Nonlinear Algebraic Equations

Nonlinear algebraic equations

When solving the system

$$
\begin{equation*}
u^{\prime}(t)=g(u), \quad u(0)=u_{0}, \tag{1}
\end{equation*}
$$

with an implicit Euler scheme we have to solve the nonlinear algebraic equation

$$
\begin{equation*}
u_{n+1}-\Delta \operatorname{tg}\left(u_{n+1}\right)=u_{n} \tag{2}
\end{equation*}
$$

at each time step. Here u_{n} is known and u_{n+1} is unknown. If we let c denote u_{n} and v denote u_{n+1}, we want to find v such that

$$
\begin{equation*}
v-\Delta \operatorname{tg}(v)=c \tag{3}
\end{equation*}
$$

where c is given.

Nonlinear algebraic equations

First consider the case of $g(u)=u$, which corresponds to the differential equation

$$
\begin{equation*}
u^{\prime}=u, \quad u(0)=u_{0} . \tag{4}
\end{equation*}
$$

The equation (3) for each time step, is now

$$
\begin{equation*}
v-\Delta t v=c, \tag{5}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
v=\frac{1}{1-\Delta t} c \tag{6}
\end{equation*}
$$

The time stepping in the Euler scheme for (4) is written

$$
\begin{equation*}
u_{n+1}=\frac{1}{1-\Delta t} u_{n} \tag{7}
\end{equation*}
$$

Nonlinear algebraic equations

Similarly, for any linear function g, i.e., functions on the form

$$
\begin{equation*}
g(v)=\alpha+\beta v \tag{8}
\end{equation*}
$$

with constants α and β, we can solve equation (3) directly and get

$$
\begin{equation*}
v=\frac{c+\alpha \Delta t}{1-\beta \Delta t} . \tag{9}
\end{equation*}
$$

Nonlinear algebraic equations

Next we study the nonlinear differential equation

$$
\begin{equation*}
u^{\prime}=u^{2}, \tag{10}
\end{equation*}
$$

which means that

$$
\begin{equation*}
g(v)=v^{2} . \tag{11}
\end{equation*}
$$

Now (3) reads

$$
\begin{equation*}
v-\Delta t v^{2}=c . \tag{12}
\end{equation*}
$$

Nonlinear algebraic equations

This second order equation has two possible solutions

$$
\begin{equation*}
v_{+}=\frac{1+\sqrt{1-4 \Delta t c}}{2 \Delta t} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{-}=\frac{1-\sqrt{1-4 \Delta t c}}{2 \Delta t} \tag{14}
\end{equation*}
$$

Note that

$$
\lim _{\Delta t \rightarrow 0} \frac{1+\sqrt{1-4 \Delta t c}}{2 \Delta t}=\infty
$$

Since Δt is supposed to be small and the solution is not expected to blow up, we conclude that v_{+}is not correct.

Nonlinear algebraic equations

Therefore the correct solution of (12) to use in the Euler scheme is

$$
\begin{equation*}
v=\frac{1-\sqrt{1-4 \Delta t c}}{2 \Delta t} . \tag{15}
\end{equation*}
$$

We can now conclude that the implicit scheme

$$
\begin{equation*}
u_{n+1}-\Delta t u_{n+1}^{2}=u_{n} \tag{16}
\end{equation*}
$$

can be written on computational form

$$
\begin{equation*}
u_{n+1}=\frac{1-\sqrt{1-4 \Delta t u_{n}}}{2 \Delta t} . \tag{17}
\end{equation*}
$$

Nonlinear algebraic equations

We have seen that the equation

$$
\begin{equation*}
v-\Delta t g(v)=c \tag{18}
\end{equation*}
$$

can be solved analytically when

$$
\begin{equation*}
g(v)=v \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
g(v)=v^{2} \tag{20}
\end{equation*}
$$

Generally it can be seen that we can solve (18) when g is on the form

$$
\begin{equation*}
g(v)=\alpha+\beta v+\gamma v^{2} . \tag{21}
\end{equation*}
$$

Nonlinear algebraic equations

- For most cases of nonlinear functions g, (18) can not be solved analytically
- A couple of examples of this is

$$
g(v)=e^{v} \quad \text { or } \quad g(v)=\sin (v)
$$

Nonlinear algebraic equations

Since we work with nonlinear equations on the form

$$
\begin{equation*}
u_{n+1}-u_{n}=\Delta t g\left(u_{n+1}\right) \tag{22}
\end{equation*}
$$

where Δt is a small number, we know that u_{n+1} is close to u_{n}. This will be a useful property later.
In the rest of this lecture we will write nonlinear equations on the form

$$
\begin{equation*}
f(x)=0, \tag{23}
\end{equation*}
$$

where f is nonlinear. We assume that we have available a value x_{0} close to the true solution x^{*} (, i.e. $f\left(x^{*}\right)=0$). We also assume that f has no other zeros in a small region around x^{*}.

The bisection method

Consider the function

$$
\begin{equation*}
f(x)=2+x-e^{x} \tag{24}
\end{equation*}
$$

for x ranging from 0 to 3 , see the graph in Figure 1 .

- We want to find $x=x^{*}$ such that

$$
f\left(x^{*}\right)=0
$$

Figure 1: The graph of $f(x)=2+x-e^{x}$.

