
The Method of Least Squares

Lectures INF2320 – p. 1/80



The method of least squares

We study the following problem:
Given n points (ti,yi) for i = 1, . . . ,n in the (t,y)-plane. How
can we determine a function p(t) such that

p(ti) ≈ yi, for i = 1, . . . ,n? (1)
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Figure 1: A set of discrete data marked by small circles is ap-

proximated with a linear function p = p(t) represented by the solid

line.
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Figure 2: A set of discrete data marked by small circles is approx-

imated with a quadratic function p = p(t) represented by the solid

curve.
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The method of least square

• Above we saw a discrete data set being approximated
by a continuous function

• We can also approximate continuous functions by
simpler functions, see Figure 3 and Figure 4
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Figure 3: A function y = y(t) and a linear approximation p = p(t).
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Figure 4: A function y = y(t) and a quadratic approximation p =

p(t).
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World mean temperature deviations

Calendar year Computational year Temperature deviation

ti yi

1991 1 0.29

1992 2 0.14

1993 3 0.19

1994 4 0.26

1995 5 0.28

1996 6 0.22

1997 7 0.43

1998 8 0.59

1999 9 0.33

2000 10 0.29

Table 1: The global annual mean temperature deviation measured

in ◦C for years 1991-2000.
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Figure 5: The global annual mean temperature deviation mea-

surements for the period 1991-2000.
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Approximating by a constant

• We will study how this set of data can be approximated
by simple functions

• First, how can this data set be approximated by a
constant function

p(t) = α?

• The most obvious guess would be to choose α as the
arithmetic average

α =
1
10

10

∑
i=1

yi = 0.312 (2)

• We will study this guess in more detail
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Approximating by a constant

• Assume that we want the solution to minimize the
function

F(α) =
10

∑
i=1

(α− yi)
2 (3)

• The function F measures a sort of deviation from α to
the set of data (ti,yi)

10
i=1

• We want to find the α that minimizes F(α), i.e. we want
to find α such that F ′(α) = 0

• We have

F ′(α) = 2
10

∑
i=1

(α− yi) (4)
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Approximating by a constant

• This leads to

2
10

∑
i=1

α∗ = 2
10

∑
i=1

yi, (5)

or

α∗ =
1
10

10

∑
i=1

yi, (6)

which is the arithmetic average
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Figure 6: A graph of F = F(α) given by (3).
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Approximating by a constant

• Since

F ′′(α) = 2
10

∑
i=1

1 = 20 > 0, (7)

it follows that the arithmetic average is the minimizer
for F

• We can say that the average value is the optimal
constant approximating the global temperature

• This way of defining an optimal constant, where we
minimize the sum of the square of the distances
between the approximation and the data, is referred to
as the method of least squares

• There are other ways to define an optimal constant
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Approximating by a constant

• Define

G(α) =
10

∑
i=1

(α− yi)
4 (8)

• G(α) also measures a sort of deviation from α to the
data

• We have that

G′(α) = 4
10

∑
i=1

(α− yi)
3 (9)

• And in order to minimize G we need to solve G′(α) = 0,
(and check that G′′(α) > 0)
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Approximating by a constant

• Solving G′(α) = 0 leads to a nonlinear equation that
can be solved with the Newton iteration from the
previous lecture

• We use Newton’s method with
• initial approximation: α0 = 0.312
• tolerance specified by: ε = 10−8

This gives α∗ ≈ 0.345, in three iterations
• α∗ is a minimum of G since

G′′(α∗) = 12
10

∑
i=1

(α∗
− yi)

2 > 0
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Figure 7: A graph of G = G(α) given by (8).
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Figure 8: Two constant approximations of the global annual mean

temperature deviation measurements from year 1991 to 2000.
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Approximating by a linear function

• Now we will study how we can approximate the world
mean temperature deviation with a linear function

• We want to determine two constants α and β such that

p(t) = α+βt (10)

fits the data as good as possible in the sense of least
squares
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Approximating by a linear function

• Define

F(α,β) =
10

∑
i=1

(α+βti − yi)
2 (11)

• In order to minimize F with respect to α and β, we can
solve

∂F
∂α

=
∂F
∂β

= 0 (12)
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Approximating by a linear function

