Ui0O ¢ Department of Informatics
University of Oslo

The webg system

Program source code and documentation

Dag Langmyhr
4th November 2020

y Donald Knuth[Knu83; Knu84; Knu92]. This style recognizes that programs ought
to be written for people rather than computers; consequently, program code and
documentation are intermixed. This gives the following advantages:

The webyp system is a tool for literate programming, the programming style invented

* The program can be written in a sequence that is easier to explain to human readers,
rather than the one required by the programming language.

* Documentation and program are in the same file, making them easier to maintain.

* The programmer can use all kinds of typographical features to enhance the
documentation, like mathematical formulae, section headers, tables, figures, footnotes,
and others.

Donald Knuth created the original web system to implement the TgX and METAFONT
programs in Pascal. Since then, versions for other programming languages have appeared,
like CWeb[Lev87] for the C programming language.

In 1989, Norman Ramsay designed noweb[Ram89] which is a language-independent
version of web. weby is inspired by noweb, but aims to be simpler to understand and
adapt. Also, it is written in Per[WCS96] rather than Awk and Icon.

Compared to Donald Knuth’s original web, webg is a much simpler tool, but perhaps
more general. A comparison between web and weby is given in Section 1.3 on page 10.

1 Using weby

This chapter tells the reader how to write documented programs in the weby notation. A
short article describing an implementation of bubble sorting is given as an example. In
Figures 1 and 2 is shown the source file bubble . w0 containing the combined program and
documentation in webg notation.

The printed documentation is produced by executing

weaveO -1 ¢ -e -0 bubble.tex bubble.wO
latex! bubble.tex

and the result is shown in Figures 3—-6. The last two pages show the tables that weby can
generate on request (“\wzvarindex” and “\wzmacroindex”).
Executing

tangle0 -o bubble.c bubble.w0
will extract the C code file bubble. c. This file is shown in Figure 7 on page 10.2

1.1 The documentation

Any part of the weby source that is not code (see Section 1.2 on page 10) is treated
as documentation. This documentation is written exactly as one would write any other
document for the chosen text processor.

When using I#TEX, however, the user should remember the following:

¢ The documentation must either use the document class webzero (see Section 3.2 on
page 66) or the package webzero (see Section 3.1 on page 58).

1Tt may be necessary to run latex several times to get all cross-references correct.
2The code shown in Figure 7 on page 10 is not particularly easy to read, but this code is not intended for
human eyes, only for computers.

Figure 1: The weby file bubble.wO0, page 1

\documentclass[12pt,adpaper]{webzero}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc,url} \urlstyle{sf}
\usepackage{amssymb,mathpazo}

\newcommand{\p}[1]{\textsf{#1}}

\title{Bubble sort}
\author{Dag Langmyhr\\ Department of Informatics\\
University of 0slo\\[5pt] \url{dag@ifi.uio.no}}

\begin{document}
\maketitle

\noindent

This short article describes \emph{bubble sort}, which quite probably
is the easiest sorting method to understand and implement. Although
far from being the most efficient one, it is useful as an example when
teaching sorting algorithms.

Let us write a function \p{bubble} in C which sorts an array \p{a}
with \p{n} elements. In other words, the array \p{a} should satisfy
the following condition when \p{bubble} exits:
\[
\forall i, j \in \mathbb{N}:
0 \leq i < j < \mathtt{n} \Rightarrow \mathtt{a}[i] \leq \mathtt{a}[j]
\1

<<bubble sort>>=
void bubble(int a[], int n)

<<local variables>>

<<use bubble sort>>

b
@

Bubble sorting is done by making several passes through the array,
each time letting the larger elements ‘‘bubble’’ up. This is repeated
until the array is completely sorted.

<<use bubble sort>>=
do {
<<perform bubbling>>
} while (<<not sorted>>);
@

Figure 2: The weby file bubble. w0, page 2

Each pass through the array consists of looking at every pair of
adjacent elements;\footnote{We could, on the average, double the
execution speed of \p{bubble} by reducing the range of the
\p{for}-loop by~1 each time. Since a simple implementation is the
main issue, however, this improvement was omitted.} if the two are in
the wrong sorting order, they are swapped:

<<perform bubbling>>=
<<initialize>>
for (i=0; i<n-1; ++1i)
if (a[il>al[i+1]) {
<<swap a[i] and a[i+1]>>
}
@

The \p{for}-loop needs an index variable \p{i}:

<<local var...>>=
int 1i;
@

Swapping two array elements is done in the standard way using an
auxiliary variable \p{temp}. We also increment a swap counter named
\p{n_swaps}.

<<swap ...>>=

temp = a[i]; a[i] = a[i+1]; a[i+1l] = temp;
++n_swaps;

@

The variables \p{temp} and \p{n_swaps} must also be declared:
<<local var...>>=

int temp, n_swaps;

@

The variable \p{n_swaps} counts the number of swaps performed during
one ‘‘bubbling’’ pass. It must be initialized prior to each pass.

<<initialize>>=
n_swaps = 0;
@

If no swaps were made during the ‘‘bubbling’’ pass, the array is
sorted.

<<not sorted>>=
n_swaps > 0
@

\wzvarindex \wzmacroindex
\end{document}

Figure 3: The documentation created from bubble.wO0, page 1

Bubble sort

Dag Langmyhr
Department of Informatics
University of Oslo

dag@ifi.uio.no
November 4, 2020

This short article describes bubble sort, which quite probably is the easiest sorting method
to understand and implement. Although far from being the most efficient one, it is useful
as an example when teaching sorting algorithms.

Let us write a function bubble in C which sorts an array a with n elements. In other
words, the array a should satisfy the following condition when bubble exits:

Vi, je N:0<i<j<n= a[i] <al[j]

#1 (bubble sort) =
void bubble(int a[], int n)
{

(local variables #4(p.2))

(use bubble sort #2(p.1))
}

(This code is not used.)

1
2
3
4
5
6

Bubble sorting is done by making several passes through the array, each time letting the
larger elements “bubble” up. This is repeated until the array is completely sorted.

#2 (use bubble sort) =
7 do {
s (perform bubbling #3 (p.1))
9} while ((notsorted #7(.2)));
(This code is used in #1 (p.1).)

Each pass through the array consists of looking at every pair of adjacent elements;! if the
two are in the wrong sorting order, they are swapped:

#3 (perform bubbling) =
o (initialize #6(p.2))
1 for (i=0; i<n-1; ++i)
12 if (ali]l>ali+1]) {
13 (swap ali] and ali+1] # (p.2))

(This code is used in #2 (p.1).)

The for-loop needs an index variable i:

1We could, on the average, double the execution speed of bubble by reducing the range of the for-loop by 1

each time. Since a simple implementation is the main issue, however, this improvement was omitted.

File: bubble.w0 page 1

Figure 4: The documentation created from bubble.w0, page 2

#4 =

(local variables)
15 int i

(This code is extended in #4, (p.2). It is used in #1 (p.1).)

Swapping two array elements is done in the standard way using an auxiliary variable temp.
#5

We also increment a swap counter named n_ swaps.
(swap ali] and a[i+1]) =
16 temp = alil;

alil = ali+1];
17 ++tn_swaps;

ali+1] = temp;

(This code is used in #3 (p.1).)

#4,

18

The variables temp and n_swaps must also be declared:
(local variables #4(p2)) +=

int temp, n_swaps;

The variable n_swaps counts the number of swaps performed during one “bubbling” pass.
It must be initialized prior to each pass.
#6 (initialize) =

19 n_swaps = 0;

(This code is used in #3 (p.1).)

#7 (not sorted) =

If no swaps were made during the “bubbling” pass, the array is sorted.
20

n_swaps > 0

(This code is used in #2 (p.1).)

File: bubble.w0

page 2

Figure 5: The documentation created from bubble.w0, page 3

Variables

A

B e 1,12,16
I

e 11,12, 15,16
N

o PN 1,11
DN_SWAPS .« uveteiieenieeennennens 17,18, 19,20
T

TOMP oeetee e 16, 18
VARIABLES

page 3

Figure 6: The documentation created from bubble.w0, page 4

Macro names

(Dubble sort #1) ... oo page 1*%
(initialize #6) ... page 2
(local variables #4) page 2
(ot sorted #7) ... page 2
(perform bubbling #3) i page 1
(swap alil and ali+1] #5) o page 2
(use bubble Sort #2) ... page 1
(Macro names marked with * are not used internally.)

MACRO NAMES page 4

Figure 7: The C code extracted from bubble.w0

void bubble(int a[], int n)

.
int 1i;
int temp, n_swaps;

do {
n_swaps = 0;
for (i=0; i<n-1; ++i)
if (a[i]>a[i+1]) {
temp = a[i]l; a[i] = a[i+1l]; a[i+1l] = temp;
++n_swaps;

} while (n_swaps > 0);

}

1.2 The code
Writing code in the webg system consists of defining a lot of macros, like

<<main program>> =
begin
<<declarations>>

<<statements>>
end
@

This definition states that the macro (main program) is defined to expand to the given text,
which may include other macros defined elsewhere. The user may extract any part of code
that he or she wants by naming the starting macro name.

When writing webg code, the following points should be considered:

* The notation for a macro name is “<<macro name>>”. A macro name may contain
any character except “<” or “>”.

* A macro definition continues until a line starting with a “@” and containing nothing
else (except possibly spaces).

¢ The notation “<<>>” is shorthand for the name of the last macro defined.

* The notation “<<xxx...>>” (ending with three dots) is shorthand for any macro
whose name starts with “xxx” and has previously been defined or referenced. Only
one macro name may match the given prefix.

* The programmer may not use both “<<” and “>>” on the same line in the program
code, as this will confuse the scanner (which will regard it as a quaint macro name).?
1.3 Comparison to web

As mentioned in the preface, weby is based on the ideas of Donald Knuth’s web program,
but there are quite a few differences:

3Defining a macro for << may be useful in such circumstances.

10

Figure 8: The tangleO program

file.w0

tangle0 !
“--+(wocode)

file.xxx

web supports the Pascal programming language; weby is language independent.

A web file can contain only one program; weby files may contain several, and these
programs may share code.

A web program must be on one file (plus an optional change file); weby programs may
reside on several files.

The implementation of web’s tangle and weave consists of 3315 and 4904 lines of
“tangled” Pascal code, respectively. The corresponding programs in weby (tangle0
and weave(with auxiliary programs) contain only 51 and 94 lines of “tangled” Perl
code.

web knows 36 commands; webp knows only one.

In web, the programmer can insert TEX text into the code parts; this is not possible in
Webo.

webg does not support the change file concept of web.

In web, one can insert program code into the documentation part. There are no explicit
capabilities for this in weby, but the ordinary IATEX mechanisms should be sufficient.

2 Implementation

The weby system consists of two programs tangle0 and weaveO, but it is implemented
as several small processes. The reasons for this are:

¢ It is easier to write and maintain smaller programs with a well-defined interface.

¢ It is easier to modify the system, for instance if documentation in another format than
IATEX is required.

2.1 The tangleO program

The tangleO program reads a set of weby files and translates them into executable code.
The program itself is just a wrapper for the two programs that do the real work: the
preprocessor wOpre and the postprocessor wOcode, as shown in figure 8.