The bisection method

- An iterative method is to create a series $\left\{x_{i}\right\}$ of approximations of x^{*}, which hopefully converges towards x^{*}
- For the Bisection Method we choose the two first guesses x_{0} and x_{1} as the endpoints of the definition domain, i.e.

$$
x_{0}=0 \quad \text { and } \quad x_{1}=3
$$

- Note that $f\left(x_{0}\right)=f(0)>0$ and $f\left(x_{1}\right)=f(3)<0$, and therefore $x_{0}<x^{*}<x_{1}$, provided that f is continuous
- We now define the mean value of x_{0} and x_{1}

$$
x_{2}=\frac{1}{2}\left(x_{0}+x_{1}\right)=\frac{3}{2}
$$

Figure 2: The graph of $f(x)=2+x-e^{x}$ and three values of f : $f\left(x_{0}\right), f\left(x_{1}\right)$ and $f\left(x_{2}\right)$.

The bisection method

- We see that

$$
f\left(x_{2}\right)=f\left(\frac{3}{2}\right)=2+3 / 2-e^{3 / 2}<0
$$

- Since $f\left(x_{0}\right)>0$ and $f\left(x_{2}\right)<0$, we know that $x_{0}<x^{*}<x_{2}$
- Therefore we define

$$
x_{3}=\frac{1}{2}\left(x_{0}+x_{2}\right)=\frac{3}{4}
$$

- Since $f\left(x_{3}\right)>0$, we know that $x_{3}<x^{*}<x_{2}$ (see Figure 3)
- This can be continued until $\left|f\left(x_{n}\right)\right|$ is sufficiently small

Figure 3: The graph of $f(x)=2+x-e^{x}$ and two values of $f: f\left(x_{2}\right)$ and $f\left(x_{3}\right)$.

The bisection method

Written in algorithmic form the Bisection method reads:

Algorithm 1. Given a, b such that $f(a) \cdot f(b)<0$ and given a tolerance ε. Define $c=\frac{1}{2}(a+b)$.
while $|f(c)|>\varepsilon$ do
if $f(a) \cdot f(c)<0$
then $b=c$
else $a=c$
$c:=\frac{1}{2}(a+b)$
end

Example 11

Find the zeros for

$$
f(x)=2+x-e^{x}
$$

using Algorithm 1 and choose $a=0, b=3$ and $\varepsilon=10^{-6}$.

- In Table 1 we show the number of iterations i, c and $f(c)$
- The number of iterations, i, refers to the number of times we pass through the while-loop of the algorithm

i	c	$f(c)$
1	1.500000	-0.981689
2	0.750000	0.633000
4	1.312500	-0.402951
8	1.136719	0.0201933
16	1.146194	$-2.65567 \cdot 10^{-6}$
21	1.146193	$4.14482 \cdot 10^{-7}$

Table 1: Solving the nonlinear equation $f(x)=2+x-e^{x}=0$ by using the bisection method; the number of iterations i, c and $f(c)$.

Example 11

- We see that we get sufficient accuracy after 21 iterations
- The next slide show the C program that is used to solve this problem
- The entire computation uses $5.82 \cdot 10^{-6}$ seconds on a Pentium III 1 GHz processor
- Even if this quite fast, we need even faster algorithms in actual computations
- In practical applications you might need to solve billions of nonlinear equations, and then "every micro second counts"

```
#include <stdio.h>
#include <math.h>
double f (double x) { return 2.+x-exp(x); }
inline double fabs (double r) { return ( (r >= 0.0) ? r : -r ); }
int main (int nargs, const char** args)
{
    double epsilon = 1.0e-6; double a, b, c, fa, fc;
    a = 0.; b = 3.; fa = f(a); c = 0.5* (a+b);
    while (fabs(fc=(f(c))) > epsilon) {
        if ((fa*fc) < 0) {
            b = c;
        }
        else {
            a = c;
            fa = fc;
        }
        c = 0.5*(a+b);
    }
    printf("final c=%g, f(c)=%g\n",c,fc);
    return 0;
}
```


Newton's method

- Recall that we have assumed that we have a good initial guess x_{0} close to x^{*} (where $f\left(x^{*}\right)=0$)
- We will also assume that we have a small region around x^{*} where f has only one zero, and that $f^{\prime}(x) \neq 0$
- Taylor series expansion around $x=x_{0}$ yields

$$
\begin{equation*}
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+O\left(h^{2}\right) \tag{25}
\end{equation*}
$$

- Thus, for small h we have

$$
\begin{equation*}
f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right) \tag{26}
\end{equation*}
$$

Newton's method

- We want to choose the step h such that $f\left(x_{0}+h\right) \approx 0$
- By (26) this can be done by choosing h such that

$$
f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)=0
$$

- Solving this gives

$$
h=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

- We therefore define

$$
\begin{equation*}
x_{1} \stackrel{\text { def }}{=} \quad x_{0}+h=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{27}
\end{equation*}
$$

Newton's method

- We test this on the example studied above with $f(x)=2+x-e^{x}$ and $x_{0}=3$
- We have that

$$
f^{\prime}(x)=1-e^{x}
$$

- Therefore

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=3-\frac{5-e^{3}}{1-e^{3}}=2.2096
$$

- We see that
$\left|f\left(x_{0}\right)\right|=|f(3)| \approx 15.086$ and $\left|f\left(x_{1}\right)\right|=|f(2.2096)| \approx 4.902$
i.e, the value of f is significantly reduced

Newton's method

We can now repeat the above procedure and define

$$
\begin{equation*}
x_{2} \stackrel{\text { def }}{=} x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}, \tag{28}
\end{equation*}
$$

and in algorithmic form Newton's method reads:
Algorithm 2. Given an initial approximation x_{0} and a tolerance ε.
$k=0$
while $\left|f\left(x_{k}\right)\right|>\varepsilon$ do

$$
\begin{aligned}
& x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \\
& k=k+1
\end{aligned}
$$

end

Newton's method

In Table 2 we show the results generated by Newton's method on the above example.

k	x_{k}	$f\left(x_{k}\right)$
1	2.209583	-4.902331
2	1.605246	-1.373837
3	1.259981	-0.265373
4	1.154897	$-1.880020 \cdot 10^{-2}$
5	1.146248	$-1.183617 \cdot 10^{-4}$
6	1.146193	$-4.783945 \cdot 10^{-9}$

Table 2: Solving the nonlinear equation $f(x)=2+x-e^{x}=0$ by using Algorithm 25 and $\varepsilon=10^{-6}$; the number of iterations k, x_{k} and $f\left(x_{k}\right)$.

