Diffusion Processes

Diffusion processes

Examples of diffusion processes

- Heat conduction
- Heat moves from hot to cold places
- Diffusive (molecular) transport of a substance
- Ink in water
- Sugar/Cream in coffee
- Perfume/Gas in air
- Thin-film fluid flow

Diffusion processes

- Diffusion processes smoothes out differences
- A physical property (heat/concentration) moves from high concentration to low concentration
- Convection is another (and usually more efficient) way of smearing out a property, but is not treated here

One dimension

- For simplicity, we will in the following focus on one dimensional examples
- This simplifies the complexity of the numerics and codes, but it would still be realistic in examples with
- Long thin geometries
- One dimensional variation only
- Cylindrical or spherical symmetry
- Mathematical splitting of dimension

$$
u(x, y, z, t)=F(x, t)+G(y, z, t)
$$

or

$$
u(x, y, z, t)=F(x, t) G(y, z, t)
$$

Figure 1: Diffusion of ink in a long and thin tube. The top figure shows the initial concentration (dark is ink, white is water). The three figures below show the concentration of ink at (scaled) times $t=0.25$, $t=0.5, t=1$, and $t=3$, respectively. The evolution is clearly onedimensional.

Figure 2: The evolution of the temperature in a medium composed of two pieces of metal, at different initial temperatures. In the gray scale plots, dark is hot and white is cool. The plots correspond to $t=0, t=0.01, t=0.1$, and $t=0.5$. All boundaries are insulated, and the temperature approaches a constant value, equal to the average $\left(T_{1}+T_{2}\right) / 2$ of the initial temperature values.

The Basics of the Mathematical Model

The diffusion equation reads

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+f(x, t), \quad x \in(a, b), t>0 \tag{1}
\end{equation*}
$$

- k is a physical parameter
- Large k implies that u spreads quickly

Initial and Boundary conditions

- Let u be a solution of (1), then for any constant $C, u+C$ will also be a solution (1)
- Thus, there are infinitely many solutions of (1)
- In order to make a problem with unique solution we need some initial and boundary conditions
- Initial conditions is that we now the solution initially $u(x, 0)$ for $x \in[a, b]$
- Boundary conditions is that we have some information about the solution at the endpoints $u(a, t)$ and $u(b, t)$

Diffusion equation

- In 3 dimensions the diffusion equation reads

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+f(x, y, z, t) \tag{2}
\end{equation*}
$$

- This equation is sometimes written on a more compact form

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \nabla^{2} u+f, \tag{3}
\end{equation*}
$$

where the operator ∇^{2} is defined by $\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}$

- ∇^{2} is called the Laplace operator

Derivation of Diffusion equations

- We shall derive the diffusion equation for diffusion of a substance
- Think of some ink placed in a long, thin tube filled with water
- We study the concentration $c(x, t), x \in(a, b), t>0$
- The motion of the substance will be determined by two physical laws:
- Conservation of mass
- Fick's law relating the velocity of the substance (flux) to the concentration

Mass conservation

Let $c(x, t)$ denote the concentration of the ink, $q(x, t)$ denotes the velocity of it and ρ denotes mass density of pure ink

- For a system without any source, the net inflow on the interval equals the increase in mass

$$
\begin{equation*}
\rho q(a) \Delta t-\rho q(b) \Delta t=\int_{a}^{b} \rho \Delta c d x \tag{4}
\end{equation*}
$$

- Introducing a source term f, the mass balance is

$$
\rho q(a) \Delta t-\rho q(b) \Delta t+\int_{a}^{b} \rho f \Delta t d x=\int_{a}^{b} \rho \Delta c d x,
$$

where $f>0$ corresponds to mass injection and $f<0$ means mass extraction

Mass conservation

- For small values of Δt we have $(\Delta c=c(x, t+\Delta t)-c(x, t))$

$$
\begin{equation*}
\Delta c=\frac{\partial c}{\partial t} \Delta t \tag{5}
\end{equation*}
$$

- To study the left hand side of (4), we note that integration by parts give

$$
\int_{a}^{b} \rho \frac{\partial q}{\partial x} d x=-\int_{a}^{b} q \frac{\partial \rho}{\partial x} d x+\rho[q]_{a}^{b}
$$

- We assume that the mass density is constant, i.e. $\frac{\partial \rho}{\partial x}=0$, thus

$$
\begin{equation*}
\rho(q(b, t)-q(a, t))=\int_{a}^{b} \rho \frac{\partial q}{\partial x} d x \tag{6}
\end{equation*}
$$

Mass conservation

- Collecting the integrals, we can write the mass conservation principle on the form

$$
\int_{a}^{b} \rho\left[\frac{\partial c}{\partial t}+\frac{\partial q}{\partial x}-f\right] d x=0
$$

