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The Heat Equation

We study the heat equation:

ut = uxx for x ∈ (0,1), t > 0, (1)

u(0, t) = u(1, t) = 0 for t > 0, (2)

u(x,0) = f (x) for x ∈ (0,1), (3)

where f is a given initial condition defined on the unit
interval (0,1). We shall in the following study

• physical properties of heat conduction versus the
mathematical model (1)-(3)

• “separation of variables” - a technique, for computing
the analytical solution of the heat equation

• analyze the stability properties of the explicit numerical
method
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Energy arguments

• We define the “energy” of the solution u at a time t by

E1(t) =

∫ 1

0
u2(x, t)dx for t ≥ 0. (4)

• Note that this is not the physical energy
• This “energy” is a mathematical tool, used to study the

behavior of the solution
• We shall see that E1(t) is a non-increasing function of

time
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Energy arguments

• If we multiply the left and right hand sides of the heat
equation (1) by u it follows that

utu = uxxu for x ∈ (0,1), t > 0

• By the chain rule for differentiation we observe that

∂
∂t

u2 = 2uut

• Hence
1
2

∂
∂t

u2 = uxxu for x ∈ (0,1), t > 0
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Energy arguments

• By integrating both sides with respect to x, and
applying the rule of integration by parts, we get

1
2

∫ 1

0

∂
∂t

u2(x, t)dx =

∫ 1

0
uxx(x, t)u(x, t)dx (5)

= ux(1, t)u(1, t)−ux(0, t)u(0, t)

−

∫ 1

0
ux(x, t)ux(x, t)dx

= −
∫ 1

0
u2

x(x, t)dx for t > 0,

where the last equality is a consequence of the
boundary condition (2)
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Energy arguments

• We assume that u is a smooth solution of the heat
equation, which implies that we can interchange the
order of integration and derivation in (5), that is

∂
∂t

∫ 1

0
u2(x, t)dx = −2

∫ 1

0
u2

x(x, t)dx for t > 0 (6)

• Therefore

E ′
1(t) = −2

∫ 1

0
u2

x(x, t)dx for t > 0

• This implies that
E ′

1(t) ≤ 0
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Energy arguments

• Thus E1 is a non-increasing function of time t, i.e.,

E1(t2) ≤ E1(t1) for all t2 ≥ t1 ≥ 0

• In particular

∫ 1

0
u2(x, t)dx ≤

∫ 1

0
u2(x,0)dx =

∫ 1

0
f 2(x)dx

for t > 0 (7)
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Energy arguments

• This means that the energy, in the sense of E1(t), is a
non-increasing function of time

• The integral of u2
x with respect to x, tells us how fast the

energy decreases
• From a physical point of view it seems reasonable that

a the energy will decrease in a system without any
heat source

• In the following we study another energy function
which can be analyzed in a similar manner
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Energy arguments

• Define the new “energy” function

E2(t) =

∫ 1

0
u2

x(x, t)dx

• Similar to above, we can multiply by ut and integrate
with respect to x and get

∫ 1

0
u2

t (x, t)dx =
∫ 1

0
uxx(x, t)ut(x, t)dx
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Energy arguments

• Integration by parts leads to

∫ 1

0
u2

t (x, t)dx = [ux(x, t)ut(x, t)]
1
0−

∫ 1

0
ux(x, t)utx(x, t)dx

= ux(0, t)ut(0, t)−ux(1, t)ut(1, t)

−
∫ 1

0
ux(x, t)uxt(x, t)dx

• By the chain rule we get

∂
∂t

u2
x = 2uxuxt
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Energy arguments

• Hence
∫ 1

0
u2

t (x, t)dx = ux(0, t)ut(0, t)−ux(1, t)ut(1, t)

−

∫ 1

0
ux(x, t)uxt(x, t)dx

= ux(0, t)ut(0, t)−ux(1, t)ut(1, t)

−
1
2

∫ 1

0

∂
∂t

u2
x(x, t)dx

• We can interchange the order of integration and
differentiation and thereby conclude that
1
2

∂
∂t

∫ 1

0
u2

x(x, t)dx =−

∫ 1

0
u2

t (x, t)dx−ux(0, t)ut(0, t)

+ux(1, t)ut(1, t)
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Energy arguments

• According to the boundary condition (2),
u(0, t) = u(1, t) = 0 for all t > 0

• Since u(0, t) and u(1, t) are constant with respect to
time, we can conclude that

ut(0, t) = ut(1, t) = 0 for t > 0 (8)
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Energy arguments

• Thus, we get that

E ′
2(t) =

∂
∂t

∫ 1

0
u2

x(x, t)dx = −2
∫ 1

0
u2

t (x, t)dx ≤ 0,

• This means that E2 is a non-increasing function of time,
i.e.

