
Nonlinear Algebraic Equations
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Nonlinear algebraic equations

When solving the system

u′(t) = g(u), u(0) = u0, (1)

with an implicit Euler scheme we have to solve the
nonlinear algebraic equation

un+1−∆t g(un+1) = un, (2)

at each time step. Here un is known and un+1 is unknown.
If we let c denote un and v denote un+1, we want to find v
such that

v−∆t g(v) = c, (3)

where c is given.
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Nonlinear algebraic equations

First consider the case of g(u) = u, which corresponds to
the differential equation

u′ = u, u(0) = u0. (4)

The equation (3) for each time step, is now

v−∆t v = c, (5)

which has the solution

v =
1

1−∆t
c. (6)

The time stepping in the Euler scheme for (4) is written

un+1 =
1

1−∆t
un. (7)
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Nonlinear algebraic equations

Similarly, for any linear function g, i.e., functions on the form

g(v) = α+βv (8)

with constants α and β, we can solve equation (3) directly
and get

v =
c+α∆t
1−β∆t

. (9)
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Nonlinear algebraic equations

Next we study the nonlinear differential equation

u′ = u2, (10)

which means that

g(v) = v2. (11)

Now (3) reads

v−∆t v2 = c. (12)
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Nonlinear algebraic equations

This second order equation has two possible solutions

v+ =
1+

√
1−4∆t c
2∆t

(13)

and

v− =
1−

√
1−4∆t c
2∆t

. (14)

Note that

lim
∆t→0

1+
√

1−4∆t c
2∆t

= ∞.

Since ∆t is supposed to be small and the solution is not
expected to blow up, we conclude that v+ is not correct.
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Nonlinear algebraic equations

Therefore the correct solution of (12) to use in the Euler
scheme is

v =
1−

√
1−4∆t c
2∆t

. (15)

We can now conclude that the implicit scheme

un+1−∆t u2
n+1 = un (16)

can be written on computational form

un+1 =
1−

√
1−4∆t un

2∆t
. (17)
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Nonlinear algebraic equations

We have seen that the equation

v−∆t g(v) = c (18)

can be solved analytically when

g(v) = v (19)

or

g(v) = v2. (20)

Generally it can be seen that we can solve (18) when g is
on the form

g(v) = α+βv+ γv2. (21)
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Nonlinear algebraic equations

• For most cases of nonlinear functions g, (18) can not
be solved analytically

• A couple of examples of this is

g(v) = ev or g(v) = sin(v)
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Nonlinear algebraic equations

Since we work with nonlinear equations on the form

un+1−un = ∆t g(un+1) (22)

where ∆t is a small number, we know that un+1 is close to
un. This will be a useful property later.
In the rest of this lecture we will write nonlinear equations
on the form

f (x) = 0, (23)

where f is nonlinear. We assume that we have available a
value x0 close to the true solution x∗ (, i.e. f (x∗) = 0).
We also assume that f has no other zeros in a small region
around x∗.
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The bisection method

Consider the function

f (x) = 2+ x− ex (24)

for x ranging from 0 to 3, see the graph in Figure 1.

• We want to find x = x∗ such that

f (x∗) = 0
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Figure 1: The graph of f (x) = 2+ x− ex.
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The bisection method

• An iterative method is to create a series {xi} of
approximations of x∗, which hopefully converges
towards x∗

• For the Bisection Method we choose the two first
guesses x0 and x1 as the endpoints of the definition
domain, i.e.

x0 = 0 and x1 = 3

• Note that f (x0) = f (0) > 0 and f (x1) = f (3) < 0, and
therefore x0 < x∗ < x1, provided that f is continuous

• We now define the mean value of x0 and x1

x2 =
1
2
(x0 + x1) =

3
2
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Figure 2: The graph of f (x) = 2+ x− ex and three values of f :

f (x0), f (x1) and f (x2).
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The bisection method

• We see that

f (x2) = f (
3
2
) = 2+3/2− e3/2 < 0,

• Since f (x0) > 0 and f (x2) < 0, we know that x0 < x∗ < x2

• Therefore we define

x3 =
1
2
(x0 + x2) =

3
4

• Since f (x3) > 0, we know that x3 < x∗ < x2 (see
Figure 3)

• This can be continued until | f (xn)| is sufficiently small
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Figure 3: The graph of f (x) = 2+x−ex and two values of f : f (x2)

and f (x3).