Newton's method

- We observe that the convergence is much faster for Newton's method than for the Bisection method
- Generally, Newton's method converges faster than the Bisection method
- This will be studied in more detail in Project 1

Example 12

Let

$$
f(x)=x^{2}-2,
$$

and find x^{*} such that $f\left(x^{*}\right)=0$.

- Note that one of the exact solutions is $x^{*}=\sqrt{2}$
- Newton's method for this problem reads

$$
x_{k+1}=x_{k}-\frac{x_{k}^{2}-2}{2 x_{k}}
$$

- or

$$
x_{k+1}=\frac{x_{k}^{2}+2}{2 x_{k}}
$$

Example 12

If we choose $x_{0}=1$, we get

$$
\begin{aligned}
& x_{1}=1.5 \\
& x_{2}=1.41667 \\
& x_{3}=1.41422
\end{aligned}
$$

Comparing this with the exact value

$$
x^{*}=\sqrt{2} \approx 1.41421
$$

we see that a very accurate approximation is obtained in only 3 iterations.

An alternative derivation

- The Taylor series expansion of f around x_{0} is given by

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+O\left(\left(x-x_{0}\right)^{2}\right)
$$

- Let $F_{0}(x)$ be a linear approximation of f around x_{0} :

$$
F_{0}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)
$$

- $F_{0}(x)$ approximates f around x_{0} since

$$
F_{0}\left(x_{0}\right)=f\left(x_{0}\right) \quad \text { and } \quad F_{0}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)
$$

- We now define x_{1} to be such that $F\left(x_{1}\right)=0$, i.e.

$$
f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{0}\right)=0
$$

An alternative derivation

- Then we get

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

which is identical to the iteration obtained above

- We repeat this process, and define a linear approximation of f around x_{1}

$$
F_{1}(x)=f\left(x_{1}\right)+\left(x-x_{1}\right) f^{\prime}\left(x_{1}\right)
$$

- x_{2} is defined such that $F_{1}\left(x_{2}\right)=0$, i.e.

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

An alternative derivation

- Generally we get

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

- This process is illustrated in Figure 4

Figure 4: Graphical illustration of Newton's method.

The Secant method

- The secant method is similar to Newton's method, but the linear approximation of f is defined differently
- Now we assume that we have two values x_{0} and x_{1} close to x^{*}, and define the linear function $F_{0}(x)$ such that

$$
F_{0}\left(x_{0}\right)=f\left(x_{0}\right) \quad \text { and } \quad F_{0}\left(x_{1}\right)=f\left(x_{1}\right)
$$

- The function $F_{0}(x)$ is therefore given by

$$
F_{0}(x)=f\left(x_{1}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{1}\right)
$$

- $F_{0}(x)$ is called the linear interpolant of f

The Secant method

- Since $F_{0}(x) \approx f(x)$, we can compute a new approximation x_{2} to x^{*} by solving the linear equation

$$
F\left(x_{2}\right)=0
$$

- This means that we must solve

$$
f\left(x_{1}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x_{2}-x_{1}\right)=0,
$$

with respect to x_{2} (see Figure 5)

- This gives

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)\left(x_{1}-x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}
$$

Figure 5: The figure shows a function $f=f(x)$ and its linear interpolant F between x_{0} and x_{1}.

The Secant method

Following the same procedure as above we get the iteration

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)}{f\left(x_{k}\right)-f\left(x_{k-1}\right)},
$$

and the associated algorithm reads
Algorithm 3. Given two initial approximations x_{0} and x_{1} and a tolerance ε.
$k=1$
while $\left|f\left(x_{k}\right)\right|>\varepsilon$ do

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{\left(x_{k}-x_{k-1}\right)}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}
$$

$$
k=k+1
$$

end

Example 13

Let us apply the Secant method to the equation

$$
f(x)=2+x-e^{x}=0,
$$

studied above. The two initial values are $x_{0}=0, x_{1}=3$, and the stopping criteria is specified by $\varepsilon=10^{-6}$.

- Table 3 show the number of iterations k, x_{k} and $f\left(x_{k}\right)$ as computed by Algorithm 3
- Note that the convergence for the Secant method is slower than for Newton's method, but faster than for the Bisection method

k	x_{k}	$f\left(x_{k}\right)$
2	0.186503	0.981475
3	0.358369	0.927375
4	3.304511	-21.930701
5	0.477897	0.865218
6	0.585181	0.789865
7	1.709760	-1.817874
8	0.925808	0.401902
9	1.067746	0.158930
10	1.160589	$-3.122466 \cdot 10^{-2}$
11	1.145344	$1.821544 \cdot 10^{-3}$
12	1.146184	$1.912908 \cdot 10^{-5}$
13	1.146193	$-1.191170 \cdot 10^{-8}$

Table 3: The Secant method applied with $f(x)=2+x-e^{x}=0$.

Example 14

Find a zero of

$$
f(x)=x^{2}-2,
$$

which has a solution $x^{*}=\sqrt{2}$.