E2(t2) ≤ E2(t1) for all t2 ≥ t1 ≥ 0 (9)

∫ 1

0
u2

x(x, t)dx ≤
∫ 1

0
u2

x(x,0)dx =

∫ 1

0
f 2
x (x)dx, t > 0
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Stability

• We will now study how modifications of the initial
condition (3) influence on the solution

• Consider the problem with a modified initial condition

vt = vxx for x ∈ (0,1), t > 0 (10)

v(0, t) = v(1, t) = 0 for t > 0 (11)

v(x,0) = g(x) for x ∈ (0,1) (12)

• If g is close to f , will v be approximately equal to u?
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Stability

• Let e denote the difference between u and v, i.e.

e(x, t) = u(x, t)− v(x, t) for x ∈ [0,1], t ≥ 0

• From equations (1) and (10) we find that

et = (u− v)t = ut − vt = uxx − vxx = (u− v)xx = exx

• Furthermore from (2)-(3) and (11)-(12) we get

e(0, t) = u(0, t)− v(0, t) = 0−0 = 0 for t > 0

e(1, t) = u(1, t)− v(1, t) = 0−0 = 0 for t > 0

e(x,0) = u(x,0)− v(x,0) = f (x)−g(x) for x ∈ (0,1)

Lectures INF2320 – p. 15/88



Stability

• Thus, e solves the heat equation with homogeneous
Dirichlet boundary conditions at x = 0,1 and with initial
condition h = f −g

• From the above discussion, we therefore get that

∫ 1

0
e2(x, t)dx ≤

∫ 1

0
h2(x)dx, t > 0,

∫ 1

0
(u(x, t)−v(x, t))2dx ≤

∫ 1

0
( f (x)−g(x))2dx, t > 0

(13)
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Stability

• Thus, if g is close to f then the integral of (u− v)2, at
any time t > 0, must be small

• Hence, we conclude that minor changes in the initial
condition of (1)-(3) will not alter its solution significantly

• The problem is stable with respect to changes in the
initial condition
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Uniqueness

• We will now prove that (1)-(3) can have at most one
smooth solution

• Assume that both u and v are smooth solutions of this
problem

• Using the above notation, this means that g(x) = f (x),
x ∈ (0,1)

• (13) implies that

∫ 1

0
(u(x, t)− v(x, t))2dx = 0, t > 0
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Uniqueness

• Note that the function (u− v)2 is continuous, and
furthermore

(u(x, t)− v(x, t))2 ≥ 0 for all x ∈ [0,1] and t ≥ 0

• We can therefore conclude that

u(x, t) = v(x, t) for all x ∈ [0,1] and t ≥ 0
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Maximum principles

• We know that the solution of (1)-(3), will be more and
more smooth, and that it will approach zero, as time
increases

• Physically it is reasonable that the maximum
temperature must appear either initially or at the
boundary

• We now study the initial-boundary value problem

ut = uxx for x ∈ (0,1), t > 0 (14)

u(0, t) = g1(t) and u(1, t) = g2(t) for t > 0 (15)

u(x,0) = f (x) for x ∈ (0,1) (16)

• We shall see that the maximum value of the solution
u(x, t) will occur initially or on the boundary
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Calculus

• First, we recall an important theorem from calculus
• Let q(x), x ∈ [0,1] be a smooth function of one variable,

which attains its maximum value at an interior point x∗,
i.e.

x∗ ∈ (0,1) and q(x) ≤ q(x∗) for all x ∈ [0,1]

• Then q must satisfy
• q′(x∗) = 0
• q′′(x∗) ≤ 0
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Calculus

• Consequently, if a smooth function h(x), defined on
[0,1], is such that

h′(x) 6= 0 for all x ∈ (0,1)

or
h′′(x) > 0 for all x ∈ (0,1),

then h must attain its maximum value at one of the
endpoints
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Calculus

• Hence, we conclude that

h(0) ≥ h(x) for all x ∈ [0,1] (17)

or
h(1) ≥ h(x) for all x ∈ [0,1] (18)

• Furthermore, if (17) hold, then h must satisfy

h′(0) ≤ 0, (19)

and if (18) is the case, then it follows that

h′(1) ≥ 0 (20)
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Calculus

• Let v = v(x, t) be a smooth function of space x ∈ [0,1]
and time t ∈ [0,T ]