The tangleO program is written in Perl:

11

#1

#2

#2,

#2,

#2,

#3

(tangle0) =
#1 (perl #105(p.59)

(tangleO definitions #2(p.12)

(tangle0 parameter decoding #3(p.12))
(tangle0 processing #6(p.14))
(

tangle0 auxiliary functions #7(p.14))
(user message functions #112(p.57)
(This code is not used.)

® > TR W N e

2.1.1 Definitions

All programs should be able to identify themselves with name and version.

(tangleO definitions) =
9 my ($Prog, $Version) = ("tangleQ", "(version #107m59)");
(This code is extended in #2, (p.12). It is used in #1 (p.12).)

Since tangleO is to start two auxiliary processes, it must know where to find them. The
variable $Lib_dir is initialized to the path to the correct directory. In this source listing
it is given as "." (which means the current directory) which makes it easy to test the
code, but in the production version this will be modified by the “make install” command
specified in the Makefile.

(tangle0 definitions #2(p.12) +=

0o my $Lib_dir = ".";
(This code is extended in #2, (p.12).)

2.1.2 Parameter decoding

This loop looks at all the parameters. They are decoded and put in @Pre_opt if they go to
wOpre, and in @Code_opt if they are for wOcode.

(tangle0 definitions #2(p12) +=
u my (@Code_opt, @Pre_opt);
(This code is extended in #2,(p.12).)

File names are kept in @Pre_files.

(tangle0 definitions #2(p12) +=
12 my @Pre_files = ();
(This code is extended in #24(p.13).)

Note that all file names are quoted in case they contain strange characters (like spaces).
If no input files are given, tangleO will read from standard input. This is handled
automatically by Perl.

(tangle0 parameter decoding) =
13 PARAM:
1« while (@ARGV) { $_ = shift;

15 (tangle0 parameters #4(p.13))
17 push @Pre_files, "’$_"";

18}
(This code is used in #1 (p.12).)

12

2.1.2.1 The -0 option is used to specify the name of the output file. This option is
passed on to wOcode.

#4 (tangle0 parameters) =
v /A-0$/ and do { $_ = shift or &Usage;

20 push @Code_opt, "-0’$_""; next PARAM; };
21 /A-0(.+)$/ and do {
22 push @Code_opt, "-0’$1’"; next PARAM; };

(This code is extended in #4, (p.13). It is used in #3 (p.12).)

We must not forget a short description of the parameter in the man page.

#5 (tangle0 man page parameters) =
23 TP
s .B -0 \fIfile\fP
25 Specify the name of the file on which to write the extracted program
26 code. If this option is not used, the output will go to
27 .I standard output.
(This code is extended in #5, (p.13). It is used in #135 (p.68).)

2.1.2.2 The -v option makes tangleO print its version identification and some
information on what it is doing. This parameter is also passed on to both wOpre and
wOcode so they can do the same.

#4, (tangle0 parameters #4(p.13) +=
28 /A-v$/ and do {

29 print STDERR "This is $Prog (version $Version)\n";
30 push @Pre_opt, "-v"; push @Code_opt, "-v";
31 $Verbose = "Yes"; next PARAM; };

(This code is extended in #4;, (p.13).)

The default is to be silent.

#24 (tangleO definitions #2(p.12) +=
32 my $Verbose = 0;

The -v parameter must also be mentioned in the man page.

#5, (tangle0 man page parameters #5(p.13)) +=
33 TP
sa .B -v
35 State the program version. Use of this option will also make
36 .1 tangleO
37 more verbose so that it will display information on what it does.
(This code is extended in #5 (p.13).)

2.1.2.3 The -x option names the name of the macro with which to start the program
extraction. It is passed on to wOcode.

#4y, (tangleO parameters #1(p.13)) +=
338 /A-x$/ and do { $_ = shift or &Usage;

39 push @Code_opt, "-x’$_""; next PARAM; };
490 /A-x(.+)/ and do {
41 push @Code_opt, "’$1’"; next PARAM; };

(This code is extended in #4,(p.14).)
And now for the man file description of the —x parameter.

#5,, (tangle0 man page parameters #5(p.13) +=
TP

43 .B -x \fIname\fP

4 Specify the name of the macro with which to start the program

4 extraction. If this option is not used, extraction will start with the
4 first macro defined.

13

#4,

#6

#7

2.1.24 Unknown options All other parameters result in a warning.

(tangleO parameters #1(p.13)) +=
a1 /A-/ and do { &Message("Unknown option ‘$_’ ignored."); next PARAM; };

2.1.3 Running the pre- and postprocessors

Running the pre- and postprocessor programs could have been accomplished using
system("perl wOpre ... | perl wOcode ...");

but that would have made it impossible to detect run-time errors in either program.* To
be able to detect all errors, tangleO must start wOpre as an input process and wOcode
as an output process and pass all data from one to the other. When the wOpre process is
finished, it is possible to close the two processes and detect an error exit status.

(tangle0 processing) =
48 my $Pre_cmd = "$Lib_dir/wOpre @Pre_opt @Pre_files";
49 my $Post_cmd = "$Lib_dir/wOcode @Code_opt";
50
51 &Message("Running $Pre_cmd | $Post_cmd") if $Verbose;
52 open(PRE, "$Pre_cmd |");
53 open(POST, "| $Post_cmd");
5+ print POST while <PRE>;
55 close PRE; exit $7>>8 if $7>>8;
56 close POST; exit $7?>>8;
(This code is used in #1 (p.12).)

2.1.4 Auxiliary functions

If the user makes a parameter error, he or she should get a short notification on how to do
it correctly.

(tangle0 auxiliary functions) =
57 sub Usage {
58 print STDERR "Usage: $Prog [-o file] [-v] [-x name] [file...]J\n";
59 exit 1;
60

(This code is used in #1 (p.12).)

2.2 The weave(program

The weaveO program reads a set of weby files and produces the documentation in a
suitable format. The program is constructed according to the same principle as tangleO,
as shown in Figure 9 on the next page. weaveO is a wrapper for up to three programs
processing the data:

wOpre is the same preprocessor as is used by tangleO.

w0-1-xxx is an optional language dependant filter, such as w0-1-c for C programs and
w0-1-perl for programs in Perl.

w0-f-xxx is the postprocessor producing the actual documentation commands. At

present, only one such postprocessor is supplied: wO-f-latex that produces IATEX
code.

14

Figure 9: The weaveO program

file.w0

weave(}------- w0-1-xxx)

file.xxx

The weave0 program is also written in Perl:

#8 (weavel) =
61 #! (perl #105(p.50)

weave(definitions #9(p.15))
weave0 parameter decoding #10(p.15))

(
{ !

65 (weavel processing #16(p.18))
(

weave0 auxiliary functions #17(.19))
6s (user message functions #112(p.57)
(This code is not used.)

2.2.1 Definitions

All programs should be able to identify themselves with name and version.

#9 (weaveO definitions) =
69 my ($Prog, $Version) = ("weave0", "(version #107p50)");
(This code is extended in #9, (p.15). It is used in #8 (p.15).)

Since weaveO is to start two or three auxiliary processes, it must know where to find them.
For more information, see Section 2.1.1 on page 12

#9, (weaveO definitions #9(p.15)) +=
70 my $Lib_dir = ".";
(This code is extended in #9, (p.16).)

2.2.2 Parameter decoding

The following loop will examine all the parameters:

#10 (weaveO parameter decoding) =

n (set default parameter values #14(p.17)

72 PARAM:
73 while (QARGV) { $_ = shift;
74 (weave0 parameters #11(p.16))

4The documentation in “man sh” states that

“The exit status of a pipeline is the exit status of the last command in the pipeline.”

15

#9,,

#9,

#11

#12

#11,

#13

75
76 push @Pre_files, "’$_"";

7}
(This code is used in #8 (p.15).)

The parameters are decoded and put in @Pre_opt if they go to wOpre, in @Lang_opt if
they are sent to the language processor wO-1-xxx, and in @Code_opt if they are for the
postprocessor wO-f—xxx.

(weave0 definitions #9(p.15)) +=

s my (@Code_opt, @Lang_opt, @Pre_opt);
(This code is extended in #9,(p.16).)

File names are kept in @Pre_files.

(weave0 definitions #9(p.15)) +=
79 my @Pre_files = ();
(This code is extended in #94(p.17).)

If no input files are given, weaveO will read from standard input. This is handled
automatically by Perl.

2.2.2.1 The -e option indicates that the user wants to enhance the code by using bold
or italic fonts. (This option will only work if a language filter is specified; see Section 2.2.2.3
on the next page.)
(weave0 parameters) =

so /7-e$/ and do { push @Lang_opt, "-e"; next PARAM; };
(This code is extended in #11, (p.16). It is used in #10 (p.15).)

Like all the options, this one must be described in the man page.

(weaveO man page parameters) =

s2 .B -e

s3 Enhance the code by using bold and italic fonts.
s« (Works only in conjunction with the

s .B -1

ss option; see below.)

(This code is extended in #12, (p.17). It is used in #139 (p.69).)

2.2.2.2 The -f option is used to specify which postprocessor filter to use.

(weaveO parameters #11(p.16) +=
gr /A-f$/ and do { $_ = shift;
88 (weave0: note filter #13(p.16)); next PARAM; };
g9 /A-f(.+)/ and do { $_ = $1;
90 (weave0: note filter #13(p.16)); next PARAM; };

(This code is extended in #11, (p.17).)

To check that a correct filter has been specified, it must be checked. The path name of the
corresponding filter program will be kept in $F_prog.

(weaveO: note filter) =
o1 &Usage unless $_;
o2 my $pr = "$Lib_dir/w0-f-$_";
93 if (-r $pr) {

94 $F¥_prog = $pr;
95 } else {
96 &Message("Filter $_ is unknown;", "use of -f option ignored.");

(This code is used in #11,(p.16) and #14 (p.17).)

The variable $F_prog must be declared.

16

#9q (weave0 definitions #9(p.15) +=

9s my $F_prog = ;
(This code is extended in #9, (p.17).)

The default output format is I4TEX:

#14 (set default parameter values) =
99 $_ = "latex"; (weave0: note filter #13(.16)) ;
(This code is used in #10 (p.15).)

The man page contains documentation on this option:

#12, (weaveO man page parameters #12(p.16)) +=
w00 .TP
w1 B —-f \fIfilter\fP
12z Specify which output filter to use. At present, only
103 .1 latex
104 1s available, so this is the default.
(This code is extended in #12y (p.17).)

2.2.2.3 The -1 option is used to specify the programming language used, when the
user wants to employ the language dependant filter.

#11;, (weaveO parameters #11(p.16)) + =

ws /A-1%$/ and do { $_ = shift;

106 (weave0: note language #15p17); next PARAM; };
w7 /A-1(.+)/ and do { $_ = $1;
108 (weave0: note language #15p17); next PARAM; };

(This code is extended in #11,(p.18).)

To ensure that the user has specified an existing language filter, weaveO must check that
the filter program exists. The path name of that filter program will be saved in $L_prog.

#15 (weave0: note language) =
109 &Usage unless $_;
o my $pr = "$Lib_dir/w0-1-$_";

i
S}

1wt if (-r $pr) {

112 $1L_prog = $pr;

us else {

114 &Vessage("Language $_ is unknown;", "use of -1 option ignored.");

115
(This code is used in #11}, (p.17).)

The variable $L_prog must be declared.

#9, (weaveO definitions #9(p.15)) +=

ne my $L_prog = ;
(This code is extended in #9¢(p.18).)

