Computing Integrals

Bagels

We study a simple example of scientific computing.

- Assume that you run a Bagel\&Juice cafè
- Each night you have to decide how many bagels you should order for the next day
- If you order too few - your customers will not be satisfied, and you will loose income
- If you order too many - it will be a waste of food and you loose money

Bagels

One strategy could be to order so many bagels that you

- in 95% of the days have enough
- in 5% of the days have to disappoint the last few customers

The question is therefore:

- How many bagels should be ordered to ensure that you have enough food 95% of the days?
- We shall not go into all the details of this statistical problem, but we will study the computational problem that arises in more depth

Bagels

- In statistics the number of sold bagels during one day is modeled with a probability density function - $f(x)$
- The probability, p, that the number of sold bagels is between a and b, is given by

$$
\begin{equation*}
p=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

- The most common probability density function is the normal-distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} s} e^{-\frac{(x-x)^{2}}{2 s^{2}}}
$$

where \bar{x} is the mean value and s is called the standard deviation

Bagels

The mean value and the standard deviation can be estimated by the following procedure

- Assume that you have written down the number of sold bagels for a long period (n days), $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$
- The mean value relative to this sample is given by

$$
\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}
$$

- The sample standard deviation is given by

$$
s=\sqrt{\frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}{n-1}}
$$

Bagels

Assume that these numbers for the Bagel\& Juice cafè is $\bar{x}=300$ and $s=20$.

- The probability density function is then

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi} 20} e^{-\frac{(x-300)^{2}}{2220^{2}}} \tag{2}
\end{equation*}
$$

- The probability of selling less than b bagels is now given by

$$
\begin{equation*}
p=\int_{-\infty}^{b} \frac{1}{\sqrt{2 \pi} 20} e^{-\frac{(x-300)^{2}}{2200^{2}}} d x \tag{3}
\end{equation*}
$$

- How can p be computed for a given b ?
- Note that $p \in[0,1]$

Figure 1: The figure illustrates the normal probability distribution in the case of $\bar{x}=300$ and $s=20$

Simplifications

- The integral can be divided into two parts

$$
p=\int_{-\infty}^{300} f(x) d x+\int_{300}^{b} f(x) d x .
$$

- Note that $f(x)$ is symmetric with respect to $x=300$ in the sense that

$$
f(300+x)=f(300-x)
$$

- We conclude that

$$
\int_{-\infty}^{300} f(x) d x=\int_{300}^{\infty} f(x) d x
$$

Simplifications

- This means that

$$
\int_{-\infty}^{300} f(x) d x=\frac{1}{2} \int_{-\infty}^{\infty} f(x) d x
$$

- Every probability density function must fulfill

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

- which means that

$$
\int_{-\infty}^{300} f(x) d x=\frac{1}{2}
$$

Simplifications

- The computation of (3) can therefore be simplified to the computation of

$$
\begin{equation*}
p=\frac{1}{2}+\int_{300}^{b} f(x) d x \tag{4}
\end{equation*}
$$

- Note that the function $f(x)=\frac{1}{\sqrt{2 \pi 20}} e^{-\frac{(x-300)^{2}}{2 \cdot 10^{2}}}$ is not analytically integrable (i.e. $\int_{a}^{x} f(\xi) d \xi$ can not be expressed by elementary functions)

Trapezoid method

- Generally we will study how to approximate definitive integrals of the form

$$
\int_{a}^{b} f(x) d x
$$

- Consider e.g. the function $f(x)=e^{x}$ and calculate

$$
\begin{equation*}
\int_{1}^{2} e^{x} d x \tag{5}
\end{equation*}
$$

- We will in the following pretend that this integral is not analytically integrable, and later use the exact analytical solution for comparison

Trapezoid method

Figure 2: The figure illustrates how the integral of $f(x)=e^{x}$ (lower curve) may be approximated by a trapezoid on a given interval

Trapezoid method

- Let $y(x)$ be the straight line equal to f at the endpoints $x=1$ and $x=2$, i.e.

$$
y(x)=e[1+(e-1)(x-1)]
$$

- Note that

$$
\begin{aligned}
& y(1)=e=f(1) \\
& y(2)=e^{2}=f(2)
\end{aligned}
$$

- Since $y(x) \approx f(x)$ we approximate the integral by

$$
\begin{equation*}
\int_{1}^{2} e^{x} d x \approx \int_{1}^{2} y(x) d x \tag{6}
\end{equation*}
$$

Trapezoid method

We can now compute both integrals and compare the results

- Approximate

$$
\int_{1}^{2} y(x) d x=\int_{1}^{2} e[1+(e-1)(x-1)] d x=\frac{1}{2} e+\frac{1}{2} e^{2} \approx 5.0537
$$