We have that

∂F
∂α

= 2
10

∑
i=1

(α+βti − yi), (13)

and therefore the condition ∂F
∂α = 0 leads to

10α+

(

10

∑
i=1

ti

)

β =
10

∑
i=1

yi. (14)
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Approximating by a linear function

Here

10

∑
i=1

ti = 1+2+3+ · · ·+10 = 55,

and

10

∑
i=1

yi = 0.29+0.14+0.19+ · · ·+0.29 = 3.12,

so we have

10α+55β = 3.12. (15)
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Approximating by a linear function

Further, we have that

∂F
∂β

= 2
10

∑
i=1

(α+βti − yi)ti,

and therefore the condition ∂F
∂β = 0 gives

(

10

∑
i=1

ti

)

α+

(

10

∑
i=1

t2
i

)

β =
10

∑
i=1

yiti.
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Approximating by a linear function

We can calculate

10

∑
i=1

t2
i = 1+22 +32 + · · ·+102 = 385,

and

10

∑
i=1

tiyi = 1 ·0.29+2 ·0.14+3 ·0.19+ · · ·+10·0.29 = 20,

so we arrive at the equation

55α+385β = 20. (16)
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Approximating by a linear function

We now have a 2×2 system of linear equations which
determines α and β:

(

10 55

55 385

)(

α
β

)

=

(

3.12

20

)

.

With our knowledge of linear algebra, we see that

(

α
β

)

=

(

10 55

55 385

)−1(
3.12

20

)

=
1

825

(

385 −55

−55 10

)(

3.12

20

)

≈

(

0.123

0.034

)

.
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Approximating by a linear function

We conclude that the linear model

p(t) = 0.123+0.034t (17)

approximates the data optimally in the sense of least
squares.
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Figure 9: Constant and linear least squares approximations of

the global annual mean temperature deviation measurements from

year 1991 to 2000.
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Approx. by a quadratic function

• We now want to determine constants α, β and γ, such
that the quadratic polynomial

p(t) = α+βt + γt2 (18)

fits the data optimally in the sense of least squares
• Minimizing

F(α,β,γ) =
10

∑
i=1

(α+βti + γt2
i − yi)

2 (19)

requires

∂F
∂α

=
∂F
∂β

=
∂F
∂γ

= 0 (20)
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Approx. by a quadratic function

• ∂F
∂α = 2∑10

i=1

(

α+βti + γt2
i − yi

)

= 0 leads to

10α+

(

10

∑
i=1

ti

)

β+

(

10

∑
i=1

t2
i

)

γ =
10

∑
i=1

yi

• ∂F
∂β = 2∑10

i=1

(

α+βti + γt2
i − yi

)

ti = 0 leads to
(

10

∑
i=1

ti

)

α+

(

10

∑
i=1

t2
i

)

β+

(

10

∑
i=1

t3
i

)

γ =
10

∑
i=1

yiti

• ∂F
∂γ = 2∑10

i=1

(

α+βti + γt2
i − yi

)

t2
i = 0 leads to

(

10

∑
i=1

t2
i

)

α+

(

10

∑
i=1

t3
i

)

β+

(

10

∑
i=1

t4
i

)

γ =
10

∑
i=1

yit
2
i
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Approx. by a quadratic function

Here

10

∑
i=1

ti = 55,
10

∑
i=1

t2
i = 385,

10

∑
i=1

t3
i = 3025,

10

∑
i=1

t4
i = 25330,

10

∑
i=1

yi = 3.12,
10

∑
i=1

tiyi = 20,

10

∑
i=1

t2
i yi = 138.7,

which leads to the linear system






10 55 385
55 385 3025
385 3025 25330













α
β
γ






=







3.12
20

138.7






. (21)
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Solving the linear system (21) with, e.g., matlab we get

α ≈ −0.4078,
β ≈ 0.2997, (22)
γ ≈ −0.0241.

We have now obtained three approximations of the data
• The constant

p0(t) = 0.312

• The linear
p1(t) = 0.123+0.034t

• The quadratic

p2(t) = −0.4078+0.2997t −0.0241t2
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Figure 10: Constant, linear and quadratic approximations of the

global annual mean temperature deviation measurements from the

year 1991 to 2000.
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Summary

Approximating a data set

(ti,yi) i = 1, . . . ,n,

with a constant function

p0(t) = α.