The -1 option is also described in the man page:

#12, (weave0 man page parameters #12(p.16)) + =
ur TP
1 .B -1 \fIlanguage\fP
ne Specify which language filter to use when processing the data.
120 Currently, there exist filters
22 .IRc ", " java ", "
122 IR latex ", and " perl.
122 The default is to use no language filter at all.

(This code is extended in #12,(p.18).)

=
®

17

2.2.2.4 The -0 option is used to specify the name of the output file. This option is
passed on to the processor.

#11, (weave0 parameters #11(p.16)) + =

124 /7-0$/ and do { $_ = shift or &Usage;

125 push @Code_opt, "-0’$_""; next PARAM; };
126 /7-0(.+)/ and do {
127 push @Code_opt, "-0’$1’"; next PARAM; };

(This code is extended in #114(p.18).)

The man page description is also necessay:

#12, (weaveO man page parameters #12(p.16)) + =

128 TP

129 .B -0 \fIfile\fP

130 Specify the name of the file on which to write the documentation.
131 If this option is not used, the output will go to

132 .I standard output.

(This code is extended in #124(p.18).)

2.2.2.5 The -v option makes weave(Q print its version identification and some
information on what it is doing. The option is also passed on to all sub-processes so they
can do the same.

#1143 (weaveO parameters #11(p.16)) +=

13 /A-v$/ and do {

134 print STDERR "This is $Prog (version $Version)\n";
135 push @Pre_opt, "-v"; push @Lang_opt, "-v";
136 push @Code_opt, "-v"; $Verbose = "Yes"; next PARAM; };

(This code is extended in #11,(p.18).)
The default is to be silent.

#9; (weave0 definitions #9(p.15)) +=

137 my $Verbose = 0;

The -v parameter must also be mentioned in the man page.

#1234 (weaveO man page parameters #12(p.16)) + =
P

138

19 .B -v

140 State the program version. Use of this option will also make

141 .1 weave0

142 more verbose so that it will display information on what it does.

2.2.2.6 Unknown options All other options result in a warning.

#11, (weaveO parameters #11(p.16)) +=

#16

us /A-/ and do {
144 &Message ("Unknown option ‘$_’ ignored."); next PARAM; };

2.2.3 Running the pre- and postprocessors

The basic mechanism for running the processes is the same as for the tangleO program;
see Section 2.1.3 on page 14. The language processor w0-1-xxx, however, is run through
a pipeline so any status value indicating error will be ignored.?

(weave0 processing) =
us my $Pre_cmd = "$Lib_dir/wOpre @Pre_opt @Pre_files";

s my $Post_cmd = ;
147 $Post_cmd .= "$L_prog @Lang_opt | "

5Since this program is part of the weby package, it should never produce any errors. @

18

#17

#18

148
149

151
152
153
154
155
156

157
158
159
160
161

162
163

if $L_prog;
$Post_cmd .= "$F_prog @Code_opt";

&Message ("Running $Pre_cmd | $Post_cmd") if $Verbose;
open(PRE, "$Pre_cmd |");
open(POST, "| $Post_cmd");
print POST while <PRE>;
close PRE; exit $?>>8 if $?>>8;
close POST; exit $7>>8;
(This code is used in #8 (p.15).)

2.2.4 Auxiliary functions

The weaveO program uses some utility functions.

2.2.4.1 The &Usage function This function is called if the user makes a mistake in the
parameter list. It gives a short description on how to use the program.

(weave0 auxiliary functions) =
sub Usage {
print STDERR "Usage: $Prog [-e] [-f filter] [-1 language]",
" [-o file] [-v] [file...]\n";
exit 1;
}
(This code is used in #8 (p.15).)

2.3 The wOpre filter

The wOpre filter is really a scanner. It reads the source text and separates it into tokens
that are easy to digest for the other programs in the web(package. The following tokens
are produced:

code shows code in the body of a macro definition. If a code line contains macro name
references, it will result in several use tokens (one for each macro name used) and
several code tokens (one for each part of the rest of the line).

Note that the code token always terminates with a semicolon; this is to make it easy
to see any spaces at the end of a line.

def indicates that a macro is being defined.

file gives the name of the file being read. There will be one such token for each file read.
nl is used to separate code lines in a macro definition.

text is a line of documentation text. It is also terminated by a semicolon.

use marks the use of a macro.

Each line produced by wOpre contains exactly one token. For example, the weby code
shown in Figure 10 on the next page produces the tokens shown in Figure 11 on page 21.
2.3.1 The main program

The wOpre program is written in Perl.

(wOpre) =
#1 (perl #105(p.59)

19

Figure 10: Another typical weby source text Hello.w0

\documentclass[12pt,norsk]{webzero}
\usepackage[latinl]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{babel}

\title{«Hello, world!»-programmet i Java}
\author{Dag Langmyhr}

\begin{document}
\maketitle

\section{Implementasjon}
Omtrent alle lereboken i programmering starter med
«Hello, world!»-programmet. I Java ser det slik ut:

<<hello world>> =
<<importspesifikasjoner>>
class Hello {
public static void main(String args[]) {
<<deklarasjoner>>
<<setninger>>
}

}
@

\subsection{Skriv «Hello»}

Det er trivielt & skrive ut teksten «Hello, world!s.
<<setninger>> =

System.out.println("Hello, world!");

@

\subsection{Versjonsinformasjon}

Det er nyttig & fa informasjon om hvilken versjon av Java man kjorer.

<<setn...>> =

System.out.println("Dette er versjon " +
prop.getProperty("java.version") + ".");

Egenskapen \texttt{prop} ma lages:

<<dekl...>> =

Properties prop = System.getProperties();

@

Dessuten ma klassen \texttt{Properties} importeres.
<<import...>> =

import java.util.x;

\end{document}

20

Figure 11: The tokens produced by wOpre from the weby code Hello.wO0 in Figure 10 on
the facing page

file:Hello.wO;
text:\documentclass[12pt,norsk]{webzero};
text:\usepackage[latinl]{inputenc};
text:\usepackage[T1l]{fontenc};
text:\usepackage{babel};

text:;

text:\title{«Hello, world!»-programmet i Java};
text:\author{Dag Langmyhr};

text:;

text:\begin{document};

text:\maketitle;

text:;

text:\section{Implementasjon};

text:0Omtrent alle lareboken i programmering starter med;
text:«Hello, world!»-programmet. I Java ser det slik ut:;
text:;

def:hello world>>

use:importspesifikasjoner>>

nl

code:class Hello {;

nl

code: public static void main(String args[]) {;
nl

code: ;

use:deklarasjoner>>

nl

code: ;

use:setninger>>

code: };

text:;

text:\subsection{Skriv «Hello»};

text:Det er trivielt & skrive ut teksten «Hello, world!».;
def:setninger>>

code:System.out.println("Hello, world!");;

text:;

text:\subsection{Versjonsinformasjon};

text:Det er nyttig & fa informasjon om hvilken versjon av Java man kjerer.;
def:setninger>>

code:System.out.println("Dette er versjon " + ;

nl

code: prop.getProperty("java.version") + ".");;

text:;

text:Egenskapen \texttt{prop} ma lages:;
def:deklarasjoner>>

code:Properties prop = System.getProperties();;
text:Dessuten md klassen \texttt{Properties} importeres.;
def:importspesifikasjoner>>

code:import java.util.=*;;

text:\end{document};

21

#19

#19,

#19,

#20

#21

164 (wOpre definitions #19(.22))

165 (wOpre initialization #20(p.22))

166 (wOpre parameter handling #21(.22))

167 (wOpre token recognition #23(p.23))

168 exit($N_errors ? 1 : 0);

169

1o (wOpre utility functions #29(p.24))

11 (user message functions #112(p.57)
(This code is not used.)

2.3.2 Definitions

2.3.2.1 Identification As all the other programs in this package, wOpre can identify
itself with its name and version number.
(wOpre definitions) =
12 my ($Prog, $Version) = ("wOpre", "(version #107(p50)");
(This code is extended in #19, (p.22). It is used in #18 (p.19).)

2.3.2.2 Boolean constants The values False and True are used quite often in this
program, so the code will be more readable if they are given names.
(wOpre definitions #19(p.22)) +=

173 my ($False, $True) = (0, 1);
(This code is extended in #19 (p.22).)

2.3.2.3 Macro name start pattern To avoid using <<...>> in the program (see
Section 1.2 on page 10), we need to introduce a variable $Macro_start to contain the
opening brackets.

(wOpre definitions #19(p22) +=
e my $Macro_start = "<<";
(This code is extended in #19,(p.24).)

2.3.3 Initialization

Always start in documentation mode.

(wOpre initialization) =
175 my ($Code_mode, $New_line) = ($False, $False);
(This code is used in #18(p.19).)

2.3.4 Parameter handling

The following loop will fetch and decode all the parameters, while the file names in @QARGV
will remain.

(wOpre parameter handling) =
176 PARAM:
177 while (@ARGV && $ARGV[O0]=~/~-/) { $_ = shift;
178 (wOpre parameters #22(p.23))
179 &Message ("Unknown option ‘$_’ ignored.");

(This code is used in #18 (p.19).)

22

#22

#23

#24

#25

2.3.4.1 The -v option will make wOpre state its name and version.

(wOpre parameters) =
181 /A-v$/ and do {
182 print STDERR "This is $Prog (version $Version)\n";
183 next PARAM; };

(This code is used in #21 (p.22).)

2.3.5 Extracting tokens

This loop will read each line and scan the weby code for tokens.

(wOpre token recognition) =
184 LINE:
185 while (<>) { chomp;
186 (wOpre check input file #28@p.24)
187 (expand TAB characters #111(p.56))
188 (wOpre check for end of macro definition #26p.23))
189 (wOpre check for start of macro definition #24(p.23))
190 (wOpre handle text line #21(p.24))
191 (wOpre check one line of a macro definition #25.23))
192}

(This code is used in #18 (p.19).)

2.3.6 Macro definitions

A new macro is defined when the user writes a line containing only a macro name and an
“=” sign (and possibly some spaces surrounding the “=”). The variable $Code_mode is set
to indicate that wOpre is currently reading a macro definition.

(wOpre check for start of macro definition) =
193 /A$Macro_start(.*?)>>\s*=\s*$/0 && !$Code_mode and do {
194 $Last_def = &Find_macro_sy($1); $Code_mode = $True;
195 print "def:$Last_def>>\n"; $New_line = $False;
196 next LINE; };

(This code is used in #23 (p.23).)

Each line of a macro definition must be checked to see if it contains references to other
macros. Each such reference produces a use token; the remainder of the line results in
code tokens.

(wOpre check one line of @ macro definition) =

197 print "nl\n" if $New_line;
19s while (s/A(.x?)$Macro_start(.=?)>>//0) {

199 print "code:$1;\n" if $1;

200 print "use:", &Find_macro_sy($2), ">>\n";
201

202 print "code:$_;\n" if $_; $New_line = $True;

(This code is used in #23 (p.23).)

(The variable $New_1line is set whenever a line has been completely processed. We need
this variable because the nl token separates lines in a macro definition.)

The end of a macro definition is recognized by a line with a lone “@” (except for additional
spaces® after the “@”).

#26 (wOpre check for end of macro definition) =

203 /A@\S*$/ && $Code_mode and do {
204 $Code_mode = $New_line = $False; next LINE; };
(This code is used in #23 (p.23).)