• That is, we assume that the partial derivatives of all
orders of v with respect x and t are continuous, and that

v : ΩT → IR,

where

ΩT = {(x, t) |0 < x < 1 and 0 < t < T} , (21)

∂ΩT = {(x,0) |0≤ x ≤ 1}∪{(1, t) |0≤ t ≤ T}

∪ {(x,T ) |0≤ x ≤ 1}∪{(0, t) |0≤ t ≤ T} (22)

and
ΩT = ΩT ∪∂ΩT (23)
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Calculus

• Assume that (x∗, t∗) ∈ ΩT , an interior point, is a
maximum point for v in ΩT , i.e.,

v(x, t) ≤ v(x∗, t∗) for all (x, t) ∈ ΩT

• Then, as in the single variable case, v must satisfy

vx(x
∗, t∗) = 0, vt(x

∗, t∗) = 0, (24)

vxx(x
∗, t∗) ≤ 0 and vtt(x

∗, t∗) ≤ 0 (25)
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Calculus

• Thus, a smooth function w = w(x, t), (x, t) ∈ ΩT such
that either

wx(x, t) 6= 0, wt(x, t) 6= 0,

wxx(x, t) > 0 or wtt(x, t) > 0, for all (x, t) ∈ ΩT , (26)

must attain its maximum value at the boundary ∂ΩT of
ΩT

• We also have that if the maximum is achieved for t = T ,
say at (x∗,T ), then w must satisfy the inequality

wt(x
∗,T ) ≥ 0 (27)
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Maximum principles

• Assume that u is a smooth solution of (14)-(16), and
that u achieves its maximum value at an interior point
(x∗, t∗) ∈ ΩT

• From (14) it follows that

ut(x
∗, t∗) = uxx(x

∗, t∗)

• By (24) we conclude that

uxx(x
∗, t∗) = 0

• If there were strict inequalities in (25), we would have
had a contradiction, and we could have concluded that
u must achieve its maximum at ∂ΩT
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Maximum principles

• Define a family of auxiliary functions {vε}ε>0 by

vε(x, t) = u(x, t)+ εx2 for ε > 0, (28)

where u solves (14)-(16)
• Note that

vε
t (x, t) = ut(x, t), (29)

vε
xx(x, t) = uxx(x, t)+2ε > uxx(x, t)

• Now, if vε achieves its maximum at an interior point,
say (x∗, t∗) ∈ ΩT , then the property (24) implies that

vε
t (x

∗, t∗) = 0 ⇒ ut(x
∗, t∗) = 0
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Maximum principles

• We can apply the heat equation (14) to conclude that

uxx(x
∗, t∗) = ut(x

∗, t∗) = 0

• Therefore

vε
xx(x

∗, t∗) = uxx(x
∗, t∗)+2ε = 2ε > 0

• This violates the property (25), which must hold at a
maximum point of vε

• Hence, we conclude that vε must attain its maximum
value at the boundary ∂ΩT of ΩT , i.e.,

vε(x, t) ≤ max
(y,s)∈∂ΩT

vε(y,s) for all (x, t) ∈ ΩT
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Maximum principles

• Can vε reach its maximum value at time t = T and for
x∗ ∈ (0,1)?

• Assume that (x∗,T ), with 0 < x∗ < 1, is such that

vε(x, t) ≤ vε(x∗,T ) for all (x, t) ∈ ΩT

• Then, according to property (27), vε
t (x

∗,T ) ≥ 0, which
implies that

ut(x
∗,T ) ≥ 0

see (29)
• Consequently, since u satisfies the heat equation

uxx(x
∗,T ) = ut(x

∗,T ) ≥ 0
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Maximum principles

• It follows that

vε
xx(x

∗,T ) = uxx(x
∗,T )+2ε ≥ 0+2ε > 0

• This contradicts the property (25) that must be fulfilled
at such a maximum point

• This means that

vε(x, t) ≤ max
(y,s)∈ΓT

vε(y,s) for all (x, t) ∈ ΩT , (30)

where

ΓT = {(0, t) |0≤ t ≤ T}∪{(x,0) |0≤ x ≤ 1}∪{(1, t) |0≤ t ≤ T}
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Maximum principles

• Let

M = max

(

max
t≥0

g1(t), max
t≥0

g2(t), max
x∈(0,1)

f (x)

)