- Since this integral is zero for any interval $[a, b]$, one can argue that the integrand must be zero for all values of x and t, thus

$$
\begin{equation*}
\frac{\partial c}{\partial t}+\frac{\partial q}{\partial x}=f \tag{7}
\end{equation*}
$$

which is referred to as the law of mass conservation on partial differential equation form

Mass conservation

- Let $c(x, t)$ denote the concentration of the ink, let $q(x, t)$ denote the velocity of it (from left to right) and let $f(x, t)$ denote the mass injection of ink
- The law of Conservation of mass, in PDE form, reads

$$
\begin{equation*}
\frac{\partial c}{\partial t}+\frac{\partial q}{\partial x}=f \tag{8}
\end{equation*}
$$

- This equation states that temporal change in concentration plus the spatial change in velocity equals the injection of ink
- This means that ink can neither appear nor disappear (mass conservation)

Fick's law

- Fick's law reads

$$
\begin{equation*}
q=-k \frac{\partial c}{\partial x} \tag{9}
\end{equation*}
$$

- This law states that the flow of ink is proportional to the spatial change in concentration
- The minus sign makes sure that the ink diffuses from regions with high concentration to regions with low concentration

Diffusion of a substance

- By inserting Fick's law (9) in the mass conservation equation (8), we can eliminate q and get a PDE with only one unknown function, c :

$$
\begin{equation*}
\frac{\partial c}{\partial t}=k \frac{\partial^{2} c}{\partial x^{2}}+f(x, t) \tag{10}
\end{equation*}
$$

Initial conditions

In order to solve the diffusion equation we need some initial condition and boundary conditions.

- The initial condition gives the concentration in the tube at $\mathrm{t}=0$

$$
\begin{equation*}
c(x, 0)=I(x), \quad x \in(0,1) \tag{11}
\end{equation*}
$$

- Physically this means that we need to know the concentration distribution in the tube at a moment to be able to predict the future distribution

Boundary conditions

Some common boundary conditions are

- Prescribed concentrations, S_{0} and S_{1}, at the endpoints

$$
c(0, t)=S_{0} \quad \text { and } \quad c(1, t)=S_{1}
$$

- Impermeable endpoints, i.e. no out flow at the endpoints

$$
q(0, t)=0 \quad \text { and } \quad q(1, t)=0
$$

- By Fick's law we get

$$
\frac{\partial c(0, t)}{\partial x}=0 \quad \text { and } \quad \frac{\partial c(1, t)}{\partial x}=0
$$

Boundary conditions

- Prescribed outflows Q_{0} and Q_{1} at the endpoints

$$
-q(0, t)=Q_{0} \quad \text { and } \quad q(1, t)=Q_{1}
$$

- Here the minus sign in the first expression, $-q(0, t)=Q_{0}$, comes since Q_{0} measures the flow out of the tube, and that is the negative direction (from right to left)
- By Fick's law we get

$$
k \frac{\partial c(0, t)}{\partial x}=Q_{0} \quad \text { and } \quad-k \frac{\partial c(1, t)}{\partial x}=Q_{1}
$$

Derivation of the heat equation

- We shall derive the diffusion equation for heat conduction
- We consider a rod of length 1 and study how the temperature distribution $T(x, t)$ develop in time, i.e. we study $T(x, t)$ for $x \in(0,1)$ and $t \geq 0$
- Our derivation of the heat equation is based on
- The first law of Thermodynamics (conservation of energy)
- A relation between inner energy and temperature
- Fourier's law of heat conduction

Derivation of the heat equation

Let $e(x, t)$ denote the internal energy per unit mass, let ρ be the mass density, and let $q(x, t)$ be the flow of heat (from left to right - defined per unit time).

- The first law of Thermodynamics on PDE form reads

$$
\begin{equation*}
\rho \frac{\partial e}{\partial t}+\frac{\partial q}{\partial x}=f \tag{12}
\end{equation*}
$$

where f denotes the energy production

- This equation states that the temporal change in energy times the mass density plus the energy flow in a point equals the production of energy in the same point (conservation of energy)

Derivation of the heat equation

A relation between internal energy e and temperature T is given by

$$
\begin{equation*}
e=c_{v} T \tag{13}
\end{equation*}
$$

In practice this relation might be more complicated Thus

- The inner energy is proportional to the temperature
- The proportionality constant, c_{v}, is heat capacity

Derivation of the heat equation

- Fourier's law reads

$$
\begin{equation*}
q=-k \frac{\partial T}{\partial x} \tag{14}
\end{equation*}
$$

- In words: the heat flow is proportional to the spatial change in temperature
- k is called the conductivity
- The minus sign means that the heat flows from hot to cold regions

The heat equation

- We will now allow the physical parameters ρ, c_{v} and k to vary in space, i.e.

$$
\rho=\rho(x), \quad c_{v}=c_{v}(x) \quad \text { and } \quad k=k(x)
$$

- Inserting (14) and (13) in (12) gives us the heat conduction equation

$$
\begin{equation*}
\rho(x) c_{v}(x) \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k(x) \frac{\partial T}{\partial x}\right)+f \tag{15}
\end{equation*}
$$

Initial conditions

In order to solve the heat equation we need some initialand boundary conditions.