- The general step of the secant method is in this case

$$
\begin{aligned}
x_{k+1} & =x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} \\
& =x_{k}-\left(x_{k}^{2}-2\right) \frac{x_{k}-x_{k-1}}{x_{k}^{2}-x_{k-1}^{2}} \\
& =x_{k}-\frac{x_{k}^{2}-2}{x_{k}+x_{k-1}} \\
& =\frac{x_{k} x_{k-1}+2}{x_{k}+x_{k-1}}
\end{aligned}
$$

Example 14

- By choosing $x_{0}=1$ and $x_{1}=2$ we get

$$
\begin{aligned}
& x_{2}=1.33333 \\
& x_{3}=1.40000 \\
& x_{4}=1.41463
\end{aligned}
$$

- This is quite good compared to the exact value

$$
x^{*}=\sqrt{2} \approx 1.41421
$$

- Recall that Newton's method produced the approximation 1.41422 in three iterations, which is slightly more accurate

Fixed-Point iterations

Above we studied implicit schemes for the differential equation $u^{\prime}=g(u)$, which lead to the nonlinear equation

$$
u_{n+1}-\Delta t g\left(u_{n+1}\right)=u_{n}
$$

where u_{n} is known, u_{n+1} is unknown and $\Delta t>0$ is small. We defined $v=u_{n+1}$ and $c=u_{n}$, and wrote the equation

$$
v-\Delta t g(v)=c
$$

We can rewrite this equation on the form

$$
\begin{equation*}
v=h(v) \tag{29}
\end{equation*}
$$

where

$$
h(v)=c+\Delta t g(v)
$$

Fixed-Point iterations

The exact solution, v^{*}, must fulfill

$$
v^{*}=h\left(v^{*}\right) .
$$

This fact motivates the Fixed Point Iteration:

$$
v_{k+1}=h\left(v_{k}\right),
$$

with an initial guess v_{0}.

- Since h leaves v^{*} unchanged; $h\left(v^{*}\right)=v^{*}$, the value v^{*} is referred to as a fixed-point of h

Fixed-Point iterations

We try this method to solve

$$
x=\sin (x / 10)
$$

which has only one solution $x^{*}=0$ (see Figure 6)
The iteration is

$$
\begin{equation*}
x_{k+1}=\sin \left(x_{k} / 10\right) . \tag{30}
\end{equation*}
$$

Choosing $x_{0}=1.0$, we get the following results

$$
\begin{aligned}
& x_{1}=0.09983 \\
& x_{2}=0.00998 \\
& x_{3}=0.00099
\end{aligned}
$$

which seems to converge fast towards $x^{*}=0$.

Figure 6: The graph of $y=x$ and $y=\sin (x / 10)$.

Fixed-Point iterations

We now try to understand the behavior of the iteration. From calculus we recall for small x we have

$$
\sin (x / 10) \approx x / 10
$$

Using this fact in (30), we get

$$
x_{k+1} \approx x_{k} / 10
$$

and therefore

$$
x_{k} \approx(1 / 10)^{k} .
$$

We see that this iteration converges towards zero.

Convergence of Fixed-Point iterations

We have seen that $h(v)=v$ can be solved with the Fixed-Point iteration

$$
v_{k+1}=h\left(v_{k}\right)
$$

We now analyze under what conditions the values $\left\{v_{k}\right\}$ generated by the Fixed-Point iterations converge towards a solution v^{*} of the equation.
Definition: $h=h(v)$ is called a contractive mapping on a closed interval I if
(i) $|h(v)-h(w)| \leq \delta|v-w|$ for any $v, w \in I$, where $0<\delta<1$, and
(ii) $v \in I \Rightarrow h(v) \in I$.

Convergence of Fixed-Point iterations

The Mean Value Theorem of Calculus states that if f is a differentiable function defined on an interval $[a, b]$, then there is a $c \in[a, b]$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

- It follows from this theorem that h in is a contractive mapping defined on an interval I if

$$
\begin{equation*}
\left|h^{\prime}(\xi)\right|<\delta<1 \quad \text { for all } \xi \in I, \tag{31}
\end{equation*}
$$

and $h(v) \in I$ for all $v \in I$

Convergence of Fixed-Point iterations

Let us check the above example

$$
x=\sin (x / 10)
$$

We see that $h(x)=\sin (x / 10)$ is contractive on $I=[-1,1]$ since

$$
\left|h^{\prime}(x)\right|=\left|\frac{1}{10} \cos (x / 10)\right| \leq \frac{1}{10}
$$

and

$$
x \in[-1,1] \Rightarrow \sin (x / 10) \in[-1,1] .
$$

Convergence of Fixed-Point iterations

For a contractive mapping h, we assume that for any v, w in a closed interval I we have

$$
\begin{aligned}
&|h(v)-h(w)| \leq \delta|v-w|, \text { where } 0<\delta<1, \\
& v \in I \Rightarrow h(v) \in I
\end{aligned}
$$

The error, $e_{k}=\left|v_{k}-v^{*}\right|$, fulfills

$$
\begin{aligned}
e_{k+1} & =\left|v_{k+1}-v^{*}\right| \\
& =\left|h\left(v_{k}\right)-h\left(v^{*}\right)\right| \\
& \leq \boldsymbol{\delta}\left|v_{k}-v^{*}\right| \\
& =\boldsymbol{\delta} e_{k} .
\end{aligned}
$$

Convergence of Fixed-Point iterations

It now follows by induction on k, that

$$
e_{k} \leq \delta^{k} e_{0}
$$

Since $0<\delta<1$, we know that $e_{k} \rightarrow 0$ as $k \rightarrow \infty$. This means that we have convergence

$$
\lim _{k \rightarrow \infty} v_{k}=v^{*} .
$$

We can now conclude that the Fixed-Point iteration will converge when h is a contractive mapping.

