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Differential equations

• A differential equations is: an equations that relate a
function to its derivatives in such a way that the
function can be determined

• In practice, differential equations typically describe
quantities that changes in relation to each other

• Examples of such equations arise in several disciplines
of Science and Technology (e.g. physics, chemistry,
biology, economy, weather forecasting,...)

• During the last decades major progress in Science and
Technology has evolved as a result of increased ability
of solving differential equations

• These progresses are expected to continue in the
future with increased strength
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Differential equations

There are two main contributions that has made this
possible

• the development of numerical algorithms and software
• the development of computers

Scientists have the last three centuries spend much effort
on describing Nature with differential equations. Most of
them could not be solved.
The last few decades Science recovers new opportunities.
We will in this course see how basic principles can be
described with differential equations, and consider how
these can be solved numerically.
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Cultivation of rabbits

• A number of rabbits are placed on an isolated island
with perfect environments for them

• How will the number of rabbits grow?

Note that this question can not be answered based on
clever thinking only.
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The simplest model

• Let r = r(t) denote the number of rabbits

• Let r0 = r(0) denote the initial number of rabbits
• Assume that the change of rabbits per time is given by

f (t)

• For a small period of time ∆t > 0, we have

r(t +∆t)− r(t)
∆t

= f (t) (1)

• Assuming that r(t) is continuous and differentiable and
letting ∆t go to zero, we obtain

r′(t) = f (t) (2)
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The simplest model

• From the fundamental theorem of Calculus, we get the
solution

r(t) = r(0)+
∫ t

0
f (s)ds (3)

• The integral can then be calculated as accurate as we
want, with the methods presented in the previous
lectures
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Exponential growth

• We now assume that the growth in population is
proportional to the number of rabbits, i.e

r(t +∆t)− r(t)
∆t

= ar(t), (4)

where a is a positive constant
• Letting ∆t go to zero we get

r′(t) = ar(t) (5)

• In practice a has to be measured
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Analytical solution

• We want to solve the problem

r′(t) = ar(t) (6)

with initial condition

r(0) = r0

• Since
dr
dt

= ar

• we have
1
r

dr = adt
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Analytical solution

• by integrating we get
∫

1
r

dr =
∫

adt

• which gives
ln(r) = at + c (7)

where c is a constant of integration
• The right value for c is received by putting t = 0

c = ln(r0)
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Analytical solution

• From (7) we get

ln(r(t))− ln(r0) = at

• or

ln(
r(t)
r0

) = at

• and therefore
r(t) = r0eat (8)

• Conclusion: the number of rabbits increase
exponentially in time
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Uniqueness

Is the solution of (5) unique?
• Assume that there exists two solutions r(t) and q(t) of

(5), i.e r(t) and q(t) solves the two systems

r′(t) = ar(t) q′(t) = aq(t)

r(0) = r0 q(0) = r0

• Define the difference by e(t) = r(t)−q(t)

• The difference fulfills the initial condition

e(0) = r(0)−q(0) = 0

(this value may be called e0 = 0)
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Uniqueness

• We see that e′(t) has the property

e′(t) = r′(t)−q′(t)

= a(r(t)−q(t))

= ae(t)

• Summarized we have

e′(t) = ae(t) (9)

e(0) = 0

• From this e(0) = 0⇒ e′(0) = 0, and we can then
conclude that e(t) = 0 for all time
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Uniqueness

• Since
e(t) = r(t)−q(t)

we get

q(t) = r(t),

which means that the solution is unique
• i.e., only r(t) = r0eat solves (5)
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Stability

How does wrong initial value influence on the solution?
• In practice initial values are often uncertain
• Just think about counting the number of rabbits on an

island
• We will therefore study the difference in the solutions

for the two systems

r′(t) = ar(t) q′(t) = aq(t)

r(0) = r0 q(0) = q0

where r0 6= q0

• Let the difference be denoted d(t) = r(t)−q(t)
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Stability

• We see that d(t) fulfills the following initial value
problem

d′(t) = ad(t)

d(0) = r0−q0

• By defining d0 = r0−q0, it follows that the solution can
be written d(t) = d0eat