Lectures INF2320 – p. 16/88



The bisection method

Written in algorithmic form the Bisection method reads:

Algorithm 1. Given a, b such that f (a) · f (b) < 0 and
given a tolerance ε. Define c = 1

2(a+b).
while | f (c)| > ε do

if f (a) · f (c) < 0
then b = c
elsea = c
c := 1

2(a+b)
end
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Example 11

Find the zeros for

f (x) = 2+ x− ex

using Algorithm 1 and choose a = 0, b = 3 and ε = 10−6.
• In Table 1 we show the number of iterations i, c and

f (c)

• The number of iterations, i, refers to the number of
times we pass through the while-loop of the algorithm
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i c f (c)

1 1.500000 −0.981689
2 0.750000 0.633000
4 1.312500 −0.402951
8 1.136719 0.0201933
16 1.146194 −2.65567·10−6

21 1.146193 4.14482·10−7

Table 1: Solving the nonlinear equation f (x) = 2+ x− ex = 0 by

using the bisection method; the number of iterations i, c and f (c).
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Example 11

• We see that we get sufficient accuracy after 21
iterations

• The next slide show the C program that is used to
solve this problem

• The entire computation uses 5.82·10−6 seconds on a
Pentium III 1GHz processor

• Even if this quite fast, we need even faster algorithms
in actual computations
• In practical applications you might need to solve

billions of nonlinear equations, and then “every
micro second counts”
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#include <stdio.h>

#include <math.h>

double f (double x) { return 2.+x-exp(x); }

inline double fabs (double r) { return ( (r >= 0.0) ? r : -r ); }

int main (int nargs, const char** args)

{

double epsilon = 1.0e-6; double a, b, c, fa, fc;

a = 0.; b = 3.; fa = f(a); c = 0.5*(a+b);

while (fabs(fc=(f(c))) > epsilon) {

if ((fa*fc) < 0) {

b = c;

}

else {

a = c;

fa = fc;

}

c = 0.5*(a+b);

}

printf("final c=%g, f(c)=%g\n",c,fc);

return 0;

}

Lectures INF2320 – p. 21/88



Newton’s method

• Recall that we have assumed that we have a good
initial guess x0 close to x∗ (where f (x∗) = 0)

• We will also assume that we have a small region
around x∗ where f has only one zero, and that f ′(x) 6= 0

• Taylor series expansion around x = x0 yields

f (x0 +h) = f (x0)+h f ′(x0)+O(h2) (25)

• Thus, for small h we have

f (x0 +h) ≈ f (x0)+h f ′(x0) (26)
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Newton’s method

• We want to choose the step h such that f (x0 +h) ≈ 0

• By (26) this can be done by choosing h such that

f (x0)+h f ′(x0) = 0

• Solving this gives

h = − f (x0)

f ′(x0)

• We therefore define

x1
def
= x0 +h = x0−

f (x0)

f ′(x0)
(27)
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Newton’s method

• We test this on the example studied above with
f (x) = 2+ x− ex and x0 = 3

• We have that

f ′(x) = 1− ex

• Therefore

x1 = x0−
f (x0)

f ′(x0)
= 3− 5− e3

1− e3
= 2.2096

• We see that

| f (x0)| = | f (3)| ≈ 15.086 and | f (x1)| = | f (2.2096)| ≈ 4.902,

i.e, the value of f is significantly reduced
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Newton’s method

We can now repeat the above procedure and define

x2
def
= x1−

f (x1)

f ′(x1)
, (28)

and in algorithmic form Newton’s method reads:
Algorithm 2. Given an initial approximation x0 and a
tolerance ε.
k = 0
while | f (xk)| > ε do

xk+1 = xk −
f (xk)

f ′(xk)
k = k +1

end
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Newton’s method

In Table 2 we show the results generated by Newton’s
method on the above example.

k xk f (xk)

1 2.209583 −4.902331
2 1.605246 −1.373837
3 1.259981 −0.265373
4 1.154897 −1.880020·10−2

5 1.146248 −1.183617·10−4

6 1.146193 −4.783945·10−9

Table 2: Solving the nonlinear equation f (x) = 2+ x− ex = 0 by

using Algorithm 25 and ε = 10−6; the number of iterations k, xk and

f (xk).
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Newton’s method

• We observe that the convergence is much faster for
Newton’s method than for the Bisection method

• Generally, Newton’s method converges faster than the
Bisection method

• This will be studied in more detail in Project 1

Lectures INF2320 – p. 27/88



Example 12

Let

f (x) = x2−2,

and find x∗ such that f (x∗) = 0.