Speed of convergence

We have seen that the Fixed-Point iterations fulfill

$$
\frac{e_{k}}{e_{0}} \leq \delta^{k} .
$$

Assume we want to solve this equation to the accuracy

$$
\frac{e_{k}}{e_{0}} \leq \varepsilon
$$

- We need to have $\delta^{k} \leq \varepsilon$, which gives

$$
k \ln (\delta) \leq \ln (\varepsilon)
$$

- Therefore the number of iterations needs to satisfy

$$
k \geq \frac{\ln (\varepsilon)}{\ln (\delta)}
$$

Existence and Uniqueness of a Solution

For the equations on the form $v=h(v)$, we want to answer the following questions
a) Does there exist a value v^{*} such that

$$
v^{*}=h\left(v^{*}\right) ?
$$

b) If so, is v^{*} unique?
c) How can we compute v^{*} ?

We assume that h is a contractive mapping on a closed interval I such that

$$
\begin{align*}
|h(v)-h(w)| \leq \delta|v-w|, & \text { where } 0<\delta<1, \tag{32}\\
v \in I & \Rightarrow h(v) \in I \tag{33}
\end{align*}
$$

for all v, w.

Uniqueness

Assume that we have two solutions v^{*} and w^{*} of the problem, i.e.

$$
\begin{equation*}
v^{*}=h\left(v^{*}\right) \quad \text { and } \quad w^{*}=h\left(w^{*}\right) \tag{34}
\end{equation*}
$$

From the assumption (32) we have

$$
\left|h\left(v^{*}\right)-h\left(w^{*}\right)\right| \leq \delta\left|v^{*}-w^{*}\right|
$$

where $\delta<1$. But (34) gives

$$
\left|v^{*}-w^{*}\right| \leq \delta\left|v^{*}-w^{*}\right|
$$

which can only hold when $v^{*}=w^{*}$, and consequently the solution is unique.

Existence

We have seen that if h is a contractive mapping, the equation

$$
\begin{equation*}
h(v)=v \tag{35}
\end{equation*}
$$

can only have one solution.

- If we now can show that there exists a solution of (35) we have answered (a), (b) and (c) above
- Below we show that assumptions (32) and (33) imply existence

Cauchy sequences

First we recall the definition of Cauchy sequences.

- A sequence of real numbers, $\left\{v_{k}\right\}$, is called a Cauchy sequence if, for any $\varepsilon>0$, there is an integer M such that for any $m, n \geq M$ we have

$$
\begin{equation*}
\left|v_{m}-v_{n}\right|<\varepsilon \tag{36}
\end{equation*}
$$

- Theorem: A sequence $\left\{v_{k}\right\}$ converges if and only if it is a Cauchy sequence
- Under we shall show that the sequence, $\left\{v_{k}\right\}$, produced by the Fixed-Point iteration, is a Cauchy series when assumptions (32) and (33) hold

Existence

- Since $v_{n+1}=h\left(v_{n}\right)$, we have

$$
\left|v_{n+1}-v_{n}\right|=\left|h\left(v_{n}\right)-h\left(v_{n-1}\right)\right| \leq \delta\left|v_{n}-v_{n-1}\right|
$$

- By induction, we have

$$
\left|v_{n+1}-v_{n}\right| \leq \delta^{n}\left|v_{1}-v_{0}\right|
$$

- In order to show that $\left\{v_{n}\right\}$ is a Cauchy sequence, we need to bind $\left|v_{m}-v_{n}\right|$
- We may assume that $m>n$, and we see that

$$
v_{m}-v_{n}=\left(v_{m}-v_{m-1}\right)+\left(v_{m-1}-v_{m-2}\right)+\ldots+\left(v_{n+1}-v_{n}\right)
$$

Existence

- By the triangle-inequality, we have

$$
\left|v_{m}-v_{n}\right| \leq\left|v_{m}-v_{m-1}\right|+\left|v_{m-1}-v_{m-2}\right|+\ldots+\left|v_{n+1}-v_{n}\right|
$$

- (37) gives

$$
\begin{aligned}
\left|v_{m}-v_{m-1}\right| & \leq \delta^{m-1}\left|v_{1}-v_{0}\right| \\
\left|v_{m-1}-v_{m-2}\right| & \leq \delta^{m-2}\left|v_{1}-v_{0}\right| \\
& \vdots \\
\left|v_{n+1}-v_{n}\right| & \leq \delta^{n}\left|v_{1}-v_{0}\right|
\end{aligned}
$$

- consequently

$$
\begin{aligned}
\left|v_{m}-v_{n}\right| & \leq\left|v_{m}-v_{m-1}\right|+\left|v_{m-1}-v_{m-2}\right|+\ldots+\left|v_{n+1}-v_{n}\right| \\
& \leq\left(\delta^{m-1}+\delta^{m-2}+\ldots+\delta^{n}\right)\left|v_{1}-v_{0}\right|
\end{aligned}
$$

Existence

- We can now estimate the power series

$$
\begin{aligned}
\delta^{m-1}+\delta^{m-2}+\ldots+\delta^{n} & =\delta^{n-1}\left(\delta+\delta^{2}+\ldots+\delta^{m-n}\right) \\
& \leq \delta^{n-1} \sum_{k=1}^{\infty} \delta^{k} \\
& =\delta^{n-1} \frac{1}{1-\delta}
\end{aligned}
$$

- So

$$
\left|v_{m}-v_{n}\right| \leq \frac{\delta^{n-1}}{1-\delta}\left|v_{1}-v_{0}\right|
$$

- δ^{n-1} can be as small as you like, if you choose n big enough

Existence

This means that for any $\varepsilon>0$, we can find an integer M such that

$$
\left|v_{m}-v_{n}\right|<\varepsilon
$$

provided that $m, n \geq M$, and consequently $\left\{v_{k}\right\}$ is a Cauchy sequence.

