap(InKeyType key, InValueType value);

101

// invoked by MapReduce component
List<OutValueType> invokeReduce(OutKeyType key,

List<OutValueType> value);
}

interface MapReduce {
// invoked by client
List<Pair<OutKeyType, List<OutValueType>>>
mapReduce(List<Pair<InKeyType, InValueType>> documents);

// invoked by workers
Unit finished(Worker w);

}

class Worker(MapReduce master) implements Worker {
List<Pair<OutKeyType, OutValueType>> mapResults = Nil;
List<OutValueType> reduceResults = Nil;

// The methods in this section can be overridden via deltas.
// Map and reduce should not change the state of the object
// and should not contain any cost annotations.
Unit map(InKeyType key, InValueType value) {
String content = value;
Int begin = 0;
Int max = strlen(content);
Int end = begin;
while (begin < max) {
while (substr(content, begin, 1) == " " && begin < max) {
begin = begin + 1;

}
// got a word boundary
end = begin + 1;
while (end - begin < max_prefix_length() && end <= max) {
this.emitMapResult(substr(content, begin, end - begin),

key);
end = end + 1;

}
while (substr(content, begin, 1) != " " && begin < max - 1) {
begin = begin + 1;

}
begin = begin + 1;

}
}

Unit reduce(OutKeyType key, List<OutValueType> value) {
// Remove duplicates in occurrence list: convert into set.
Set<OutValueType> resultset = set(value);
while (~(resultset == EmptySet)) {
OutValueType file = take(resultset);
resultset = remove(resultset, file);
this.emitReduceResult(file);

}
}

// These methods can be overridden in deltas to contain cost
// annotations relating to the respective phases of the map or
// reduce step. Any side effects should only be on state
// introduced same delta that replaced the default method.
Unit onMapStart(InKeyType key, InValueType value) {
skip;

102

}
Unit onMapEmit(OutKeyType key, OutValueType value) {
skip;

}
Unit onMapFinish() {
skip;

}
Unit onReduceStart(OutKeyType key, List<OutValueType> value) {
skip;

}
Unit onReduceEmit(OutValueType value) {
skip;

}
Unit onReduceFinish() {
skip;

}

List<Pair<OutKeyType, OutValueType>> invokeMap(InKeyType key,
InValueType value) {

mapResults = Nil;
this.onMapStart(key, value);
this.map(key, value);
this.onMapFinish();
master!finished(this);
List<Pair<OutKeyType, OutValueType>> result = mapResults;
mapResults = Nil;
return result;

}

List<OutValueType> invokeReduce(OutKeyType key,
List<OutValueType> value) {

reduceResults = Nil;
this.onReduceStart(key, value);
this.reduce(key, value);
this.onReduceFinish();
master!finished(this);
List<OutValueType> result = reduceResults;
reduceResults = Nil;
return result;

}

Unit emitMapResult(OutKeyType key, OutValueType value) {
this.onMapEmit(key, value);
mapResults = Cons(Pair(key, value), mapResults);

}
Unit emitReduceResult(OutValueType value) {
this.onReduceEmit(value);
reduceResults = Cons(value, reduceResults);

}
}

// This class contains the MapReduce machinery.
// Any deployment decisions (number of machines, etc.)
// can be customized via deltas.
class MapReduce implements MapReduce {
Set<Worker> workers = EmptySet;
Int nWorkers = 0;

// This method obtains a Worker object. Any VM creation, load

103

// balancing, accounting etc. goes on here. Any side effects
// should only modify state that is introduced in the same delta.
Worker getWorker() {
Worker w = null;
if (emptySet(workers)) {
w = new Worker(this);
nWorkers = nWorkers + 1;
} else {
w = take(workers);
workers = remove(workers, w);

}
return w;

}

// This method registers a worker as idle.
// It is called by the worker itself.
// Any side effects should only modify state that is
// introduced in the same delta.
Unit finished(Worker w) {
workers = insertElement(workers, w);

}

List<Pair<OutKeyType, List<OutValueType>>>
mapReduce(List<Pair<InKeyType, InValueType>> items) {

Set<Fut<List<Pair<OutKeyType, OutValueType>>>> fMapResults
= EmptySet;

ABS.StdLib.Map<OutKeyType, List<OutValueType>> intermediates
= EmptyMap;