• And let

Γ = {(0, t) | t ≥ 0}∪{(x,0) |0≤ x ≤ 1}∪{(1, t) | t ≥ 0}

• Since ΓT ⊂ Γ, (30) and the definition (28) of vε, we have
that

vε(x, t) ≤ max
(y,s)∈Γ

vε(y,s) ≤ M + ε for all (x, t) ∈ ΩT

• By (28), it follows that

u(x, t) ≤ vε for all (x, t) ∈ ΩT
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Maximum principles

• Therefore

u(x, t) ≤ M + ε for all (x, t) ∈ ΩT and all ε > 0

• This inequality is valid for all ε > 0, hence it must follow
that

u(x, t) ≤ M for all (x, t) ∈ ΩT (31)

• Since T > 0 was arbitrary chosen, this inequality must
hold for any t > 0, i.e.,

u(x, t) ≤ M for all x ∈ [0,1], t > 0 (32)
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Minimum principle

• The maximum principle above can be used to prove a
similar minimum principle

• Let u(x, t) be a solution of the (14)-(16), and define
w(x, t) = −u(x, t) for all x ∈ [0,1], t > 0

• Note that w satisfies the heat equation, since

wt = (−u)t = −ut = −uxx = (−u)xx = wxx

• Moreover

w(0, t) = −g1(t) and w(1, t) = −g2(t) for t > 0,

w(x,0) = − f (x) for x ∈ (0,1)
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Minimum principle

• Thus, from the analysis presented above we find that

w(x, t) ≤ max

(

max
t≥0

(−g1(t)), max
t≥0

(−g2(t)), max
x∈(0,1)

(− f (x))

)

= −min

(

min
t≥0

g1(t), min
t≥0

g2(t), min
x∈(0,1)

f (x)

)

,

for all x ∈ [0,1], t > 0

• We can write this

u(x, t) ≥ min

(

min
t≥0

g1(t), min
t≥0

g2(t), min
x∈(0,1)

f (x)

)

,

for all x ∈ [0,1], t > 0
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Maximum principles

A smooth solution of the problem (14)-(16) must
satisfy the bound

m ≤ u(x, t) ≤ M for all x ∈ [0,1], t > 0, (33)

where

m = min

(

min
t≥0

g1(t), min
t≥0

g2(t), min
x∈(0,1)

f (x)

)

, (34)

M = max

(

max
t≥0

g1(t), max
t≥0

g2(t), max
x∈(0,1)

f (x)

)

.

(35)
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Separation of variables

• Separation of variables is a technique for computing
the analytical solution of the heat equation

• First, we study functions satisfying

ut = uxx for x ∈ (0,1), t > 0, (36)

u(0, t) = u(1, t) = 0 for t > 0 (37)

• We guess that we have solutions on the form

u(x, t) = X(x)T (t), (38)

where X(x) and T (t) only depend on x and t

• The boundary conditions imply that

u(0, t) = 0 = X(0)T (t) and u(1, t) = 0 = X(1)T (t)
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Separation of variables

• Consequently, X(x) must satisfy

X(0) = 0 and X(1) = 0, (39)

provided that T (t) 6= 0 for t > 0

• By using (38) for u(x, t) in the heat equation (36) we
find that X and T must satisfy the relation

X(x)T ′(t) = X ′′(x)T (t) for all x ∈ (0,1), t > 0

• Thus, if X(x) 6= 0 for x ∈ (0,1) and T (t) 6= 0 for t > 0, we
get

T ′(t)
T (t)

=
X ′′(x)
X(x)

for all x ∈ (0,1), t > 0 (40)
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Separation of variables

• Since the left hand side of (40) only depends on t and
the right hand side only depends on x, we conclude
that there must exist a constant λ such that

T ′(t)
T (t)

= λ (41)

X ′′(x)
X(x)

= λ (42)

• We have studied problems on the form (41) earlier and
have seen that a solution is given by

T (t) = ceλt , (43)

where c is an arbitrary constant
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Separation of variables

• We write (42) on the form

X ′′(x) = λX(x), (44)

with the boundary conditions

X(0) = 0 and X(1) = 0 (45)

• We have that: sin′′(kπx) = −k2π2sin(kπx)

• Therefore

X(x) = Xk(x) = sin(kπx), (46)

λ = λk = −k2π2 (47)

satisfy (44) and (45), for k = . . . ,−2,−1,0,1,2, . . .
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Separation of variables

• We can now summarize that

uk(x, t) = cke−k2π2t sin(kπx) for k = . . . ,−2,−1,0,1,2, . . .
(48)

satisfy both the heat equation (36) and the boundary
condition (37)

• Note that, {ck} are arbitrary constants
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Example 22

Consider the problem

ut = uxx for x ∈ (0,1), t > 0, (49)

u(0, t) = u(1, t) = 0 for t > 0, (50)

u(x,0) = sin(πx) for x ∈ (0,1). (51)

We have that
u(x, t) = e−π2t sin(πx)

satisfies (49) and (50). Furthermore,

u(x,0) = e−π20sin(πx) = sin(πx)

and thus this is the unique smooth solution of this problem.
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Example 23

Our second example is

ut = uxx for x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x,0) = 7sin(5πx) for x ∈ (0,1).