Using the method of least squares gives

α =
1
n

n

∑
i=1

yi, (23)

which is recognized as the arithmetic average.
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Summary

Approximating the data set with a linear function

p1(t) = α+βt

can be done by minimizing

min
α,β

F(α,β) = min
α,β

n

∑
i=1

(p1(ti)− yi)
2,

which leads to the following 2×2 linear system










n
n

∑
i=1

ti

n

∑
i=1

ti
n

∑
i=1

t2
i

















α

β






=











n

∑
i=1

yi

n

∑
i=1

tiyi











. (24)
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Summary

A quadratic approximation on the form

p2(t) = α+βt + γt2

can be done by minimizing
minα,β,γ F(α,β,γ) = minα,β,γ ∑n

i=1(p2(ti)− yi)
2, which leads to

the following 3×3 linear system




















n
n

∑
i=1

ti
n

∑
i=1

t2
i

n

∑
i=1

ti
n

∑
i=1

t2
i

n

∑
i=1

t3
i

n

∑
i=1

t2
i

n

∑
i=1

t3
i

n

∑
i=1

t4
i



























α
β
γ






=





















n

∑
i=1

yi

n

∑
i=1

yiti

n

∑
i=1

yit
2
i





















. (25)
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Large Data Sets
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Figure 11: The global annual mean temperature deviation mea-

surements from the year 1856 to 2000.
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Application to the temperature data

We use the derived methods to model the global
temperature deviation from 1856 to 2000. Here

n = 145,
145

∑
i=1

ti = 10585,

145

∑
i=1

t2
i = 1026745,

145

∑
i=1

t3
i = 1.12042·108,

145

∑
i=1

t4
i = 1.30415·1010,

145

∑
i=1

yi = −21.82,

145

∑
i=1

tiyi = −502.43,
145

∑
i=1

t2
i yi = 19649.8,

(26)

where we have used ti = i, i.e., t1 = 1 corresponds to the
year of 1856, t2 = 2 corresponds to the year of 1857 etc.

Lectures INF2320 – p. 37/80



Application to the temperature data

First we get the constant model

p0(t) ≈ −0.1505. (27)

The coefficients α and β of the linear model are obtained by
solving the linear system (24), i.e.

(

145 10585
10585 1026745

)(

α
β

)

=

(

−21.82
−502.43

)

.

Consequently,

α ≈ −0.4638 and β ≈ 0.0043,

so the linear model is given by

p1(t) ≈ −0.4638+0.0043t. Lectures INF2320 – p. 38/80



Application to the temperature data

Similarly, the coefficients α, β and γ of the quadratic model
are obtained by solving the linear system (25), i.e.







145 10585 1026745·106

10585 1026745·106 1.12042·108

1026745·106 1.12042·108 1.30415·1010













α
β
γ






=







−21.82
−502.43
19649.8






.

The solution of this system is given by

α ≈ −0.3136, β ≈ −1.8404·10−3 and γ ≈ 4.2005·10−5,

so the quadratic model is given by

p2(t) ≈ −0.3136−1.8404·10−3t +4.2005·10−5t2. (28)
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Figure 12: Constant, linear and quadratic least squares approxi-

mations of the global annual mean temperature deviation measure-

ments; from 1856 to 2000.
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Application to population models

We now consider the growth of the world population.

Year Population (billions)

1950 2.555

1951 2.593

1952 2.635

1953 2.680

1954 2.728

1955 2.780

Table 2: The total world population from 1950 to 1955.
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Exponential growth

First we model the data in Table 2 using the exponential
growth model

p′(t) = αp(t), p(0) = p0, (29)

with solution p(t) = p0eαt .
• We have earlier mentioned that for this model α has to

be estimated
• We shall now estimate α relative to this data, in the

sense of least squares
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Exponential growth

• Put t = 0 at 1950 and measure t in years
• p0 = 2.555

• We want to determine the parameter α for data from
Table 2 and

p′(t)
p(t)