Set<Pair<OutKeyType, Fut<List<OutValueType>>>> fReduceResults
= EmptySet;

List<Pair<OutKeyType, List<OutValueType>>> result = Nil;

while (~isEmpty(items)) {
Pair<InKeyType, InValueType> item = head(items);
items = tail(items);
Worker w = this.getWorker();
String key = fst(item);
InValueType value = snd(item);
// "Map, written by the user, takes an input pair and produces a
// set of intermediate key/value pairs." [MapReduce, pg. 2]
Fut<List<Pair<OutKeyType, OutValueType>>> fMap

= w!invokeMap(key, value);
fMapResults = insertElement(fMapResults, fMap);

}
while (~emptySet(fMapResults)) {
// "The MapReduce library groups together all intermediate values
// associated with the same intermediate key I ..." [ditto]
Fut<List<Pair<OutKeyType, OutValueType>>> fMapResult

= take(fMapResults);
fMapResults = remove(fMapResults, fMapResult);
await fMapResult?;
List<Pair<OutKeyType, OutValueType>> mapResult

= fMapResult.get;
while (~isEmpty(mapResult)) {
Pair<OutKeyType, OutValueType> keyValuePair

= head(mapResult);
mapResult = tail(mapResult);
List<OutValueType> inter

= lookupDefault(intermediates, fst(keyValuePair), Nil);

104

intermediates = put(intermediates, fst(keyValuePair),
Cons(snd(keyValuePair), inter));

}
}
// "... and passes them to the Reduce function. The Reduce
// function, also written by the user, accepts an intermediate key I
// and a set of values for that key. It merges together these values
// to form a possibly smaller set of values. Typically just zero or
// one outpout value is produced per Reduce invocation." [ditto]
Set<OutKeyType> keys = keys(intermediates);
while(~emptySet(keys)) {

OutKeyType key = take(keys);
keys = remove(keys, key);
List<OutValueType> values = lookupUnsafe(intermediates, key);
Worker w = this.getWorker();
Unit x = println("Reduce");
Fut<List<OutValueType>> fReduce = w!invokeReduce(key, values);
fReduceResults

= insertElement(fReduceResults, Pair(key, fReduce));
}
while (~emptySet(fReduceResults)) {

Pair<OutKeyType, Fut<List<OutValueType>>> reduceResult
= take(fReduceResults);

fReduceResults = remove(fReduceResults, reduceResult);
OutKeyType key = fst(reduceResult);
Fut<List<OutValueType>> fValues = snd(reduceResult);
await fValues?;
List<OutValueType> values = fValues.get;
result = Cons(Pair(key, values), result);

}
return result;

}

}

class Client(MapReduce m) {
List<Pair<InKeyType, InValueType>> inputs =
list[Pair("paul_clifford.txt",

"it was a dark and stormy night"),
Pair("tale_of_two_cities.txt",
"it was the best of times it was the worst of times"),

Pair("neuromancer.txt",
"the sky above the port was the color of television tuned to a dead channel")

];
List<Pair<OutKeyType, List<OutValueType>>> result = Nil;
Unit run() {
result = await m!mapReduce(inputs);
List<Pair<OutKeyType, List<OutValueType>>> it = result;
while (it != Nil) {

Unit x = println(resultToString(head(it)));
it = tail(it);

}
}

}

{
MapReduce m = new MapReduce();
new local Client(m);

}

105

D.2 Results

D.2.1 Never Triggering Collection

0

300

600

900

20

30

40

Total
M

em
ory in M

iB

0 ms 120 ms 240 ms 360 ms 480 ms 600 ms
Time

variable

cogs

objects

futures

Table D.1: Indexing - Never Collect - Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 23.5 MiB 23.2 MiB 42.2 MiB
COGs 0 159.5 164 273
Objects 0 159.3 164 273
Futures 0 183.8 166 549
Root futures 0 135.5 135 272
Processes 24 959.4 1010 1665
Φ 0.9 %%% 36.6 %%% 38.5 %%% 63.5 %%%