Putting k = 5 and c5 = 7 in equation (48) we find that

u(x, t) = 7e−25π2t sin(5πx)

satisfies the heat equation and the boundary condition of
this problem. Furthermore,

u(x,0) = 7e−25π20sin(5πx) = 7sin(5πx)

and hence the initial condition is also satisfied.
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Super-positioning

• Assume that both v1 and v2 satisfy equations (36) and
(37), and let

w = v1 + v2

• Observe that

wt = (v1+v2)t = (v1)t +(v2)t =(v1)xx +(v2)xx = (v1+v2)xx = wxx

• Furthermore

w(0, t) = v1(0, t)+ v2(0, t) = 0+0 = 0 for t > 0,

and

w(1, t) = v1(1, t)+ v2(1, t) = 0+0 = 0 for t > 0,

hence w also satisfies (36) and (37)
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Super-positioning

• For an arbitrary constant a1 consider the function

p(x, t) = a1v1(x, t)

• Since a1 is a constant and v1 satisfy the heat equation
it follows that

pt = (a1v1)t = a1(v1)t = a1(v1)xx = (a1v1)xx = pxx

• Furthermore

p(0, t) = a1v1(0, t) = 0 for t > 0,

p(1, t) = a1v1(1, t) = 0 for t > 0.

• Thus we conclude that p satisfy both (36) and (37)
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Super-positioning

• We can now conclude that, if v1 and v2 satisfy (36)-(37)
then any function on the form

a1v1 +a2v2,

also solves this problem for all constants a1 and a2

• More generally, for any sequence of numbers
c0,c1,c2, . . .

such that the series of functions
∞

∑
k=1

cke−k2π2t sin(kπx)

converges, this sum forms a solution of (36)-(37)
• This is called super-positioning
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Fourier series and the initial condition

• We now have that, for any sequence of numbers

c1,c2, . . .

the function

u(x, t) =
∞

∑
k=1

cke−k2π2t sin(kπx) (52)

defines a formal solution of (36)-(37), provided that the
series in (52) converges

• Therefore, if we drop the initial condition, we can find
infinitely many functions satisfying the heat equation

• We shall now see how our model problem (1)-(3)
(including the initial condition) can be solved
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Example 24

Consider the problem

ut = uxx for x ∈ (0,1), t > 0, (53)

u(0, t) = u(1, t) = 0 for t > 0, (54)

u(x,0) = 2.3sin(3πx)+10sin(6πx) for x ∈ (0,1). (55)

This fit into (52) with

ck = 0 for k 6= 3 and k 6= 6,

c3 = 2.3 and c6 = 10.

Thus, the unique smooth solution is given by

u(x, t) = 2.3e−9π2t sin(3πx)+10e−36π2t sin(6πx).
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Example 25

Let us determine a formula for the solution of the problem

ut = uxx for x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x,0) = 20sin(πx)+8sin(3πx)+sin(67πx)+1002sin(104πx).

By putting

ck = 0 for k 6= 1, 3, 67, 104,

c1 = 20, c3 = 8, c67 = 1, c104 = 1002,

in formula (52), we get the solution

u(x, t) = 20e−π2t sin(πx)+8e−9π2t sin(3πx)

+e−(67π)2t sin(67πx)+1002e−(104π)2t sin(104πx).
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Sums of sine functions

We can generalize as follows:
• Let S be any finite set of positive integers and let
{ck}k∈S be arbitrary given constants

• Consider an initial condition on the form

f (x) = ∑
k∈S

ck sin(kπx)

• Then the solution of (1)-(3) is given by

u(x, t) = ∑
k∈S

cke−k2π2t sin(kπx)
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Sums of sine functions

This is valid because
•

ut(x, t) = ∑
k∈S

−k2π2cke−k2π2t sin(kπx)
•

uxx(x, t) = ∑
k∈S

−k2π2cke−k2π2t sin(kπx)
•

u(0, t) = ∑
k∈S

cke−k2π2t sin(0) = 0
•

u(1, t) = ∑
k∈S

cke−k2π2t sin(kπ) = 0
•

u(x,0) = ∑
k∈S

cke0sin(kπx) = ∑
k∈S

ck sin(kπx) = f (x)
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Sums of sine functions