= α (30)

• Since only p is available, we have to approximate p′(t)
using the standard formula

p′(t) ≈
p(t +∆t)− p(t)

∆t
(31)
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Exponential growth

• By choosing ∆t = 1, we estimate α to be

αn =
p(n+1)− p(n)

p(n)
(32)

• Let bn be the relative annual growth in percentage, i.e.

bn = 100
p(n+1)− p(n)

p(n)
(33)
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Exponential growth

Year n p(n) bn = 100
p(n+1)− p(n)

p(n)

1950 0 2.555 1.49

1951 1 2.593 1.62

1952 2 2.635 1.71

1953 3 2.680 1.79

1954 4 2.728 1.91

1955 5 2.780

Table 3: Estimated values of p′(t)
p(t) using (33) based on the numbers

of the world’s population from 1950 to 1955.
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Exponential growth

• We can to compute a constant approximation b, to this
data set in the sense of least squares, i.e. the average

b =
1
5

4

∑
n=0

bn =
1
5
(1.49+1.62+1.71+1.79+1.91) = 1.704

• Since bn = 100αn we get

α =
1

100
b = 0.01704 (34)

• This gives us the model

p(t) = 2.555e0.01704t (35)
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Exponential growth

• In the year 2000 (t=50) this model gives

p(50) = 2.555e0.01704×50
≈ 5.990 (36)

• The actual population in the 2000 was 6.080 billions
• The relative error is

6.080−5.990
6.080

·100% = 1.48%, (37)

which is remarkably small
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Figure 13: The figure shows the graph of an exponential popu-

lation model p(t) = 2.555e0.01704t together with the actual measure-

ments marked by ’o’.
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Exponential growth

• Will this model fit in the future as well?
• We try to use the development from 1990 to 2000 (see

Figure 13) to predict the world population in 2100
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Year n p(n) bn = 100 p(n+1)−p(n)
p(n)

1990 0 5.284 1.57

1991 1 5.367 1.55

1992 2 5.450 1.49

1993 3 5.531 1.46

1994 4 5.611 1.43

1995 5 5.691 1.37

1996 6 5.769 1.35

1997 7 5.847 1.33

1998 8 5.925 1.32

1999 9 6.003 1.28

2000 10 6.080

Table 4: The calculated bn values associated with an exponential

population model for the world between 1990 and 2000.
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Exponential growth

• The average of the bn values is

b =
1
10

9

∑
n=0

bn = 1.42

• Therefore α = b
100 = 0.0142

• Starting from t=0 in the year 2000, the model reads

p(t) = 6.080e0.0142t (38)

• This model predicts that there will be

p(100) = 6.080e1.42
≈ 25.2 (39)

billion people living on the earth in the year of 2100
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Logistic growth of the world pop.

• We study how the world population can be modeled by
the logistic growth model

p′(t) = α p(t)(1− p(t)/β) (40)

• By defining γ = −α/β, we can rewrite (40)

p′(t)
p(t)

= α+ γ p(t) (41)

• Hence, we can determine constants α and γ by fitting a
linear function to the observations of

p′(t)
p(t)

(42)

Lectures INF2320 – p. 52/80



Logistic growth

• As above we define

bn = 100
p(n+1)− p(n)

p(n)
(43)

• We now want to determine two constants A and B,
such that the data are modeled as accurately as
possible by a linear function

bn ≈ A+Bp(n), (44)

in the sense of least squares
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Logistic growth

• A and B can be determined by the following 2×2 linear
system,











10
9

∑
n=0

p(n)

9

∑
n=0

p(n)
9

∑
n=0

(p(n))2

















A

B






=











9

∑
n=0

bn

9

∑
n=0

p(n)bn











(45)

• We have
9

∑
n=0

p(n) = 56.5,
9

∑
n=0

(p(n))2 = 319.5,

9

∑
n=0

bn ≈ 14.1,
9

∑
n=0

p(n)bn ≈ 79.6
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Logistic growth

• By solving the (2×2) system
(

10 56.5
56.5 319.5

)(

A
B

)

=

(

14.1
79.6

)

we get

A = 2.7455 and B = −0.2364

• Inserting this in the logistic model we get

p′(t) ≈ 0.027p(t)(1− p(t)/11.44) (46)

