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Bagels

We study a simple example of scientific computing.
• Assume that you run a Bagel&Juice cafè
• Each night you have to decide how many bagels you

should order for the next day
• If you order too few - your customers will not be

satisfied, and you will loose income
• If you order too many - it will be a waste of food and

you loose money
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Bagels

One strategy could be to order so many bagels that you
• in 95% of the days have enough
• in 5% of the days have to disappoint the last few

customers

The question is therefore:
• How many bagels should be ordered to ensure that

you have enough food 95% of the days?
• We shall not go into all the details of this statistical

problem, but we will study the computational problem
that arises in more depth
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Bagels

• In statistics the number of sold bagels during one day
is modeled with a probability density function - f (x)

• The probability, p, that the number of sold bagels is
between a and b, is given by

p =

∫ b

a
f (x)dx (1)

• The most common probability density function is the
normal-distribution

f (x) =
1√
2πs

e−
(x−x̄)2

2s2

where x̄ is the mean value and s is called the standard
deviation
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Bagels

The mean value and the standard deviation can be
estimated by the following procedure

• Assume that you have written down the number of sold
bagels for a long period (n days), x1,x2,x3, · · · ,xn

• The mean value relative to this sample is given by

x =
1
n

n

∑
j=1

x j

• The sample standard deviation is given by

s =

√

∑n
j=1(x j − x)2

n−1
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Bagels

Assume that these numbers for the Bagel& Juice cafè is
x = 300and s = 20.

• The probability density function is then

f (x) =
1√

2π20
e−

(x−300)2

2·202 (2)

• The probability of selling less than b bagels is now
given by

p =

∫ b

−∞

1√
2π20

e−
(x−300)2

2·202 dx (3)

• How can p be computed for a given b?
• Note that p ∈ [0,1]
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Figure 1: The figure illustrates the normal probability distribution

in the case of x̄ = 300and s = 20
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Simplifications

• The integral can be divided into two parts

p =

∫ 300

−∞
f (x)dx+

∫ b

300
f (x)dx.

• Note that f (x) is symmetric with respect to x = 300 in
the sense that

f (300+ x) = f (300− x)

• We conclude that
∫ 300

−∞
f (x)dx =

∫ ∞

300
f (x)dx
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Simplifications

• This means that
∫ 300

−∞
f (x)dx =

1
2

∫ ∞

−∞
f (x)dx

• Every probability density function must fulfill
∫ ∞

−∞
f (x)dx = 1

• which means that
∫ 300

−∞
f (x)dx =

1
2
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Simplifications

• The computation of (3) can therefore be simplified to
the computation of

p =
1
2

+
∫ b

300
f (x)dx (4)

• Note that the function f (x) = 1√
2π20

e−
(x−300)2

2·102 is not

analytically integrable (i.e.
∫ x

a f (ξ)dξ can not be
expressed by elementary functions)
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Trapezoid method

• Generally we will study how to approximate definitive
integrals of the form

∫ b

a
f (x)dx

• Consider e.g. the function f (x) = ex and calculate

∫ 2

1
exdx (5)

• We will in the following pretend that this integral is not
analytically integrable , and later use the exact
analytical solution for comparison
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Trapezoid method
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Figure 2: The figure illustrates how the integral of f (x) = ex (lower

curve) may be approximated by a trapezoid on a given interval
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Trapezoid method

• Let y(x) be the straight line equal to f at the endpoints
x = 1 and x = 2, i.e.

y(x) = e [1+(e−1)(x−1)]

• Note that

y(1) = e = f (1)

y(2) = e2 = f (2)

• Since y(x) ≈ f (x) we approximate the integral by

∫ 2

1
exdx ≈

∫ 2

1
y(x)dx (6)
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Trapezoid method

We can now compute both integrals and compare the
results

• Approximate

∫ 2

1
y(x)dx =

∫ 2

1
e [1+(e−1)(x−1)]dx =

1
2

e+
1
2

e2≈5.0537

• Exact
∫ 2

1
exdx = e(e−1) ≈ 4.6708
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Trapezoid method

The relative error is
•

5.0537−4.6708
5.0537

·100%≈ 7.6%
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Trapezoid method

• Generally we can approximate the integral of f by

∫ b

a
f (x)dx ≈

∫ b

a
y(x)dx (7)

where y(x) is a straight line equal to f at the endpoints,
i.e.

y(x) = f (a)+
f (b)− f (a)

b−a
(x−a) (8)

