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Diffusion processes

Examples of diffusion processes
• Heat conduction

• Heat moves from hot to cold places
• Diffusive (molecular) transport of a substance

• Ink in water
• Sugar/Cream in coffee
• Perfume/Gas in air

• Thin-film fluid flow
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Diffusion processes

• Diffusion processes smoothes out differences
• A physical property (heat/concentration) moves from

high concentration to low concentration
• Convection is another (and usually more efficient) way

of smearing out a property, but is not treated here
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One dimension

• For simplicity, we will in the following focus on one
dimensional examples

• This simplifies the complexity of the numerics and
codes, but it would still be realistic in examples with
• Long thin geometries
• One dimensional variation only
• Cylindrical or spherical symmetry
• Mathematical splitting of dimension

u(x,y,z, t) = F(x, t)+G(y,z, t)

or

u(x,y,z, t) = F(x, t)G(y,z, t)
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Figure 1: Diffusion of ink in a long and thin tube. The top figure

shows the initial concentration (dark is ink, white is water). The three

figures below show the concentration of ink at (scaled) times t = 0.25,

t = 0.5, t = 1, and t = 3, respectively. The evolution is clearly one-

dimensional. Lectures INF2320 – p. 5/72
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Figure 2: The evolution of the temperature in a medium com-

posed of two pieces of metal, at different initial temperatures. In the

gray scale plots, dark is hot and white is cool. The plots correspond

to t = 0, t = 0.01, t = 0.1, and t = 0.5. All boundaries are insulated,

and the temperature approaches a constant value, equal to the av-

erage (T1 +T2)/2 of the initial temperature values.
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The Basics of the Mathematical Model

The diffusion equation reads

∂u
∂t

= k
∂2u
∂x2

+ f (x, t), x ∈ (a,b), t > 0 (1)

•• k is a physical parameter
• Large k implies that u spreads quickly
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Initial and Boundary conditions

• Let u be a solution of (1), then for any constant C, u+C
will also be a solution (1)

• Thus, there are infinitely many solutions of (1)

• In order to make a problem with unique solution we
need some initial and boundary conditions

• Initial conditions is that we now the solution initially
u(x,0) for x ∈ [a,b]

• Boundary conditions is that we have some information
about the solution at the endpoints u(a, t) and u(b, t)

Lectures INF2320 – p. 8/72



Diffusion equation

• In 3 dimensions the diffusion equation reads

∂u
∂t

= k

(

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

)

+ f (x,y,z, t) (2)

• This equation is sometimes written on a more compact
form

∂u
∂t

= k∇2u+ f , (3)

where the operator ∇2 is defined by ∇2u = ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

• ∇2 is called the Laplace operator
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Derivation of Diffusion equations

• We shall derive the diffusion equation for diffusion of a
substance

• Think of some ink placed in a long, thin tube filled with
water

• We study the concentration c(x, t), x ∈ (a,b), t > 0

• The motion of the substance will be determined by two
physical laws:
• Conservation of mass
• Fick’s law relating the velocity of the substance

(flux) to the concentration
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Mass conservation

Let c(x, t) denote the concentration of the ink, q(x, t) denotes
the velocity of it and ρ denotes mass density of pure ink

• For a system without any source, the net inflow on the
interval equals the increase in mass

ρq(a)∆t −ρq(b)∆t =

∫ b

a
ρ∆cdx (4)

• Introducing a source term f , the mass balance is

ρq(a)∆t −ρq(b)∆t +
∫ b

a
ρ f ∆t dx =

∫ b

a
ρ∆cdx,

where f > 0 corresponds to mass injection and f < 0
means mass extraction
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Mass conservation

• For small values of ∆t we have (∆c = c(x, t +∆t)−c(x, t))

∆c =
∂c
∂t

∆t (5)

• To study the left hand side of (4), we note that
integration by parts give

∫ b

a
ρ

∂q
∂x

dx = −

∫ b

a
q

∂ρ
∂x

dx+ρ[q]ba

• We assume that the mass density is constant, i.e.
∂ρ
∂x = 0, thus

ρ(q(b, t)−q(a, t)) =
∫ b

a
ρ

∂q
∂x

dx (6)
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Mass conservation

• Collecting the integrals, we can write the mass
conservation principle on the form