- Exact

$$
\int_{1}^{2} e^{x} d x=e(e-1) \approx 4.6708
$$

Trapezoid method

The relative error is

$$
\frac{5.0537-4.6708}{5.0537}
$$

Trapezoid method

- Generally we can approximate the integral of f by

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} y(x) d x \tag{7}
\end{equation*}
$$

where $y(x)$ is a straight line equal to f at the endpoints, i.e.

$$
\begin{equation*}
y(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a) \tag{8}
\end{equation*}
$$

- $y(x)$ is called the linear interpolation of f in the interval [a,b]

Trapezoid method

- Since y is linear, it is easy to compute the integral of this function

$$
\begin{aligned}
\int_{a}^{b} y(x) d x & =\int_{a}^{b}\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] d x \\
& =(b-a) \frac{1}{2}(f(a)+f(b))
\end{aligned}
$$

- The trapezoid rule is therefore given by

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx(b-a) \frac{1}{2}(f(a)+f(b)) \tag{9}
\end{equation*}
$$

Example 1

- $f(x)=\sin (x), a=1, b=1.5$
- Trapezoid method

$$
\int_{1}^{1.5} f(x) d x \approx(1.5-1) \frac{1}{2}(\sin (1)+\sin (1.5)) \approx 0.4597
$$

- The exact value

$$
\int_{1}^{1.5} f(x) d x=-[\cos (x)]_{1}^{1.5}=-(\cos (1.5)-\cos (1)) \approx 0.4696
$$

- The relative error is

$$
\frac{0.4696-0.4597}{0.4696} \cdot 100 \% \approx 2.11 \%
$$

Trapezoid method

Now we approximate the integral using two trapezoids

- Choosing the middle point between a and b, $c=(a+b) / 2$, we have that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

- Using (9) on each integral gives

$$
\int_{a}^{b} f(x) d x \approx\left[(c-a) \frac{1}{2}(f(a)+f(c))\right]+\left[(b-c) \frac{1}{2}(f(c)+f(b))\right.
$$

Trapezoid method

- By using that

$$
c-a=b-c=\frac{1}{2}(b-a),
$$

we get

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{1}{4}(b-a)[f(a)+2 f(c)+f(b)] \tag{10}
\end{equation*}
$$

Example 2

- Using (10) on the problem considered in Example 1 gives

$$
\int_{1}^{1.5} \sin (x) d x \approx \frac{1}{4} \cdot \frac{1}{2}[\sin (1)+2 \sin (1.25)+\sin (1.5)] \approx 0.4671
$$

- The relative error of this approximation is

$$
\frac{0.4696-0.4671}{0.4696} \cdot 100 \%=0.53 \%
$$

- This is significantly better than the approximation computed in in Example 1, where the error was 2.11\%

Trapezoid method

Figure 3: The figure illustrates how the integral of $f(x)=\sin (x)$ can be approximated by two trapezoids on a given interval

Trapezoid method

More generally we can approximate the integral using n trapezoids

- Let $h=\frac{b-a}{n}$
- Define $x_{i}=a+i h$
- The points

$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b
$$

divide the interval from a to b into n subintervals of length h

Trapezoid method

- The integral has the following additive property

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x \\
& =\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) d x \tag{11}
\end{align*}
$$

- We use (9) on each integral, i.e.

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x \approx\left(x_{i+1}-x_{i}\right) \frac{1}{2}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]
$$

Trapezoid method

Since $h=x_{i+1}-x_{i}$, we get

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) d x \\
\approx & \sum_{i=0}^{n-1} \frac{h}{2}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right] \\
= & \frac{h}{2}\left(\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right]\right. \\
& \left.+\cdots+\left[f\left(x_{n-2}\right)+f\left(x_{n-1}\right)\right]+\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]\right) \\
= & h\left[\frac{1}{2} f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots\right. \\
& \left.\cdots+f\left(x_{n-2}\right)+f\left(x_{n-1}\right)+\frac{1}{2} f\left(x_{n}\right)\right]
\end{aligned}
$$

Trapezoid method

Written more compactly

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{n}\right)\right] \tag{12}
\end{equation*}
$$

Example 3

The integral considered in Example 1 with $n=100$.

- $h=\frac{b-a}{n}=\frac{0.5}{100}=0.005$
- We get

$$
\begin{aligned}
\int_{1}^{1.5} \sin (x) d x & \approx 0.005\left[\frac{1}{2} \sin (1)+\sin (1.005)+\cdots+\frac{1}{2} \sin (1.5)\right] \\
& =0.469564
\end{aligned}
$$

- The relative error is

$$
\frac{0.469565-0.469564}{0.469565} \cdot 100 \%=0.0002 \%
$$

Example 4

Calculate $\int_{0}^{1} f(x) d x$, where $f(x)=(1+x) e^{x}$

- The exact integral is

$$
\int_{0}^{1}(1+x) e^{x} d x=\left[x e^{x}\right]_{0}^{1}=e
$$

- Define $T_{h}=h\left[\frac{1}{2} f(0)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2} f(1)\right]$
- where n is given and $h=\frac{1}{n}$ and $x_{i}=i h$ for $i=1, \ldots, n$
- We want to study the error defined by

$$
E_{h}=\left|e-T_{h}\right|
$$

Example 4

n	h	E_{h}	E_{h} / h^{2}
1	1.0000	0.5000	0.5000
2	0.5000	0.1274	0.5096
4	0.2500	0.0320	0.5121
8	0.1250	0.0080	0.5127
16	0.0625	0.0020	0.5129
32	0.0313	0.0005	0.5129
64	0.0156	0.0001	0.5129