106

D.2.2 Always Triggering Collection

0

300

600

900

20

30

Total
M

em
ory in M

iB

0 ms 5840 ms 11680 ms 17520 ms 23360 ms 29200 ms
Time

variable

cogs

objects

futures

Table D.2: Indexing - Always Collect - Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 31.6 MiB 31.6 MiB 38.2 MiB
COGs 0 235.2 273 274
Objects 0 234.8 273 274
Futures 0 105.2 104 272
Root futures 0 153.4 165 274
Processes 24 1143.2 1136 1665
Φ 0.9 %%% 43.6 %%% 43.3 %%% 63.5 %%%

Table D.3: Indexing - Always Collect - Sweeps

Min Mean Median Max

Objects swept 0 0.6 0 273
Objects kept 0 192.5 235.5 274
Futures swept 0 1.1 0 39
Futures kept 0 97.5 88.5 270

107

Table D.4: Indexing - Always Collect - Intervals

Mean Median Max Total

Stop world 53108 µs 60082 µs 93309 µs 25704089 µs
Mark 6240 µs 5446 µs 20882 µs 3020215 µs
Sweep 343 µs 291 µs 4408 µs 166081 µs

Collection cycle 59691 µs 70836 µs 108651 µs 28890385 µs

Collector only 6583 µs 5766 µs 21434 µs 3186296 µs
Mutator only 569 µs 487 µs 29888 µs 275609 µs

D.2.3 Trigger on Timeout

0

300

600

900

20

30

40

Total
M

em
ory in M

iB

0 ms 180 ms 360 ms 540 ms 720 ms 900 ms
Time

variable

cogs

objects

futures

108

Table D.5: Indexing - Collect on time - Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 24.7 MiB 24.4 MiB 40.1 MiB
COGs 0 176.5 189 274
Objects 0 176.3 189 274
Futures 0 170.1 177.5 341
Root futures 0 153.2 174 273
Processes 24 1031.7 1150 1663
Φ 0.9 %%% 39.4 %%% 43.9 %%% 63.4 %%%

Table D.6: Indexing - Collect on time - Sweeps

Min Mean Median Max

Objects swept 0 0 0 0
Objects kept 26 158.2 165 274
Futures swept 0 50.5 0 298
Futures kept 20 115 106.5 231

Table D.7: Indexing - Collect on time - Intervals

Mean Median Max Total

Stop world 31440 µs 29996 µs 54606 µs 188637 µs
Mark 6217 µs 6658 µs 12093 µs 37302 µs
Sweep 431 µs 382 µs 935 µs 2584 µs

Collection cycle 38087 µs 37121 µs 63426 µs 228523 µs

Collector only 6648 µs 7125 µs 12686 µs 39886 µs
Mutator only 100335 µs 100290 µs 100793 µs 602009 µs

109

D.2.4 Trigger on Timeout with Stopping Running Tasks

0

300

600

900

20

30

40

Total
M

em
ory in M

iB

0 ms 180 ms 360 ms 540 ms 720 ms 900 ms
Time

variable

cogs

objects

futures

Table D.8: Indexing - Collect on time with stopping processes - Memory,
counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 26.4 MiB 25.9 MiB 47.9 MiB
COGs 0 176.7 189 275
Objects 0 176.6 189 275
Futures 0 177.4 183 382
Root futures 0 155.1 175 275
Processes 24 1043.6 1151 1669
Φ 0.9 %%% 39.8 %%% 43.9 %%% 63.7 %%%

Table D.9: Indexing - Collect on time with stopping processes - Sweeps

Min Mean Median Max

Objects swept 0 0 0 0
Objects kept 28 157 162 275
Futures swept 0 27.8 0 163
Futures kept 21 133 145.5 228

110

Table D.10: Indexing - Collect on time with stopping processes -
Intervals

Mean Median Max Total

Stop world 29784 µs 28876 µs 54647 µs 178701 µs
Mark 6545 µs 6538 µs 11793 µs 39270 µs
Sweep 393 µs 388 µs 654 µs 2356 µs

Collection cycle 36721 µs 35802 µs 67036 µs 220327 µs

Collector only 6938 µs 6926 µs 12389 µs 41626 µs
Mutator only 100274 µs 100267 µs 100464 µs 601644 µs

D.2.5 Trigger on Count

0

300

600

900

20

30

40

Total
M

em
ory in M

iB

0 ms 160 ms 320 ms 480 ms 640 ms 800 ms
Time

variable

cogs

objects

futures

111

Table D.11: Indexing - Collect on count - Memory, counts and process
ratio

Min Mean Median Max

Memory 13.5 MiB 23.3 MiB 22.9 MiB 40.7 MiB
COGs 0 162.3 163 273
Objects 0 162.1 163 273
Futures 0 175 158 543
Root futures 0 143.6 135 272
Processes 24 974.9 997 1658
Φ 0.9 %%% 37.2 %%% 38 %%% 63.2 %%%