- The initial condition gives the temperature distribution in the rod at $\mathrm{t}=0$

$$
\begin{equation*}
T(x, 0)=I(x), \quad x \in(0,1) \tag{16}
\end{equation*}
$$

- Physically this means that we need to know the temperature in the rod at a moment to be able to predict the future temperature distribution

Boundary conditions

There are three types of linear boundary conditions:

- Dirichlet conditions:
- The temperatures at the endpoints of the rod, $T(0, t)$ and $T(1, t)$, are prescribed at all time
- Physically, this corresponds to a situation where you have a heat source which keep the temperature at given values at the endpoints
- Neumann condition:
- The heat flow at the endpoints, $k \frac{\partial T(0, t)}{\partial x}$ and $-k \frac{\partial T(1, t)}{\partial x}$, is prescribed at all time (The difference plus sign in front of $k \frac{\partial T(0, t)}{\partial x}$ comes from the fact that we consider inflow)
- The case $\frac{\partial T(0, t)}{\partial x}=\frac{\partial T(1, t)}{\partial x}=0$ corresponds to insulated endpoints

Boundary conditions

- Robin conditions:
- Most common example of a Robin condition is Newton's law of cooling

$$
k \frac{\partial T(0, t)}{\partial x}=h_{T}\left(T(0, t)-T_{s}\right) \text { and }-k \frac{\partial T(1, t)}{\partial x}=h_{T}\left(T(1, t)-T_{s}\right)
$$

- This law states that the heat flow at the endpoint is proportional to the difference between the temperature in the rod, $T(0, t)$ and $T(1, t)$, and the temperature in the surroundings, T_{s}
- The constant h_{T} is called the heat transfer coefficient and has to be determined for a given experiment

Scaling

Suppose we work with the following diffusion equation:

$$
\begin{align*}
\rho c_{v} \frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in(a, b), t>0 \tag{17}\\
u(a, t) & =U_{a}, \quad t>0 \tag{18}\\
u(b, t) & =U_{b}, \quad t>0 \tag{19}\\
u(x, 0) & =I(x), \quad x \in[a, b] \tag{20}
\end{align*}
$$

with

$$
I(x)= \begin{cases}U_{a}, & a \leq x<c \\ U_{b}, & c \leq x \leq b\end{cases}
$$

- It is clear that the solution $u(x, t)$ will depend on all the input parameters $\rho, c_{v}, k, U_{a}, U_{b}, a$ and b

$$
u\left(x, t ; \rho, c_{v}, k, U_{a}, U_{b}, a, b\right)
$$

Scaling

- If we want to test how the solution depend on the seven parameters, it might be a very time consuming job
- Testing 3 values for each parameter would require $3^{7}=2187$ experiments, or 5 values for each parameter would require $5^{7}=78125$ experiments
- If the problem is scaled, we shall see that it is sufficient to perform just a single experiment

Scaling

- The purpose of scaling a variable q, is to introduce a new variable \bar{q}, such that \bar{q} varies between zero and about one
- If q_{r} is a characteristic reference value of q and q_{c} is a characteristic magnitude of $q-q_{r}$, a common scaling is

$$
\bar{q}=\frac{q-q_{r}}{q_{c}}
$$

Scaling

- We shall now see how the general interval (a, b) can be scaled to the standard unity interval $(0,1)$
- A scaled parameter for x can be

$$
\bar{x}=\frac{x-a}{b-a},
$$

which fulfills $\bar{x} \in(0,1)$ while $x \in(a, b)$

Scaling

- Further, a scaled parameter for time can be

$$
\bar{t}=\frac{t}{t_{c}},
$$

where t_{c} is the time it takes to make significant changes in u

- A scaling of the initial condition might be

$$
\bar{I}=\frac{I-U_{a}}{U_{b}-U_{a}}
$$

- Finally, a scaling of u can be

$$
\bar{u}=\frac{u-U_{a}}{U_{b}-U_{a}}
$$

Scaling

- We can now replace the physical variables x, t, u, and I, with

$$
\bar{x}=\frac{x-a}{b-a}, \quad \bar{t}=\frac{t}{t_{c}}, \quad \bar{I}=\frac{I-U_{a}}{U_{b}-U_{a}}, \quad \bar{u}=\frac{u-U_{a}}{U_{b}-U_{a}}
$$

which will be inserted to (17)-(20)

- Solving the above formulas for x, t, u, and I gives

$$
x=a+(b-a) \bar{x}, \quad t=t_{c} \bar{t}, \quad I=U_{a}+\left(U_{b}-U_{a}\right) \bar{I}, \quad u=U_{a}+\left(U_{b}-U_{a}\right) \bar{u}
$$

