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Systems of ordinary differential equations

Last two lectures we have studied models of the form

y′(t) = F(y), y(0) = y0 (1)

this is an scalar ordinary differential equation (ODE).
In the next two lectures we shall study systems of ODEs.
Especially we will consider numerical methods for systems
of two ODEs on the form

y′(t) = F(y,z), y(0) = y0,

z′(t) = G(y,z), z(0) = z0.
(2)

Here y0 and z0 are given initial states and F and G are
smooth functions.
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Rabbits and foxes

• Earlier we have studied the evolution of a rabbit
population, and studied the Logistic model

y′ = αy(1− y/β), y(0) = y0 (3)

where now y is the number of rabbits, α > 0 denotes
the growth rate and β is the carrying capacity.

• Note that this model is the same as the Exponential
growth model if β = ∞

• In the next two lectures we consider the case where
foxes are introduced to the model

• This model is called a predator-prey system, and is
similar to models describing populations of fish (prey)
and sharks (predators)
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Fish and Sharks

The first mathematician to study predator-pray models was
Vito Volterra. He studied shark-fish populations, but his
results are valid for rabbit-fox populations as well.

• Let F = F(t) denote the number of fishes and S = S(t)
the number of sharks for a given time t

• If there is no sharks we assume that the number of
fishes follows the logistic model

F ′ = αF(1−F/β) (4)

• Expressed with relative growth it reads

F ′

F
= α(1−F/β) (5)
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Fish and Sharks

• Introducing sharks to the model, we assume the
relative growth rate of fish is reduced linearly with
respect to S

F ′

F
= α(1−F/β− γS) , (6)

where γ > 0

• or

F ′ = α(1−F/β− γS)F (7)
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Fish and Sharks

• If there is no fish, we expect the number of sharks to
decrease, and assume the relative change of sharks to
be expressed as

S′

S
= −δ, (8)

where δ > 0 is the decay rate
• We also assume that the relative change of sharks

increase linearly with the number of fish

S′

S
= −δ+ εF (9)
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Fish and Sharks

We now have a 2×2 system which predicts the
development of fish- and shark- population

F ′ = α(1−F/β− γS)F, F(0) = F0, (10)

S′ = (εF −δ)S, S(0) = S0. (11)

• In practice the parameters α, β, γ and ε, and initial
values F0 and S0 must be determined with some
estimation methods
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Numerical method; Unlimited resources

• First we study the system (10)-(11) with β = ∞, i.e.
unlimited resources of food and space for the fish

• For the other parameters we choose
α = 2, γ = 1/2, ε = 1 and δ = 1, which gives the
system

F ′ = (2−S)F, F(0) = F0, (12)

S′ = (F −1)S, S(0) = S0. (13)

• We introduce ∆t > 0 and define tn = n∆t, and let Fn and
Sn denote approximations of F(tn) and S(tn) respectively
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Numerical method

• The derivatives, F ′ and S′, are approximated with

F(tn+1)−F(tn)
∆t

≈ F ′(tn) and
S(tn+1)−S(tn)

∆t
≈ S′(tn),

which correspond to the explicit scheme
• The numerical scheme can then be written

Fn+1−Fn

∆t
= (2−Sn)Fn (14)

Sn+1−Sn

∆t
= (Fn −1)Sn (15)
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Numerical method

• This can then be rewritten on an explicit form

Fn+1 = Fn +∆t(2−Sn)Fn (16)

Sn+1 = Sn +∆t(Fn −1)Sn (17)

• When F0 and S0 are given, this formula gives us F1 and
S1 by setting n = 0, and then we can compute F2 and S2

by putting n = 1 in the formula, and so on
• In Figure 1 we have tested the explicit scheme

(16)-(17) with F0 = 1.9, S0 = 0.1 and ∆t = 1/1000
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Figure 1: The solid curve is the solution for F , and the dashed

curve is the solution for S.
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Numerical methods; limited resources

• We do the same as above, but use β = 2, which
corresponds to quite limited resources