What about infinite series?
For any initial condition on the form

f (x) =
∞

∑
k=1

ck sin(kπx) for x ∈ (0,1),

where the sum on the right hand side is an convergent
infinite series. The solution of (1)-(1) is given by

u(x, t) =
∞

∑
k=1

cke−k2π2t sin(kπx). (56)
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Computing Fourier sine series

• For a given function f (x), does there exist constants
c1, c2, c3, . . . such that

f (x) =
∞

∑
k=1

ck sin(kπx) for x ∈ (0,1)? (57)

• If so, how can the constants c1, c2, c3, . . . be
determined?

• Let us first assume that the answer to the first question
is yes
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Computing Fourier sine series

• Recall the trigonometric identity that, for any real
numbers a and b

sin(a)sin(b) =
1
2

(cos(a−b)−cos(a+b)) (58)

• Therefore it follows that

∫ 1

0
sin(kπx)sin(lπx)dx =

{

0 k 6= l,
1/2 k = l

(59)
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Computing Fourier sine series

• Now
∫ 1

0
f (x)sin(lπx)dx =

∫ 1

0

(

∞

∑
k=1

ck sin(kπx)

)

sin(lπx)dx

=
∞

∑
k=1

ck

∫ 1

0
sin(kπx)sin(lπx)dx

=
1
2

cl

• Therefore

ck = 2
∫ 1

0
f (x)sin(kπx)dx for k = 1,2, . . . (60)

• We conclude that, if the function f can be written on
the form (57), then the coefficients must satisfy (60)
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Computing Fourier sine series

Usually, a function can be written on the form (57), and we
refer to such functions as “well-behaved”.
We can now summarize

The Fourier coefficients for a "well-behaved"
function f (x), x ∈ (0,1), is defined by

ck = 2
∫ 1

0
f (x)sin(kπx)dx for k = 1,2, . . . , (61)

and the associated Fourier sine series by

f (x) =
∞

∑
k=1

ck sin(kπx) for x ∈ (0,1). (62)
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Computing Fourier sine series

Furthermore, if f satisfies (62) then

u(x, t) =
∞

∑
k=1

cke−k2π2t sin(kπx) (63)

defines a formal solution of the problem

ut = uxx for x ∈ (0,1), t > 0, (64)

u(0, t) = u(1, t) = 0 for t > 0, (65)

u(x,0) = f (x) for x ∈ (0,1). (66)
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Computing Fourier sine series

• For a given integer N, we can approximate u by the Nth
partial sum uN of the Fourier series, i.e.,

u(x, t) ≈ uN(x, t) =
N

∑
k=1

cke−k2π2t sin(kπx) (67)
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Example 26

Determine the Fourier sine series of the constant function

f (x) = 10 for x ∈ (0,1).

From formula (61) we find that

ck = 2
∫ 1

0
f (x)sin(kπx)dx = 2

∫ 1

0
10sin(kπx)dx

= 20

[

−
1

kπ
cos(kπx)

]1

0

= −
20
kπ

(cos(kπ)−1) =

{

0 if k is even,
40
kπ if k is odd.

Thus we find that the Fourier sine series of this function is

f (x) = 10=
∞

∑
k=1

40
(2k−1)π

sin((2k−1)πx) for x ∈ (0,1) (68)

see (62).
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Figure 1: The first 2 (dashed line), 7 (dashed-dotted line) and 100

(solid line) terms of the Fourier sine series of the function f (x) = 10.
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Example 26

Solve

ut = uxx for x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x,0) = 10 for x ∈ (0,1).

The formal solution is given by

u(x, t) =
∞

∑
k=1

40
(2k−1)π

e−(2k−1)2π2t sin((2k−1)πx) (69)

In figures 2 and 3 we have graphed the function given by
the 100th partial sum of the series (69) at time t = 0.5 and
t = 1, respectively.
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Figure 2: A plot of the function given by the sum of the 100 first

terms of the series defining the formal solution of the problem stud-

ied in Example 26. The figure shows a “snapshot” of this function at

time t = 0.5.
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Figure 3: A plot of the function given by the sum of the 100 first

terms of the series defining the formal solution of the problem stud-

ied in Example 26. The figure shows a “snapshot” of this function at

time t = 1.
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Note that

• A Fourier sine series, finite or infinite,

g(x) =
∞

∑
k=1

ck sin(kπx),

will have the property that

g(0) = g(1) = 0

• So, if a function f (x) is not zero at the endpoints, it can
not be written as a sum of sine series on the closed
interval [0,1]

• But the Fourier sine series of f , will in most cases still
converge to f (x) in the open interval (0,1)
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Example 27

Compute the Fourier coefficients {ck} of the function

f (x) = x(1− x) = x− x2.