- Note that

$$
\frac{\partial u}{\partial t}=\frac{\partial \bar{t}}{\partial t} \frac{\partial}{\partial \bar{t}}\left(U_{a}+\left(U_{b}-U_{a}\right) \bar{u}\right)=\frac{1}{t_{c}}\left(U_{b}-U_{a}\right) \frac{\partial \bar{u}}{\partial \bar{t}}
$$

Scaling

- A similar development for the $\partial^{2} u / \partial x^{2}$ expression, gives

$$
\begin{align*}
\rho c_{v} \frac{U_{b}-U_{a}}{t_{c}} \frac{\partial \bar{u}}{\partial \bar{t}} & =k \frac{U_{b}-U_{a}}{(b-a)^{2}} \frac{\partial^{2} \bar{u}}{\partial \bar{x}^{2}}, \quad \bar{x} \in(0,1), \bar{t}>0, \tag{21}\\
\bar{u}(0, \bar{t}) & =0, \quad \bar{t}>0, \tag{22}\\
\bar{u}(1, \bar{t}) & =1, \quad \bar{t}>0, \tag{23}\\
\bar{u}(\bar{x}, 0) & = \begin{cases}0, & 0 \leq x \leq \bar{c}, \\
1, & \bar{c}<x \leq 1\end{cases} \tag{24}
\end{align*}
$$

Scaling

- Note that the PDE (21) can be written

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial \bar{t}}=\alpha \frac{\partial^{2} \bar{u}}{\partial \bar{x}^{2}} \tag{25}
\end{equation*}
$$

- Here α is a dimensionless number,

$$
\alpha=\frac{k t_{c}}{\rho c_{v}(b-a)^{2}}
$$

- Choosing $t_{c}=\frac{1}{k} \rho c_{v}(b-a)^{2}$ (corresponding to $\alpha=1$) gives

$$
\frac{\partial \bar{u}}{\partial \bar{t}}=\frac{\partial^{2} \bar{u}}{\partial \bar{x}^{2}}
$$

Scaling

- We can now summarize the result of the scaled diffusion problem:

$$
\begin{align*}
\frac{\partial \bar{u}}{\partial \bar{t}} & =\frac{\partial^{2} \bar{u}}{\partial \bar{x}^{2}}, \quad \bar{x} \in(0,1), \bar{t}>0, \tag{26}\\
\bar{u}(0, \bar{t}) & =0, \quad \bar{t}>0, \tag{27}\\
\bar{u}(1, \bar{t}) & =1, \quad \bar{t}>0, \tag{28}\\
\bar{u}(\bar{x}, 0) & = \begin{cases}0, & 0 \leq \bar{x} \leq \bar{c}, \\
1, & \bar{c}<\bar{x} \leq 1\end{cases} \tag{29}
\end{align*}
$$

- After solving this PDE, the real temperatures can be found by

$$
\begin{equation*}
u(x, t)=U_{a}+\left(U_{b}-U_{a}\right) \bar{u}\left(\frac{x-a}{b-a}, \frac{t k}{\rho c_{v}(b-a)^{2}}\right) \tag{30}
\end{equation*}
$$

Figure 3: Solution of (26)-(29).

Numerical methods

First we consider a version of the heat equation where any varying parameters are scaled away:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+f(x, t), \quad x \in(0,1), t>0 . \tag{31}
\end{equation*}
$$

- The solution of this equation is a continuous function of time and space
- We approximate the solution at a finite number of space points and at a finite number of time levels
- This approximation is referred to as discretization
- There are several ways of discretizing (31) - in the following we will consider a technique which is called the finite difference method

Numerical methods

Applying the finite difference method to the problem (31) implies

1. constructing a grid, with a finite number of points in (x, t) space, see Figure 4
2. requiring the PDE (31) to be satisfied at each point in the grid
3. replacing derivatives by finite difference approximations
4. calculating u at the grid points only

Figure 4: Computational grid in the x, t-plane. The grid points are located at the points of intersection of the dashed lines.

Discrete functions on a grid

- Chose a spatial discretization size Δx and a temporal discretization size Δt
- Functions are only defined in the grid points

$$
\left(x_{i}, t_{\ell}\right)
$$

for $i=1, \ldots, n$ and $\ell=0, \ldots, m$ where

- n is the number of approximation points in space

$$
\left(\Delta x=\frac{1}{n-1}\right)
$$

- $m+1$ is the number of time levels
- The value of an arbitrary function $Q(x, t)$ at a grid point $\left(x_{i}, t_{\ell}\right)$ is denoted

$$
Q_{i}^{\ell}=Q\left(x_{i}, t_{\ell}\right), \quad i=1, \ldots, n, \ell=0, \ldots, m
$$