• or r(t)−q(t) = (r0−q0)eat

• therefore

|r(t)−q(t)| = |r0−q0|e
at
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Stability

• We divide both sides with r(t) = r0eat and get

|r(t)−q(t)|
r(t)

=
|r0−q0|

r0
(10)

• We conclude that the relative error at time t is equal to
the initial relative error

• We also conclude that r(t) → q(t) as r0 → q0

• The problem is therefore referred to as stable
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Logistic growth

The exponential growth is not realistic, since the number of
rabbits will go to infinity as the time increase.

• We assume that there is a carrying capacity R of the
island

• This number tells how many rabbits the island can
feed, host etc.

• The logistic model reads

r′(t) = ar(t)

(

1−
r(t)
R

)

(11)

where a > 0 is the growth rate and R > 0 is the carrying
capacity
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Logistic growth

• If r0 << R, we see that

r(t)
R

≈ 0

for small t

• and thus
r′(t) ≈ ar(t)

• This means that logistic and the exponential model
give similar results as long as r(t) << R
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Logistic growth

• Note that r(t) < R ⇒ (1− r(t)/R) ≥ 0

• therefore

r′(t) = ar(t)

(

1−
r(t)
R

)

> 0 (12)

• Thus the rabbit population will grow as long as the
number of rabbits is less than the carrying capacity

• The growth will decrease as the number of rabbits
approach the carrying capacity

• If r(t) = R is reached at some time t = t∗ we get

r′(t∗) = 0,

so the growth will stop
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Exceeding the carrying capacity

• Assume that we place a lot of rabbits at the island
initially - more than the carrying capacity

r0 > R

• Since (1− r0
R ) < 0 we have that

r′(0) = ar0

(

1−
r0

R

)

< 0,

i.e. the number of rabbits decrease
• The population will decrease as long as r(t) > R
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Analytical solution

Solve

r′(t) = ar(t)

(

1−
r(t)
R

)

r(0) = r0.

We write
dr
dt

= ar
(

1−
r
R

)

,

or
dr

r
(

1− r
R

) = adt.
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Analytical solution

By integration we get

ln
r

R− r
= at + c

where c is a integration constant. This constant is
determined by the initial condition

ln
r0

R− r0
= c

and thus

ln

[

r
R−r

r0
R−r0

]

= at,
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Analytical solution

or
r

R− r
=

r0

R− r0
eat .

Solving this with respect to r gives

r(t) =
r0

r0 + e−at(R− r0)
R (13)

(see Figure 1.)
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Figure 1: Different solutions of (13) using different values of r0.
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Numerical solution

• For simple examples of differential equations we can
find analytical solutions

• This is not the case for most of the realistic models of
nature

• Analytical solutions are still important for testing
numerical methods

• Analytical insight is very important for designing good
numerical methods

• An example of this is the insight we got above from the
arguments about increase and decrease in rabbit
population
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The simplest model

We now pretend that we do not know the exact solution of

r′(t) = f (t)

with r(0) = r0, and solve the problem in t ∈ (0,1).
• Pick a positive integer N, and define the time-step

∆t =
1
N

• Define time-levels tn = n∆t

• Let rn denote the approximation of r(tn)

rn ≈ r(tn)
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The simplest model

• Remember the series expansion

r(t +∆t) = r(t)+∆tr′(t)+O(∆t2)

• or

r′(t) =
r(t +∆t)− r(t)

∆t
+O(∆t)

• By setting t = tn, we therefore see that

r′(tn) ≈
r(tn+1)− r(tn)

∆t

• By using the approximate solutions rn ≈ r(tn) and
rn+1 ≈ r(tn+1), the numerical scheme is defined

rn+1− rn

∆t
= f (tn)
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The simplest model

• This can be written

rn+1 = rn +∆t f (tn)

• For the first time step we get

r1 = r0 +∆t f (t0)

• and for the next

r2 = r1 +∆t f (t1) = r0 +∆t ( f (t0)+ f (t1))
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The simplest model