• Note that one of the exact solutions is x∗ =
√

2

• Newton’s method for this problem reads

xk+1 = xk −
x2

k −2
2xk

• or

xk+1 =
x2

k +2
2xk
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Example 12

If we choose x0 = 1, we get

x1 = 1.5,

x2 = 1.41667,

x3 = 1.41422.

Comparing this with the exact value

x∗ =
√

2≈ 1.41421,

we see that a very accurate approximation is obtained in
only 3 iterations.
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An alternative derivation

• The Taylor series expansion of f around x0 is given by

f (x) = f (x0)+(x− x0) f ′(x0)+O((x− x0)
2)

• Let F0(x) be a linear approximation of f around x0:

F0(x) = f (x0)+(x− x0) f ′(x0)

• F0(x) approximates f around x0 since

F0(x0) = f (x0) and F ′
0(x0) = f ′(x0)

• We now define x1 to be such that F(x1) = 0, i.e.

f (x0)+(x1− x0) f ′(x0) = 0
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An alternative derivation

• Then we get

x1 = x0−
f (x0)

f ′(x0)
,

which is identical to the iteration obtained above
• We repeat this process, and define a linear

approximation of f around x1

F1(x) = f (x1)+(x− x1) f ′(x1)

• x2 is defined such that F1(x2) = 0, i.e.

x2 = x1−
f (x1)

f ′(x1)
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An alternative derivation

• Generally we get

xk+1 = xk −
f (xk)

f ′(xk)

• This process is illustrated in Figure 4
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x0x1x2x3f (x)

Figure 4: Graphical illustration of Newton’s method.
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The Secant method

• The secant method is similar to Newton’s method, but
the linear approximation of f is defined differently

• Now we assume that we have two values x0 and x1

close to x∗, and define the linear function F0(x) such
that

F0(x0) = f (x0) and F0(x1) = f (x1)

• The function F0(x) is therefore given by

F0(x) = f (x1)+
f (x1)− f (x0)

x1− x0
(x− x1)

• F0(x) is called the linear interpolant of f
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The Secant method

• Since F0(x) ≈ f (x), we can compute a new
approximation x2 to x∗ by solving the linear equation

F(x2) = 0

• This means that we must solve

f (x1)+
f (x1)− f (x0)

x1− x0
(x2− x1) = 0,

with respect to x2 (see Figure 5)
• This gives

x2 = x1−
f (x1)(x1− x0)

f (x1)− f (x0)
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Figure 5: The figure shows a function f = f (x) and its linear in-

terpolant F between x0 and x1.
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The Secant method

Following the same procedure as above we get the iteration

xk+1 = xk −
f (xk)(xk − xk−1)

f (xk)− f (xk−1)
,

and the associated algorithm reads
Algorithm 3. Given two initial approximations x0 and
x1 and a tolerance ε.
k = 1
while | f (xk)| > ε do

xk+1 = xk − f (xk)
(xk − xk−1)

f (xk)− f (xk−1)
k = k +1

end
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Example 13

Let us apply the Secant method to the equation

f (x) = 2+ x− ex = 0,

studied above. The two initial values are x0 = 0, x1 = 3, and
the stopping criteria is specified by ε = 10−6.

• Table 3 show the number of iterations k, xk and f (xk) as
computed by Algorithm 3

• Note that the convergence for the Secant method is
slower than for Newton’s method, but faster than for
the Bisection method
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k xk f (xk)

2 0.186503 0.981475
3 0.358369 0.927375
4 3.304511 −21.930701
5 0.477897 0.865218
6 0.585181 0.789865
7 1.709760 −1.817874
8 0.925808 0.401902
9 1.067746 0.158930
10 1.160589 −3.122466·10−2

11 1.145344 1.821544·10−3

12 1.146184 1.912908·10−5

13 1.146193 −1.191170·10−8

Table 3: The Secant method applied with f (x) = 2+ x− ex=0.
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Example 14

Find a zero of

f (x) = x2−2,

which has a solution x∗ =
√

2.
• The general step of the secant method is in this case

xk+1 =xk − f (xk)
xk − xk−1

f (xk)− f (xk−1)

=xk − (x2
k −2)

xk − xk−1

x2
k − x2

k−1

=xk −
x2

k −2
xk + xk−1

=
xkxk−1 +2
xk + xk−1
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Example 14