61 decided to allow superfluous spaces since such spaces would be invisible to the user, and he or she might
otherwise have problems detecting the cause of any erroneous behavior.

23

2.3.7 Handling lines of documentation

When not defining a macro, the line is just copied as it is into a text token.

#27 (wOpre handle text line) =
20 unless ($Code_mode) { print "text:$_;\n"; next LINE; };
(This code is used in #23 (p.23).)

2.3.8 File name check

The variable $Cur_file keeps track of the source file name.
#19, (wOpre definitions #19(p22) +=

206 my $Cur_file = ;
(This code is extended in #194 (p.24).)
A file token is generated whenever we start reading another file.

#28 (wOpre check input file) =
207 unless ($Cur_file) { $Cur_file = $ARGV; print "file:$Cur_file;\n"; }
(This code is extended in #28, (p.24). It is used in #23 (p.23).)

When a file has been completely read, we must clear $Cur_file to force another file
token if another file is read.

#28, (wOpre check input file #28p.20) +=
208 $Cur_file = "" if eof;

2.3.9 Utility functions

2.3.9.1 The function &ind_macro_sy This function is used to find the correct name
of a macro, in particular when the <<>> or <<xxXx. . .>> notation is used. The function has
one parameter:

1. the macro name as given by the user (but without the angle brackets).

#29 (wOpre utility functions) =
200 sub Find_macro_sy {

210 local $_ = shift;

211

212 (find_macro_sy: handle reference to last macro #30p.24)
213 (find_macro_sy: handle abbreviated macro name #31(p.25))
214 $Macro{$_} = "Defined"; return $_;

215

(This code is extended in #29, (p.25). It is used in #18 (p.19).)

<<>> 1is used to refer to the last macro defined.

#3830 (find_macro_sy: handle reference to last macro) =
216 unless ($_) {

=

217 &Warning ("Illegal use of ‘$Macro_start>>’ notation;",
218 "no macro defined vet.") unless $Last_def;

219 return $Last_def || "??";

220

(This code is used in #29 (p.24).)

The name of the last macro defined is kept in $Last_def.

#1945 (wOpre definitions #19(p22) +=
221 my $Last_def = "";
(This code is extended in #19, (p.25).)

<<xxX...>>1is a reference to a macro whose name starts with xxx. This can be found by
searching the table %¥Macro which contains all known macro names (as keys).

24

#19,

#31

#29,
236
237
238

222

223
224
225
226
227
228
229
230
231
232
233
234
235

#19;

#32

239

240
241
242
243
244
245
246
247
248
249
250

(wOpre definitions #19(p.22)) +=
my %Macro = ();
(This code is extended in #19¢(p.25).)

There should be exactly one such macro name in %¥Macro.

(find_macro_sy: handle abbreviated macro name) =

if (/\.{3}$/) {

}

$;
length $abbrev;

my $abbrev =
my $ab_len =
my @match = grep { substr($_,0,%$ab_len) eq $abbrev } keys %Macro;
unless (@match) {

&Warning ("No match for $Macro_start$ _>>.");

return "??";
}
&Warning ("Multiple matches for $Macro_start$_>>:",

join(", ", map("$Macro_start$_>>",@match))) if @match>1;
return $match[0];

(This code is used in #29 (p.24).)

(Note in particular the use of grep to find matching macro names. The test here cannot
use a pattern as the abbreviated macro name may contain characters like “(” or “*” that
will confuse Perl.)

2.3.9.2 The function &Warning This function gives the user a warning and increases
the error count $N_errors.

(wOpre utility functions #29(.29) +=
sub Warning {

}

&Message(@_); ++$N_errors;

The error count must be declared.

(wOpre definitions #19(p.22)) +=
my $N_errors = 0;

2.4 The wOcode filter

The wOcode filter reads tokens produced by wOpre and prints the program code; it forms
the last link in the pipeline set up by tangle0. Most of this code can be found as parts of
the various tokens, but macro names must be expanded.

The wOcode filter is written in Perl.

(wOcode) =
#1 (perl #105(p.54)

(wOcode definitions #33(p.26))

(wOcode parameter handling #34(p.26))

(wOcode read tokens #37(p.2m)

(wOcode expand macros #40(p.28))

close OUT unless $Output == *STDOUT;
exit ($N_errors ? 1 : 0);

(wOcode utility functions #11(p.28))
(user message functions #112p.57)
(This code is not used.)

25

2.4.1 Definitions

2.4.1.1 Identification This filter should be able to identify itself with its name and
version number.
#33 (wOcode definitions) =

251 my ($Prog, $Version) = ("wOcode", "(version #107(p50)");
(This code is extended in #33, (p.26). It is used in #32 (p.25).)

2.4.1.2 Macro name start pattern To avoid using <<...>> in the program (see

Section 1.2 on page 10), we need to introduce a variable $Macro_start to contain the
opening brackets.

#3833, (wOcode definitions #33(p.26)) +=

252 my $Macro_start = "<<";
(This code is extended in #33,, (p.26).)

2.4.2 Parameter handling

This loop will look at all the program’s parameters.
#34 (wOcode parameter handling) =
253 PARAM:
254 while (@ARGV && $ARGV[O0] =~ /A-/) { $_ = shift;
255 (wOcode parameters #35(p.26))
256}
(This code is used in #32 (p.25).)

2.4.2.1 The -0 option This option is used to indicate the name of the file on which to
write the output. If this option is not used, the output will go to standard output.

#35 (wOcode parameters) =
57 /7A-0$/ and do { $_ = shift;

258 (wOcode: note output file #36@p.26)); next PARAM; };
259 /7-0(.+)/ and do { $_ = $1;
260 (wOcode: note output file #36(p.26)); next PARAM; };

(This code is extended in #35, (p.26). It is used in #34 (p.26).)

When the user specifies an output file, it is opened, and the variable $Output is set to
reference this file.

#86 (wOcode: note output file) =

261 open(OUT, ">$_") or &FError("Could not create $_.");
262 $0utput = \+OUT;

(This code is used in #35 (p.26).)

If the user does not specify any output file, the result will be written to standard output.
#33;, (wOcode definitions #33(p26) +=
263 my $Output = \+STDOUT;
(This code is extended in #33, (p.27).)

2.4.2.2 The -v option This option is for debugging. It will report the program’s name
and version number.

#3835, (wOcode parameters #35(p.26)) +=

24 /A-v$/ and do {

265 print STDERR "This is $Prog (version $Version)\n";
266 next PARAM; };

(This code is extended in #35, (p.27).)

26

2.4.2.3 The -x option This option is used to indicate the macro name with which to
start the extraction.

#35;, (wOcode parameters #35(p26) +=
27 /A-x$/ and do { $Start = shift; next PARAM; };
268 /A-X(.+)/ and do { $Start = $1; next PARAM; };
(This code is extended in #35,(p.27).)

The variable $Start is used for this name.

#33. (wOcode definitions #33(p.26)) +=
269 my $Start = "";
(This code is extended in #334 (p.27).)

2.4.24 Illegal options Any other option than those handled above is illegal.

#385, (wOcode parameters #35p.26) +=
270 &Message("Unknown option ‘$_’° ignored.");

2.4.3 Reading the tokens

Before we can extract any code, all token must be read. The table %Def will contain the code
of all macros defined; each value in %Def will be a text string of all the token containing
the body of that macro, separated by newlines.

#3833 (wOcode definitions #33(p26) +=
21 my %Def = ();
(This code is extended in #33, (p.27).)

If a macro has several definitions, they will all be concatenated here.

#387 (wOcode read tokens) =
272 DATA:
273 while (<>) { chomp;
274 (wOcode macro definition #38(p.27)
275 (wOcode add to macro body #:39 (p.28))
276}
(This code is used in #32 (p.25).)

2.4.3.1 Macro definition The def token signals the definition of a macro. Note that
this can be an extension of a macro already defined; in that case an nl token is inserted to
separate the two.

#38 (wOcode macro definition) =
277 /Adef:(.*)>>$/ and do {

278 $Cur_def = $1; $Start = $Start || $Cur_def;

279 $Def{$Cur_def} =

280 exists $Def{$Cur_def} ? "$Def{$Cur_def}nl\n" : "";
281 next DATA; };

(This code is used in #37 (p.27).)

The variable $Cur_def always contains the name of the macro whose body is being
defined.

#3833, (wOcode definitions #33(p.26)) +=

282 MMy $Cur_def = y
(This code is extended in #33(p.28).)

27

2.4.3.2 Macro body The code, nl, and use tokens all add to the body of the current
macro definition.
#39 (wOcode add to macro body) =
283 /A(code:|nl|use:)/ and do {
284 $Def{$Cur_def} .= "$_\n"; next DATA; };
(This code is used in #37 (p.27).)

All other tokens are ignored.

2.4.4 Expanding the macros

Since expanding the macro is a recursive process, wocode uses the function &Expand for
this.

#40 (wOcode expand macros) =
285 &Error('"No macros defined.") unless $Start;
286 &Expand($Start);
287 print $Output "\n";
(This code is used in #32 (p.25).)

The function &Expand has one parameter: the name of the macro to expand.

#41 (wOcode utility functions) =
288 sub Expand {

289 my $sy = shift;

290 (wOcode expand: check that macro is defined #42(p.28))
201 (wOcode expand: check for definition cycles #43(p.28))
292 (wOcode expand: expand the macro body #45(p.29)

293 (wOcode expand: deactivate current macro #14(p.29))

204
(This code is extended in #41, (p.29). It is used in #32 (p.25).)

2.4.4.1 Check definition Ifthe requested macro has not been defined, there is nothing
we can do.

#42 (wOcode expand: check that macro is defined) =
205 unless (exists $Def{$sy}) {

206 &Warning ("Macro name $Macro_start$sy>> has not been defined.")
297 unless exists $Not_def_mess{$sy};

298 $Not_def_mess{$sy} = "reported"; return;

20

(This code is used in #41 (p.28).)

The table %Not_def_mess keeps track of the messages to avoid repeating them.

#383; (wOcode definitions #33(p.26)) +=
300 my %Not_def_mess = ();

(This code is extended in #33,(p.29).)

2.4.4.2 Checking for definition cycles If the user has made an error and written a
circular set of definitions, this must be detected by wOcode to avoid an endless loop. A
check for circular definitions is simple to implement, however.

#43 (wOcode expand: check for definition cycles) =

301 &Error("Definition cycle found;", "the loop involves:",
302 join(" ", map("$Macro_start$_>>",

303 sort {$Active{$a} <=> $Active{$b}}

304 grep {$Active{$_} >= $Active{$sy}}
305 keys %Active)))

306 if $Active{$sy};

307 $Active{$sy} = l+keys %Active;
(This code is used in #41 (p.28).)

28

The table %Active contains (as keys) the names of all the macros that are currently being
expanded.”

#33, (wOcode definitions #33(p.26)) +=
308 my %Active = ();
(This code is extended in #33y, (p.29).)

When the current macro has been completely expanded, it can be removed from the
%Active list.

#44 (wOcode expand: deactivate current macro) =
300 delete $Active{$sy};
(This code is used in #41 (p.28).)

