Inf2320 Chapter 7

4th November 2004

Exercises

7.1

In this model we think of the drop of ink as being 2Ax long when we inject it, and
the time the injection itself takes is 2A¢. This results in the source function as given.
Assuming the tube is sealed at the ends, the PDE becomes

Ou 0%u

9 kw + f(=,t),
u($70) = 07

% = 0 forz=0,L.

The concentration of ink will increase with time. It will be strongest in the middle of
the tube (L /2) and weaker towards the edges.

7.2

This temperature problem could e.g. represent a pipe buried vertically in the ground.
In this case the lower end would be at constant temperature, while the top end would
be exposed to a day-night cycle.

7.3

This could e.g. be a description of the flow of lubrication between two surfaces in a
machine.

7.4

Replace the physical variables u, t, and z with the dimensionless variables @, t and Z.

P U t z
u_co’ cT ok t. L

Note that
Ou_ Qudb _ 00w _ 10
ot otdt otdt t.ot t. Ot

and;

Pu _ 0 (0z0u _01(10_ Y\ _ cod
922 0z \0zoz) 0zL\Loz)~ Loz

The source term becomes
_I2
A sin® (wtz) exp(—L(Z — 2p)).
Dropping the bars, we can now write the PDE as

ou O*u AL* [_I? -
E = @ + H sin (wtz) exp(—L(Z — 2p)).

7.5

The discrete version of the Robin boundary conditions can be written as

b — b

forx =0: 9AL = a(ul —uy),
l l
u —U
forz =1: %xn_l :Oé(’l,l/,ln—us).

These equations contain the values u} and u!, 41, both of which are outside the grid.
However, we can combine the equations above with the scheme (7.81) itself, which for
(x = 0) reads:
At
urtt =g+ S5 (g — 2up +up) + Atf)
Az
We now have two equations involving u}, and can eliminate it, resulting in the equation
I+1 l At l 1 1
ubtt =l + 2A—a:2 ((Aza — 1)u} — Azau, + ub) + Atf].

Using the same method for (z = 1) results in

At
ultt = ol +2—— ((Aza — Dul, — Azaus +ul,_) + fL.

n n Az?
7.6
See the program ex76.py.
7.7
u(z,t) = e_”gtcos(ﬂx)
0
8_1; = —WQe_”ztcos(mr)
0
Q_Z = e_”2t7r(—sin(7r:1:))
62
8—;; = e*”2t7r7r(—cos(7r:v))

(7.91) satisfies uy = Ugy-

0 —n? . —
%u(o,t) = e " ir(—sin(0)) =0
6 —72t 5 —
%u(l, t) = e " 'n(—sin(n)) =0

(7.91) satisfies Neumann boundary conditions. This solution is used in the program
ex76.py.

7.8

In order to prove that u(z,t) is a solution to the diffusion equation we simply observe
that

%u(x, t) = —ae *sin(b(z —c))
a—zu(x t) = —b%e “sin(b(z —c))
oz2

Note that a = b2. The function u can be made to fit certain Dirichlet boundary con-
ditions on the form go(t) = ae #* by choosing a = $3, and ¢ so that sin(—bc) = a.
For g1(t) = ae Pt this instead becomes sin(b(1 — ¢)) = «. Similarly, for Neu-
mann conditions of the same form, ¢ must be choosen so that bcos(—bc) = a, or
(for z = 1) beos(b(1 — ¢)) = a. In order to verify Algorithm 7.4 we simply choose
a set of values for a,b, and ¢, and run the algorithm with u(z,0) = sin(b(z — ¢)),
go(t) = exp(—at) sin(—be), and g1(t) = exp(—at) sin(b(1—)c). The results of the
numerical calculation should now be the same as the equation u(z, t).

7.9

An exact solution of the problem is

(z - 1)),

"2
u(z,t) = e~ 7 sin(

e

when the initial values are set to be I(x) = sin 5 (z — 1)).