• This indicates that the carrying capacity of the earth is
about 11.44 billions
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Logistic growth

• Let t = 0 correspond to the year 2000, which gives the
initial condition

p(0) ≈ 6.08

• The analytical solution to the differential equation is

p(t) ≈
69.5

6.08+5.36e−0.027t
(47)

• This model predicts that there will be

p(100) ≈ 10.79

billion people on the earth in the year of 2100
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Figure 14: Predictions of the population growth on the earth

based on an exponential model (solid curve) and a logistic model

(dashed curve).
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Approximations of Functions

• Above we have studied continuous representation of
discrete data

• Next we will consider continuous approximation of
continuous functions

• Consider the function

y(t) = ln

(

1
10

sin(t)+ et

)

(48)

• In Figure 15 we see that y(x) seems to be close to the
linear function p(t) = t on the interval [0,1]

• In Figure 16 we see that y(x) seems to be even closer
to the linear function plotted on t ∈ [0,10]
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Figure 15: The function y(t) = ln
(

1
10 sin(t)+ et

)

(solid curve) and

a linear approximation (dashed line) on the interval t ∈ [0,1].
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Figure 16: The function y(t) = ln
(

1
10 sin(t)+ et

)

(solid curve) and

a linear approximation (dashed line) on the interval t ∈ [0,10].
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Approximations by constants

• For a given function y(t), t ∈ [a,b], we want to compute
a constant approximation of it

p(t) = α (49)

for t ∈ [a,b], in the sense of least squares
• That means that we want to minimize the integral

∫ b

a
(p(t)− y(t))2 dt =

∫ b

a
(α− y(t))2 dt
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Approximations by constants

• Define the function

F(α) =
∫ b

a
(α− y(t))2 dt (50)

• The derivative with respect to α is

F ′(α) = 2
∫ b

a
(α− y(t)) dt

• And solving F ′(α) = 0 gives

α =
1

b−a

∫ b

a
y(t)dt (51)
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Note that

• The formula for α is the integral version of the average
of y on [a,b]. In the discrete case we would have written

α =
1
n

n

∑
i=1

yi, (52)

If yi in (52) is y(ti), where ti = a+ i∆t and ∆t = b−a
n , then

1
n

n

∑
i=1

yi =
1

b−a
∆t

n

∑
i=1

y(ti) ≈
1

b−a

∫ b

a
y(t)dt.

We therefore conclude that (51) is a natural continuous
version of (52).
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Note that

• We used

d
dα

∫ b

a
(α− y(t))2dt =

∫ b

a

∂
∂α

(α− y(t))2dt

Is that a legal operation? This is discussed in
Exercise 5.

• The α given by (51) is a minimum, since

F ′′(α) = 2(b−a) > 0
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Example 15; const. approx.

Consider

y(t) = sin(t)

defined on 0≤ t ≤ π/2. A constant approximation of y is
given by

p(t) = α (51)
=

2
π

∫ π/2

0
sin(t)dt =

−2
π

[cos(t)]π/2
0

=
−2
π

(0−1) =
2
π
.
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Example 16; const. approx.

Consider

y(t) = t2 +
1
10

cos(t)

defined on 0≤ t ≤ 1. A constant approximation of y is given
by

p(t) = α (51)
=

∫ 1

0

(

t2 +
1
10

cos(t)

)

dt =

[

1
3

t3 +
1
10

sin(t)

]1

0

=
1
3

+
1
10

sin(1) ≈ 0.417.
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Approximations by Linear Functions

• Now, we search for a linear approximation of a function
y(t), t ∈ [a,b], i.e.

p(t) = α+β t (53)

in the sense of least squares
• Define

F(α,β) =

∫ b

a
(α+β t − y(t))2dt (54)

• A minimum of F is obtained by finding α and β such
that

∂F
∂α

=
∂F
∂β

= 0
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Approximations by Linear Functions

• We have

∂F
∂α

= 2
∫ b

a
(α+β t − y(t))dt

∂F
∂β

= 2
∫ b

a
(α+β t − y(t))t dt

• Therefore α and β can be determined by solving the
following linear system

(b−a)α+
1
2
(b2

−a2)β =
∫ b

a
y(t)dt

1
2
(b2

−a2)α+
1
3
(b3

−a3)β =

∫ b

a
t y(t)dt

(55)
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Example 15; linear approx.