∫ b

a
ρ
[

∂c
∂t

+
∂q
∂x

− f

]

dx = 0

• Since this integral is zero for any interval [a,b], one can
argue that the integrand must be zero for all values of x
and t, thus

∂c
∂t

+
∂q
∂x

= f , (7)

which is referred to as the law of mass conservation on
partial differential equation form
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Mass conservation

• Let c(x, t) denote the concentration of the ink, let q(x, t)
denote the velocity of it (from left to right) and let f (x, t)
denote the mass injection of ink

• The law of Conservation of mass, in PDE form, reads

∂c
∂t

+
∂q
∂x

= f (8)

• This equation states that temporal change in
concentration plus the spatial change in velocity equals
the injection of ink

• This means that ink can neither appear nor disappear
(mass conservation)
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Fick’s law

• Fick’s law reads

q = −k
∂c
∂x

(9)

• This law states that the flow of ink is proportional to the
spatial change in concentration

• The minus sign makes sure that the ink diffuses from
regions with high concentration to regions with low
concentration
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Diffusion of a substance

• By inserting Fick’s law (9) in the mass conservation
equation (8), we can eliminate q and get a PDE with
only one unknown function, c:

∂c
∂t

= k
∂2c
∂x2

+ f (x, t) (10)
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Initial conditions

In order to solve the diffusion equation we need some initial
condition and boundary conditions.

• The initial condition gives the concentration in the tube
at t=0

c(x,0) = I(x), x ∈ (0,1) (11)

• Physically this means that we need to know the
concentration distribution in the tube at a moment to be
able to predict the future distribution
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Boundary conditions

Some common boundary conditions are
• Prescribed concentrations, S0 and S1, at the endpoints

c(0, t) = S0 and c(1, t) = S1

• Impermeable endpoints, i.e. no out flow at the
endpoints

q(0, t) = 0 and q(1, t) = 0

• By Fick’s law we get

∂c(0, t)
∂x

= 0 and
∂c(1, t)

∂x
= 0
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Boundary conditions

• Prescribed outflows Q0 and Q1 at the endpoints

−q(0, t) = Q0 and q(1, t) = Q1

• Here the minus sign in the first expression,
−q(0, t) = Q0, comes since Q0 measures the flow
out of the tube, and that is the negative direction
(from right to left)

• By Fick’s law we get

k
∂c(0, t)

∂x
= Q0 and − k

∂c(1, t)
∂x

= Q1
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Derivation of the heat equation

• We shall derive the diffusion equation for heat
conduction

• We consider a rod of length 1 and study how the
temperature distribution T (x, t) develop in time, i.e. we
study T (x, t) for x ∈ (0,1) and t ≥ 0

• Our derivation of the heat equation is based on
• The first law of Thermodynamics (conservation of

energy)
• A relation between inner energy and temperature
• Fourier’s law of heat conduction
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Derivation of the heat equation

Let e(x, t) denote the internal energy per unit mass, let ρ be
the mass density, and let q(x, t) be the flow of heat (from left
to right - defined per unit time).

• The first law of Thermodynamics on PDE form reads

ρ
∂e
∂t

+
∂q
∂x

= f , (12)

where f denotes the energy production
• This equation states that the temporal change in

energy times the mass density plus the energy flow in
a point equals the production of energy in the same
point (conservation of energy)
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Derivation of the heat equation

A relation between internal energy e and temperature T is
given by

e = cvT. (13)

In practice this relation might be more complicated
Thus

• The inner energy is proportional to the temperature
• The proportionality constant, cv, is heat capacity
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Derivation of the heat equation

• Fourier’s law reads

q = −k
∂T
∂x

(14)

• In words: the heat flow is proportional to the spatial
change in temperature

• k is called the conductivity
• The minus sign means that the heat flows from hot to

cold regions
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The heat equation

• We will now allow the physical parameters ρ, cv and k
to vary in space, i.e.

ρ = ρ(x), cv = cv(x) and k = k(x)

• Inserting (14) and (13) in (12) gives us the heat
conduction equation

ρ(x)cv(x)
∂T
∂t

=
∂
∂x

(

k(x)
∂T
∂x

)

+ f (15)

Lectures INF2320 – p. 24/72



Initial conditions

In order to solve the heat equation we need some initial-
and boundary conditions.