7.10

Look at the derivatives of u:

w(z,t) = av(x,t) + dw(z,t)
ot ov ow
o = '
0% 0%v ow?
2~ ‘92 o

As both v and w solves the diffusion PDE we know that vy = v,, and w; = w,,, and
SO

Uy = avy + bwy = aVgy + bWyy = Ugy-

The boundary and initial conditions for @ are simply

0,t) = av(0,t) + bw(0,1),
1,t) = av(l,t) +bw(l,t),
0) = av(z,0)+ bw(z,0).

S
~~

>

ﬂ(w:)

Now let us look at the function u(z, t; k)

u(z,t; k) = e TR sin(mkz),
% = —m2k2e T K sin(rkzx),
2 2752
% = e ™ Flrkrk(—sin(nkz)).

We see that u; = u,, and so u is also a solution of the diffusion PDE without source
terms. The boundary and initial conditions for 4(z,t) = u(z,t; 1) + u(x,t; 100) are

a(0,t) = 0,
a(l,t) = 0,
u(z,0) = sin(rz) + 0.1sin(1007z).

The time ¢ = T when there is no visible track of w(z,t) will depend on the program
used for plotting.

7.11
The finite difference scheme is
Ué—H —ul uf_y — 2uf+ “é-}-l
At Az?

Inserting (7.93) results in

A[(1- 484 sin? (#522))"" - (1 - 484 sin? (=£22))"] sin(rk(i — 1) Aa)

Az? Az? .
At B
A(1— $8Lsin® (%M))l [sin(mk(i — 2)Az) — 2sin(rk(i — 1)Az) + sin(rkiAz)]

A2 ’

which can be reduced to

[(1— 8¢ sin® (482)) — 1] sin(rk(i — 1)A0)
At
[sin(mk(i — 2)Az) — 2sin(nk(i — 1)Az) + sin(rkiAz)]
Az?)

4

This, using a few trigonometric formulas, becomes

2 cos® (tkAx) [sin (1kiAzx) cos (TkAz) — cos (TkiAz) sin (1kAx)] =
sin (mkiAz) cos (mk2Az) — cos (mkiAx) sin (nk2Ax) + sin (rkiAz) ,

which in turn becomes
cos® (mkAz) = 1 — sin? (rkAz) .

The boundary conditions are

4At mkAz\\'
I _ .2 . _
uy =4 (1 — 552 Sin (5)) sin(rk(1 — 1)Az) =0,

and

4A¢t rkAz\\'
- — " gin? 1 =
u, =A (1 352 S0 (5)) sin(wk) = 0.

The initial condition is

u) = Asin(rk(i — 1)Axz).

7.12

Taylor expansion of e¥ and sin” y:

2 3

e = 1+y+Z +L 100
2 6
y4
siny = y2+§+0(y6)

Now we replace the relevant parts of the function for e(k, Az, At) with the two first
terms in their power series expansion:

2,2 4A , TEA
e(k, Az, At) = e ™FA_14 A—;cz sin? Wk2 ad
4At (72k2AZ? kYAt
~ 1-n2k2At—1
T k* At + A2 (] + 3)
_ Atmtk*Ag?
N 12

The leading term in the expansion of e is proportional to At and Axz?.

713

In equation (7.93) ui may increase with time if

‘1 4At gin? <7Tk‘A:E)‘

- Ax? . 2

is greater than one. The only way for this to happen is to have

4At sin2 (wkﬁx) 2,

Ax?

which only happens when
1

In this case the numerical solution is unstable.

7.14
Algorithm for solving (7.72)

SET INITTIAL CONDITIONS:
) = I(z;),fori=1,...,n
forl =0,1,...,m
UPDATE ALL INNER POINTS
U =l 1AL (kSR M) 2]
fori=2,...,n—1
INSERT BOUNDARY CONDITIONS

At(uh—u}
W =l o L A (4 k) 4 AL

1 _ ol
R A T Wy

Projects

7.4.1; Diffusion of a jump

a)
Lo o
e T Nog2
—ka—u = 0, forz=0,2L,
or
_ Ul, IL'SL
’U.(O,t) o {UQ, x>L

(NOTE: It is assumed that the pieces are of the same length L and are made of the
same metal.)

b) Scaling the problem, using

u—U,

YT —uy

and assuming U; < U, results in the equations

temperature
[=]

length

time

Figure 1: Project 7.1. Two pieces of metal with different temperature are brought
together.