• The system now reads

F ′ = (2−F −S)F, F(0) = F0, (18)

S′ = (F −1)S, S(0) = S0 (19)

• Similar to above we can define an explicit numerical
scheme

Fn+1 = Fn +∆t(2−Fn−Sn)Fn, (20)

Sn+1 = Sn +∆t(Fn −1)Sn (21)

• The results for F0 = 1.9, S0 = 0.1 and ∆t = 1/1000are
shown in Figure 2
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Figure 2: The solution for F is the solid curve, whereas the solu-

tion for S is the dashed curve.
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Numerical methods

• We see from Figure 1 that the solutions for both F(t)
and S(t) seem to be periodic

• From Figure 2 it seems that the solutions converge to
an equilibrium solution represented by S = F = 1

• Therefore it is interesting to notice that, different
parameter values can give different quantitative
behavior of the solution
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Phase plane analysis

We shall now study a simplified version of the fish-shark
model

F ′(t) = 1−S(t), F(0) = F0,

S′(t) = F(t)−1, S(0) = S0.
(22)

• Using the notation as above an explicit numerical
scheme for this problem reads

Fn+1 = Fn +∆t(1−Sn),

Sn+1 = Sn +∆t(Fn −1),
(23)

where F0 and S0 are given initial states
• Figure 3 show a solution of this scheme when F0 = 0.9,

S0 = 0.1 and ∆t = 1/1000
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Figure 3: The solution for F is the solid curve, whereas the solu-

tion for S is the dashed curve.
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Phase plane analysis

• The solution of (22) seems to be periodic like the
solution of (12)-(13)

• In order to study how F and S interact we will plot the
solution in the F −S coordinate system, i.e. we plot the
points (Fn,Sn) for all n-values

• In Figure 4 we plot the solution of (23) in the F −S
coordinate system, with the same specifications as
above (F0 = 0.9, S0 = 0.1, ∆t = 1/1000)

• In Figure 5 we do the same, but ∆t = 1/100
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Figure 4: Explicit scheme (23) using ∆t = 1/1000, F0 = 0.9 and

S0 = 0.1, plotted in the F-S coordinate system
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Figure 5: Explicit scheme (23) using ∆t = 1/100, F0 = 0.9 and

S0 = 0.1, plotted in the F-S coordinate system
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Phase plane analysis

In Figure 4 it seems that the solution is almost a perfect
circle with radius 1 and center in (1,1), and in Figure 5 the
solution is a circle of lower quality. Based on these
observations we expect that

• The analytical solutions (F(t),S(t)) form circles in the
F-S coordinate system

• A good numerical method generates values (Fn,Sn) that
are placed almost exactly on a circle and the numerical
solution get closer to a circle when ∆t is smaller

In the following we shall study this hypothesis in more detail.

Lectures INF2320 – p. 20/48



Analysis of the analytical solution

We shall try to do some analysis of the analytical solution.
In order to study the behavior of F(t) and S(t) we will define
the function

r(t) = (F(t)−1)2+(S(t)−1)2, (24)

which is the distance function from the point (1,1).
In Figure 6 we have plotted an approximation to this
function given by

rn = (Fn −1)2 +(Sn −1)2 (25)

for the case of F0 = 0.9, S0 = 0.1 and ∆t = 1/1000.
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Figure 6: rn from (25), which is produced by the explicit scheme

(23) using ∆t = 1/1000, F0 = 0.9 and S0 = 0.1.
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Analysis of the analytical solution

• We see from Figure 6 that rn is almost a constant
• We therefore assume that r(t) is constant in time

• If this is true, we should be able to see that r′(t) = 0 for
all t

• By differentiating (24) on both sides, we see that

r′(t) = 2(F −1)F ′ +2(S−1)S′ (26)

• Recall the original system

F ′ = 1−S and S′ = F −1 (27)
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Analysis of the analytical solution

• We can now calculate

r′(t) = 2(F −1)(1−S)+2(S−1)(F −1) = 0, (28)

• This means that r(t) is constant in the analytical case
• In general we can conclude that the analytical

solutions of (22) are circles in the F −S plane, with
radius ((F0−1)2 +(S0−1)2)1/2 and centered at (1,1)
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Alternative analysis

We present an alternative strategy for proving that the
graph of (F(t),S(t)), t > 0 defines a circle in the F −S plane.
From the original system we see that

F ′(t) = 1−S(t) and S′(t) = F(t)−1.