• And for time-step N we see that

rN = r0 +∆t
N−1

∑
n=0

f (tn) (14)

• The sum can be recognized as the Riemann sum
approximation of the integral in (3) (this approximation
is not covered in this course)
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Example 6

We will test this on a problem with f (t) = t2 and r(0) = 0

• The exact solution is

r(1) = r(0)+

∫ 1

0
t2dt = 1/3

• When N = 10, we get

r(1) ≈ r10

= 0+∆t
(

∆t2 +(2∆t)2+ · · ·+(9∆t)2
)

= ∆t3(1+22+ · · ·+92)

=
1
6

9 ·10·19
103

= 0.285
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Example 6

• and when N = 100, we get

r(1) ≈ r100

= ∆t3(1+22 + · · ·+992)

=
1
6

99·100·199
1003

= 0.3285

• We see that the approximation improves with
increased number of approximation points
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Example 7

The same example, but using the Trapezoid method
• Recall that for a given N the general formula is

r(t) ≈ r0 +∆t

(

1
2

f (0)+
N−1

∑
n=1

f (tn)+
1
2

f (t)

)

(15)

• For N = 10, we get

r(1) ≈ ∆t

(

1
2

f (0)+
9

∑
n=1

f (tn)+
1
2

f (t)

)

= ∆t3

(

9

∑
n=1

n2 +
1
2

102

)

=
1

103

(

9 ·10·19
6

+50

)

= 0.335
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Example 7

• And for N = 100, we get

r(1) ≈ ∆t

(

1
2

f (0)+
99

∑
n=1

f (tn)+
1
2

f (t)

)

= ∆t3

(

99

∑
n=1

n2 +
1
2

1002

)

=
1

1003

(

99·100·199
6

+5000

)

= 0.33335

• Notice that these approximations are much closer to
the true value 1/3, than the approximations in Example
6
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Exponential growth

We now want study numerical solution of the problem
r′(t) = ar(t), t ∈ (0,T ), where a is a given constant, and
initial condition r(0) = r0.

• Similar to above we choose an integer N > 0, define
the time-steps ∆t = T/N and the time-levels tn = n∆t, rn

is the approximation of r(tn) and the derivative is
approximated by

r′(tn) ≈
r(tn+1)− r(tn)

∆t

• The numerical scheme is defined by

rn+1− rn

∆t
= arn (16)
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Exponential growth

• Which can be written

rn+1 = (1+a∆t)rn (17)

• This formula gives initially

r1 = (1+a∆t)r0

r2 = (1+a∆t)r1 = (1+a∆t)2r0

• and for general n we can see that

rn = (1+a∆t)nr0 (18)
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Example 8

We test an example where a = 1, r0 = 1 and T = 1.
• The exact solution is r(t) = et and therefore

r(1) = e ≈ 2.718

• Using N = 10 in the numerical scheme gives

r(1) ≈ r10 = (1+
1
10

)10 ≈ 2.594

• Choosing N = 100, gives

r100 = (1+
1

100
)100≈ 2.705
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Example 8 - Convergence

• The general formula is

r(1) ≈ rN = (1+
1
N

)N

• From Calculus we know that

lim
N−→∞

(1+
1
N

)N = e = r(1)

• Thus the numerical scheme will converge to the right
solution in this example
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Numerical stability

Consider the initial value problem

y′(t) = −100y(t), t ∈ (0,1) (19)

y(0) = 1,

with analytic solution

y(t) = e−100t

• For a given N and corresponding ∆t we have

yn+1 = (1−100∆t)yn (20)

• which gives

yn =

(

1−
100
N

)n
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Numerical stability

• Note that the analytical solution is always positive, but
decreases rapidly and monotonically towards zero

• For N = 10 we get the formula

yn =

(

1−
100
10

)n

= (−9)n

• which gives y0 = 1, y1 = −9, y2 = 18, y3 = −729

• This is referred to as numerical instability
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Numerical stability