ou 8%uy
ot Ox?’
% = 0, forz=0,1,
0, <05
u(0,8) = { 1, z>05

¢) See program p71.m, and Figure 1.
d) In order to show that
2
u(z,t) = e~ ™ ! cos(nx)

is a solution, simply insert u(z, t) in the equations for the scaled problem:

% = g%t cos(mz),

% = —q2emt cos(mz),
(%’u(o’t) = —me ™t sin(0) = 0,
a%”(l’t) = 0—me ™ tsin(n) = 0.

maximum error

0.5 0.6 0.7 0.8 0.9 1

04——"1" T T T
- — — Numerical approximation
<= o — Exact solution
0.2
> or
-0.2f t=0.1
—0.4 L L

Figure 2: Project 7.1 d. Comparing the exact solution to the results of the numerical
approximat, when the initial condition is (0, z) = cos(nz).

Plotting both this exact solution and the approximation yielded by the numerical
method (Figure 2) shows that the error in the numerical results decreases with time.
This indicates that the code is free of bugs.

e) We know from experience (and thermodynamics) that if we place two items of
different temperatures in contact, heat will flow from the warm item to the cold
one. In the simple case of two equally big pieces of the same metal the temperature
of both pieces will eventually become the average of the two starting temperatures.
This is consistent with the result shown in Figure 1, where the temperature of both
pieces becomes T' = 0.5.

f) In this problem the solution will reach a stationary solution just after 7' = 3. The
exact time will vary depending on At and Ax.

g) We have solved this problem (at least approximately) in exercise f, for the scaled
time, £. In order to find the time as a function of heat conduction and total lenght of
the pieces, we simply use ¢ = #t., where t = 3, and

1 .
te = EQCU4L2.
7.4.2; Periodical Injection of Pollution
a) The source term f can be specified as

K, r<r,i<t<i+1/3,i=1,2,...
0, otherwise

)= {

where i is time in days, (eight hours is 1/3 day). This is implemented in the program
p72.m.

b) Complete initial-boundary value problem:

0 10 (5,0
et = k50 (P20 + 1),
% = 0 forr=0,
c(t,r) = 0 forr=1L,
c(0,7r) = 0.

¢) Finite difference scheme for (7.97):

k At Ar.. Ar .
2 A2 ((ﬁ' + T)Z(Cz’+1 —ci) = (ri — =) (ci — Cz’l)) + Atf]

I+1 _ 1
¢ =c¢+ 2

Algorithm for solving (7.97)

SET INITIAL CONDITIONS:

& =0,fori=1,...,n

forl =0,1,...,m
UPDATE ALL INNER POINTS

d | @t =d+ B ((ri+ 5D (i — i) — (ri = B5)*(ci — cim1)) + Atf]
fori=2,...,m—1

INSERT BOUNDARY CONDITIONS:

T =ch + 28L (b —cl!) + At f!

dtt =90

e) See the program p72.m.

f) A very simple test of the implementation would be to set K = 0 and confirm that
the concentration renmain zero throughout the simulation. For a more advanced test
one could calculate the total pollution present at all times and compare this with the
total pullution from the source term.

g) Scaling equation (7.97):

10 (WD) _p 1 10 (aa10 N0 0 (0,
kr2 or (r 51"0) B kf2r(2) ro OF (r "o To arc"c) B kf2rg or (T o

The complete equation now becomes

ot 4 0 0 (50, 3
tcaf_kr%gar(T ¢|+Kf

t=3.10 t=3.20

0.25 0.25
0.2 0.2
c c
Qo Qo
F 0.15 § 0.15
= £
[[
g 01 2 01
o o
[5) o
0.05 0.05
0 0
0 2 4 6 8 10 0 2 4 6 8 10
r r
t=3.30 t=3.40
0.25 0.25
0.2 0.2
c c
Qo Qo
7 015 g 015
= £
[0} [0}
2 01 2 01
o o
o o
0.05 0.05
0 0
0 2 4 6 8 10 0 2 4 6 8 10

Figure 3: Project 7.2. Concentration of pollution by distance from the factory pipe. In
the three first figures the factory is active, and pollution is being injected. In the last
figure (t = 3.40) the factory is closed for the day.