• The initial condition gives the temperature distribution
in the rod at t=0

T (x,0) = I(x), x ∈ (0,1) (16)

• Physically this means that we need to know the
temperature in the rod at a moment to be able to
predict the future temperature distribution
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Boundary conditions

There are three types of linear boundary conditions:
• Dirichlet conditions:

• The temperatures at the endpoints of the rod,
T (0, t) and T (1, t), are prescribed at all time

• Physically, this corresponds to a situation where
you have a heat source which keep the
temperature at given values at the endpoints

• Neumann condition:
• The heat flow at the endpoints, k ∂T (0,t)

∂x and

−k ∂T (1,t)
∂x , is prescribed at all time (The difference

plus sign in front of k ∂T (0,t)
∂x comes from the fact that

we consider inflow)

• The case ∂T (0,t)
∂x = ∂T (1,t)

∂x = 0 corresponds to
insulated endpoints
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Boundary conditions

• Robin conditions:
• Most common example of a Robin condition is

Newton’s law of cooling

k
∂T (0, t)

∂x
= hT (T (0, t)−Ts) and − k

∂T (1, t)
∂x

= hT (T (1, t)−Ts)

• This law states that the heat flow at the endpoint is
proportional to the difference between the
temperature in the rod, T (0, t) and T (1, t), and the
temperature in the surroundings, Ts

• The constant hT is called the heat transfer
coefficient and has to be determined for a given
experiment
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Scaling

Suppose we work with the following diffusion equation:

ρcv
∂u
∂t

= k
∂2u
∂x2

, x ∈ (a,b), t > 0, (17)

u(a, t) = Ua, t > 0, (18)

u(b, t) = Ub, t > 0, (19)

u(x,0) = I(x), x ∈ [a,b] (20)

with
I(x) =

{

Ua, a ≤ x < c,
Ub, c ≤ x ≤ b

• It is clear that the solution u(x, t) will depend on all the
input parameters ρ, cv, k, Ua, Ub, a and b

u(x, t;ρ,cv,k,Ua,Ub,a,b)
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Scaling

• If we want to test how the solution depend on the seven
parameters, it might be a very time consuming job

• Testing 3 values for each parameter would require
37 = 2187experiments, or 5 values for each parameter
would require 57 = 78125experiments

• If the problem is scaled, we shall see that it is sufficient
to perform just a single experiment
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Scaling

• The purpose of scaling a variable q, is to introduce a
new variable q̄, such that q̄ varies between zero and
about one

• If qr is a characteristic reference value of q and qc is a
characteristic magnitude of q−qr, a common scaling is

q̄ =
q−qr

qc
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Scaling

• We shall now see how the general interval (a,b) can be
scaled to the standard unity interval (0,1)

• A scaled parameter for x can be

x̄ =
x−a
b−a

,

which fulfills x̄ ∈ (0,1) while x ∈ (a,b)
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Scaling

• Further, a scaled parameter for time can be

t̄ =
t
tc

,

where tc is the time it takes to make significant
changes in u

• A scaling of the initial condition might be

Ī =
I−Ua

Ub −Ua

• Finally, a scaling of u can be

ū =
u−Ua

Ub −Ua

Lectures INF2320 – p. 32/72



Scaling

• We can now replace the physical variables x, t, u, and
I, with

x̄ =
x−a
b−a

, t̄ =
t
tc

, Ī =
I −Ua

Ub −Ua
, ū =

u−Ua

Ub −Ua

which will be inserted to (17)–(20)

• Solving the above formulas for x, t, u, and I gives

x = a+(b−a)x̄, t = tct̄, I =Ua+(Ub−Ua)Ī, u =Ua+(Ub−Ua)ū,

• Note that

∂u
∂t

=
∂t̄
∂t

∂
∂t̄

(Ua +(Ub −Ua)ū) =
1
tc

(Ub −Ua)
∂ū
∂t̄
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Scaling

• A similar development for the ∂2u/∂x2 expression, gives

ρcv
Ub −Ua

tc

∂ū
∂t̄

= k
Ub −Ua

(b−a)2

∂2ū
∂x̄2

, x̄ ∈ (0,1), t̄ > 0, (21)

ū(0, t̄) = 0, t̄ > 0, (22)

ū(1, t̄) = 1, t̄ > 0, (23)

ū(x̄,0) =

{

0, 0≤ x ≤ c̄,
1, c̄ < x ≤ 1

(24)
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Scaling

• Note that the PDE (21) can be written

∂ū
∂t̄

= α
∂2ū
∂x̄2

(25)