- The sequence is therefore convergent, and we call the limit v^{*}
- Since

$$
v^{*}=\lim _{k \rightarrow \infty} v_{k}=\lim _{k \rightarrow \infty} h\left(v_{k}\right)=h\left(v^{*}\right)
$$

by continuity of h, we have that the limit satisfies the equation

Systems of nonlinear equations

We start our study of nonlinear equations, by considering a linear system that arises from the discretization of a linear 2×2 system of ordinary differential equations,

$$
\begin{align*}
u^{\prime}(t) & =-v(t), & & u(0)=u_{0}, \tag{37}\\
v^{\prime}(t) & =u(t), & & v(0)=v_{0} .
\end{align*}
$$

An implicit Euler scheme for this system reads

$$
\begin{equation*}
\frac{u_{n+1}-u_{n}}{\Delta t}=-v_{n+1}, \quad \frac{v_{n+1}-v_{n}}{\Delta t}=u_{n+1} \tag{38}
\end{equation*}
$$

and can be rewritten on the form

$$
\begin{align*}
u_{n+1}+\Delta t v_{n+1} & =u_{n} \tag{39}\\
-\Delta t u_{n+1}+v_{n+1} & =v_{n} .
\end{align*}
$$

Systems of linear equations

We can write this system on the form

$$
\begin{equation*}
\mathbf{A} \mathbf{w}_{n+1}=\mathbf{w}_{n} \tag{40}
\end{equation*}
$$

where

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & \Delta t \tag{41}\\
-\Delta t & 1
\end{array}\right) \quad \text { and } \quad \mathbf{w}_{n}=\binom{u_{n}}{v_{n}}
$$

In order to compute $\mathbf{w}_{n+1}=\left(u_{n+1}, v_{n+1}\right)^{T}$ from $\mathbf{w}_{n}=\left(u_{n}, v_{n}\right)$, we have to solve the linear system (40). The system has a unique solution since

$$
\begin{equation*}
\operatorname{det}(\mathbf{A})=1+\Delta t^{2}>0 \tag{42}
\end{equation*}
$$

Systems of linear equations

And the solution is given by $\mathbf{w}_{n+1}=\mathbf{A}^{-1} \mathbf{w}_{n}$, where

$$
\mathbf{A}^{-1}=\frac{1}{1+\Delta t^{2}}\left(\begin{array}{cc}
1 & -\Delta t \tag{43}\\
\Delta t & 1
\end{array}\right)
$$

Therefore we get

$$
\begin{align*}
\binom{u_{n+1}}{v_{n+1}} & =\frac{1}{1+\Delta t^{2}}\left(\begin{array}{cc}
1 & -\Delta t \\
\Delta t & 1
\end{array}\right)\binom{u_{n}}{v_{n}} \tag{44}\\
& =\frac{1}{1+\Delta t^{2}}\binom{u_{n}-\Delta t v_{n}}{\Delta t u_{n}+v_{n}} . \tag{45}
\end{align*}
$$

Systems of linear equations

We write this as

$$
\begin{align*}
& u_{n+1}=\frac{1}{1+\Delta t^{2}}\left(u_{n}-\Delta t v_{n}\right) \tag{46}\\
& v_{n+1}=\frac{1}{1+\Delta t^{2}}\left(v_{n}+\Delta t u_{n}\right)
\end{align*}
$$

By choosing $u_{0}=1$ and $v_{0}=0$, we have the analytical solutions

$$
\begin{equation*}
u(t)=\cos (t), \quad v(t)=\sin (t) . \tag{47}
\end{equation*}
$$

In Figure 7 we have plotted (u, v) and $\left(u_{n}, v_{n}\right)$ for $0 \leq t \leq 2 \pi$, $\Delta t=\pi / 500$. We see that the scheme provides good approximations.

Figure 7: The analytical solution $(u=\cos (t), v=\sin (t))$ and the numerical solution (u_{n}, v_{n}), in dashed lines, produced by the implicit Euler scheme.

A nonlinear system

Now we study a nonlinear system of ordinary differential equations

$$
\begin{align*}
u^{\prime} & =-v^{3}, & & u(0)=u_{0}, \tag{48}\\
v^{\prime} & =u^{3}, & & v(0)=v_{0} .
\end{align*}
$$

An implicit Euler scheme for this system reads

$$
\begin{equation*}
\frac{u_{n+1}-u_{n}}{\Delta t}=-v_{n+1}^{3}, \quad \frac{v_{n+1}-v_{n}}{\Delta t}=u_{n+1}^{3} \tag{49}
\end{equation*}
$$

which can be rewritten on the form

$$
\begin{align*}
& u_{n+1}+\Delta t v_{n+1}^{3}-u_{n}=0 \tag{50}\\
& v_{n+1}-\Delta t u_{n+1}^{3}-v_{n}=0
\end{align*}
$$

A nonlinear system

- Observe that in order to compute $\left(u_{n+1}, v_{n+1}\right)$ based on $\left(u_{n}, v_{n}\right)$, we need to solve a nonlinear system of equations

We would like to write the system on the generic form

$$
\begin{align*}
& f(x, y)=0, \tag{51}\\
& g(x, y)=0 .
\end{align*}
$$

This is done by setting

$$
\begin{align*}
f(x, y) & =x+\Delta t y^{3}-\alpha, \tag{52}\\
g(x, y) & =y-\Delta t x^{3}-\beta,
\end{align*}
$$

$\alpha=u_{n}$ and $\beta=v_{n}$.