Using t. = r2 /k, and removing the bars this becomes
Oc 10 (,0
E—T—ZE (’f‘ Ec)-}-af,

where a = rgK/kcg. If we choose t. K as the scale for concentration a equals
unity.

h) The ideal value for L will vary with the induvidual users accuracy requirements.
We have used L = 20rg.

i) The printed page is unsuited as a medium for animations, see instead figure 3 for a
look at how the concentration developes in time.
7.4.3; Compare different scalings

a) See the program p73.m. By running this program with different scalings and values
of B we see that scaling 1 fails when 8 > 1 and scale 2 fails when 8 < 1. (In this
context failing means that the values for u stray far from the values between zero
and one where we prefer to work.)

b) See figure 4.

10

0.8\ Step initial condition 7 i
0.6 7 i
=} _ - -
0.4 T]
0.2 -7]
o= ~ L L L L L L L L
0 0.1 0.2 03 04 05 06 07 08 0.9 1
X
1 T —
0.8l Initial condition: u=U, e - |
0.6 T]
=) _ - -
0.4 T g
0.21 -7 J
0 -7 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Project 7.4.3: The solutions after a certain time are the same, irrespective of
initial conditions. (3 = 1)

¢) The stationary solution, ug, obviously does not change with time, and we have
determined in exercise c¢ that the initial condition have no influence. The equations
determining u are:

0%u, ~ 0
o2
us(a) = U,
Oug
k = @Qp forx=2L
ox
Scaled versions:
Scale 1, u = [}‘b__[{ja :
8%u,
Us _ 0
02
us(a) = 0
Oug
% B forzx
where § = %
Scale 2, u =:
(927{3 ~ 0
o2

11

us(a) = U,
Oug
or

1 forz=1

. 2 . .
d) The time derivative of u, is 0, and as us, which means that %us is zero. (i.e. ug
is a straight line.) We can find the stationary solution by integrating twice:

ul(z) = /u;'(a:) dm=/0dm=01

In the case of scale 1 we know that u''(z) = @ atz = 1, which implies that C; = §.

us(m):/u's(:c) d:c:/ﬂda::,BaH-C'z

We know that us(z) = 0 atz = 0, i.e. C2 = 0. The stationary solution is simply
us(x) = Px. If B is much greater than unity then so is us. For scaling 2 the
stationary solution is simply us(z) = x.

Programs (Python, matlab)
ex76.py

#!/usr/bin/env python
The diffusion equation with Neumann boundary conditions.
Compares the results with the exact solution from exercise 7.7.

from Numeric import *

def diffeqg(I, £, g0, gl, dx, dt, m, action=None):
n int (1/dx + 1)
h = dt/ (dx*dx)
x = arrayrange (0, 1+dx/2, dx, Float)
user_data= []

um = I (x)

u = zeros(n, Float)

for 1 in range (m+1) :
t = 1*dt
Update all inner points
for 1 in range(l,n-1,1):

uli] = um([i] + h*(um[i-1] - 2*um[i] + um([i+1]) + dt*f(x[i], t)
Neumann boundary conditions:
ul0] = um[0] + (2*dt/ (dx*dx))* (um[1l] —-um[O0])
uln-1] = um[n-1] + (2*dt/ (dx*dx))* (um[n-2] —-um[n-1])
for 1 in range(len(u)): um[i] = uli]

if action is not None:
r= action(u, x, t)
if r is not None:

12

user_data.append (r)

return user_data

C =1.2

def f0(x,t) return 0.0

def IC_0(x) return zeros(len(x), Float) +C
def IC_1(x): return cos(pi*x)

def g0_0(t) return 0.0

def gl_0(t) return 0.0

def const_u(u, x, t):
e=sum(u- exp (-pi*pi*t)*cos(pi*x))
return e

dx = 0.1; dt = dx*dx/2.0; m = int (0.5/dt)
e = diffeqg(Ic_1, £0, g9g0_0, gl_0, dx,dt, m, action=const_u)
print "errors at time levels: ", e

p71.m

function ©p71(Dx,Dt,ts)