Discrete functions on a grid

- The purpose of a finite difference method is to compute the values u_{i}^{ℓ} for $i=1, \ldots, n$ and $\ell=0, \ldots, m$
- We can now write the PDE (31) as

$$
\begin{align*}
\frac{\partial}{\partial t} u\left(x_{i}, t_{\ell}\right)= & \frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{\ell}\right)+f\left(x_{i}, t_{\ell}\right), \tag{32}\\
& i=1, \ldots, n, \ell=1, \ldots, m
\end{align*}
$$

Finite difference approximation

Now we approximate the terms in (32) that contains derivatives. The approximation is done as follows

- The right hand side is approximated

$$
\begin{equation*}
\frac{\partial}{\partial t} u\left(x_{i}, t_{\ell}\right) \approx \frac{u_{i}^{\ell+1}-u_{i}^{\ell}}{\Delta t} \tag{33}
\end{equation*}
$$

- The first term on left hand side is approximated

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{\ell}\right) \approx \frac{u_{i-1}^{\ell}-2 u_{i}^{\ell}+u_{i+1}^{\ell}}{\Delta x^{2}} \tag{34}
\end{equation*}
$$

- The first approximation (33) can be motivated directly from the definition of derivatives, since Δt is small, and it is called a finite difference approximation

Finite difference approximation

The motivation for (34) is done in two steps and the finite difference approximation is based on centered difference approximations.

- We first approximate the "outer" derivative at $x=x_{i}$ (and $t=t_{\ell}$), using a fictitious point $x_{i+\frac{1}{2}}=x_{i}+\frac{1}{2} \Delta x$ to the right and a fictitious point $x_{i-\frac{1}{2}}=x_{i}-\frac{1}{2} \Delta x$ to the left

$$
\frac{\partial}{\partial x}\left[\left(\frac{\partial u}{\partial x}\right)\right]_{i}^{\ell} \approx \frac{1}{\Delta x}\left[\left[\frac{\partial u}{\partial x}\right]_{i+\frac{1}{2}}^{\ell}-\left[\frac{\partial u}{\partial x}\right]_{i-\frac{1}{2}}^{\ell}\right]
$$

Finite difference approximation

- The first-order derivative at $x_{i+\frac{1}{2}}$ can be approximated by a centered difference using the point x_{i+1} to the right and the point x_{i} to the left:

$$
\left[\frac{\partial u}{\partial x}\right]_{i+\frac{1}{2}}^{\ell} \approx \frac{u_{i+1}^{\ell}-u_{i}^{\ell}}{\Delta x}
$$

- Similarly, the first-order derivative at $x_{i-\frac{1}{2}}$ can be approximated by a centered difference using the point x_{i} to the right and the point x_{i-1} to the left

$$
\left[\frac{\partial u}{\partial x}\right]_{i-\frac{1}{2}}^{\ell} \approx \frac{u_{i}^{\ell}-u_{i-1}^{\ell}}{\Delta x}
$$

- Combining these finite differences gives (34)

The Finite Difference Scheme

- Inserting the difference approximations (33) and (34) in (32) results in the following finite difference scheme

$$
\begin{equation*}
\frac{u_{i}^{\ell+1}-u_{i}^{\ell}}{\Delta t}=\frac{u_{i-1}^{\ell}-2 u_{i}^{\ell}+u_{i+1}^{\ell}}{\Delta x^{2}}+f_{i}^{\ell} \tag{35}
\end{equation*}
$$

- We solve (35) with respect to $u_{i}^{\ell+1}$, yielding a simple formula for the solution at the new time level

$$
\begin{equation*}
u_{i}^{\ell+1}=u_{i}^{\ell}+\frac{\Delta t}{\Delta x^{2}}\left(u_{i-1}^{\ell}-2 u_{i}^{\ell}+u_{i+1}^{\ell}\right)+\Delta t f_{i}^{\ell} \tag{36}
\end{equation*}
$$

- This is referred to as a numerical scheme for the diffusion equation

Figure 5: Illustration of the updating formula (36); u_{5}^{3} is computed from u_{4}^{2}, u_{5}^{2}, and u_{6}^{2}.

Figure 6: Illustration of the computational molecule corresponding to the finite difference scheme (36). The weight s is $\Delta t / \Delta x^{2}$.