• By choosing x0 = 1 and x1 = 2 we get

x2 = 1.33333

x3 = 1.40000

x4 = 1.41463

• This is quite good compared to the exact value

x∗ =
√

2 ≈ 1.41421

• Recall that Newton’s method produced the
approximation 1.41422in three iterations, which is
slightly more accurate
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Fixed-Point iterations

Above we studied implicit schemes for the differential
equation u′ = g(u), which lead to the nonlinear equation

un+1−∆t g(un+1) = un,

where un is known, un+1 is unknown and ∆t > 0 is small. We
defined v = un+1 and c = un, and wrote the equation

v−∆t g(v) = c.

We can rewrite this equation on the form

v = h(v), (29)

where

h(v) = c+∆t g(v).
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Fixed-Point iterations

The exact solution, v∗, must fulfill

v∗ = h(v∗).

This fact motivates the Fixed Point Iteration:

vk+1 = h(vk),

with an initial guess v0.
• Since h leaves v∗ unchanged; h(v∗) = v∗, the value v∗ is

referred to as a fixed-point of h
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Fixed-Point iterations

We try this method to solve

x = sin(x/10),

which has only one solution x∗ = 0 (see Figure 6)
The iteration is

xk+1 = sin(xk/10). (30)

Choosing x0 = 1.0, we get the following results

x1 = 0.09983,
x2 = 0.00998,
x3 = 0.00099,

which seems to converge fast towards x∗ = 0.
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Figure 6: The graph of y = x and y = sin(x/10).
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Fixed-Point iterations

We now try to understand the behavior of the iteration.
From calculus we recall for small x we have

sin(x/10) ≈ x/10.

Using this fact in (30), we get

xk+1 ≈ xk/10,

and therefore

xk ≈ (1/10)k.

We see that this iteration converges towards zero.
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Convergence of Fixed-Point iterations

We have seen that h(v) = v can be solved with the
Fixed-Point iteration

vk+1 = h(vk)

We now analyze under what conditions the values {vk}
generated by the Fixed-Point iterations converge towards a
solution v∗ of the equation.
Definition: h = h(v) is called a contractive mapping on a
closed interval I if

(i) |h(v)−h(w)| ≤ δ |v−w| for any v,w ∈ I, where 0 < δ < 1,

and

(ii) v ∈ I ⇒ h(v) ∈ I.
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Convergence of Fixed-Point iterations

The Mean Value Theorem of Calculus states that if f is a
differentiable function defined on an interval [a,b], then
there is a c ∈ [a,b] such that

f (b)− f (a) = f ′(c)(b−a).

• It follows from this theorem that h in is a contractive
mapping defined on an interval I if

|h′(ξ)| < δ < 1 for all ξ ∈ I, (31)

and h(v) ∈ I for all v ∈ I
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Convergence of Fixed-Point iterations

Let us check the above example

x = sin(x/10)

We see that h(x) = sin(x/10) is contractive on I = [−1,1]
since

|h′(x)| =
∣

∣

∣

∣

1
10

cos(x/10)

∣

∣

∣

∣

≤ 1
10

and

x ∈ [−1,1] ⇒ sin(x/10) ∈ [−1,1].
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Convergence of Fixed-Point iterations

For a contractive mapping h, we assume that for any v,w in
a closed interval I we have

|h(v)−h(w)| ≤ δ |v−w| , where 0 < δ < 1,

v ∈ I ⇒ h(v) ∈ I

The error, ek = |vk − v∗|, fulfills

ek+1 = |vk+1− v∗|
= |h(vk)−h(v∗)|
≤δ |vk − v∗|
=δek.
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Convergence of Fixed-Point iterations

It now follows by induction on k, that

ek ≤ δke0.

Since 0 < δ < 1, we know that ek → 0 as k → ∞. This means
that we have convergence

lim
k→∞

vk = v∗.

We can now conclude that the Fixed-Point iteration will
converge when h is a contractive mapping.
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Speed of convergence

We have seen that the Fixed-Point iterations fulfill

ek

e0
≤ δk.

Assume we want to solve this equation to the accuracy

ek

e0
≤ ε.