By multiplying the equations together we get

(F(t)−1)F ′(t) = (1−S(t))S′(t). (29)

Then integration in time from 0 to t gives
∫ t

0
(F(τ)−1)F ′(τ)dτ =

∫ t

0
(1−S(τ))S′(τ)dτ. (30)
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Alternative analysis

This leads to

1
2

[

(F(τ)−1)2
]t

0 = −
1
2

[

(S(τ)−1)2
]t

0 , (31)

which gives

(F(t)−1)2+(S(t)−1)2 = (F0−1)2 +(S0−1)2 (32)

for all t ≥ 0.
This proves that

r(t) = (F(t)−1)2+(S(t)−1)2

is constant.
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Numerical solution

We shall continue our study of this behavior, but now we
return to the numerical scheme

Fn+1 = Fn +∆t(1−Sn),

Sn+1 = Sn +∆t(Fn −1),
(33)

where F0 and S0 are given.
We have observed from Figure 6 that for this solution

rn = (Fn −1)2 +(Sn −1)2

is almost constant, i.e. rn ≈ r0 for all n ≥ 0.
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Numerical solution

• We have shown that r(t) is constant analytically
• This fact can be used to evaluate the quality of the

numerical solution
• We can e.g. use r0− rn as as measure of the error in

our computation

• In Table 1 we list rN−r0
r0

and rN−r0
r0∆t and compare for

different ∆t and N values, where we have used the
explicit scheme from t = 0 to t = 10
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Numerical solution

∆t N rN−r0
r0

rN−r0
r0∆t

10−1 102 1.7048 17.0481
10−2 103 1.0517·10−1 10.5165
10−3 104 1.0050·10−2 10.0502
10−4 105 1.0005·10−3 10.0050

Table 1: The table shows ∆t, the number of time steps N, the

“error” rN−r0
r0

and rN−r0
r0∆t . Note that the numbers in the last column

seem to tend towards a constant.
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Numerical solution

• From Table 1, it seems that

rN − r0

r0∆t
≈ 10

• or

rN ≈ (1+10∆t)r0

• If this assumption is true, the numerical solution will
approach a perfect circle as ∆t goes to zero

• We shall study the assumption in more detail
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Analysis of the numerical scheme

• Note that

rn+1 = (Fn+1−1)2 +(Sn+1−1)2 (34)

• By using the numerical scheme (33), we get

rn+1 = (Fn −1+∆t(1−Sn))
2 +(Sn −1+∆t(Fn −1))2

= (Fn −1)2 +2∆t(Fn −1)(1−Sn)+∆t2(1−Sn)
2

+(Sn −1)2 +2∆t(Fn −1)(Sn −1)+∆t2(1−Fn)
2

= rn +∆t2rn

= (1+∆t2)rn

• From this it follows that

rm = (1+∆t2)mr0 (35)
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Analysis of the numerical scheme

• Using e.g. ∆t = 10/N, we get

rN =

(

1+
102

N2

)N

r0 (36)

• Using Taylor-series expansion we have

(1+ x)N = 1+Nx+O(x2) (37)

for a given x

• We therefore see that
(

1+
102

N2

)N

≈ 1+N
102

N2

= 1+
102
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Analysis of the numerical scheme

• From (36), we get

rN − r0 =
(

(

1+102/N2
)N

−1
)

r0

≈
(

1+102/N −1
)

r0

=
102

N
r0

= 10∆t r0

• or

rN − r0

r0
≈ 10∆t

• Thus this analysis gives the same conclusion as the
numerical study above
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Crank-Nicolson scheme

The Crank-Nicolson scheme for the system

F ′(t) = 1−S(t), F(0) = F0,

S′(t) = F(t)−1, S(0) = S0.
(38)

reads

Fn+1−Fn

∆t
=

1
2

[(1−Sn)+(1−Sn+1)] ,

Sn+1−Sn

∆t
=

1
2

[(Fn −1)+(Fn+1−1)] .