Newton's method

When deriving Newton's method for solving a scalar equation

$$
\begin{equation*}
p(x)=0 \tag{53}
\end{equation*}
$$

we exploited Taylor series expansion

$$
\begin{equation*}
p\left(x_{0}+h\right)=p\left(x_{0}\right)+h p^{\prime}\left(x_{0}\right)+O\left(h^{2}\right) \tag{54}
\end{equation*}
$$

to make a linear approximation of the function p, and solve the linear approximation of (53). This lead to the iteration

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{p\left(x_{k}\right)}{p^{\prime}\left(x_{k}\right)} . \tag{55}
\end{equation*}
$$

Newton's method

We shall try to extend Newton's method to systems of equations on the form

$$
\begin{align*}
& f(x, y)=0, \tag{56}\\
& g(x, y)=0 .
\end{align*}
$$

The Taylor-series expansion of a smooth function of two variables $F(x, y)$, reads

$$
\begin{align*}
F(x+\Delta x, y+\Delta y)= & F(x, y)+\Delta x \frac{\partial F}{\partial x}(x, y)+\Delta y \frac{\partial F}{\partial y}(x, y) \\
& +O\left(\Delta x^{2}, \Delta x \Delta y, \Delta y^{2}\right) . \tag{57}
\end{align*}
$$

Newton's method

Using Taylor expansion on (56) we get

$$
\begin{align*}
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)= & f\left(x_{0}, y_{0}\right)+\Delta x \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)+\Delta y \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \\
& +O\left(\Delta x^{2}, \Delta x \Delta y, \Delta y^{2}\right) \tag{58}
\end{align*}
$$

and

$$
\begin{align*}
g\left(x_{0}+\Delta x, y_{0}+\Delta y\right)= & g\left(x_{0}, y_{0}\right)+\Delta x \frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right)+\Delta y \frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) \\
& +O\left(\Delta x^{2}, \Delta x \Delta y, \Delta y^{2}\right) . \tag{59}
\end{align*}
$$

Newton's method

Since we want Δx and Δy to be such that

$$
\begin{align*}
& f\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \approx 0, \\
& g\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \approx 0, \tag{60}
\end{align*}
$$

we define Δx and Δy to be the solution of the linear system

$$
\begin{align*}
f\left(x_{0}, y_{0}\right)+\Delta x \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)+\Delta y \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) & =0 \\
g\left(x_{0}, y_{0}\right)+\Delta x \frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right)+\Delta y \frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) & =0 . \tag{61}
\end{align*}
$$

Remember here that x_{0} and y_{0} are known numbers, and therefore $f\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$ are known numbers as well. Δx and Δy are the unknowns.

Newton's method

(61) can be written on the form

$$
\left(\begin{array}{cc}
\frac{\partial f_{0}}{\partial x} & \frac{\partial f_{0}}{\partial y} \tag{62}\\
\frac{\partial g_{0}}{\partial x} & \frac{\partial g_{0}}{\partial y}
\end{array}\right)\binom{\Delta x}{\Delta y}=-\binom{f_{0}}{g_{0}} .
$$

where $f_{0}=f\left(x_{0}, y_{0}\right), g_{0}=g\left(x_{0}, y_{0}\right), \frac{\partial f_{0}}{\partial x}=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$, etc. If the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
\frac{\partial f_{0}}{\partial x} & \frac{\partial f_{0}}{\partial y} \tag{63}\\
\frac{\partial g_{0}}{\partial x} & \frac{\partial g_{0}}{\partial y}
\end{array}\right)
$$

is nonsingular. Then

$$
\binom{\Delta x}{\Delta y}=-\left(\begin{array}{cc}
\frac{\partial f_{0}}{\partial x} & \frac{\partial f_{0}}{\partial y} \tag{64}\\
\frac{\partial g_{0}}{\partial x} & \frac{\partial g_{0}}{\partial y}
\end{array}\right)^{-1}\binom{f_{0}}{g_{0}} .
$$

Newton's method

We can now define
$\binom{x_{1}}{y_{1}}=\binom{x_{0}}{y_{0}}+\binom{\Delta x}{\Delta y}=\binom{x_{0}}{y_{0}}-\left(\begin{array}{cc}\frac{\partial f_{0}}{\partial x} & \frac{\partial f_{0}}{\partial y} \\ \frac{\partial g_{0}}{\partial x} & \frac{\partial g_{0}}{\partial y}\end{array}\right)^{-1}\binom{f_{0}}{g_{0}}$.
And by repeating this argument we get

$$
\binom{x_{k+1}}{y_{k+1}}=\binom{x_{k}}{y_{k}}-\left(\begin{array}{cc}
\frac{\partial f_{k}}{\partial x} & \frac{\partial f_{k}}{\partial y} \tag{65}\\
\frac{\partial g_{k}}{\partial x} & \frac{\partial g_{k}}{\partial y}
\end{array}\right)^{-1}\binom{f_{k}}{g_{k}},
$$

where $f_{k}=f\left(x_{k}, y_{k}\right), g_{k}=g\left(x_{k}, y_{k}\right)$ and $\frac{\partial f_{k}}{\partial x}=\frac{\partial f}{\partial x}\left(x_{k}, y_{k}\right)$ etc. The scheme (65) is Newton's method for the system (56).