• Here α is a dimensionless number,

α =
ktc

ρcv(b−a)2

• Choosing tc = 1
k ρcv(b−a)2 (corresponding to α = 1)

gives

∂ū
∂t̄

=
∂2ū
∂x̄2

Lectures INF2320 – p. 35/72



Scaling

• We can now summarize the result of the scaled
diffusion problem:

∂ū
∂t̄

=
∂2ū
∂x̄2

, x̄ ∈ (0,1), t̄ > 0, (26)

ū(0, t̄) = 0, t̄ > 0, (27)

ū(1, t̄) = 1, t̄ > 0, (28)

ū(x̄,0) =

{

0, 0≤ x̄ ≤ c̄,
1, c̄ < x̄ ≤ 1

(29)

• After solving this PDE, the real temperatures can be
found by

u(x, t) = Ua +(Ub −Ua)ū(
x−a
b−a

,
tk

ρcv(b−a)2
) (30)
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Figure 3: Solution of (26)–(29).
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Numerical methods

First we consider a version of the heat equation where any
varying parameters are scaled away:

∂u
∂t

=
∂2u
∂x2

+ f (x, t), x ∈ (0,1), t > 0. (31)

• The solution of this equation is a continuous function of
time and space

• We approximate the solution at a finite number of
space points and at a finite number of time levels

• This approximation is referred to as discretization
• There are several ways of discretizing (31) - in the

following we will consider a technique which is called
the finite difference method
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Numerical methods

Applying the finite difference method to the problem (31)
implies

1. constructing a grid, with a finite number of points in
(x, t) space, see Figure 4

2. requiring the PDE (31) to be satisfied at each point in
the grid

3. replacing derivatives by finite difference
approximations

4. calculating u at the grid points only
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Figure 4: Computational grid in the x,t-plane. The grid points are

located at the points of intersection of the dashed lines.
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Discrete functions on a grid

• Chose a spatial discretization size ∆x and a temporal
discretization size ∆t

• Functions are only defined in the grid points

(xi, t`),

for i = 1, . . . ,n and ` = 0, . . . ,m where
• n is the number of approximation points in space

(∆x = 1
n−1)

• m+1 is the number of time levels
• The value of an arbitrary function Q(x, t) at a grid point

(xi, t`) is denoted

Q`
i = Q(xi, t`), i = 1, . . . ,n, ` = 0, . . . ,m
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Discrete functions on a grid

•• The purpose of a finite difference method is to
compute the values u`

i for i = 1, . . . ,n and ` = 0, . . . ,m

• We can now write the PDE (31) as

∂
∂t

u(xi, t`) =
∂2

∂x2
u(xi, t`)+ f (xi, t`), (32)

i = 1, . . . ,n, ` = 1, . . . ,m
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Finite difference approximation

Now we approximate the terms in (32) that contains
derivatives. The approximation is done as follows

• The right hand side is approximated

∂
∂t

u(xi, t`) ≈
u`+1

i −u`
i

∆t
(33)

• The first term on left hand side is approximated

∂2

∂x2
u(xi, t`) ≈

u`
i−1−2u`

i +u`
i+1

∆x2
(34)

• The first approximation (33) can be motivated directly
from the definition of derivatives, since ∆t is small, and
it is called a finite difference approximation
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Finite difference approximation

The motivation for (34) is done in two steps and the finite
difference approximation is based on centered difference
approximations.

• We first approximate the“outer” derivative at x = xi (and
t = t`), using a fictitious point xi+ 1

2
= xi +

1
2∆x to the right

and a fictitious point xi− 1
2
= xi −

1
2∆x to the left

∂
∂x

[(

∂u
∂x

)]`

i

≈
1

∆x

[

[

∂u
∂x

]`

i+ 1
2

−

[

∂u
∂x

]`

i− 1
2

]
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Finite difference approximation

• The first-order derivative at xi+ 1
2

can be approximated
by a centered difference using the point xi+1 to the right
and the point xi to the left:

[

∂u
∂x

]`

i+ 1
2

≈
u`

i+1−u`
i

∆x

• Similarly, the first-order derivative at xi− 1
2

can be
approximated by a centered difference using the point
xi to the right and the point xi−1 to the left

[

∂u
∂x

]`

i− 1
2

≈
u`

i −u`
i−1

∆x

• Combining these finite differences gives (34)
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The Finite Difference Scheme