Incorporating Boundary Conditions

- (36) can not be used for computing new values at the boundary $u_{1}^{\ell+1}$ and $u_{n}^{\ell+1}$, because (36) for $i=1$ and $i=n$ involves values u_{-1}^{ℓ} and u_{n+1}^{ℓ} outside the grid.
- Therefore we need to use the boundary conditions to update on the boundary $u_{1}^{\ell+1}$ and $u_{n}^{\ell+1}$

Dirichlet Boundary Condition

- Suppose we have the following Dirichlet boundary conditions

$$
u(0, t)=g_{0}(t), \quad u(1, t)=g_{1}(t),
$$

where $g_{0}(t)$ and $g_{1}(t)$ are prescribed functions

- The new values on the boundary can then be updated by

$$
u_{1}^{\ell+1}=g_{0}\left(t_{\ell+1}\right), \quad u_{n}^{\ell+1}=g_{1}\left(t_{\ell+1}\right)
$$

- The numerical scheme (36) update all inner points

Algorithm 1. Diffusion equation with Dirichlet boundary conditions.
Set initial conditions:

$$
u_{i}^{0}=I\left(x_{i}\right), \quad \text { for } i=1, \ldots, n
$$

for $\ell=0,1, \ldots, m$:

- Update all inner points:

$$
\begin{array}{r}
u_{i}^{\ell+1}=u_{i}^{\ell}+\frac{\Delta t}{\Delta x^{2}}\left(u_{i-1}^{\ell}-2 u_{i}^{\ell}+u_{i+1}^{\ell}\right)+\Delta t f_{i}^{\ell} \\
\text { for } i=2, \ldots, n-1
\end{array}
$$

- Insert boundary conditions:

$$
u_{1}^{\ell+1}=g_{0}\left(t_{\ell+1}\right), \quad u_{n}^{\ell+1}=g_{1}\left(t_{\ell+1}\right)
$$

Neumann Boundary Conditions

Assume that we have Neumann conditions on the problem

$$
\frac{\partial}{\partial x} u(0, t)=h_{0} \quad \text { and } \quad \frac{\partial}{\partial x} u(1, t)=h_{1}
$$

Implementing the first condition, $\frac{\partial}{\partial x} u(0, t)=h_{0}$, can be done as follows

- We introducing a fictisous value u_{0}^{ℓ}
- The property $\frac{\partial}{\partial x} u(0, t)$ can then be approximated with a centered difference

$$
\frac{u_{2}^{\ell}-u_{0}^{\ell}}{2 \Delta x}=h_{0}
$$

Neumann Boundary Conditions

- The discrete version of the boundary condition then reads

$$
\begin{equation*}
\frac{u_{2}^{\ell}-u_{0}^{\ell}}{2 \Delta x}=h_{0} \tag{37}
\end{equation*}
$$

or

$$
u_{0}^{\ell}=u_{2}^{\ell}-2 h_{0} \Delta x
$$

- Setting $i=1$ in (36), gives

$$
\begin{aligned}
u_{1}^{\ell+1} & =u_{1}^{\ell}+\frac{\Delta t}{\Delta x^{2}}\left(u_{0}^{\ell}-2 u_{1}^{\ell}+u_{2}^{\ell}\right)+f_{1}^{\ell} \\
& =u_{1}^{\ell}+\frac{\Delta t}{\Delta x^{2}}\left(u_{2}^{\ell}-2 h_{0} \Delta x-2 u_{1}^{\ell}+u_{2}^{\ell}\right)+f_{1}^{\ell}
\end{aligned}
$$

Neumann Boundary Conditions

- We now have a formula for updating the boundary point

$$
u_{1}^{\ell+1}=u_{1}^{\ell}+2 \frac{\Delta t}{\Delta x^{2}}\left(u_{2}^{\ell}-u_{1}^{\ell}-h_{0} \Delta x\right)+f_{1}^{\ell}
$$

- For the condition $\frac{\partial}{\partial x} u(1, t)=h_{1}$, we can define a fictitious point u_{n+1}^{ℓ}
- Similar to above we can use a centered difference approximation of the condition, use (36) with $i=n$ and get

$$
\begin{equation*}
u_{n}^{\ell+1}=u_{n}^{\ell}+2 \frac{\Delta t}{\Delta x^{2}}\left(u_{n-1}^{\ell}-u_{n}^{\ell}+h_{1} \Delta x\right)+f_{n}^{\ell} \tag{38}
\end{equation*}
$$

Algorithm 2. Diffusion equation with Neumann boundary conditions.
Set initial conditions:

$$
u_{i}^{0}=I\left(x_{i}\right), \quad \text { for } i=1, \ldots, n
$$

for $\ell=0,1, \ldots, m$:

- Update all inner points:

$$
\begin{array}{r}
u_{i}^{\ell+1}=u_{i}^{\ell}+\frac{\Delta t}{\Delta x^{2}}\left(u_{i-1}^{\ell}-2 u_{i}^{\ell}+u_{i+1}^{\ell}\right)+\Delta t f_{i}^{\ell} \\
\text { for } i=2, \ldots, n-1
\end{array}
$$

- Insert boundary conditions:

$$
\begin{aligned}
& u_{1}^{\ell+1}=u_{1}^{\ell}+2 \frac{\Delta t}{\Delta x^{2}}\left(u_{2}^{\ell}-u_{1}^{\ell}-h_{0} \Delta x\right)+f_{1}^{\ell} \\
& u_{n}^{\ell+1}=u_{n}^{\ell}+2 \frac{\Delta t}{\Delta x^{2}}\left(u_{n-1}^{\ell}-u_{n}^{\ell}+h_{1} \Delta x\right)+f_{n}^{\ell}
\end{aligned}
$$