Table D.12: Indexing - Collect on count - Sweeps

Min Mean Median Max

Objects swept 0 0 0 0
Objects kept 8 75.7 35 259
Futures swept 0 0.9 0 6
Futures kept 3 70.7 30 254

Table D.13: Indexing - Collect on count - Intervals

Mean Median Max Total

Stop world 14376 µs 6106 µs 54589 µs 100632 µs
Mark 3298 µs 1161 µs 13353 µs 23084 µs
Sweep 175 µs 87 µs 572 µs 1227 µs

Collection cycle 17849 µs 7354 µs 68514 µs 124943 µs

Collector only 3473 µs 1248 µs 13925 µs 24311 µs
Mutator only 76180 µs 60382 µs 239159 µs 533257 µs

112

D.2.6 Trigger on Count or Timeout

0

300

600

900

20

30

40

Total
M

em
ory in M

iB

0 ms 200 ms 400 ms 600 ms 800 ms 1000 ms
Time

variable

cogs

objects

futures

Table D.14: Indexing - Collect on count or time - Memory, counts and
process ratio

Min Mean Median Max

Memory 13.5 MiB 31.2 MiB 31.2 MiB 45.1 MiB
COGs 0 178.5 198 274
Objects 0 178.4 198 274
Futures 0 204.9 186 516
Root futures 0 140.1 146 273
Processes 24 1046.7 1169 1664
Φ 0.9 %%% 39.9 %%% 44.6 %%% 63.5 %%%

Table D.15: Indexing - Collect on count or time - Sweeps

Min Mean Median Max

Objects swept 0 0.1 0 1
Objects kept 9 118.6 93.5 273
Futures swept 0 52.1 0 516
Futures kept 0 86.3 46 260

113

Table D.16: Indexing - Collect on count or time - Intervals

Mean Median Max Total

Stop world 23075 µs 15924 µs 58253 µs 230749 µs
Mark 4309 µs 3052 µs 12802 µs 43087 µs
Sweep 328 µs 227 µs 1146 µs 3277 µs

Collection cycle 27711 µs 19516 µs 71626 µs 277113 µs

Collector only 4636 µs 3592 µs 13373 µs 46364 µs
Mutator only 67601 µs 82530 µs 100424 µs 676012 µs

D.2.7 Trigger on Count or Timeout with Stopping Run-
ning Tasks

0

300

600

900

20

30

40

Total
M

em
ory in M

iB

0 ms 200 ms 400 ms 600 ms 800 ms 1000 ms
Time

variable

cogs

objects

futures

114

Table D.17: Indexing - Collect on count or time with stopping processes
- Memory, counts and process ratio

Min Mean Median Max

Memory 13.5 MiB 24.1 MiB 24.1 MiB 40.6 MiB
COGs 0 177.6 197 274
Objects 0 177.5 197 274
Futures 0 195.3 179 481
Root futures 0 142.5 145 273
Processes 24 1038.9 1123 1663
Φ 0.9 %%% 39.6 %%% 42.8 %%% 63.4 %%%

Table D.18: Indexing - Collect on count or time with stopping processes
- Sweeps

Min Mean Median Max

Objects swept 0 0.1 0 1
Objects kept 9 117.7 92.5 273
Futures swept 0 48.6 0 481
Futures kept 0 85.6 46 255

Table D.19: Indexing - Collect on count or time with stopping processes
- Intervals

Mean Median Max Total

Stop world 21876 µs 14767 µs 52373 µs 218762 µs
Mark 4204 µs 3157 µs 11908 µs 42042 µs
Sweep 312 µs 220 µs 1085 µs 3116 µs

Collection cycle 26392 µs 18206 µs 64805 µs 263920 µs

Collector only 4516 µs 3439 µs 12432 µs 45158 µs
Mutator only 67628 µs 85272 µs 100953 µs 676285 µs

115

116

Bibliography

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpre-
tation of Computer Programs. 2nd. Cambridge, MA, USA: MIT
Press, 1996. ISBN: 0262011530.