According to formula (61)

ck = 2
∫ 1

0
(x−x2)sin(kπx)dx = 2

∫ 1

0
xsin(kπx)dx−2

∫ 1

0
x2sin(kπx)dx.

We have
∫ 1

0
xsin(kπx)dx =

[

−x
1

kπ
cos(kπx)

]1

0

−

∫ 1

0
−

1
kπ

cos(kπx)dx

= −
1

kπ
cos(kπ)+

1
kπ

[

1
kπ

sin(kπx)

]1

0

= −
1

kπ
cos(kπ) =

(−1)k+1

kπ
.
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Example 27

∫ 1

0
x2sin(kπx)dx =

[

−x2 1
kπ

cos(kπx)

]1

0

−

∫ 1

0
−2x

1
kπ

cos(kπx)dx

= −
1

kπ
cos(kπ)+

2
kπ

[

x
1

kπ
sin(kπx)

]1

0

−
2

kπ

∫ 1

0

1
kπ

sin(kπx)dx

= −
1

kπ
cos(kπ)+

2
(kπ)2

[

1
kπ

cos(kπx)

]1

0

= −
1

kπ
cos(kπ)+

2
(kπ)3

cos(kπ)−
2

(kπ)3

=
(−1)k+1

kπ
+

2(−1)k

(kπ)3
−

2
(kπ)3

.
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Example 27

Thus

ck = 2

(

2
(kπ)3

−
2(−1)k

(kπ)3

)

=

{

0 if k is even,
8

(kπ)3 if k is odd,

and we find that

f (x) = x− x2 =
∞

∑
k=1

(

8
((2k−1)π)3

)

sin((2k−1)πx).
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Figure 4: The first (dashed line), 7 first (dashed-dotted line) and

100 first (solid line) terms of the Fourier sine series of the function

f (x) = x− x2. It is impossible to distinguish between the figures rep-

resenting the 7 first and 100 first terms. They are both accurate ap-

proximations of x− x2.
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Example 28

Solve the problem

ut = uxx for x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x,0) = x(1− x) = x− x2 for x ∈ (0,1).

According to (63) the function

u(x, t) =
∞

∑
k=1

(

8
((2k−1)π)3

)

e−(2k−1)2π2t sin((2k−1)πx) (70)

defines a formal solution of this problem.
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Figure 5: A “snapshot”, at time t = 0.5, of the function given by the

sum of the 100first terms of the series defining the formal solution of

the problem studied in Example 28.
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Figure 6: A “snapshot”, at time t = 1, of the function given by the

sum of the 100first terms of the series defining the formal solution of

the problem studied in Example 28.
Lectures INF2320 – p. 71/88



Stability analysis of the num. sol.

• We shall now study the stability properties of the
explicit finite difference scheme for heat equation
presented earlier

• As above, the discretization parameters are defined by

∆t =
T
m

and ∆x =
1

n−1
,

and functions are only defined in the gridpoints

u`
i = u(xi, t`) = u((i−1)∆x, `∆t)

for i = 1, . . . ,n and ` = 0, . . . ,m
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Stability analysis of the num. sol.

• The numerical scheme is written

u`+1
i = u`

i +
∆t

∆x2
(u`

i−1−2u`
i +u`

i+1)

= αu`
i−1 +(1−2α)u`

i +αu`
i+1 (71)

for i = 2, . . . ,n−1 and ` = 0, . . . ,m−1, where

α =
∆t

∆x2
(72)

• Boundary conditions are u`
0 = u`

1 = 0 for ` = 1, . . . ,m

• We shall see that this numerical scheme is only
conditionable stable, and the stability depends on the
parameter α
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Example 29

Consider the following problem

ut = uxx for x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x,0) = sin(3πx) for x ∈ (0,1),

with the analytical solution

u(x, t) = e−π2t sin(3πx).