2.4.4.3 The actual expansion The actual expansion consists of reading the tokens and
inserting the text therein. The only exception is the use token which results in a recursive

call on &Expand.
#45 (wOcode expand: expand the macro body) =
3.0 my $line;
s11 foreach $line (split(/\n/,$Def{$sv})) {
312 if ($1line =~ /Acode:(.*);$/) { print $Output $1; }
313 elsif ($line =~ /Anl$/) { print $Output "\n"; }
314 elsif ($line =~ /Ause:(.*)>>$/) { &Expand($1); }
315 else { &Error("Unknown format: $line."); }
316}

(This code is used in #41 (p.28).)

2.4.5 Utility functions

2.4.5.1 The function &Warning This function gives the user a warning and increases
the error count $N_errors.

#41, (wOcode utility functions #41(p28)) +=
317 sub Warning {
318 &Message(@_); ++$N_errors;
319

The error count must be declared.

#3833y, (wOcode definitions #33(p26) +=
320 my $N_errors = 0;

2.5 The w0-f-latex filter

This program reads tokens produced by wOpre (see Section 2.3 on page 19) and produces
IATEX code. To be more particular, the following commands and environments are
generated:

\wzdef is used whenever a new macro is defined; see Section 3.1.4.1 on page 61.
\wzenddef terminates the macro definition; see Section 3.1.4.2 on page 61.
\wzeol is used as a code line separator; see Section 3.1.4.3 on page 62.

\wzfile signals that a new source file is being read; see Section 3.1.4.4 on page 63.

\wzmacro is used to typeset a macro name; see Section 3.1.4.5 on page 63.

29

Figure 12: The IATEX code produced by weaveO from the webg code Hel1lo.w0 in Figure 10
on page 20

\def\wzclassindex{\begin{wzindex}{\wzclassindexname}{2}

\end{wzindex}}

\def\wzfuncindex{\begin{wzindex}{\wzfuncindexname}{2}

\end{wzindex}}

\def\wzvarindex{\begin{wzindex}{\wzvarindexname}{2}

\end{wzindex}}

\def\wzmacroindex{\begin{wzindex}{\wzmacroindexname}{1}
\wzx{\wzmacro{deklarasjoner~~\upshape\#3}}\wzlongpageref{3}\par
\wzx{\wzmacro{hello~world~~\upshape\#1}}\wzlongpageref{1}\rlap{~+*}\par
\wzx{\wzmacro{importspesifikasjoner~~\upshape\#4}}\wzlongpageref{4}\par
\wzx{\wzmacro{setninger~~\upshape\#2}}\wzlongpageref{2}\par
\smallskip\raggedright\wzmacroindexstartext\par

\end{wzindex}}

\ifx \wzfile\undefined

\AtBeginDocument{\wzfile {Hello.wO}}\else \wzfile {Hello.wO}\fi
\documentclass[12pt,norsk]{webzero}

\usepackage[latinl]{inputenc}

\usepackage[T1]{fontenc}

\usepackage{babel}

\title{«Hello, world!»-programmet i Java}
\author{Dag Langmyhr}

\begin{document}
\maketitle

\section{Implementasjon}
Omtrent alle lereboken i programmering starter med
«Hello, world!»-programmet. I Java ser det slik ut:

\wzdef{hello~world}{1}{0}\wzmacro[4]{importspesifikasjoner}\wzeol\relax
class~Hello~\{\wzeol\relax
~~public~static~void~main(String~args[])~\{\wzeol\relax
~~~~\wzmacro[3]{deklarasjoner}\wzeol\relax
~~~~\wzmacro[2]{setninger}\wzeol\relax

~~\HNwzeol\relax

\}%

\wzenddef{1}{0}{0}{}\relax

\subsection{Skriv «Hello»}

Det er trivielt & skrive ut teksten «Hello, world!».
\wzdef{setninger}{2}{0}System.out.println("Hello,~world!") ;%
\wzenddef{2}{0}{1}{\wzxref{1}{0}}\relax