• y(x) is called the linear interpolation of f in the interval
[a,b]
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Trapezoid method

• Since y is linear, it is easy to compute the integral of
this function

∫ b

a
y(x)dx =

∫ b

a

[

f (a)+
f (b)− f (a)

b−a
(x−a)

]

dx

= (b−a)
1
2

( f (a)+ f (b))

• The trapezoid rule is therefore given by

∫ b

a
f (x)dx ≈ (b−a)

1
2

( f (a)+ f (b)) (9)
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Example 1

• f (x) = sin(x), a = 1, b = 1.5

• Trapezoid method

∫ 1.5

1
f (x)dx ≈ (1.5−1)

1
2
(sin(1)+sin(1.5)) ≈ 0.4597

• The exact value
∫ 1.5

1
f (x)dx =− [cos(x)]1.5

1 =−(cos(1.5)−cos(1))≈ 0.4696

• The relative error is

0.4696−0.4597
0.4696

·100%≈ 2.11%
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Trapezoid method

Now we approximate the integral using two trapezoids
• Choosing the middle point between a and b,

c = (a+b)/2, we have that

∫ b

a
f (x)dx =

∫ c

a
f (x)dx+

∫ b

c
f (x)dx

• Using (9) on each integral gives

∫ b

a
f (x)dx≈

[

(c−a)
1
2

( f (a)+ f (c))

]

+

[

(b− c)
1
2

( f (c)+ f (b))

]
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Trapezoid method

• By using that

c−a = b− c =
1
2
(b−a),

we get

∫ b

a
f (x)dx ≈ 1

4
(b−a) [ f (a)+2 f (c)+ f (b)] (10)
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Example 2

• Using (10) on the problem considered in Example 1
gives

∫ 1.5

1
sin(x)dx≈ 1

4
· 1
2

[sin(1)+2sin(1.25)+sin(1.5)]≈ 0.4671

• The relative error of this approximation is

0.4696−0.4671
0.4696

·100%= 0.53%

• This is significantly better than the approximation
computed in in Example 1, where the error was 2.11%
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Trapezoid method

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure 3: The figure illustrates how the integral of f (x) = sin(x)

can be approximated by two trapezoids on a given interval
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Trapezoid method

More generally we can approximate the integral using n
trapezoids

• Let h = b−a
n

• Define xi = a+ ih

• The points

a = x0 < x1 < · · · < xn−1 < xn = b

divide the interval from a to b into n subintervals of
length h
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Trapezoid method

• The integral has the following additive property

∫ b

a
f (x)dx =

∫ x1

x0

f (x)dx+

∫ x2

x1

f (x)dx+ · · ·+
∫ xn

xn−1

f (x)dx

=
n−1

∑
i=0

∫ xi+1

xi

f (x)dx (11)

• We use (9) on each integral, i.e.
∫ xi+1

xi

f (x)dx ≈ (xi+1− xi)
1
2

[ f (xi)+ f (xi+1)]
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Trapezoid method

Since h = xi+1− xi, we get

∫ b

a
f (x)dx =

n−1

∑
i=0

∫ xi+1

xi

f (x)dx

≈
n−1

∑
i=0

h
2

[ f (xi)+ f (xi+1)]

=
h
2

(

[ f (x0)+ f (x1)]+ [ f (x1)+ f (x2)]+ [ f (x2)+ f (x3)]

+ · · ·+[ f (xn−2)+ f (xn−1)]+ [ f (xn−1)+ f (xn)]
)

= h

[

1
2

f (x0)+ f (x1)+ f (x2)+ · · ·

· · ·+ f (xn−2)+ f (xn−1)+
1
2

f (xn)

]
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Trapezoid method

Written more compactly

∫ b

a
f (x)dx ≈ h

[

1
2

f (x0)+
n−1

∑
i=1

f (xi)+
1
2

f (xn)

]

(12)
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Example 3

The integral considered in Example 1 with n = 100.