• We need to have δk ≤ ε, which gives

k ln(δ) ≤ ln(ε)

• Therefore the number of iterations needs to satisfy

k ≥ ln(ε)
ln(δ)
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Existence and Uniqueness of a Solution

For the equations on the form v = h(v), we want to answer
the following questions

a) Does there exist a value v∗ such that

v∗ = h(v∗)?

b) If so, is v∗ unique?

c) How can we compute v∗?

We assume that h is a contractive mapping on a closed
interval I such that

|h(v)−h(w)| ≤ δ |v−w| , where 0 < δ < 1, (32)

v ∈ I ⇒ h(v) ∈ I (33)

for all v, w.
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Uniqueness

Assume that we have two solutions v∗ and w∗ of the
problem, i.e.

v∗ = h(v∗) and w∗ = h(w∗) (34)

From the assumption (32) we have

|h(v∗)−h(w∗)| ≤ δ |v∗−w∗| ,

where δ < 1. But (34) gives

|v∗−w∗| ≤ δ |v∗−w∗|

which can only hold when v∗ = w∗, and consequently the
solution is unique.
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Existence

We have seen that if h is a contractive mapping, the
equation

h(v) = v (35)

can only have one solution.
• If we now can show that there exists a solution of (35)

we have answered (a), (b) and (c) above
• Below we show that assumptions (32) and (33) imply

existence
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Cauchy sequences

First we recall the definition of Cauchy sequences.
• A sequence of real numbers, {vk}, is called a Cauchy

sequence if, for any ε > 0, there is an integer M such
that for any m,n ≥ M we have

|vm − vn| < ε (36)

• Theorem: A sequence {vk} converges if and only if it is
a Cauchy sequence

• Under we shall show that the sequence, {vk},
produced by the Fixed-Point iteration, is a Cauchy
series when assumptions (32) and (33) hold
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Existence

• Since vn+1 = h(vn), we have

|vn+1− vn| = |h(vn)−h(vn−1)| ≤ δ |vn − vn−1|

• By induction, we have

|vn+1− vn| ≤ δn |v1− v0|

• In order to show that {vn} is a Cauchy sequence, we
need to bind |vm − vn|

• We may assume that m > n, and we see that

vm − vn = (vm − vm−1)+(vm−1− vm−2)+ . . .+(vn+1− vn)
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Existence

• By the triangle-inequality, we have

|vm − vn| ≤ |vm − vm−1|+ |vm−1− vm−2|+ . . .+ |vn+1− vn|

• (37) gives

|vm − vm−1| ≤ δm−1 |v1− v0|
|vm−1− vm−2| ≤ δm−2 |v1− v0|

...
|vn+1− vn| ≤ δn |v1− v0|

• consequently

|vm − vn| ≤ |vm − vm−1|+ |vm−1− vm−2|+ . . .+ |vn+1− vn|
≤
(

δm−1 +δm−2 + . . .+δn
)

|v1− v0|
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Existence

• We can now estimate the power series

δm−1 +δm−2 + . . .+δn = δn−1
(

δ+δ2 + . . .+δm−n
)

≤ δn−1
∞

∑
k=1

δk

= δn−1 1
1−δ

• So

|vm − vn| ≤
δn−1

1−δ
|v1− v0|

• δn−1 can be as small as you like, if you choose n big
enough
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Existence

This means that for any ε > 0, we can find an integer M
such that

|vm − vn| < ε

provided that m,n ≥ M, and consequently {vk} is a Cauchy
sequence.

• The sequence is therefore convergent, and we call the
limit v∗

• Since

v∗ = lim
k→∞

vk = lim
k→∞

h(vk) = h(v∗)

by continuity of h, we have that the limit satisfies the
equation
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Systems of nonlinear equations

We start our study of nonlinear equations, by considering a
linear system that arises from the discretization of a linear
2×2 system of ordinary differential equations,

u′(t) = −v(t), u(0) = u0,

v′(t) = u(t), v(0) = v0.
(37)

An implicit Euler scheme for this system reads

un+1−un

∆t
= −vn+1,

vn+1− vn

∆t
= un+1, (38)

and can be rewritten on the form

un+1 +∆t vn+1 = un,

−∆t un+1 + vn+1 = vn.
(39)
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Systems of linear equations

We can write this system on the form

Awn+1 = wn, (40)

where

A =

(

1 ∆t
−∆t 1

)

and wn =

(

un

vn

)

. (41)

In order to compute wn+1 = (un+1,vn+1)
T from wn = (un,vn),

we have to solve the linear system (40). The system has a
unique solution since

det(A) = 1+∆t2 > 0. (42)
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Systems of linear equations

And the solution is given by wn+1 = A−1wn, where

A−1 =
1

1+∆t2

(

1 −∆t
∆t 1

)

. (43)

Therefore we get
(

un+1

vn+1

)

=
1

1+∆t2

(

1 −∆t
∆t 1

)(

un

vn

)

(44)

=
1

1+∆t2

(

un −∆t vn

∆t un + vn

)

. (45)

Lectures INF2320 – p. 63/88



Systems of linear equations

We write this as

un+1 = 1
1+∆t2(un −∆t vn),

vn+1 = 1
1+∆t2(vn +∆t un).