A Nonlinear example

We test Newton's method on the system

$$
\begin{align*}
e^{x}-e^{y} & =0, \tag{66}\\
\ln (1+x+y) & =0 .
\end{align*}
$$

The system have analytical solution $x=y=0$. Define

$$
\begin{aligned}
f(x, y) & =e^{x}-e^{y} \\
g(x, y) & =\ln (1+x+y) .
\end{aligned}
$$

The iteration in Newton's method (65) reads

$$
\left.\begin{array}{c}
x_{k+1} \\
y_{k+1}
\end{array}\right)=\binom{x_{k}}{y_{k}}-\left(\begin{array}{cc}
e^{x_{k}} & -e^{y_{k}} \\
\frac{1}{1+x_{k}+y_{k}} & \frac{1}{1+x_{k}+y_{k}}
\end{array}\right)^{-1}\binom{e^{x_{k}}-e^{y_{k}}}{\ln \left(1+x_{k}+y_{k}\right)} .(67)
$$

A Nonlinear example

The table below shows the computed results when
$x_{0}=y_{0}=\frac{1}{2}$.

k	x_{k}	y_{k}
0	0.5	0.5
1	-0.193147	-0.193147
2	-0.043329	-0.043329
3	-0.001934	-0.001934
4	$-3.75 \cdot 10^{-6}$	$-3.75 \cdot 10^{-6}$
5	$-1.40 \cdot 10^{-11}$	$-1.40 \cdot 10^{-11}$

We observe that, as in the scalar case, Newton's method gives very rapid convergence towards the analytical solution $x=y=0$.

The Nonlinear System Revisited

We now go back to nonlinear system of ordinary differential equations (48), presented above. For each time step we had to solve

$$
\begin{align*}
f(x, y) & =0, \tag{68}\\
g(x, y) & =0,
\end{align*}
$$

where

$$
\begin{align*}
& f(x, y)=x+\Delta t y^{3}-\alpha, \tag{69}\\
& g(x, y)=y-\Delta t x^{3}-\beta .
\end{align*}
$$

We shall now solve this system using Newton's method.

The Nonlinear System Revisited

We put $x_{0}=\alpha, y_{0}=\beta$ and iterate as follows

$$
\binom{x_{k+1}}{y_{k+1}}=\binom{x_{k}}{y_{k}}-\left(\begin{array}{cc}
\frac{\partial f_{k}}{\partial x} & \frac{\partial f_{k}}{\partial y} \tag{70}\\
\frac{\partial g_{k}}{\partial x} & \frac{\partial g_{k}}{\partial y}
\end{array}\right)^{-1}\binom{f_{k}}{g_{k}},
$$

where

$$
\begin{aligned}
f_{k}=f\left(x_{k}, y_{k}\right), & g_{k}=g\left(x_{k}, y_{k}\right), \\
\frac{\partial f_{k}}{\partial x}=\frac{\partial f}{\partial x}\left(x_{k}, y_{k}\right)=1, & \frac{\partial f_{k}}{\partial y}=\frac{\partial f}{\partial y}\left(x_{k}, y_{k}\right)=3 \Delta t y_{k}^{2}, \\
\frac{\partial g_{k}}{\partial x}=\frac{\partial g}{\partial x}\left(x_{k}, y_{k}\right)=-3 \Delta t x_{k}^{2}, & \frac{\partial g_{k}}{\partial y}=\frac{\partial g}{\partial y}\left(x_{k}, y_{k}\right)=1 .
\end{aligned}
$$

The Nonlinear System Revisited

The matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
\frac{\partial f_{k}}{\partial x} & \frac{\partial f_{k}}{\partial y} \tag{71}\\
\frac{\partial g_{k}}{\partial x} & \frac{\partial \partial_{k}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
1 & 3 \Delta t y_{k}^{2} \\
-3 \Delta t x_{k}^{2} & 1
\end{array}\right)
$$

has its determinant given by: $\operatorname{det}(\mathbf{A})=1+9 \Delta t^{2} x_{k}^{2} y_{k}^{2}>0$. So \mathbf{A}^{-1} is well defined and is given by

$$
\mathbf{A}^{-1}=\frac{1}{1+9 \Delta t^{2} x_{k}^{2} y_{k}^{2}}\left(\begin{array}{cc}
1 & -3 \Delta t y_{k}^{2} \tag{72}\\
3 \Delta t x_{k}^{2} & 1
\end{array}\right) .
$$

For each time-level we can e.g. iterate until

$$
\begin{equation*}
\left|f\left(x_{k}, y_{k}\right)\right|+\left|g\left(x_{k}, y_{k}\right)\right|<\varepsilon=10^{-6} . \tag{73}
\end{equation*}
$$

The Nonlinear System Revisited

- We have tested this method with $\Delta t=1 / 100$ and $t \in[0,1]$
- In Figure 8 the numerical solutions of u and v are plotted as functions of time, and in Figure 9 the numerical solution is plotted in the (u, v) coordinate system
- In Figure 10 we have plotted the number of Newton's iterations needed to reach the stopping criterion (73) at each time-level
- Observe that we need no more than two iterations at all time-levels

Figure 8: The numerical solutions $u(t)$ and $v(t)$ (in dashed line) of (48) produced by the implicit Euler scheme (49) using $u_{0}=1, v_{0}=0$ and $\Delta t=1 / 100$.

Figure 9: The numerical solutions of (48) in the (u, v)-coordinate system, arising from the implicit Euler scheme (49) using $u_{0}=1$, $v_{0}=0$ and $\Delta t=1 / 100$.

Figure 10: The graph shows the number of iterations used by Newton's method to solve the system (50) at each time-level.