\subsection{Versjonsinformasjon}
Det er nyttig a fa informasjon om hvilken versjon av Java man kjorer.
\wzdef{setninger}{2}{1}System.out.println("Dette~er~versjon~"~+~\wzeol\relax

~~~~prop.getProperty("java.version")~+~".");%
\wzenddef{2}{1}{0}{0}\relax

Egenskapen \texttt{prop} ma lages:
\wzdef{deklarasjoner}{3}{0}Properties~prop~=~System.getProperties() ;%
\wzenddef{3}{0}{0}{\wzxref{1}{0}}\relax

Dessuten ma klassen \texttt{Properties} importeres.
\wzdef{importspesifikasjoner}{4}{0}import~java.util.*;%
\wzenddef{4}{0}{0}{\wzxref{1}{0}}\relax

\end{document}

30



For an example, see Figure 12 on the preceding page.

#46 (wO-f-latex) =

21 #1 (perl #105(m54)

322

323 (alphabetical sorting #113(p.57))
324 (wO-f-latex: initialization #47(p.31)
325 (wO-f-latex: option handling #48(p.31))
326  (wO-f-latex: make LaTeX code #51(p.33))
327 close $0utput unless $Output == \+STDOUT;
328 exit ($N_errors ? 1 : 0);
329
330 (wO-f-latex: utility functions #61(p.38))
331 (latex generation functions #108(p.54))
332 (user message functions #112(p.57)

(This code is not used.)

2.5.1 Initialization

2.5.1.1 Identification is required for any self-respecting program.

#47 (wO-f-latex: initialization) =
a3 my ($Prog, $Version) = ("wO-f-latex", "(version #107(p50)");
(This code is extended in #47, (p.31). It is used in #46 (p.31).)

2.5.1.2 Boolean constants are used so often in this program that they should be given
names.

#47, (wO-f-latex: initialization #47(p.31) + =
33 my ($False, $True) = (0, 1);
(This code is extended in #47, (p.31).)

2.5.1.3 Start of macro name must be defined in a variable to avoid writing <<...>>
which will confuse weby.

#47, (wO0-f-latex: initialization #47(p.31)) +=
335 my $Macro_start = "<<";
(This code is extended in #47,(p.31).)

2.5.14 Default output file name is standard out unless the user tells us otherwise.

#47, (wO-f-latex: initialization #47(p31)) +=
336 my $Output = \+*STDOUT;
(This code is extended in #474(p.32).)

2.5.2 Parameter handling

This loop will examine all the program options (but leave any file names behind).

#48 (wO-f-latex: option handling) =

337 PARAM:
333 while (@ARGV && $ARGV[O] =~ /A-/) { $_ = shift;
339 (wO-f-latex: examine options #49(p.32))

340
(This code is used in #46 (p.31).)

"The %Active values are 1, 2, ... which are useful when producing a good error message.

31



2.5.2.1 The -0 option specifies the name of the file on which to put the final I4TEX
code.

#49 (wO-f-latex: examine options) =

a1 /A-0%/ and do { $_ = shift; (wO-f-latex: note output file #50(.32)

342 next PARAM; };
313 /A-0(.+)$/ and do { $_ = $1; (wO-f-latex: note output file #50(p.32))
344 next PARAM; };

(This code is extended in #49, (p.32). It is used in #48 (p.31).)

Once the output file has been opened, the variable $Output must be set so that the output
really goes to that file.

#50 (wO-f-latex: note output file) =

355 open(OUT, ">$_") or &Error("Could not create ‘$_".");
a6 $Output = \+OUT;

(This code is used in #49 (p.32).)

2.5.2.2 The -v option

is used for debugging. It will make wO-f-1latex state its name
and version number.

#49, (wO-f-latex: examine options #19(.32)) + =

s3¢7 /A-v$/ and do {

348 print STDERR "This is $Prog (version $Version)\n";
349 next PARAM; };

(This code is extended in #49 (p.32).)

2.5.2.3 Illegal options Any option beside those already mentioned is illegal.

#49,, (wO0-f-latex: examine options #19(.32)) + =
350 &Message("Unknown option ‘$_° ignored.™);

2.5.3 Passl

Translating tokens from wOpre into IATEX code is a three-pass affair:

1. Make a list of all the macro names.

2. Collect information on where each macro has been used, as well as the information
required to generate the indices.

3. Produce the I4TEX code.

As mentioned, the first pass determines which macros have been defined in the source files.
The following variables are used:

$N_macro contains the number of distinct macros defined.
#47; (wO-f-latex: initialization #47(p31)) +=

351 my $N_macro = O;
(This code is extended in #47,(p.32).)

%Macro_id contains the macro names (as keys); the values are the macros’ identification
numbers.

#47, (wO-f-latex: initialization #47(p31)) +=
352 my %Macro_id = ();

(This code is extended in #47¢(p.33).)

32



@Macro_n_ext contains how many extensions each macro has.

#47; (wO-f-latex: initialization #47(.31)) +=
33 my @Macro_n_ext = ();
(This code is extended in #47,(p.34).)

As the tokens are read, they must be saved so that they can be read again in the other two
passes. The array @Tokens is used for this; it is quite a bit faster than using a file.

#51 (wO-f-latex: make LaTeX code) =
35« my @Tokens = ();
355 while (<>) { chomp; push(@Tokens, $_);
356 (wO-f-latex: pass1: note macro definition #52(p.33))
357
(This code is extended in #51, (p.33). It is used in #46 (p.31).)

Only the def tokens are of interest in this pass.

#52 (wO-f-latex: passl: note macro definition) =
358 /Adef:(.*)>>$/ and do {
359 my $symb = $1;
360 if (defined $Macro_id{$symb}) {

361 ++$Macro_n_ext[$Macro_id{$symb}];

362 } else {

363 $Macro_id{$symb} = ++$N_macro; $Macro_n_ext[$N_macro] = O;
364 }

365 };

(This code is used in #51 (p.33).)

2.54 Pass2

The purpose of the second pass is to record usage of the macros. The following variables
will contain this information:

@Macro_use will tell where each macro has been used. Its index is the macro’s
identification number, and the value is a text string on the form

m-e1 m-e;

where nj;-ej is the first occurrence, ny-e; the second, and so forth. Each occurrence
is given as two numbers: the identification number ny of the macro in whose definition
the specific macro name occurs, and the extension ey.

#51, (wO-f-latex: make LaTeX code #51(p.33) +=
366 my @Macro_use = ();
(This code is extended in #51j (p.33).)

In addition, the following variables are used during pass 2:

$Cur_line contains the line number of the current code line.

#51y, (wO-f-latex: make LaTeX code #51(p.33)) +=
367 my $Cur_line = 0;
(This code is extended in #51,(p.34).)

%message_given counts how many times an error message for a macro name with no
definition has been given. Its purpose is to avoid reporting problems with each macro
name more than once.

33



#51, (wO-f-latex: make LaTeX code #51(p.33) +=
38 My %message_given = ();
(This code is extended in #514(p.34).)

@macro_ext_cnt counts how many extensions for a given macro have been found so far.

#5813 (wO-f-latex: make LaTeX code #51(p.33) +=
369 my @macro_ext_cnt = ();
(This code is extended in #51,(p.34).)

These variables are deleted at the end of pass 2 to save space.

#51, (wO-f-latex: make LaTeX code #51(p.33)) +=
370 $Cur_line = 0;
311 foreach (@Tokens) {
372 (wO-f-latex: pass2: handle tokens #53(p.34)
373
374 %message_given = (); G@macro_ext_cnt = ();
(This code is extended in #51¢(p.35).)

The def tokens indicate which is the current macro name and extension.

#53 (wO-f-latex: pass2: handle tokens) =
si5 /Adef:(.*)>>$/ and do { ++$Cur_line;
376 $cur_macro = $Macro_id{$1};
377 $cur_ext = $macro_ext_cnt[$cur_macro]++; next; };
(This code is extended in #53, (p.34). It is used in #51,(p.34).)

The current macro name and extension are kept in $cur_macro and $cur_ext (in
numeric form).
#47, (wO-f-latex: initialization #47(p31) +=
378 my ($cur_macro, $cur_ext) =
(This code is extended in #47; (p.34).)

(0, 0);

The use tokens show the use of a macro name.

#53, (wO-f-latex: pass2: handle tokens #53(p.30) +=
319 /Ause:(.*)>>$/ and do { my $symb = $1;

380 if (defined $Macro_id{$symb}) {

381 $Macro_use[$Macro_id{$symb}] .= "$cur_macro-$cur_ext ";
382 } elsif ($message_given{$symb}++ == 0) {

383 &Warning ("Macro name $Macro_start$symb>> not defined.");
384

385 next; };

(This code is extended in #53;, (p.34).)

The nl token indicates that the line number must be increased.

#53;, (wO-f-latex: pass2: handle tokens #53(p.34) +=
386 /Anl$/ and do { ++$Cur_line; next; };
(This code is extended in #53,(p.34).)

The fdef and fuse tokens report that a function has been defined or used on the current
line. This information is saved in %Func_index as “nn0” and “nnl”, respectively.®

#47, (wO-f-latex: initialization #47(.31)) +=
ss7 my %Func_index = ();
(This code is extended in #47;(p.35).)

#53, (wO-f-latex: pass2: handle tokens #53(p.30)) +=
sgs /Afdef:(.*);/ and do {
389 $Func_index{$1} .= $Cur_line . "0 "; next; };
390 /Afuse:(.*);/ and do {

8The reason for this notation is that I want to list definition occurrences before the ones that concern use.

34



391 $Func_index{$1} .= $Cur_line . "1 "; next; };
(This code is extended in #534 (p.35).)

Similarly, the vdef and vuse tokens report that a variable has been defined or used. This
information is saved in %Var_index as “nn0” and “nnl”, respectively.
#47; (wO-f-latex: initialization #47(p.31)) +=
302 my %Var_index = ();
(This code is extended in #47;(p.35).)

#5343 (wO-f-latex: pass2: handle tokens #53(p.30)) +=
393 /Avdef:(.*);/ and do {

394 $Var_index{$1} .= $Cur_line . "0 "; next; };
395 /Avuse:(.*);/ and do {
396 $Var_index{$1} .= $Cur_line . "1 "; next; };

(This code is extended in #53, (p.35).)

And, finally, the cdef and cuse tokens report that a class has been defined or used. This
information is saved in %Class_index as “nn0” and “nnl”, respectively.
#47; (wO-f-latex: initialization #47p31) +=

37 my %Class_index = ();
(This code is extended in #47; (p.35).)

#53, (wO-f-latex: pass2: handle tokens #53(p.30)) +=
398 /Acdef:(.*);/ and do {

399 $Class_index{$1} .= $Cur_line . "0 "; next; };
400 /Acuse:(.*);/ and do {
401 $Class_index{$1} .= $Cur_line . "1 "; next; };

2.5.5 Pass3

The third and last pass generates the actual I4TEX code. While generating this code, the
program is in two modes:

* When $Code_mode is $True, wO-f-1latex is processing code, i.e., the definition of a
macro.

* When $Code_mode is $False, the program is just passing document code on to the

IATEX file.
During pass 3, the following global variables are used:

@Macro_x counts how many extensions to a macro have been found so far during this pass.

#47, (wO-f-latex: initialization #47(.31)) +=
102 my @Macro_x = ();
(This code is extended in #47;(p.36).)

Before producing any code, however, the indices must be generated.
#51; (wO-f-latex: make LaTeX code #51(p.33) +=

103 (wO-f-latex: generate indices #62(p.39))
(This code is extended in #51,(p.35).)

Then, the translation of tokens into I4TEX code can commence. Initially, the program
expects documentation.

#51, (wO-f-latex: make LaTeX code #51(p.33) +=
104 my ($Code_mode, $Cur_line) = ($False, 0);
105 foreach (@Tokens) {
406 (wO-f-latex: pass3: handle ‘code’ tokens #54(p.36))
407 (wO-f-latex: pass3: handle ‘def’ tokens #55(p.36))

35



408 (wO-f-latex: pass3: handle file’ tokens #56(p.36))
109 (wO-f-latex: pass3: handle ‘nl’ tokens #57.37)
410 (wO-f-latex: pass3: handle ‘text’ tokens #58(p.37)
11 (wO-f-latex: pass3: handle ‘use’ tokens #59 (p.37))
412

413 (wO-f-latex: end code #60(p.37))

2.5.5.1 Handling the ‘code’ tokens These tokens represent the parts of the program
code that need no handling, except that they must be &Latexify-ed. The three variants
are used when the code is to be typeset in a normal font, a bold font, or itailics, respectively.

#54 (wO-f-latex: pass3: handle ‘code’ tokens) =
414 /Acode:(.*);$/ and do {

=

415 print $Output &Latexify($1l); next; };

416 /Abcode:(.*);$/ and do {

417 print $Output "\\textbf{", &Latexify($1), "}"; next; };
418 /Abicode:(.*);$/ and do {

419 print $Output "\\textit{\\textbf{", &Latexify($1l), "}}";
420 next; };

421 /Aicode:(.*);$/ and do {

422 print $Output "\\textit{", &Latexify($1l), "}"; next; };

(This code is used in #51,(p.35).)

2.5.5.2 Handling the ‘def’ tokens These tokens indicate the start of a macro definition
(and, thus, “code mode”).

#55 (wO-f-latex: pass3: handle ‘def” tokens) =
423 /Adef:(.%)>>$/ and do {

424 my $symb = $1; $def_id = $Macro_id{$symb};
425 if (defined $Macro_x[$def_id]) {

426 ++$Macro_x[$def_id];

4217 } else {

428 $Macro_x[$def_id] = O;

429

430 (wO-f-latex: end code #60(p.37)

431 print $Output "\\wzdef{", &Latexify($symb),
432 "}{$def_id}{$Macro_x[$def_id]}";

433 $Code_mode = $True; ++$Cur_line; next; };

(This code is used in #51,(p.35).)

The name of the macro being defined is kept in variable $def_id.