Table 1: The table shows the number of intervals, n, the length of the intervals, h, the error, E_{h}, and E_{h} / h^{2}

Example 4

- From the table it seems that

$$
\frac{E_{h}}{h^{2}} \approx 0.5129
$$

for small values of h

- That is

$$
\begin{equation*}
E_{h} \approx 0.5129 h^{2} \tag{13}
\end{equation*}
$$

- This means that we can get as accurate approximation as we want

Example 4

- Assume that you want $E_{h} \leq 10^{-5}$
- then $0.5129 h^{2} \leq 10^{-5}$
- or $h \leq 0.0044$
- This means that $n=1 / h \geq 226.47$
- n has to be an integer, so therefore we set $n=227$ to obtain the desired accuracy

Example 5

We want to test the trapezoid method for the following three integrals:

- $\int_{0}^{1} x^{4} d x$
- $\int_{0}^{1} x^{20} d x$
- $\int_{0}^{1} \sqrt{x} d x$
- Let E_{h} denote the error for a given value of h, i.e.

$$
E_{h}=\left|\int_{a}^{b} f(x) d x-h\left[\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{n} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{n}\right)\right]\right|
$$

where $h=\frac{b-a}{n}$ and $x_{i}=a+i h$ for $i=0, \ldots, n$

Example 5

Figure 4: The figure shows the graph of \sqrt{x} (upper), x^{4} (middle) and x^{20} (lower)

Example 5

	$\int_{0}^{1} x^{4} d x=\frac{1}{5}$		$\int_{0}^{1} x^{20} d x=\frac{1}{21}$		$\int_{0}^{1} \sqrt{x} d x=\frac{2}{3}$	
h	$10^{5} E_{h}$	E_{h} / h^{2}		$10^{5} E_{h}$	E_{h} / h^{2}	$10^{5} E_{h}$

Table 2: The table shows how accurate the trapezoidal method is for approximating three definite integrals.

Example 5

Conclusions

- In the two first integrals $\frac{E_{h}}{h^{2}}$ seems to be constant
- The constant is smaller for x^{4} than for x^{20}
- The approximate integral of \sqrt{x} on $[0,1]$, seems to converge towards the correct value as $h \rightarrow 0$, but $\frac{E_{h}}{h^{2}}$ increases with decreasing h

Trapezoid method

- We have studied several examples where the exact integral is obtainable
- In practice these examples are not so interesting
- Numerical integration is more interesting on examples where analytical integration is impossible
- Recall that the problem faced by the Bagel\&Juice has no analytical solution

Bagels

- Recall that we wanted to compute

$$
p=p(b)=\frac{1}{2}+\int_{300}^{b} \frac{1}{\sqrt{2 \pi} 20} e^{-\frac{(x-300)^{2}}{2.200^{2}}} d x,
$$

and find the smallest possible value of $b=b^{*}$ such that $p=p\left(b^{*}\right) \geq 0.95$

- Then b^{*} corresponds to the number of bagels you should buy to be at least 95% certain that you have enough bagels for the next day

Bagels

We have that

$$
\begin{aligned}
p(b+1) & =\frac{1}{2}+\int_{300}^{b+1} f(x) d x \\
& =\frac{1}{2}+\int_{300}^{b} f(x) d x+\int_{b}^{b+1} f(x) d x \\
& =p(b)+\int_{b}^{b+1} f(x) d x
\end{aligned}
$$

- Remembering that $p(300)=\frac{1}{2}$, we can now produce $p(b)$ for any $b \geq 300$ by the following iterative procedure

$$
p(b+1)=p(b)+\int_{b}^{b+1} f(x) d x, \quad b=300,301, \ldots
$$

- The integral $\int_{h}^{b+1} f(x) d x$ can be computed with the $\mathrm{e}_{\text {wies } \mathbb{N F} 2320-0.3848}$

Figure 5: The graph of $p(b)$ where b is the number of bagels and $p(b)$ is the probability that the demand for bagels during a day is less than or equal to b.

Bagels

b	$p(b)$
331	0.939
332	0.945
333	0.951
334	0.955

Table 3: The table shows the the probability $p(b)$ for the demand of bagels at one particular day to be less than or equal to b.

Conclusion

- From Figure 5 we see that the desired value of b assuring sufficient supply in at least 95% of the days, is between 330 and 340
- Further more from Table 3 we observe that by choosing $b^{*}=333$, we will get sufficient supplies at 95.1% of the days