In Figures 7-9 we have graphed this function and the
numerical results generated by the scheme (71) for various
values of the discretization parameters in space and time.
Notice how the solution depends on α.
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Figure 7: The solid line represents the solution of the problem

studied in Example 29. The dotted, dash-dotted and dashed lines

are the numerical results generated in the cases of n = 10and m = 17

(α = 0.4765), n = 20 and m = 82 (α = 0.4402), n = 60 and m = 706

(α = 0.4931), respectively.
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Figure 8: The dashed line represents the results generated by the

explicit scheme (71) in the case of n = 60and m = 681, corresponding

to α = 0.5112, in Example 29. The solid line is the graph of the exact

solution of the problem studied in this example.
Lectures INF2320 – p. 76/88



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 9: A plot of the numbers generated by the explicit scheme

(71), with n = 60 and m = 675, in Example 29. Observe that

α = 0.5157> 0.5 and that, for these discretization parameters, the

method fails to solve the problem under consideration!
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Example 30

We reconsider the problem analyzed Example 28, and
study the performance of the explicit scheme (71) applied to

ut = uxx for x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x,0) = x(1− x) = x− x2 for x ∈ (0,1).

We compare the numerical approximations generated by
(71) with the formal solution (70) for various discretization
parameters ∆t and ∆x
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Figure 10: Numerical results from Example 30. The solid line

represents the sum of the 100 first terms of the sine series of the

formal solution of the problem studied in this example. The dotted,

dash-dotted and dashed curves are the numerical results generated

in the cases of n = 4 and m = 3 (α = 0.3), n = 7 and m = 8 (α = 0.45),

n = 14 and m = 34 (α = 0.4971), respectively.
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Figure 11: The dashed line represents the results generated by

the explicit scheme (71) in the case of n = 14 and m = 29, corre-

sponding to α = 0.5828, in Example 30. The solid line is the graph of

the Fourier based approximation of the solution.
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Figure 12: A plot of the numerical results produced by the explicit

scheme (71), using n = 25 grid points in the spatial dimension and

m = 25 time steps, in Example 30. In this case α = 0.6760> 0.5 and

the method fails to solve the problem.
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Analysis

• We have observed that the explicit scheme (71) works
fine, provided that α ≤ 1/2

• For small discretization parameters ∆t and ∆x, it seems
to produce accurate approximations of the solution of
the heat equation

• However, for α > 1/2 the scheme tends to “break
down”, i.e., the numbers produced are not useful. Our
goal now is to investigate this property from a
theoretical point of view

• We will derive, provided that α ≤ 1/2, a discrete
analogue to the maximum principle

• Note that, for (1)-(3), the maximums principle implies
|u(x, t)| ≤ max

x
| f (x)| for all x ∈ (0,1) and t ≥ 0
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Analysis

• Assume that ∆t and ∆x satisfy

α =
∆t

∆x2
≤

1
2

• Then
1−2α ≥ 0 (73)

• We introduce

ū` = max
i

|u`
i | for ` = 0, . . . ,m

• Note that
ū0 = max

i
| f (xi)|
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Analysis

•• Recall that u`+1
i = αu`

i−1 +(1−2α)u`
i +αu`

i+1

• It now follows from the triangle inequality that

|u`+1
i | = |αu`

i−1 +(1−2α)u`
i +αu`

i+1|

≤ |αu`
i−1|+ |(1−2α)u`

i |+ |αu`
i+1|

= α|u`
i−1|+(1−2α)|u`

i |+α|u`
i+1|

≤ αū` +(1−2α)ū` +αū`

= ū` (74)

for i = 2, . . . ,n−1

• Note that
u`+1

1 = u`+1
n = 0
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Analysis

• Since (74) is valid for i = 2, . . . ,n−1, we get

max
i

|u`+1
i | ≤ ū`

• or
ū`+1 ≤ ū`

• Finally, by a straightforward induction argument we
conclude that

ū`+1 ≤ ū0 = max
i

| f (xi)|
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Analysis

Assume that the discretization parameters ∆t
and ∆x satisfy

α =
∆t

∆x2
≤

1
2
. (75)

Then the approximations generated by the ex-
plicit scheme (71) satisfy the bound

max
i

|u`
i | ≤ max

i
| f (xi)| for ` = 0, . . . ,m, (76)

where f is the initial condition in the model prob-
lem (1)-(3).
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Consequences

• For a given n, m must satisfy

m ≥ 2T (n−1)2

• Hence, the number of time steps, m, needed increases
rapidly with the number of grid points, n, used in the
space dimension

• If T = 1 and n = 101, then m must satisfy m ≥ 20000,
and in the case of n = 1001at least 2 ·106 time steps
must be taken!

• This is no big problem in 1D, but in 2D and 3D this
problem may become dramatic
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