[2] Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Raleigh, NC, and Dallas, TX: The Pragmatic Program-
mers, LLC, 2007. ISBN: 978-1-9343560-0-5. URL: http : / / www .
pragprog.com/titles/jaerlang/programming-erlang.

[3] Denis Caromel, Guillaume Chazarain, and Ludovic Henrio.
“Garbage Collecting the Grid: A Complete DGC for Activities”.
English. In: Middleware 2007. Ed. by Renato Cerqueira and
RoyH. Campbell. Vol. 4834. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, pp. 164–183. ISBN: 978-3-540-
76777-0. DOI: 10.1007/978-3-540-76778-7_9. URL: http://dx.doi.org/
10.1007/978-3-540-76778-7_9.

[4] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters”. In: Commun. ACM 51.1
(Jan. 2008), pp. 107–113. ISSN: 0001-0782. DOI: 10.1145/1327452.
1327492. URL: http://doi.acm.org/10.1145/1327452.1327492.

[5] Edsger W. Dijkstra et al. “On-the-fly Garbage Collection: An
Exercise in Cooperation”. In: Commun. ACM 21.11 (Nov. 1978),
pp. 966–975. ISSN: 0001-0782. DOI: 10.1145/359642.359655. URL:
http://doi.acm.org/10.1145/359642.359655.

[6] Erlang Run-Time System Application (ERTS) Reference Manual.
Ericsson AB. Dec. 2014. URL: http://www.erlang.org/doc/apps/erts/
index.html.

[7] J. F. Gimpel. “A Theory of Discrete Patterns and Their Imple-
mentation in SNOBOL4”. In: Commun. ACM 16.2 (Feb. 1973),
pp. 91–100. ISSN: 0001-0782. DOI: 10.1145/361952.361960. URL:
http://doi.acm.org/10.1145/361952.361960.

[8] Georg Göri. “ABS2Erlang”. Draft of master’s thesis to be submit-
ted to the Graz University of Technology in 2015. The title is sub-
ject to change. 2014.

117

http://www.pragprog.com/titles/jaerlang/programming-erlang
http://www.pragprog.com/titles/jaerlang/programming-erlang
http://dx.doi.org/10.1007/978-3-540-76778-7_9
http://dx.doi.org/10.1007/978-3-540-76778-7_9
http://dx.doi.org/10.1007/978-3-540-76778-7_9
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/359642.359655
http://doi.acm.org/10.1145/359642.359655
http://www.erlang.org/doc/apps/erts/index.html
http://www.erlang.org/doc/apps/erts/index.html
http://dx.doi.org/10.1145/361952.361960
http://doi.acm.org/10.1145/361952.361960

[9] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia
Tarifa. “Deployment Variability in Delta-Oriented Models”. In:
Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change - 6th International
Symposium, ISoLA 2014, Imperial, Corfu, Greece, October 8-11,
2014, Proceedings, Part I. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 8802. Lecture Notes in Computer Science. Springer,
2014, pp. 304–319. ISBN: 978-3-662-45233-2. DOI: 10.1007/978-3-
662-45234-9_22. URL: http://dx.doi.org/10.1007/978-3-662-45234-
9_22.

[10] Einar Broch Johnsen et al. “ABS: A Core Language for Abstract
Behavioral Specification”. In: Proc. 9th International Symposium
on Formal Methods for Components and Objects (FMCO 2010).
Ed. by Bernhard Aichernig, Frank S. de Boer, and Marcello
M. Bonsangue. Vol. 6957. Lecture Notes in Computer Science.
Springer-Verlag, 2011, pp. 142–164.

[11] Richard Jones, Anthony Hosking, and Eliot Moss. The Garbage
Collection Handbook. CRC Press, 2012. URL: http://www.pragprog.
com/titles/jaerlang/programming-erlang.

[12] Niels Christian Juul. “Comprehensive, Concurrent, and Robust
Garbage Collection in the Distributed, Object-Based System,
Emerald”. PhD thesis. 1992.

[13] P. Lincoln M. Clavel S. Eker and J. Meseguer. “Principles of
Maude”. In: Electronic Notes in Theoretical Computer Science. Ed.
by J. Meseguer. Vol. 4. Elsevier Science Publishers, 2000.