• Inserting the difference approximations (33) and (34) in
(32) results in the following finite difference scheme

u`+1
i −u`

i

∆t
=

u`
i−1−2u`

i +u`
i+1

∆x2
+ f `

i (35)

• We solve (35) with respect to u`+1
i , yielding a simple

formula for the solution at the new time level

u`+1
i = u`

i +
∆t

∆x2

(

u`
i−1−2u`

i +u`
i+1

)

+∆t f `
i (36)

• This is referred to as a numerical scheme for the
diffusion equation
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Figure 5: Illustration of the updating formula (36); u3
5 is computed

from u2
4, u2

5, and u2
6.
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Figure 6: Illustration of the computational molecule correspond-

ing to the finite difference scheme (36). The weight s is ∆t/∆x2.
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Incorporating Boundary Conditions

• (36) can not be used for computing new values at the
boundary u`+1

1 and u`+1
n , because (36) for i = 1 and i = n

involves values u`
−1 and u`

n+1 outside the grid.

• Therefore we need to use the boundary conditions to
update on the boundary u`+1

1 and u`+1
n
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Dirichlet Boundary Condition

• Suppose we have the following Dirichlet boundary
conditions

u(0, t) = g0(t), u(1, t) = g1(t),

where g0(t) and g1(t) are prescribed functions
• The new values on the boundary can then be updated

by
u`+1

1 = g0(t`+1), u`+1
n = g1(t`+1)

• The numerical scheme (36) update all inner points
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Algorithm 1. Diffusion equation with Dirichlet bound-
ary conditions.
Set initial conditions:

u0
i = I(xi), for i = 1, . . . ,n

for ` = 0,1, . . . ,m:

• Update all inner points:

u`+1
i = u`

i +
∆t

∆x2

(

u`
i−1−2u`

i +u`
i+1

)

+∆t f `
i

for i = 2, . . . ,n−1

• Insert boundary conditions:

u`+1
1 = g0(t`+1), u`+1

n = g1(t`+1)
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Neumann Boundary Conditions

Assume that we have Neumann conditions on the problem

∂
∂x

u(0, t) = h0 and
∂
∂x

u(1, t) = h1

Implementing the first condition, ∂
∂xu(0, t) = h0, can be done

as follows
• We introducing a fictisous value u`

0

• The property ∂
∂xu(0, t) can then be approximated with a

centered difference

u`
2−u`

0

2∆x
= h0
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Neumann Boundary Conditions

• The discrete version of the boundary condition then
reads

u`
2−u`

0

2∆x
= h0 (37)

or

u`
0 = u`

2−2h0∆x

• Setting i = 1 in (36), gives

u`+1
1 = u`

1 +
∆t

∆x2

(

u`
0−2u`

1 +u`
2

)

+ f `
1

= u`
1 +

∆t
∆x2

(

u`
2−2h0∆x−2u`

1 +u`
2

)

+ f `
1

Lectures INF2320 – p. 53/72



Neumann Boundary Conditions

• We now have a formula for updating the boundary
point

u`+1
1 = u`

1 +2
∆t

∆x2

(

u`
2−u`

1−h0∆x
)

+ f `
1

• For the condition ∂
∂xu(1, t) = h1, we can define a

fictitious point u`
n+1

• Similar to above we can use a centered difference
approximation of the condition, use (36) with i = n and
get

u`+1
n = u`

n +2
∆t

∆x2

(

u`
n−1−u`

n +h1∆x
)

+ f `
n (38)
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Algorithm 2. Diffusion equation with Neumann
boundary conditions.
Set initial conditions:

u0
i = I(xi), for i = 1, . . . ,n

for ` = 0,1, . . . ,m:

• Update all inner points:

u`+1
i = u`

i +
∆t

∆x2

(

u`
i−1−2u`

i +u`
i+1

)

+∆t f `
i

for i = 2, . . . ,n−1

• Insert boundary conditions:

u`+1
1 = u`

1 +2
∆t

∆x2

(

u`
2−u`

1−h0∆x
)

+ f `
1

u`+1
n = u`

n +2
∆t

∆x2

(

u`
n−1−u`

n +h1∆x
)

+ f `
n
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Implementation

We study how Algorithm 1 can be implemented in Python
• Arrays in Python has zero as the first index
• We rewrite Algorithm 1 so that the index i goes from 0

to n−1

• That is, we change i with i−1
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Implementation