• For yn to stay positive we get from (20) that

1−100∆t > 0

• or

∆t <
1

100
(21)

• which means
N ≥ 101

• This is referred to as stability condition
• A numerical scheme that is stable for all ∆t is called

unconditionally stable
• A scheme that needs a stability condition is called

conditionally stable
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An implicit scheme

We still study the exponential model, r′(t) = ar(t).
• Above the observation

r′(tn) =
r(tn+1)− r(tn)

∆t
+O(∆t)

• led to the scheme

rn+1− rn

∆t
= arn

• Similarly we could have observed that

r′(tn+1) =
r(tn+1)− r(tn)

∆t
+O(∆t)
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An implicit scheme

• This leads to
rn+1− rn

∆t
= ar(tn+1)

• which can be written

rn+1 =
1

1−∆ta
rn

• This leads to

rn =

(

1
1−∆ta

)n

r0
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An implicit scheme

• Reconsider the initial value problem

y′(t) = −100y(t),

y(0) = 1

• The implicit scheme gives

yn =

(

1
1+100∆t

)n

=

(

N
N +100

)n

• We see that yn is positive for all choices of N

• The scheme is therefore unconditionally stable
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An implicit scheme

N yN

101 3.85·10−11

102 7.89·10−31

103 4.05·10−42

107 3.72·10−44

The exact solution is e−100≈ 3.72·10−44.
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Explicit and implicit schemes

We consider problems on the form

v′(t) = something(t) (22)

The term v′(t) is replaced

vn+1− vn

∆t

The right hand side can be evaluated in t = tn or t = tn+1.
• Explicit scheme: vn+1 = vn +∆tsomething(tn)

• Implicit scheme: vn+1 = vn +∆tsomething(tn+1)

Implicit schemes are often unconditionable stable, but might
be harder to use. Explicit schemes are often only
conditionable stable, but are very simple to implement.
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Example 9

The following initial value problem

y′(t) = y2(t) (23)

y(0) = 1,

has the analytical solution

y(t) =
1

1− t
.

• The explicit scheme reads

yn+1− yn

∆t
= y2

n

• which gives an explicit expression for yn+1

yn+1 = yn +∆ty2 (24)Lectures INF2320 – p. 46/64



Example 9

• The implicit scheme is

zn+1− zn

∆t
= z2

n+1

• or
zn+1−∆tz2

n+1 = zn

• When zn is known, zn+1 can be found by solving the
following nonlinear equation

x−∆tx2 = zn (25)

• which has solution

zn+1 = x =
1

2∆t

(

1−
√

1−4∆tyn

)

(26)
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Figure 2: Example 9 with N = 100.
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Example 10

We here study the same example, but with negative initial
condition

y′(t) = y2(t) (27)

y(0) = −10,

with solution

y(t) =
−10

1+10t
.

The exact, explicit and implicit solutions with N = 25 are
plotted in Figure 3.
Table 1 shows the three solutions with different values for N
and ∆t.
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Figure 3: Example 10 with N = 25.
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N ∆t y(1) Explicit at t = 1 Implicit at t = 1

1000 1
1000

−10
11 ≈−0.9091 −0.9071 −0.9111

100 1
100

−10
11 ≈−0.9091 −0.8891 −0.9288

25 1
25

−10
11 ≈−0.9091 −0.9871 −0.8256

12 1
12

−10
11 ≈−0.9091 −0.6239 −1.0703

11 1
11

−10
11 ≈−0.9091 −0.4835 −1.0848

10 1
10

−10
11 ≈−0.9091 0.0 −1.1022

9 1
9

−10
11 ≈−0.9091 5.7500 −1.1235

8 1
8

−10
11 ≈−0.9091 6.4∗103 −1.1501

7 1
7

−10
11 ≈−0.9091 1.8014∗107 −1.1843

5 1
5

−10
11 ≈−0.9091 1.6317∗107 −1.2936

2 1
2

−10
11 ≈−0.9091 840 −1.8575

Table 1: Comparison of the three solutions.
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Stability - explicit scheme

In order to keep yn+1 negative in the explicit scheme

yn+1 = yn +∆ty2
n.

we must have
yn +∆ty2

n < 0,

or because yn < 0
1+∆tyn > 0.