(46)

By choosing u0 = 1 and v0 = 0, we have the analytical
solutions

u(t) = cos(t), v(t) = sin(t). (47)

In Figure 7 we have plotted (u,v) and (un,vn) for 0≤ t ≤ 2π,
∆t = π/500. We see that the scheme provides good
approximations.
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Figure 7: The analytical solution (u = cos(t),v = sin(t)) and the

numerical solution (un,vn), in dashed lines, produced by the implicit

Euler scheme.
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A nonlinear system

Now we study a nonlinear system of ordinary differential
equations

u′ = −v3, u(0) = u0,

v′ = u3, v(0) = v0.
(48)

An implicit Euler scheme for this system reads

un+1−un

∆t
= −v3

n+1,
vn+1− vn

∆t
= u3

n+1, (49)

which can be rewritten on the form

un+1 +∆t v3
n+1−un = 0,

vn+1−∆t u3
n+1− vn = 0.

(50)
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A nonlinear system

• Observe that in order to compute (un+1,vn+1) based on
(un,vn), we need to solve a nonlinear system of
equations

We would like to write the system on the generic form

f (x,y) = 0,

g(x,y) = 0.
(51)

This is done by setting

f (x,y) = x+∆t y3−α,

g(x,y) = y−∆t x3−β,
(52)

α = un and β = vn.
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Newton’s method

When deriving Newton’s method for solving a scalar
equation

p(x) = 0 (53)

we exploited Taylor series expansion

p(x0 +h) = p(x0)+hp′(x0)+O(h2), (54)

to make a linear approximation of the function p, and solve
the linear approximation of (53). This lead to the iteration

xk+1 = xk −
p(xk)

p′(xk)
. (55)
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Newton’s method

We shall try to extend Newton’s method to systems of
equations on the form

f (x,y) = 0,

g(x,y) = 0.
(56)

The Taylor-series expansion of a smooth function of two
variables F(x,y), reads

F(x+∆x,y+∆y) = F(x,y)+∆x
∂F
∂x

(x,y)+∆y
∂F
∂y

(x,y)

+O(∆x2,∆x∆y,∆y2). (57)

Lectures INF2320 – p. 69/88



Newton’s method

Using Taylor expansion on (56) we get

f (x0 +∆x,y0+∆y) = f (x0,y0)+∆x
∂ f
∂x

(x0,y0)+∆y
∂ f
∂y

(x0,y0)

+O(∆x2,∆x∆y,∆y2), (58)

and

g(x0 +∆x,y0+∆y) = g(x0,y0)+∆x
∂g
∂x

(x0,y0)+∆y
∂g
∂y

(x0,y0)

+O(∆x2,∆x∆y,∆y2). (59)
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Newton’s method

Since we want ∆x and ∆y to be such that

f (x0 +∆x,y0+∆y) ≈ 0,

g(x0 +∆x,y0+∆y) ≈ 0,
(60)

we define ∆x and ∆y to be the solution of the linear system

f (x0,y0)+∆x∂ f
∂x (x0,y0)+∆y∂ f

∂y (x0,y0) = 0,

g(x0,y0)+∆x∂g
∂x(x0,y0)+∆y∂g

∂y(x0,y0) = 0.
(61)

Remember here that x0 and y0 are known numbers, and
therefore f (x0,y0),

∂ f
∂x (x0,y0) and ∂ f

∂y (x0,y0) are known
numbers as well. ∆x and ∆y are the unknowns.
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Newton’s method

(61) can be written on the form
(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)(

∆x
∆y

)

= −
(

f0
g0

)

. (62)

where f0 = f (x0,y0), g0 = g(x0,y0),
∂ f0
∂x = ∂ f

∂x (x0,y0), etc. If the
matrix

A =

(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)

(63)

is nonsingular. Then
(

∆x
∆y

)

= −
(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)−1(

f0
g0

)

. (64)
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Newton’s method

We can now define
(

x1

y1

)

=

(

x0

y0

)

+

(

∆x
∆y

)

=

(

x0

y0

)

−
(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)−1(

f0
g0

)

.

