Errata for Elements of Scientific Computing

1st Edition, Springer, 2010
A. Tveito
H. P. Langtangen
B. F. Nielsen
X. Cai

June 9, 2011

Note: The latest version of this document will always be available for download at http://www.ifi.uio.no/cs/.

- Page 59, in the caption of Fig. 2.5. Δt should be $1 / 10$.
- Page 64 , line two from bottom. It should read "Use these two observations to conclude".
- Page 70 , the last equation on the page should be

$$
f\left(u\left(t_{n+1 / 2}\right)\right)=\frac{1}{2}\left(f\left(u\left(t_{n}\right)\right)+f\left(u\left(t_{n+1}\right)\right)\right)+O\left(\Delta t^{2}\right)
$$

- Page 71, the first equation on the page should be

$$
\frac{u\left(t_{n+1}\right)-u\left(t_{n}\right)}{\Delta t}=\frac{1}{2}\left(f\left(u\left(t_{n}\right)\right)+f\left(u\left(t_{n+1}\right)\right)\right)+O\left(\Delta t^{2}\right)
$$

- Page 92, Equation (3.77) should be

$$
\frac{e^{F}}{F} \frac{e^{S}}{S^{2}}=\frac{e^{F_{0}}}{F_{0}} \frac{e^{S_{0}}}{S_{0}^{2}}
$$

- Page 92, Equation (3.78) should be

$$
K_{0}=\frac{e^{F_{0}}}{F_{0}} \frac{e^{S_{0}}}{S_{0}^{2}}
$$

- Page 93 , the first equation on the page should be

$$
K_{n}=\frac{e^{F_{n}}}{F_{n}} \frac{e^{S_{n}}}{S_{n}^{2}}
$$

- Page 141, line 1 beneath Equation (4.205). It should read "see (1.30) on page 19".
- Page 150, in Table 5.1. The y_{i} value associated with year 1995 should be 0.38 .
- Page 156. Equation (5.25) should be

$$
\sum_{i=1}^{10} t_{i} y_{i}=1 \cdot 0.29+2 \cdot 0.14+3 \cdot 0.19+\cdots+10 \cdot 0.29=19
$$

- Page 157. Equation (5.26) should be

$$
55 \alpha+385 \beta=19
$$

- Page 157. Equation (5.27) should be

$$
\left(\begin{array}{cc}
10 & 55 \\
55 & 385
\end{array}\right)\binom{\alpha}{\beta}=\binom{3.12}{19}
$$

- Page 157. Equation (5.29) should be

$$
\binom{\alpha}{\beta}=\frac{1}{825}\left(\begin{array}{cc}
385 & -55 \\
-55 & 10
\end{array}\right)\binom{3.12}{19} \approx\binom{0.190}{0.022}
$$

- Page 157. Equation (5.30) should be

$$
p(t)=0.190+0.022 t
$$

- Page 157. Equation (5.32) should be

$$
p_{1}(t)=0.190+0.022 t
$$

- Page 159, between Equation (5.41) and Equation (5.42). The correct value of $\sum_{i=1}^{10} t_{i}^{4}$ should be 25333 . The correct value of $\sum_{i=1}^{10} t_{i} y_{i}$ should be 19 .
- Page 159. Equation (5.42) should be

$$
\left(\begin{array}{ccc}
10 & 55 & 385 \\
55 & 385 & 3025 \\
385 & 3025 & 25333
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{c}
3.12 \\
19 \\
138.7
\end{array}\right)
$$

- Page 160. Equation (5.43) should be

$$
\alpha \approx 0.1202 \quad \beta \approx 0.0569 \quad \gamma \approx-0.031
$$

- Page 160. Equation (5.45) should be

$$
p_{1}(t)=0.190+0.022 t
$$

- Page 160. Equation (5.46) should be

$$
p_{2}(t)=0.1202+0.0569 t-0.0031 t^{2}
$$

- Page 162. Equation (5.54) should be

$$
F(\alpha, \beta)=\sum_{i=1}^{n}\left(\alpha+\beta t_{i}-y_{i}\right)^{2}
$$

- Page 217, line 2 in Section 6.3. It should be "All these languages ..."
- Page 263, in the psudo-code of class Trapezoidal. The first assignment for x should be $\mathrm{x}=$ prm.a
- Page 321, line 2. It should be $u_{0}^{\ell+1}$ instead of $u_{1}^{\ell+1}$, and $i=0$ instead of $i=1$.
- Page 328, line 2 beneath Equation (7.106). It should be "at $t=0.1$ ".
- Page 328, line 5 beneath Equation (7.106). Δt should be $1 / 170$.
- Page 328, lines 7-8 beneath Equation (7.106). Δt should be $1 / 820$.
- Page 328, line 10 beneath Equation (7.106). Δt should be $1 / 7060$.
- Page 329, in the caption of Fig. 7.15. The first sentence should read "The solid line represents the solution (7.106) at $t=0.1$ ". Also, the text "in the cases of $n=10$ and $m=17$ " should be removed.
- Page 329, line 3 beneath Fig. 7.15. It should read " Δt is increased from $1 / 7060$ to $1 / 6810^{\prime \prime}$.
- Page 330, line 3 from bottom. Δt should be $1 / 340$.
- Page 331, line 4 from bottom. It should read "as the time step is increased".
- Page 336, in the middle of the page. It should read "The maximum time step is $\Delta t=\Delta x^{2} / 2 "$. This is because Sect. 7.4 .5 has used the model problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial t^{2}}$.
- Page 386, the line beneath Equation (8.75). It should read "Furthermore, if f satisfies (8.75), then the solution of (8.1)-(8.3) is"