[14] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Prin-
ciples of Program Analysis. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 1999. ISBN: 3540654100.

[15] The ABS Language Specification. June 2014. URL: http://tools.hats-
project.eu/download/absrefmanual.pdf.

[16] Robert Virding. “A garbage collector for the concurrent real-
time language Erlang”. English. In: Memory Management. Ed.
by HenryG. Baler. Vol. 986. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1995, pp. 343–354. ISBN: 978-3-540-
60368-9. DOI: 10.1007/3-540-60368-9_33. URL: http://dx.doi.org/10.
1007/3-540-60368-9_33.

118

http://dx.doi.org/10.1007/978-3-662-45234-9_22
http://dx.doi.org/10.1007/978-3-662-45234-9_22
http://dx.doi.org/10.1007/978-3-662-45234-9_22
http://dx.doi.org/10.1007/978-3-662-45234-9_22
http://www.pragprog.com/titles/jaerlang/programming-erlang
http://www.pragprog.com/titles/jaerlang/programming-erlang
http://tools.hats-project.eu/download/absrefmanual.pdf
http://tools.hats-project.eu/download/absrefmanual.pdf
http://dx.doi.org/10.1007/3-540-60368-9_33
http://dx.doi.org/10.1007/3-540-60368-9_33
http://dx.doi.org/10.1007/3-540-60368-9_33

	Introduction
	Goals
	Structure of This Thesis

	The ABS Language
	Functional Level
	Algebraic Data Types
	Pure Expressions

	Concurrent Object Level
	Interfaces
	Classes
	Concurrency

	Compiler
	Other tools

	The Erlang Back End
	The Erlang Programming Language
	The Actor Model
	Pattern Matching

	Mapping ABS to Erlang
	Algebraic Types
	Objects
	COGs
	Tasks
	Futures
	Statements and expressions

	Garbage Collection
	Reference Counting
	Mark and Sweep
	Mark and Compact
	Copying Collectors
	Generational Collectors
	Distributed and Concurrent Garbage Collection
	The Lost Object Problem

	Implementing Garbage Collection for the Erlang Back End
	Stopping the World
	COG States
	Tasks Blocking on Futures
	Stopping Running Tasks
	Asynchronous Method Calls on Inactive Objects
	Tasks Created While the World is Stopping
	An Incomplete View of the World
	Blocking Object Instantiation

	Marking Objects and Futures
	Sweeping White References
	Reference Counting COGs and Resuming the World
	Static Analysis
	Triggering Garbage Collection

	Evaluation
	Metrics
	Execution Time
	Memory Usage
	Processes
	Obtaining and Processing Measurements

	Test Cases
	Ping Pong - Basic Test with Cyclic Garbage
	Sequences - Asynchronous Method Calls in Loops
	Prime Sieve - Long-running Tasks
	Indexing - Resolved Futures Held

	Results
	Ping Pong - Results
	Sequences - Results
	Prime Sieve - Results
	Indexing - Results

	Conclusion
	Future Work

	Ping Pong Test Case
	Source Code
	Results
	Never Triggering Collection
	Always Triggering Collection
	Trigger on Timeout
	Trigger on Timeout with Stopping Running Tasks
	Trigger on Count
	Trigger on Count or Timeout
	Trigger on Count or Timeout with Stopping Running Tasks

	Infinitely Looping Ping Pong
	Never Triggering Collection
	Triggering on Timeout

	Sequences Test Case
	Source Code
	Results
	Never Triggering Collection
	Always Triggering Collection
	Trigger on Timeout
	Trigger on Timeout with Stopping Running Tasks
	Trigger on Count
	Trigger on Count or Timeout
	Trigger on Count or Timeout with Stopping Running Tasks

	Prime Sieve Test Case
	Source Code
	Results
	Never Triggering Collection
	Always Triggering Collection
	Trigger on Timeout
	Trigger on Timeout with Stopping Running Tasks
	Trigger on Count
	Trigger on Count or Timeout
	Trigger on Count or Timeout with Stopping Running Tasks

	Indexing Test Case
	Source Code
	Results
	Never Triggering Collection
	Always Triggering Collection
	Trigger on Timeout
	Trigger on Timeout with Stopping Running Tasks
	Trigger on Count
	Trigger on Count or Timeout
	Trigger on Count or Timeout with Stopping Running Tasks