And by repeating this argument we get

(

xk+1

yk+1

)

=

(

xk

yk

)

−
(

∂ fk

∂x
∂ fk

∂y
∂gk

∂x
∂gk

∂y

)−1(

fk

gk

)

, (65)

where fk = f (xk,yk), gk = g(xk,yk) and ∂ fk

∂x = ∂ f
∂x (xk,yk) etc.

The scheme (65) is Newton’s method for the system (56).
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A Nonlinear example

We test Newton’s method on the system

ex − ey = 0,

ln(1+ x+ y) = 0.
(66)

The system have analytical solution x = y = 0. Define

f (x,y) = ex − ey,

g(x,y) = ln(1+ x+ y).

The iteration in Newton’s method (65) reads

(

xk+1

yk+1

)

=

(

xk

yk

)

−
(

exk −eyk

1
1+xk+yk

1
1+xk+yk

)−1(

exk − eyk

ln(1+ xk + yk)

)

.(67)
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A Nonlinear example

The table below shows the computed results when
x0 = y0 = 1

2.

k xk yk

0 0.5 0.5
1 -0.193147 -0.193147
2 -0.043329 -0.043329
3 -0.001934 -0.001934
4 −3.75·10−6 −3.75·10−6

5 −1.40·10−11 −1.40·10−11

We observe that, as in the scalar case, Newton’s method
gives very rapid convergence towards the analytical
solution x = y = 0.
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The Nonlinear System Revisited

We now go back to nonlinear system of ordinary differential
equations (48), presented above. For each time step we
had to solve

f (x,y) = 0,

g(x,y) = 0,
(68)

where

f (x,y) = x+∆t y3−α,

g(x,y) = y−∆t x3−β.
(69)

We shall now solve this system using Newton’s method.
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The Nonlinear System Revisited

We put x0 = α, y0 = β and iterate as follows

(

xk+1

yk+1

)

=

(

xk

yk

)

−
(

∂ fk

∂x
∂ fk

∂y
∂gk

∂x
∂gk

∂y

)−1(

fk

gk

)

, (70)

where

fk = f (xk,yk), gk = g(xk,yk),

∂ fk

∂x
=

∂ f
∂x

(xk,yk) = 1,
∂ fk

∂y
=

∂ f
∂y

(xk,yk) = 3∆t y2
k,

∂gk

∂x
=

∂g
∂x

(xk,yk) = −3∆t x2
k,

∂gk

∂y
=

∂g
∂y

(xk,yk) = 1.
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The Nonlinear System Revisited

The matrix

A =

(

∂ fk

∂x
∂ fk

∂y
∂gk

∂x
∂gk

∂y

)

=

(

1 3∆t y2
k

−3∆t x2
k 1

)

(71)

has its determinant given by: det(A) = 1+9∆t2x2
k y2

k > 0. So
A−1 is well defined and is given by

A−1 =
1

1+9∆t2x2
k y2

k

(

1 −3∆t y2
k

3∆t x2
k 1

)

. (72)

For each time-level we can e.g. iterate until

| f (xk,yk)|+ |g(xk,yk)| < ε = 10−6. (73)
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The Nonlinear System Revisited

• We have tested this method with ∆t = 1/100and
t ∈ [0,1]

• In Figure 8 the numerical solutions of u and v are
plotted as functions of time, and in Figure 9 the
numerical solution is plotted in the (u,v) coordinate
system

• In Figure 10 we have plotted the number of Newton’s
iterations needed to reach the stopping criterion (73) at
each time-level

• Observe that we need no more than two iterations at
all time-levels
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Figure 8: The numerical solutions u(t) and v(t) (in dashed line) of

(48) produced by the implicit Euler scheme (49) using u0 = 1, v0 = 0

and ∆t = 1/100.
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Figure 9: The numerical solutions of (48) in the (u,v)-coordinate

system, arising from the implicit Euler scheme (49) using u0 = 1,

v0 = 0 and ∆t = 1/100.

Lectures INF2320 – p. 81/88



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

t

Figure 10: The graph shows the number of iterations used by

Newton’s method to solve the system (50) at each time-level.
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