Implementation

We study how Algorithm 1 can be implemented in Python

- Arrays in Python has zero as the first index
- We rewrite Algorithm 1 so that the index i goes from 0 to $n-1$
- That is, we change i with $i-1$

Implementation

- In Algorithm 1, we see that we need to store n numbers for $m+1$ time levels, i.e. $n(m+1)$ numbers in a two-dimensional array
- But, when computing the solution at one time level, we only need to have stored the solution at the previous time level - older levels are not used
- So, if we do not need to store all time levels, we can reduce the storage requirements to $2 n$ in two one-dimensional arrays
- Introducing u_{i} for $u_{i}^{\ell+1}$ and u_{i}^{-}for u_{i}^{ℓ}, we arrive at the mathematical pseudo code presented as Algorithm 3

Algorithm 3. Pseudo code for diffusion equation with general Dirichlet conditions.
Set initial conditions:

$$
u_{i}^{-}=I\left(x_{i}\right), \quad \text { for } i=0, \ldots, n-1
$$

for $\ell=0,1, \ldots, m$:

- Set $h=\frac{\Delta t}{\Delta x^{2}}$ and $t=\ell \Delta t$
- Update all inner points:

$$
\begin{array}{r}
u_{i}=u_{i}^{-}+h\left(u^{-}-2 u_{i}^{-}+u_{i+1}^{-}\right)+\Delta t f\left(x_{i}, t\right) \\
\text { for } i=1, \ldots, n-2
\end{array}
$$

- Insert boundary conditions:

$$
u_{0}=g_{0}(t), \quad u_{n-1}=g_{1}(t)
$$

- Update data structures for next step:

$$
u_{i}^{-}=u_{i}, i=0, \ldots, n-1
$$

def diffeq(I, f, g0, g1, dx, dt, m, action=None):

```
    n = int(1/dx + 1) h = dt/(dx*dx) # help variable in the scheme
    x = arrayrange(0, 1+dx/2, dx, Float) # grid points in x dir
    user_data = [] # return values from action function
    # set initial condition:
    um = I (x)
    u = zeros(n, Float) # solution array
    for l in range(m+1): # l=0,...,m
    t = I*dt
    # update all inner points:
    for i in range(1,n-1,1): # i=1,...,n-2
            u[i] = um[i] + h*(um[i-1] - 2*um[i] + um[i+1]) + dt*f(x[i],
    # insert boundary conditions:
    u[0] = g0(t); u[n-1] = g1(t)
    # update data structures for next step:
    for i in range(len(u)): um[i] = u[i]
    if action is not None:
        r = action(u, x, t) # some user-defined action
        if r is not None:
            user_data.append(r) # r can be arbitrary data...
    return user_data
```


Comments

- The functions f, g_{0}, and g_{1} are given as function arguments for convenience
- We need to specify each array element in the solution u to be a floating-point number, otherwise the array would consist of integers. The values of u are of no importance before the time loop.
- The action parameter may be used to invoke a function for computing the error in the solution, if the exact solution of the problem is known, or we may use it to visualize the graph of $u(x, t)$. The action function can return any type of data, and if the data differ from None, the data are stored in an array user_data and returned to the user.

Verifications

- A well known solution to the diffusion equation is

$$
\begin{equation*}
u(x, t)=e^{-\pi^{2} t} \sin \pi x, \tag{39}
\end{equation*}
$$

which is the solution when $f=0$ and $I(x)=\sin \pi x$ and the Dirichlet boundary conditions are $g_{0}(t)=0$ and $g_{1}(t)=0$

- We shall see how this exact solution can be used to test the code
- In Python the initial and boundary conditions can specified by

```
def IC_1(x): return sin(pi*x)
def g0_1(t): return 0.0
def g1_1(t): return 0.0
```


Verifications

- We can now construct a function compare_1 as action parameter, where we compute and return the error:

```
def error_1(u, x, t):
    e = u - exactsol_1(x, t)
    e_norm = sqrt(innerproduct(e,e)/len(e))
    return e_norm
def exactsol_1(x, t): return exp(-pi*pi*t)*sin(pi*x)
```

- The e_norm variable computes an approximation to the a scalar error measure

$$
E=\sqrt{\int_{0}^{1}(\hat{u}-u)^{2} d x}
$$

where \hat{u} denotes the numerical solution and u is the exact solution

Verifications

- We actually computes a Riemann approximation of this integral since

$$
E^{2}=\int_{0}^{1}(\hat{u}-u)^{2} d x \approx \sum_{i=0}^{n-1} e_{i}^{2} \Delta x=\frac{1}{n-1} \sum_{i=0}^{n-1} e_{i}^{2}
$$

where

$$
e_{i}=u_{i}^{\ell}-\exp \left(-\pi^{2} \ell \Delta t\right) \sin (\pi i \Delta x)
$$