• h = b−a
n = 0.5

100 = 0.005

• We get

∫ 1.5

1
sin(x)dx ≈ 0.005

[

1
2

sin(1)+sin(1.005)+ · · ·+ 1
2

sin(1.5)

]

= 0.469564

• The relative error is

0.469565−0.469564
0.469565

·100%= 0.0002%
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Example 4

Calculate
∫ 1

0 f (x)dx, where f (x) = (1+ x)ex

• The exact integral is

∫ 1

0
(1+ x)exdx = [xex]10 = e

• Define Th = h
[

1
2 f (0)+∑n−1

i=1 f (xi)+ 1
2 f (1)

]

• where n is given and h = 1
n and xi = ih for i = 1, . . . ,n

• We want to study the error defined by

Eh = |e−Th|
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Example 4

n h Eh Eh/h2

1 1.0000 0.5000 0.5000

2 0.5000 0.1274 0.5096

4 0.2500 0.0320 0.5121

8 0.1250 0.0080 0.5127

16 0.0625 0.0020 0.5129

32 0.0313 0.0005 0.5129

64 0.0156 0.0001 0.5129

Table 1: The table shows the number of intervals, n, the length of

the intervals, h, the error, Eh, and Eh/h2
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Example 4

• From the table it seems that

Eh

h2
≈ 0.5129

for small values of h

• That is
Eh ≈ 0.5129h2 (13)

• This means that we can get as accurate approximation
as we want
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Example 4

• Assume that you want Eh ≤ 10−5

• then 0.5129h2 ≤ 10−5

• or h ≤ 0.0044

• This means that n = 1/h ≥ 226.47

• n has to be an integer, so therefore we set n = 227 to
obtain the desired accuracy

Lectures INF2320 – p. 31/48



Example 5

We want to test the trapezoid method for the following three
integrals:

• ∫ 1
0 x4dx

• ∫ 1
0 x20dx

• ∫ 1
0

√
xdx

• Let Eh denote the error for a given value of h, i.e.

Eh =

∣

∣

∣

∣

∣

∫ b

a
f (x)dx−h

[

1
2

f (x0)+
n

∑
i=1

f (xi)+
1
2

f (xn)

]
∣

∣

∣

∣

∣

,

where h = b−a
n and xi = a+ ih for i = 0, . . . ,n
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Example 5
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Figure 4: The figure shows the graph of
√

x (upper), x4 (middle)

and x20 (lower)
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Example 5

∫ 1
0 x4dx = 1

5

∫ 1
0 x20dx = 1

21

∫ 1
0

√
xdx = 2

3

h

0.01
0.005
0.0025
0.00125

105Eh Eh/h2

3.33 0.33
0.83 0.33
0.21 0.33
0.05 0.33

105Eh Eh/h2

16.66 1.67
4.17 1.67
1.04 1.67
0.26 1.67

105Eh Eh/h2

20.37 2.04
7.25 2.90
2.57 4.17
0.91 5.84

Table 2: The table shows how accurate the trapezoidal method

is for approximating three definite integrals.
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Example 5

Conclusions
• In the two first integrals Eh

h2 seems to be constant

• The constant is smaller for x4 than for x20

• The approximate integral of
√

x on [0,1], seems to
converge towards the correct value as h → 0, but Eh

h2

increases with decreasing h
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Trapezoid method

• We have studied several examples where the exact
integral is obtainable

• In practice these examples are not so interesting
• Numerical integration is more interesting on examples

where analytical integration is impossible
• Recall that the problem faced by the Bagel&Juice has

no analytical solution
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Bagels

• Recall that we wanted to compute

p = p(b) =
1
2

+

∫ b

300

1√
2π20

e−
(x−300)2

2·202 dx,

and find the smallest possible value of b = b∗ such that
p = p(b∗) ≥ 0.95

• Then b∗ corresponds to the number of bagels you
should buy to be at least 95% certain that you have
enough bagels for the next day
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Bagels

We have that

p(b+1) =
1
2

+
∫ b+1

300
f (x)dx

=
1
2

+

∫ b

300
f (x)dx+

∫ b+1

b
f (x)dx

= p(b)+

∫ b+1

b
f (x)dx.

• Remembering that p(300) = 1
2, we can now produce

p(b) for any b ≥ 300by the following iterative procedure

p(b+1) = p(b)+

∫ b+1

b
f (x)dx, b = 300,301, . . .

• The integral
∫ b+1

b f (x)dx can be computed with theLectures INF2320 – p. 38/48
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Figure 5: The graph of p(b) where b is the number of bagels and

p(b) is the probability that the demand for bagels during a day is less

than or equal to b.
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Bagels

b p(b)

331 0.939
332 0.945
333 0.951
334 0.955

Table 3: The table shows the the probability p(b) for the demand

of bagels at one particular day to be less than or equal to b.
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Conclusion

• From Figure 5 we see that the desired value of b
assuring sufficient supply in at least 95%of the days, is
between 330 and 340

• Further more from Table 3 we observe that by
choosing b∗ = 333, we will get sufficient supplies at
95.1% of the days
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