• In Algorithm 1, we see that we need to store n
numbers for m+1 time levels, i.e. n(m+1) numbers in
a two-dimensional array

• But, when computing the solution at one time level, we
only need to have stored the solution at the previous
time level - older levels are not used

• So, if we do not need to store all time levels, we can
reduce the storage requirements to 2n in two
one-dimensional arrays

• Introducing ui for u`+1
i and u−

i for u`
i , we arrive at the

mathematical pseudo code presented as Algorithm 3
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Algorithm 3. Pseudo code for diffusion equation with
general Dirichlet conditions.
Set initial conditions:

u−
i = I(xi), for i = 0, . . . ,n−1

for ` = 0,1, . . . ,m:

• Set h = ∆t
∆x2 and t = `∆t

• Update all inner points:
ui = u−

i +h
(

u−
−2u−

i +u−

i+1

)

+∆t f (xi, t)

for i = 1, . . . ,n−2

• Insert boundary conditions:
u0 = g0(t), un−1 = g1(t)

• Update data structures for next step:
u−

i = ui, i = 0, . . . ,n−1
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def diffeq(I, f, g0, g1, dx, dt, m, action=None):

n = int(1/dx + 1) h = dt/(dx*dx) # help variable in the scheme

x = arrayrange(0, 1+dx/2, dx, Float) # grid points in x dir

user_data = [] # return values from action function

# set initial condition:

um = I(x)

u = zeros(n, Float) # solution array

for l in range(m+1): # l=0,...,m

t = l*dt

# update all inner points:

for i in range(1,n-1,1): # i=1,...,n-2

u[i] = um[i] + h*(um[i-1] - 2*um[i] + um[i+1]) + dt*f(x[i], t)

# insert boundary conditions:

u[0] = g0(t); u[n-1] = g1(t)

# update data structures for next step:

for i in range(len(u)): um[i] = u[i]

if action is not None:

r = action(u, x, t) # some user-defined action

if r is not None:

user_data.append(r) # r can be arbitrary data...

return user_data
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Comments

• The functions f , g0, and g1 are given as function
arguments for convenience

• We need to specify each array element in the solution
u to be a floating-point number, otherwise the array
would consist of integers. The values of u are of no
importance before the time loop.

• The action parameter may be used to invoke a
function for computing the error in the solution, if the
exact solution of the problem is known, or we may use
it to visualize the graph of u(x, t). The action function
can return any type of data, and if the data differ from
None, the data are stored in an array user_data and
returned to the user.
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Verifications

• A well known solution to the diffusion equation is

u(x, t) = e−π2t sinπx, (39)

which is the solution when f = 0 and I(x) = sinπx and
the Dirichlet boundary conditions are g0(t) = 0 and
g1(t) = 0

• We shall see how this exact solution can be used to
test the code

• In Python the initial and boundary conditions can
specified by

def IC_1(x): return sin(pi*x)

def g0_1(t): return 0.0

def g1_1(t): return 0.0
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Verifications

• We can now construct a function compare_1 as
action parameter, where we compute and return the
error:
def error_1(u, x, t):

e = u - exactsol_1(x, t)

e_norm = sqrt(innerproduct(e,e)/len(e))

return e_norm

def exactsol_1(x, t): return exp(-pi*pi*t)*sin(pi*x)

• The e_norm variable computes an approximation to
the a scalar error measure

E =

√

∫ 1

0
(û−u)2dx,

where û denotes the numerical solution and u is the
exact solution
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Verifications

• We actually computes a Riemann approximation of this
integral since

E2 =

∫ 1

0
(û−u)2dx ≈

n−1

∑
i=0

e2
i ∆x =

1
n−1

n−1

∑
i=0

e2
i ,

where
ei = u`

i −exp(−π2`∆t)sin(πi∆x)

(the code divide by n instead of n−1, for convenience)
• The final call to diffeq reads

e = diffeq(IC_1, f0, g0_1, g1_1, dx, dt, m, action=error_1)

print "error at last time level:", e[-1]
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Verifications