For n = 0, we have y0 = −10 and therefore we require

1−10∆t > 0

which implies that ∆t < 1
10, or

N > 10.
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Implicit scheme

For the implicit scheme zn+1 is given by the solution of

x−∆tx2 = zn (28)

We want to show that the solution of (28) remains negative
when zn is negative, i.e.

zn < 0⇒ x < 0.

Therefore we study the function

f (x) = x−∆tx2− zn,

with derivative
f ′(x) = 1−2∆tx.
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Implicit scheme

• Thus f ′(x) > 0 for all x < 0, which means that f is
monotonically increasing for all x < 0.

• It can be seen that

zn < 0⇒ zn+1 < 0

which means that the scheme is stable (see Figure 4)

Lectures INF2320 – p. 54/64



−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

x

Figure 4: f (x) = x−∆tx2 with ∆t = 1/100.
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Logistic equation

We study the explicit scheme for the logistic equation

r′(t) = ar(t)

(

1−
r(t)
R

)

(29)

r(0) = r0, (30)

where a > 0 is the growth rate and R is the carrying
capacity. The discussion above gives the properties

• If R >> r0, then for small t, we have r′(t) ≈ ar(t) and
thus exponential growth

• If 0 < r0 < R, then the solution satisfies r0 ≤ r(t) ≤ R
and r′(t) ≥ 0 for all time

• If r0 > R, then the solution satisfies R ≤ r(t) ≤ r0 and
r′(t) ≤ 0 for all time
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Explicit scheme

An explicit scheme for this model reads

rn+1− rn

∆t
= arn(1−

rn

R
),

or
rn+1 = rn +arn∆t(1−

rn

R
). (31)

We assume the same stability conditions for this scheme as
for the exponential growth because of the exponential
growth, i.e.

∆t < 1/a. (32)

Lectures INF2320 – p. 57/64



Properties

• If R >> r0, we have rn+1 ≈ rn +a∆trn, for small values of
n, which corresponds to the explicit scheme for the
exponential growth model

• Assume that 0 < rn < R, then

(1−
rn

R
) ≥ 0,

and therefore
rn+1 ≥ rn (33)

• If 0 < r0 < R, then
r0 ≤ rn ≤ R

see the discussion below
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Properties

• Similarly, if r0 > R, then rn+1 ≤ rn and

r0 ≥ rn ≥ R (34)

• If r0 = R, then

r1 = r0 +ar0∆t(1−
r0

R
) = R,

and
rn = R (35)

for all n > 0
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Properties

To understand that r0 ≤ rn ≤ R, when 0≤ r0 ≤ R, we study
the function

g(x) = x+ax∆t(1−
x
R

), x ∈ [0,R]

The derivative is

g′(x) = 1+a∆t −
2a∆t

R
x.

Therefore for x in [0,R], we have

g′(x) ≥ 1+a∆t −
2a∆t

R
R = 1−a∆t

> 0,

where the fact that ∆t < 1/a, is used.
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Properties

Note that rn+1 = g(rn) and g(R) = R, and because g′(x) > 0
we get

rn+1 = g(rn) ≤ g(R) = R,

and
rn+1 = g(rn) ≥ g(0) = 0.

Which means

0≤ rn ≤ R ⇒ 0≤ rn+1 ≤ R,

By induction 0≤ rn ≤ R holds for all n ≥ 0, thus

r0 ≤ rn ≤ R, (36)

for all n ≥ 0.
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Implicit scheme

The implicit scheme for the logistic model reads

rn+1− rn

∆t
= arn+1(1−

rn+1

R
),

or
rn+1−∆tarn+1(1−

rn+1

R
) = rn.

• For rn given, this is a nonlinear equation in rn+1

• This is easy to solve since it is only a second order
polynomial equation

The scheme is unconditionally stable and it fulfills the same
properties as the explicit scheme did (see Exercise 6).
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