Solves the scaled problem from exercise 7.4.1c.
Will stop either when there is no more change
in the temperature or at ts.

example: p71(0.02,0.0002,0.2)

o° o° o o

x=0:Dx:1;
t=0:Dt:ts;

alpha=Dt/ (Dx*Dx)
u=zeros (length (x), length(t));

% initial condition:

i=fix (length (x)/2)+1
(i:length(x),1)=1;

For exercise d, instead use:

[

o° o

u(:,1) =cos(pi.*x)’;
1= 1; k=1;
while (any(k) "= 0 & 1< length(t))

for i=2: (length (x)-1)
u(i,l+1l)=u(i,l) + alpha*(u(i-1,1)-2*u(i,l) +u(i+l,1));
end
% boundary conditions:
u(l,l+1l)=u(l,l) + 2*alpha*(u(2,1)- u(l,1l));
u(length(x),1l+1l)=u(length(x),1l) + 2*alpha*(u(length(x)-1,1) -u(length(x),1l)
1=1+1;
k=u(:,1) — u(:,1-1)
end

13

% Plotting
mesh(t(l:1),x,u(:,[1:11));
xlabel ("time’) ;
ylabel (' length’);
zlabel (' temperature’);

p72.m

function p72(Dr,ts,L,K)

Solves the scaled problem from project 7.2.

Plots concentration by distance from factory pipe

at time ts.
example: p72(0.1,3,20,1)

o° o° o° o oe

Dt= Dr*Dr/4;
r=0:Dr:L;
t=0:Dt:ts;

% initial condition:

c=zeros (length(r),1);

% calculation:
for j=1:lenght (t)
for i=2:length(r)-1
c(i)=c(i)+Dt*...

((r(i)4Dr/2) "2* (c(i+1l)-c(i))—(r(i)-Dr/2) "2*(c(i)—-c(i-1)))/ (Dr*r(i)) "

Dt *source (j*Dt, i*Dr,K) ;
% boundary conditions:
c(l)=c(2);
c(length(r))=0;
end

end

% Plotting

plot(r,c);

xlabel ("r’);

ylabel (' concentration’);

function s=source(t, r,K)
if (rem(t,1) < 1/3 & r<1)
s=K;
else
s=0;

p73.m

function p73(Dx,Dt,ts,s,beta)

14

The heat conduction problem from project 7.4.3.
Scaled in two different ways.

Will stop either when there is no more change
in the temperature or at ts.

example: p73(0.02,0.0002,0.2,1,1)

o° o o° o° o° o

x=0:Dx:1;
t=0:Dt:ts;

alpha=Dt/ (Dx*Dx) ;
u=zeros (length (x), length(t));

f s==
Scaling 1
initial condition:

[

o° oo

i=fix (length (x

)/2)+1;
u(i:length(x),1)

=1;
$ u(:,1) =cos(pi.*x)’;
length (t)
1= 1; k=1;
while (k > le-6 & 1< length(t))
for i=2: (length (x)-1)
u(i,l+1l)=u(i,l) + alpha*(u(i-1,1)-2*u(i,l) +u(i+l,1));
end
% boundary conditions:
u(l,1+1)=0;
u(length(x),1l+1l)=u(length(x),1l) + 2*alpha*(u(length(x)-1,1) -u(length(x),1l)

1=1+1;

k = max(abs(u(:,1) — u(:,1-1)));
end
plot (x,u(:,1),"r—=");

14
xlabel ("x"); ylabel('u’);

elseif s==
% Scaling 2

% initial condition:
i=fix (length(x)/2)+1;
u(i:length(x),1)=1/beta;

1= 1, k=1;
while (k > le-6 & 1< length(t))
for i=2: (length (x)-1)
u(i,1l+1)=u(i,l) + alpha*(u(i-1,1)-2*u(i,1l) +u(i+l,1));
end
% boundary conditions:

15

u(l,1+1)=0;
u(length(x),1l+1l)=u(length(x),1l) + 2*alpha*(u(length(x)-1,1) -u(length(x),1l)
1=1+1;
k = max(abs(u(:,1) — u(:,1-1)));
end
plot (x,u(:,1),’b:");

4
xlabel ("x"); ylabel('u’);

end

16