#47, (wO-f-latex: initialization #47(p31)) +=

43¢ My $def_id = "" y
(This code is extended in #47,, (p.40).)

2.5.5.3 Handling the ‘file’ tokens These tokens occur whenever the preprocessor has
started reading another file. Note the test on whether \wzfile has been defined. The
reason for this test is that when the first file (usually containing the \documentclass
directive) is being read, \wzfile is yet undefined, so the call on it must wait until the
start of the document.

#56 (wO-f-latex: pass3: handle file’ tokens) =
435 /Afile:(.%);$/ and do {

436 (wO-f-latex: end code #60(p.37)

437 print $Output "\\ifx \\wzfile\\undefined

s \\AtBeginDocument{\\wzfile {$1}}\\else \\wzfile {$1}\\fi\n";
439 next; };

(This code is used in #51,(p.35).)

36



2.5.5.4 Handling the ‘nl’ tokens These tokens indicate that a code line is terminated
and another one starts.
#57 (wO-f-latex: pass3: handle ‘nl’ tokens) =
40 /Anl$/ and do {
441 print $Output "\\wzeol\\relax\n"; ++$Cur_line; next; };
(This code is used in #51,(p.35).)

2.5.5.5 Handling the ‘text’ tokens These tokens contain documentation text that is
copied verbatim to the output.
#58 (wO-f-latex: pass3: handle ‘text’ tokens) =
42 [Mext:(.%);$/ and do {
443 my $text = $1; (wO-f-latex: end code #60p.37)
444 print $Output "$text\n"; next; };
(This code is used in #51,(p.35).)

2.5.5.6 Handling the ‘use’ tokens These tokens are found when a macro is referenced
in the code. It is translated into a call on \wzmacro with the name and its number as
parameters.
#59 (wO0-f-latex: pass3: handle ‘use’ tokens) =

45 /AMuse:(.*)>>$/ and do {

446 print $Output "\\wzmacro[$Macro_id{$1}]1{", &Latexify($1), "}";

447 next; };
(This code is used in #51,(p.35).)

2.5.5.7 Terminating a macro definition (which is detected by reading the first ‘text’
token after a macro definition, or on finding two consecutive macro definitions, or when
the last token has been read from a file) also requires some special actions. The macro
\wzenddef is supplied with the following parameters (see Section 3.1.4.2 on page 61):

1. the macro name’s number,
2. its extension number,
3. 1 if there are any further extensions, or O if there are none, and

4. usage information (already formatted into IATEX code).

#60 (wO-f-latex: end code) =
was  print $Output "%\n\\wzenddef{$def_id}{$Macro_x[$def_id]}{" .

449 ($Macro_x[$def_id]<$Macro_n_ext[$def_id] ? $Macro_x[$def_id]+1 : 0)
450 """ . ($Macro_x[$def_id]==0 ? &Format_usage($def_id) : 0),
451 "MN\relax\n" if $Code_mode;

2 $Code_mode = $False;
(This code is used in #51,(p.35), #55 (p.36), #56 (p.36), and #58 (p.37).)

2.5.5.8 The &Format_usage function This function is used to format the usage
information. This is not as trivial as it might at first seem; for instance, the following
rules apply for English:

¢ When there are two elements, there should be just an “and” between the two.

* When there are three or more elements, the last two should be separated by “, and”
and the others just by a comma.

37



(Other languages have different rules, but most languages can be handled properly
by suitable definitions of \wzsep, \wztwosep, and \wzlastsep; see Section 3.1.2 on
page 58.)

Also, we want to omit multiple occurrences of identical references.

The function has one parameter:

1. the index of a macro name.

It returns the I4TEX code as a text string.

#61 (wO-f-latex: utility functions) =
43 sub Format_usage {

454 local $_ = $Macro_use[shift]; chomp;

455 my @data = (),

456 my ($1ast_x’ $X) = (llu’ nn);

457

458 foreach $x (split) { push(@data, $x) if $x ne $last_x; $last_x = $x; }
459

460 my ($n, $res) = (0, "");

461 foreach (@data) {

462 if (++$n == @data && @data > 2) { $res .= "\\wzlastsep\n"; }

463 elsif ($n == 2 && @data == 2) { $res .= "\\wztwosep\n"; }

464 elsif ($n > 1) {$res .= "\\wzsep\n"; }

wo L Smes .= \Wammel L (/A(\WE)-(EN8/ 7 SN (SIOF);
466

467 return $res;

468

(This code is extended in #61, (p.38). It is used in #46 (p.31).)

2.5.6 Making an index

All IATEX code generated by wO-f-1atex will contain indices for the variables, functions,
classes, and macro names found in the code. It is up to the user, however, to introduce
any of these indices into his or her documentation using the macroes \wzvarindex,
\wzfuncindex, \wzclassindex, or \wzmacroindex, respectively.
#62 (wO-f-latex: generate indices) =

169 (wO-f-latex: generate the class index #10(p.40))

110 {wO-f-latex: generate the function index #63(p.38))

411 {wO-f-latex: generate the variable index #69 (p.40))

412 (wO-f-latex: generate the macro index #71(p.40)
(This code is used in #51¢(p.35).)

2.5.6.1 Generating the function index The function index is generated using the
&Generate_index function.
#63 (wO-f-latex: generate the function index) =

413 &Generate_index("func", \%Func_index);
(This code is used in #62 (p.38).)

This function is used to produce both the function and variable indices. It has two
parameters:

1. “func” when generating the function index, or “var” or “class”, and
2. areference to the index information in a hash table.

#61, (wO-f-latex: utility functions #61(p.38)) +=
414 sub Generate_index {
475 my ($cmd, $index) = @_;
476 local $_;

38



477
478
479
480
481
482
483
484
485
486

}

my (@lines, $1x, $initial, $last_initial);

print $Output "\\def\\wz", $cmd,
"index\{\\begin{wzindex}{\\wz", $cmd, "indexname}{2}\n";
foreach (sort indexwise keys %{$index}) {
(wO-f-latex: produce an initial (if required) #68(p.40))
(wO-f-latex: generate an index entry #64(p.39))

print $Output "\\end{wzindex}\}\n";

(This code is extended in #61j (p.39).)

The sorting is not quite straightforward. If the index entry does not start with a letter,? we
will ignore the initial character when sorting.

#61,
487
488
489
490
491
492

(wO-f-latex: utility functions #61(p.38)) +=
sub indexwise {

}

my $ax = $a=~/A\w/ ? $a : substr($a,1l)." $1";
my $bx = $b=~/A\w/ ? $b : substr($b,1)." $1";
local ($a, $b) = (uc($ax), uc($bx));

return &alphabetically;

(This code is extended in #61,(p.40).)

Each index entry starts wih a call on \wzx.

#64
493
494
495

(wO-f-latex: generate an index entry) =
print $Output "\\wzx{", &Latexify($_), "}";
(wO-f-latex: format and print index line numbers #65(p.39))
print $Output "\\par\n";

(This code is used in #61,(p.38).)

The index entry consists of a sequence of line numbers. These must be sorted,!’ and
duplicates must be removed. The sorted sequence is saved in @lines.

#65
496
497
498
499

(wO-f-latex: format and print index line numbers) =
@lines = ();
foreach $1x (sort { $a <=> $b } split(" ",$index->{$_})) {

push @lines, $1x unless @lines && $lines[$#lines] == $1x;

(This code is extended in #65, (p.39). It is used in #64 (p.39).)

Then we can print all the line numbers, but we must first check whether they form a
consecutive sub-sequence.

#65,
500
501
502
503
504

#66
505
506
507
508
509
510
511

(wO-f-latex: format and print index line numbers #65(.39)) +=
while (@lines) { $1x = shift @lines;

}

(wO-f-latex: check for range of line numbers #66(p.39)
(wO-f-latex: print index line number #67 (p.40))
print $Output "\\wzindexsep\n" if @lines;

If there are at least three consecutive line numbers, they are replaced by a sequence.

(wO-f-latex: check for range of line numbers) =
if (@lines>=2 && $1ines[0]==$1x+10 && $1lines[1]==$1x+20) {

(wO-f-latex: print index line number #67 (p.40))

$1x = shift(@lines) while @lines && $1lines[0]==$1x+10;
print $Output "--";

(wO-f-latex: print index line number #67 (p.40))

print $Output "\\wzindexsep\n" if @lines;

next;

9This quaint sorting rule was invented to handle Perl variable and functions properly; these start with a
special character like “$”, “@”, “%”, or “&”.

10The reason the line numbers must be sorted, is that we want to list defining occurrences before usage on
the same line.

39



512 F
(This code is used in #65, (p.39).)

When printing a line number, a final 0 must be replaced by a call on \wzul; a final 1 is
just removed.
#67 (wO-f-latex: print index line number) =
513 print $Output $1x%10 ? ("".int($1x/10)) : ("\\wzul{".int($1x/10)."}");
(This code is used in #65, (p.39) and #66 (p.39).)

Whenever the first letter in the index changes, an initial should be printed to mark this.

#68 (wO-f-latex: produce an initial (if required)) =
54 $initial = /A[a-z]/1i ? uc(substr($_,0,1)) : uc(substr($_,1,1));
515, print $Output "\\wzinitial{", &Latexify($initial), "}\n"
516 if $initial && $initial ne $last_initial;
517 $last_initial = $initial;
(This code is used in #61,(p.38).)

2.5.6.2 Generating the variable index The &Generate_index function can handle
the variable index, too.
#69 (wO0-f-latex: generate the variable index) =

518 &Generate_index("var", \%Var_index);
(This code is used in #62 (p.38).)

2.5.6.3 Generating the class index The &Generate_index function can even handle
the class index.
#70 (wO-f-latex: generate the class index) =

519 &Generate_index("class", \%Class_index);
(This code is used in #62 (p.38).)

2.5.6.4 Generating the macro index The macro index can be created by just looking
at the contents of %¥Macro_id.

#71 (wO-f-latex: generate the macro index) =
s20 print $O0utput "\\def\\wzmacroindex{\\begin{wzindex}",

521 "{\\wzmacroindexname}{1}\n";

s22 foreach (sort alphabetically keys %Macro_id) {

523 print $Output "\\wzx{\\wzmacro{", &Latexify($_), "~~\\upshape\\#",
524 "$Macro_id{$_}}}\\wzlongpageref{$Macro_id{$_}}",

525 ($Macro_use[$Macro_id{$_3}] ? "" : "\\rlap{~*}"),

526 "\\par\n";

527
s2 print $Output "\\smallskip\\raggedright\\wzmacroindexstartext\\par
520 \\end{wzindex}}\n";

(This code is used in #62 (p.38).)

2.5.7 Utility functions

2.5.7.1 The function &Warning gives the user a warning and increases the error count
$N_errors.

#61, (wO-f-latex: utility functions #61(p38) +=
530 sub Warning {
531 &Message(@_); ++$N_errors;
532

The error count must be initialized.

#47,, (wO-f-latex: initialization #47(p.31)) +=
533 my $N_errors = 0;

40



#72
534
535
536
537
538
539
540
541

#73

542

#73,

543

2.6 Language filters

This Section contains the various optional language filters that have been written so far.
These filters all read tokens from standard input and write tokens to standard output.
They should never generate any error messages.

In addition to the tokens received from the preprocessor (see Section 2.3 on page 19) the
filters may generate the following new tokens which are used when creating the function
and variable indices:

cdef specifies that a class is being defined.
cuse shows that the class has been used.

fdef specifies that a function has been defined.
fuse shows that the function has been used.
vdef tells of the declaration of a variable.

vuse notes the use of a variable.

(These tokens all contain a name; that name is always surrounded by a “:” and a “;”.)
Also, the following tokens may be generated:

bcode is a variant of code when the code should be set in boldface.
bicode is another variant to be used when bold italic code is desired.

icode is yet another variant to be used when the code is to be set in italics.

2.6.1 The C language filter w0-1-c

This filter is used to analyze C programs. It is not very advanced, so it is easily confused
by obscure C code and things like multi-line comments.
The filter is written in Perl.

(wO-1-¢) =
#1 (perl #105(p.59)

(wO0-1-c definitions #73(p.41)

(wO-1-c parameter handling #14(p.42))
(w0-1-c read C code #15(p.42))

exit O;

(user message functions #112(p.57)
(This code is not used.)

2.6.1.1 Definitions Even the language filters should be able to identify themselves
with their name and version number.

(wO-1-c definitions) =
my ($Prog, $Version) = ("wO-1-c", "(version #107(p50)");
(This code is extended in #73, (p.41). It is used in #72 (p.41).)

The syntax for C identifiers is used several times so it is an advantage to name it.

(wO-1-c definitions #13(p.41)) +=
my $C_id = "[A-Za-z_]\\w+";
(This code is extended in #73, (p.42).)

The same goes for an identifier list.

41



#73,, (wO0-l-c definitions #73(p41)) +=
sae my $C_id_list = "$C_id(([+*, ]=$C_id)*)";
(This code is extended in #73,(p.42).)

We need a table %¥Res_words with all the reserved words in C.

#73,. (wO0-l-c definitions #13(p.41)) +=
545 My %Res_words = ();
546 my %Special_words = ();

s¢7 for ("auto", "break", "case", "const", "continue", "default", "do",