• Theoretically, it is known that

E = C1∆x2 +C2∆t

• Choosing ∆t = D∆x2 for a positive constant D, we get

E = C3∆x2, C3 = C1 +C2D

• Hence, E/∆x2 should be constant
• A few lines of Python code conduct the test

dx = 0.2

for counter in range(4): # try 4 refinements of dx

dx = dx/2.0; dt = dx*dx/2.0; m = int(0.5/dt)

e = diffeq(IC_1, f0, g0_1, g1_1, dx, dt, m, action=error_1)

print "dx=%12g error=%12g ratio=%g" % (dx, e[-1], e[-1]/(dx*dx))
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Verifications

• The output becomes
dx= 0.1 error= 0.000633159 ratio=0.0633159

dx= 0.05 error= 0.00016196 ratio=0.0647839

dx= 0.025 error= 4.09772e-05 ratio=0.0655636

dx= 0.0125 error= 1.03071e-05 ratio=0.0659656

• This confirms that E ∼ ∆x2

Lectures INF2320 – p. 65/72



Variable Coefficients

• The heat conduction equation (15) allows for variable
coefficients

• We shall now see how we can discretize a diffusion
equation with variable coefficients

ρ(xi)cv(xi)
∂
∂t

u(xt , t`) =

[

∂
∂x

(

k(x)
∂u
∂x

)]

x=xi,t=t`

+ f (xi, t`)

• The left hand side can be discretized similar to above,
and we abbreviate ρ(xi)cv(xi) with γi
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Variable Coefficients

• For the first term of the right hand side we approximate
it similar to above - in two steps and based on centered
differences

• We first approximate the outer derivative at x = xi (and
t = t`), using a fictitious point xi+ 1

2
= xi +

1
2∆x to the right

and a fictitious point xi− 1
2
= xi −

1
2∆x to the left

∂
∂x

k(x)

[(

∂u
∂x

)]`

i

≈
1

∆x

[

ki+ 1
2

[

∂u
∂x

]`

i+ 1
2

− ki− 1
2

[

∂u
∂x

]`

i− 1
2

]

,

where ki− 1
2
= k(xi− 1

2
) and ki+ 1

2
= k(xi+ 1

2
)
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Variable Coefficients

• Further we approximate

ki+ 1
2

[

∂u
∂x

]`

i+ 1
2

≈ ki+ 1
2

ui+1−ui

∆x

and

ki− 1
2

[

∂u
∂x

]`

i− 1
2

≈ ki− 1
2

ui −ui−1

∆x
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Variable Coefficients

• Inserting these approximations in the heat conduction
equation with variable coefficients gives

γi
u`+1

i −ui

∆t
=

1
∆x

(

ki+ 1
2

ui+1−ui

∆x
− ki− 1

2

ui −ui−1

∆x

)

+ f `
i

• Solving for u`+1
i gives us

u`+1
i = u`

i +
1
γi

∆t
∆x

(

ki+ 1
2

u`
i+1−u`

i

∆x
− ki− 1

2

u`
i −u`

i−1

∆x

)

+
∆t
γi

f `
i

(40)

• Inserting the boundary conditions is similar to above

Lectures INF2320 – p. 69/72



Lectures INF2320 – p. 70/72



Lectures INF2320 – p. 71/72



Lectures INF2320 – p. 72/72


	Diffusion processes
	Diffusion processes
	One dimension
	The Basics of the Mathematical Model
	Initial and Boundary conditions
	Diffusion equation
	Derivation of Diffusion equations
	Mass conservation
	Mass conservation
	Mass conservation
	Mass conservation
	Fick's law
	Diffusion of a substance
	Initial conditions
	Boundary conditions
	Boundary conditions
	Derivation of the heat equation
	Derivation of the heat equation
	Derivation of the heat equation
	Derivation of the heat equation
	The heat equation
	Initial conditions
	Boundary conditions
	Boundary conditions
	Scaling
	Scaling
	Scaling
	Scaling
	Scaling
	Scaling
	Scaling
	Scaling
	Scaling
	Numerical methods
	Numerical methods
	Discrete functions on a grid
	Discrete functions on a grid
	Finite difference approximation
	Finite difference approximation
	Finite difference approximation
	The Finite Difference Scheme
	Incorporating Boundary Conditions
	Dirichlet Boundary Condition
	Neumann Boundary Conditions
	Neumann Boundary Conditions
	Neumann Boundary Conditions
	Implementation
	Implementation
	Comments
	Verifications
	Verifications
	Verifications
	Verifications
	Verifications
	Variable Coefficients
	Variable Coefficients
	Variable Coefficients
	Variable Coefficients