Consider

y(t) = sin(t)

defined on 0≤ t ≤ π/2.
We have

∫ π/2

0
sin(t)dt = 1

and
∫ π/2

0
t sin(t)dt = 1.
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Example 15; linear approx.

The linear system now reads
(

π/2 π2/8
π2/8 π3/24

)(

α
β

)

=

(

1
1

)

.

The solution is

(

α
β

)

=
1
π2





8π−24
96
π

−24



 ≈

(

0.115
0.664

)

.

Therefore the linear approximation is given by

p(t) ≈ 0.115+0.664t.
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Example 16; linear approx.

Consider

y(t) = t2 +
1
10

cos(t)

defined on 0≤ t ≤ 1. The linear system (55) then reads
(

1 1
2

1
2

1
3

)(

α
β

)

=

(

1
3 + 1

10 sin(1)
3
20 + 1

10 cos(1)+ 1
10 sin(1)

)

,

with solution α ≈ −0.059and β ≈ 0.953.
We conclude that the linear least squares approximation is
given by

p(t) ≈ −0.059+0.953t.
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Approx. by Quadratic Functions

• We seek a quadratic function

p(t) = α+β t + γ t2 (56)

that approximates a given function y = y(t), a ≤ t ≤ b, in
the sense of least squares

• Let

F(α,β,γ) =

∫ b

a
(α+β t + γ t2

− y(t))2dt (57)

• Define α, β and γ to be the solution of the three
equations:

∂F
∂α

=
∂F
∂β

=
∂F
∂γ

= 0
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Approx. by Quadratic Functions

• By taking the derivatives, we have
•

∂F
∂α

= 2
∫ b

a
(α+β t + γ t2

− y(t))dt

•

∂F
∂β

= 2
∫ b

a
(α+β t + γ t2

− y(t)) t dt

•

∂F
∂γ

= 2
∫ b

a
(α+β t + γ t2

− y(t)) t2dt

Lectures INF2320 – p. 73/80



• The coefficients α, β and γ can now be determined
from the linear system

(b−a)α+
1
2
(b2

−a2)β+
1
3
(b3

−a3)γ =

∫ b

a
y(t)dt

1
2
(b2

−a2)α+
1
3
(b3

−a3)β+
1
4
(b4

−a4)γ =
∫ b

a
t y(t)dt

1
3
(b3

−a3)α+
1
4
(b4

−a4)β+
1
5
(b5

−a5)γ =

∫ b

a
t2y(t)dt
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Example 15; quad. approx.

For the function

y(t) = sin(t), 0≤ t ≤ π/2,

the linear system reads






π/2 π2/8 π3/24
π2/8 π3/24 π4/64

π3/24 π4/64 π5/160













α
β
γ






=







1
1

π−2






,

and the solution is given by α ≈ −0.024, β ≈ 1.196and
γ ≈ −0.338, which gives the quadratic approximation

p(t) = −0.024+1.196t −0.338t2.
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Example 16; quad. approx.

Let us consider

y(t) = t2 +
1
10

cos(t)

for 0≤ t ≤ 1. The linear system takes the form






1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5













α
β
γ






=







1
3 + 1

10 sin(1)
3
20 + 1

10 cos(1)+ 1
10 sin(1)

1
5 + 1

5 cos(1)− 1
10 sin(1)







and the solution is given by α ≈ 0.100, β ≈ −0.004and
γ ≈ 0.957, and the quadratic approximation is

p(t) = 0.100−0.004t +0.957t2.

Lectures INF2320 – p. 76/80



0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Figure 17: The function y(t) = sin(t) (solid curve) and its least

squares approximations: constant (dashed line), linear (dotted line)

and quadratic (dashed-dotted curve).
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Figure 18: The function y(t) = t2 + 1
10 cos(t) (solid curve) and its

least squares approximations: constant (dashed line), linear (dotted

line) and quadratic (dashed-dotted curve).
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