(39)
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Crank-Nicolson scheme

The Crank-Nicolson scheme can be rewritten as

Fn+1 + ∆t
2 Sn+1 = Fn +∆t − ∆t

2 Sn,

−∆t
2 Fn+1 +Sn+1 = Sn −∆t + ∆t

2 Fn.
(40)

• We see that when Fn and Sn are given, we have to solve
a 2×2 system of linear equations, to find Fn+1 and Sn+1
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Crank-Nicolson scheme

Define

A =

[

1 ∆t/2
−∆t/2 1

]

, (41)

and

bn =

(

Fn +∆t − ∆t
2 Sn

Sn −∆t + ∆t
2 Fn

)

. (42)
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Crank-Nicolson scheme

Solving (40) for one time-step can now be done by:
•• Solve

Axn+1 = bn, (43)

where xn+1 is the unknown vector with two components
• The new solution for F and S is then

(

Fn+1

Sn+1

)

= xn+1 (44)
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Crank-Nicolson scheme

In general, a 2×2 matrix

B =

[

a b
c d

]

(45)

is non-singular if ad 6= cb. And when ad 6= cb the inverse is
given by

B−1 =
1

ad −bc

[

d −b
−c a

]

. (46)
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Crank-Nicolson scheme

• In order for the problem to be well defined we need the
matrix A to be non-singular

• But we have that

det(A) = 1+∆t2/4, (47)

which ensures det(A) > 0 for all values of ∆t, and A is
always non-singular
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Crank-Nicolson scheme

• For the matrix (41), the inverse is given by

A−1 =
1

1+∆t2/4

[

1 −∆t/2
∆t/2 1

]

(48)

• This fact together with (43) and (44) gives
(

Fn+1

Sn+1

)

=
1

1+∆t2/4

[

1 −∆t/2
∆t/2 1

](

Fn +∆t − ∆t
2 Sn

Sn −∆t + ∆t
2 Fn

)
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Crank-Nicolson scheme

• We get

Fn+1 = 1
1+∆t2/4

[(

1−∆t2/4
)

Fn +∆t
(∆t

2 +1
)

−∆tSn
]

Sn+1 = 1
1+∆t2/4

[(

1−∆t2/4
)

Sn +∆t
(∆t

2 −1
)

+∆tFn
]

(49)

• Figure 7 plots the solution of this scheme for S0 = 0.1,
F0 = 0.9 and ∆t = 1/1000, t is from t = 0 to t = 10 and
the solution is plotted in the F-S coordinate system
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Figure 7: The numerical solution for the Crank-Nicholson scheme
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Crank-Nicolson scheme

• In Figure 7 we observe that the solution again seems
to form a perfect circle

• To study this closer we define, as above

rn = (Fn −1)2 +(Sn −1)2 (50)

• and study the relative change

rN − r0

r0
(51)

in Table 7
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Crank-Nicolson scheme

∆t N rN−r0
r0

10−1 102 −2.6682·10−16

10−2 103 −1.59986·10−17

10−3 104 3.97982·10−17

10−4 105 7.06021·10−15

Table 2: The table shows ∆t, the number of time steps N, and the

“error” rN−r0
r0

.
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Crank-Nicolson scheme

• We observe that the relative error rN−r0
r0

is much smaller
for the Crank-Nicolson scheme (50) than for the explicit
scheme (23)

• We therefore conclude that the Crank-Nicolson
scheme produces better solutions than the explicit
scheme
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