(the code divide by n instead of $n-1$, for convenience)

- The final call to diffeq reads

```
e = diffeq(IC_1, f0, g0_1, g1_1, dx, dt, m, action=error_1)
print "error at last time level:", e[-1]
```


Verifications

- Theoretically, it is known that

$$
E=C_{1} \Delta x^{2}+C_{2} \Delta t
$$

- Choosing $\Delta t=D \Delta x^{2}$ for a positive constant D, we get

$$
E=C_{3} \Delta x^{2}, \quad C_{3}=C_{1}+C_{2} D
$$

- Hence, $E / \Delta x^{2}$ should be constant
- A few lines of Python code conduct the test

```
dx = 0.2
for counter in range(4): # try 4 refinements of dx
    dx = dx/2.0; dt = dx*dx/2.0; m = int(0.5/dt)
    e = diffeq(IC_1, f0, g0_1, g1_1, dx, dt, m, action=error_1)
    print "dx=%12g error=%12g ratio=%g" % (dx, e[-1], e[-1]/(dx*dx)
```


Verifications

- The output becomes

$d x=$	0.1 error $=0.000633159$	ratio $=0.0633159$
$d x=$	0.05 error $=0.00016196$	ratio $=0.0647839$
$d x=$	0.025 error $=4.09772 e-05$	ratio $=0.0655636$
$d x=$	0.0125 error $=1.03071 e-05$	ratio $=0.0659656$

- This confirms that $E \sim \Delta x^{2}$

Variable Coefficients

- The heat conduction equation (15) allows for variable coefficients
- We shall now see how we can discretize a diffusion equation with variable coefficients

$$
\rho\left(x_{i}\right) c_{v}\left(x_{i}\right) \frac{\partial}{\partial t} u\left(x_{t}, t_{\ell}\right)=\left[\frac{\partial}{\partial x}\left(k(x) \frac{\partial u}{\partial x}\right)\right]_{x=x_{i}, t=t_{\ell}}+f\left(x_{i}, t_{\ell}\right)
$$

- The left hand side can be discretized similar to above, and we abbreviate $\rho\left(x_{i}\right) c_{v}\left(x_{i}\right)$ with γ_{i}

Variable Coefficients

- For the first term of the right hand side we approximate it similar to above - in two steps and based on centered differences
- We first approximate the outer derivative at $x=x_{i}$ (and $t=t_{\ell}$), using a fictitious point $x_{i+\frac{1}{2}}=x_{i}+\frac{1}{2} \Delta x$ to the right and a fictitious point $x_{i-\frac{1}{2}}=x_{i}-\frac{1}{2} \Delta x$ to the left

$$
\frac{\partial}{\partial x} k(x)\left[\left(\frac{\partial u}{\partial x}\right)\right]_{i}^{\ell} \approx \frac{1}{\Delta x}\left[k_{i+\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i+\frac{1}{2}}^{\ell}-k_{i-\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i-\frac{1}{2}}^{\ell}\right]
$$

where $k_{i-\frac{1}{2}}=k\left(x_{i-\frac{1}{2}}\right)$ and $k_{i+\frac{1}{2}}=k\left(x_{i+\frac{1}{2}}\right)$

Variable Coefficients

- Further we approximate

$$
k_{i+\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i+\frac{1}{2}}^{\ell} \approx k_{i+\frac{1}{2}} \frac{u_{i+1}-u_{i}}{\Delta x}
$$

and

$$
k_{i-\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i-\frac{1}{2}}^{\ell} \approx k_{i-\frac{1}{2}} \frac{u_{i}-u_{i-1}}{\Delta x}
$$

Variable Coefficients

- Inserting these approximations in the heat conduction equation with variable coefficients gives

$$
\gamma_{i} \frac{u_{i}^{\ell+1}-u_{i}}{\Delta t}=\frac{1}{\Delta x}\left(k_{i+\frac{1}{2}} \frac{u_{i+1}-u_{i}}{\Delta x}-k_{i-\frac{1}{2}} \frac{u_{i}-u_{i-1}}{\Delta x}\right)+f_{i}^{\ell}
$$

- Solving for $u_{i}^{\ell+1}$ gives us

$$
\begin{equation*}
u_{i}^{\ell+1}=u_{i}^{\ell}+\frac{1}{\gamma_{i}} \frac{\Delta t}{\Delta x}\left(k_{i+\frac{1}{2}} \frac{u_{i+1}^{\ell}-u_{i}^{\ell}}{\Delta x}-k_{i-\frac{1}{2}} \frac{u_{i}^{\ell}-u_{i-1}^{\ell}}{\Delta x}\right)+\frac{\Delta t}{\gamma_{i}} f_{i}^{\ell} \tag{40}
\end{equation*}
$$

- Inserting the boundary conditions is similar to above