548 "else", "enum", "extern", "for", "goto", "if", "register",

549 "return", "sizeof", "static", "struct", "switch", "typedef",
550 "union", "volatile", "while")

551 { $Res_words{$_} = $Special_words{$_} = 1; }
(This code is extended in #734 (p.42).)

We also need a table %Type_words with all the predefined type words in C.

#734 (wO-l-c definitions #713(p41)) +=
s52. my %Type_words = ();
553 for ("char", "double", "float", "int", "long", "short",
554 "unsigned", "void")
555 { $Type_words{$_} = $Special_words{$_} = 1; }
(This code is extended in #73, (p.42).)

A table %Both_words contains a union of the two.

2.6.1.2 Parameter handling This loop will look at all the parameters; however, only
-e and -v have any effect.

#74 (wO0-l-c parameter handling) =

556 PARAM:

557 while (@ARGV && $ARGV[0] =~ /A-/) { $_ = shift;

558 /7-e$/ and do { $Enhance = "yes"; next PARAM; };

559 /7A-v$/ and do {

560 print STDERR "This is $Prog (version $Version)\n";
561 next PARAM; };

562

(This code is used in #72 (p.41).)

Variable $Enhance must be declared.

#73. (wO0-l-c definitions #73(p41)) +=
ses my $Enhance = 0;

2.6.1.3 Reading the C code Now it’s time to read the C code. All tokens read will be
printed, but only the code ones require further handling.

#75 (wO0-l-c read C code) =

sea my $1line = ;
s6s while (<>) {

566 unless (/Acode:(.*);$/) { print; next; };

567 chomp($1line = $1);

568 $_ = $line; (wO-I-c check C code for functions and variables #16(p.43))
569 if ($Enhance) {

570 $_ = $1line; (wO-I-cenhance C code #19(p.44))

571 } else {

572 print "code:$line;\n";

573

574}

(This code is used in #72 (p.41).)

42



2.6.1.4 Looking for functions and variables There may be several functions and
variables on each line.

#76 (wO0-I-c check C code for functions and variables) =
55 while ($_) {

576 (wO-1-c check for names #77(p.43))

577}
(This code is used in #75 (p.42).)

Before we can look for names, we must remove preprocessor commands and comments:

#77 (wO0-1-c check for names) =
s redo if s|A#.+$]|]|;
59 redo if s|A\s#/\*.*\*/]|];
(This code is extended in #77, (p.43). It is used in #76 (p.43).)

We should also remove string and character literals:

#77, (wO0-I-c check for names #17(p43)) +=
ss0 redo if s:A\s+="(\\"|[A"])*"::;
ss1. redo if s:A\s+*’(\\'|[A’])7::;
(This code is extended in #77, (p.43).)

Now we can check if we have an alphabetic name:

#77, (wO0-I-c check for names #171(p43)) +=
ss2 1F (s|A\s*($C_id)||o) {

583 my $id = $1;
584 (wO0-1-c check alphabetic name #78 (p.43))
585

(This code is extended in #77,(p.44).)

Reserved words are ignored:

#78 (wO0-1-c check alphabetic name) =
ss6 redo if $Res_words{$id};
(This code is extended in #78, (p.43). It is used in #77, (p.43).)

We may have a function call:

#78, (w_O-l-c check alphabetic name #18(p.43)) +=
ss7 Af (s|A\s*\(|]) {

588 print "fuse:$id;\n" unless $Special_words{$id};
589 redo;
50

(This code is extended in #78,, (p.43).)

Or, we may have a function definition:

#78, (wO0-I-c check alphabetic name #78(p.43)) +=
so1 1f (s|A\s*[* ]*($C_id)\s=*\(]|o0) {

592 print "fdef:$1;\n" unless $Special_words{$1};
593 redo;
504}

(This code is extended in #78,(p.43).)

Alternatively, we may have a variable declaration list:

#78, (wO0-I-c check alphabetic name #18(p.43)) +=
595 1f (s|A\s*[* ]*($C_id_list)||o) {

596 local $_;

597 foreach (split(/[«, 1+/, $1)) {

598 print "vdef:$_;\n" unless $Special_words{$_};
599

600 redo;

601 F

(This code is extended in #78; (p.44).)

If nothing else, our alphabetic name is a variable:

43



#784 (wO-l-c check alphabetic name #18(p.43)) +=
62 print "vuse:$id;\n" unless $Special_words{$id};
603 Tredo;

Non-alphabetic names are ignored:

#77, (w0-I-c check for names #17(p43)) +=
604 S:A\s*[AA-Za-z_"’/]+:: or s:A\s*.?::;

2.6.1.5 Enhance the C code This filter enhances the C code in the following way:
* Preprocessor directives (i.e., lines starting with a “#”) are set in bold italic type.
* Comments are set in italics.
* Reserved words are set in bold type.

First, we look for the preprocessor lines:
#79 (wO0-1-c enhance C code) =
eos /M/ and do { print "bicode:$_;\n"; next; };
(This code is extended in #79, (p.44). It is used in #75 (p.42).)

For the other lines, we can look for any special words.

#79, (wO0-l-c enhance C code #19(p.44)) +=
eos while ($_) {
607 (w0-1-c look for special words #80(p.44)

608 }

However, first we check for comments:

#80 (w_O-l-c look for special words) =
eoo 1f (s] ’_\\S"‘/\"‘ \E/ ) o
610 print "icode:$&;\n"; redo;
611
(This code is extended in #80, (p.44). It is used in #79, (p.44).)

On the other hand, string and character literals are just ordinary code:

#80, (wO0-I-c look for special words #80(p.44)) +=
o A (3:A\s"(\\"I[A"])#":11)

613 print "code:$&;\n"; redo;
614 F

615 1F (s:M\s+="(\\"[[~"])7::) {

616 print "code:$&;\n"; redo;

617
(This code is extended in #80,, (p.44).)

Now, we can look for reserved words:

#80y, (wO0-I-c look for special words #80(p.44)) +=
e1s if (s[A(\s*)($C_id)||o) {

=

619 if ($Res_words{$2}) {

620 print "code:$1;\n" if $1;
621 print "bcode:$2;\n";

622 } else {

623 print "code:$&;\n";

624 }

625 redo;

626 F

(This code is extended in #80, (p.44).)

Anything else is just ordinary code:

#80, (wO0-I-c look for special words #30(p.4s)) +=
627 S:A\s*[AA-Za-z_"’/]+:: or s:A\s*.?::;
62s print "code:$&;\n" if $&;

44



2.6.2 The Java language filter w0-1-java

This filter is rather similar to the C one; the major difference is the handling of classes.
The filter is written in Perl.

#81 (wO0-l-java) =
620 #! (perl #105(p.50)
630
631 (w0-I-java definitions #82(p.45))
632 (w0-I-java parameter handling #83(p.46))
633 (wO0-I-java read Java code #84(p.46))
e3¢ exit O;
635
636 (user message functions #112(p.57)
(This code is not used.)

2.6.2.1 Definitions Even the language filters should be able to identify themselves
with their name and version number.
#82 (w0-I-java definitions) =
637 my ($Prog, $Version) = ("wO-1-java", "(version #107(p50)");
(This code is extended in #82, (p.45). It is used in #81 (p.45).)

The syntax for Java class names and other identifiers is used several times so it is an
advantage to name it.

#82, (wO0-l-java definitions #82(p.45) +=
e3s my $Java_class_id = "[A-Z]([a-z_0-9]\\w=)?";
639 my $Java_other_id = "[a-zA-Z]\\w=";
(This code is extended in #82,, (p.45).)

The same goes for an identifier list.

#82;, (wO0-l-java definitions #82(p.45)) +=
es0 my $Java_id_list = "$Java_other_id(\\s+*,\\s*$Java_other_id)=+";
(This code is extended in #82,(p.45).)

We need a table %¥Res_words with all the reserved words of Java.

#82, (w0-I-java definitions #82(p.45) +=
sa1 my %Res_words = ();
ei2 my %Special_words = ();

643 Ffor ("abstract", "assert", "break", "case", "catch", "class", "const",

644 "continue", "default", "do", "else", "extends", '"false", "final",

645 "finally", "for", "goto", "if", "implements", "import", "instanceof",
646 "interface", "native", "new", "package", "private", "protected",

647 "public", "return", "static", "strictfp", "super", "switch",

648 "synchronized", "this", "throw", "throws", "transient", "true",

649 "try", "volatile", "while")

650 { $Res_words{$_} = $Special_words{$_} = 1; }
(This code is extended in #824 (p.45).)

We also need a list %Type_words with all the type names:

#8243 (w0-l-java definitions #82(p.45) +=
651 my %Type_words = ();
es2 for ("boolean", "byte", "char", "double", "float", "int",
653 "long", "short", "void")
654 { $Type_words{$_} = $Special_words{$_} = 1; }
(This code is extended in #82,(p.46).)

Incidentally, having a table %Special_words which is the union of the last two, seems a
good idea.

45



2.6.2.2 Parameter handling This loop will look at all the parameters; however, only
-e and -v have any effect.

#83 (wO0-l-java parameter handling) =

655 PARAM:

656 while (G@ARGV && $ARGV[O0] =~ /A-/) { $_ = shift;

657 /7-e$/ and do { $Enhance = "yes"; next PARAM; };

658 /7A-v$/ and do {

659 print STDERR "This is $Prog (version $Version)\n";
660 next PARAM; };

661 F

(This code is used in #81 (p.45).)

Variable $Enhance must be declared.

#82, (w0-I-java definitions #82(p.45) +=
62 my $Enhance = 0;

2.6.2.3 Reading the Java code Now it’s time to read the Java code. All tokens read
will be printed, but only the code ones require further handling.

#84 (wO0-l-java read Java code) =

663 My $line = H
664 while (<>) {

665 unless (/Acode:(.*);$/) { print; next; };

666 chomp($1line = $1);

667 $_ = $line; (wO0-l-java check Java code for names #85(p.46))
668 if ($Enhance) {

669 $_ = $line; (wO0-I-java enhance Java code #89 (p.48))
670 } else {

671 print "code:$line;\n";

672

673}

(This code is used in #81 (p.45).)

2.6.24 Looking for methods and variables There may be several methods and
variables on each line.

#85 (wO0-I-java check Java code for names) =
67« while ($_) {
675 (wO-1-java check for names #86(p.46))
676
(This code is used in #84 (p.46).)

Before we can look for names, we must remove any comments:

#86 (wO0-I-java check for names) =
677 redo if s|A\s*//.*||;
e1s redo if s|A\s*/\*.%\*/|];
(This code is extended in #86, (p.46). It is used in #85 (p.46).)

We should also remove string and character literals:

#86, (wO0-I-java check for names #86(p.46)) +=
679 redo if s:A\s="(\\"|[A"])*"::;
es0 redo if s:A\s+*’(\\'|[A’])7::;

(This code is extended in #86;, (p.46).)

Nor are we interested in package and import specifications:

#86y, (wO0-l-java check for names #86(p.46)) +=
es1 redo if s|A\s#package\s+[~*;]*;]]|
es2 redo if s|A\s+ximport\s+[A;]=*;]|];
(This code is extended in #86, (p.47).)

46



#86,

#864

#87

#87,

#87,,

#88

#87,

683

Class declarations are easiest to find:

(wO-1-java check for names #86(p.46)) +=
if (s|A\s*class\s+($Java_class_id)\b]|]|o) {

684 print "cdef:$1;\n";

685
686

687
688
689
690

691

692
693
694
695
696
697
698
699

700
701
702
703
704
705
706

707
708
709
710
711
712
713
714
715
716
717

718

redo;

}
(This code is extended in #864 (p.47).)

Then we can check if we have an alphabetic name:

(wO-1-java check for names #86(p.46)) +=
if (s|A\s*($Java_other_id)||o) {
my $id = $1;
(wO-1-java check alphabetic name #87(p.47)

(This code is extended in #86, (p.48).)

Reserved words are ignored (as we have already handled class):

(w0-1-java check alphabetic name) =
redo if $Res_words{$id};
(This code is extended in #87, (p.47). It is used in #864(p.47).)

We may have a constructor definition or a method call:

(w0-1-java check alphabetic name #87(p47) +=
if (s|AM\s*\(|]) {
if ($id =~ /A$Java_class_id$/0) {
print "cuse:$id;\n";
} else {
print "fuse:$id;\n" unless $Special_words{$id};
}

redo;

¥
(This code is extended in #87, (p.47).)

Or, we may have a method definition:

(w0-1-java check alphabetic name #87p47) +=
if (s|A\s*($Java_other_id)\s=\(]||o) {
my $f = $1;
print "cuse:$id;\n" if $id =~ /A$Java_class_id$/o;
print "fdef:$f;\n" unless $Special_words{$f};
(wO-1-java check formal parameter list #88(p.47)
redo;
¥
(This code is extended in #87,(p.47).)

Checking the formal parameter list is pretty straightforward:

(wO-1-java check formal parameter list) =
if (s|M\s*[A)]=\)]]) {
local $_;
foreach (split(/,/, $&)) {
if (/($Java_other_id)\s+($Java_other_id)/o) {

my $type = $1;
my $id = $2;
print "cuse:$type;\n" if $type =~ /A$Java_class_id$/o;
print "vdef:$id;\n";

¥
¥
(This code is used in #87, (p.47).)

Alternatively, the first identifier may have a variable declaration list:

(w0-1-java check alphabetic name #87p47) +=

if (($Type_words{$id}||$id=~/A$Java_class_id$/o0) &&

47



719 s|A\s*($Java_id_list)||o) {

720 my $id_list = $1;

721 print "cuse:$id;\n" if $id =~ /A$Java_class_id$/o;
722 local $_;

723 foreach (split(/[, 1+/, $id_list)) {

724 print "vdef:$_;\n" unless $Special_words{$_};
725 }

726 redo;

727 }

(This code is extended in #87; (p.48).)

If nothing else, our alphabetic name is a variable or a class:

#87q (wO-l-java check alphabetic name #87p47) +=
728 1if ($id =~ /A$Java_class_id$/0) {

729 print "cuse:$id;\n";

730 } else {

731 print "vuse:$id;\n" unless $Special_words{$id};
732}

733 redo;

Non-alphabetic names are ignored:

#86, (w0-I-java check for names #86(p.46)) +=
713¢ S:A\S*[AA-Za-z_"’/]+:: or S:A\s%.?::;

2.6.2.5 Enhance the Java code This filter enhances the Java code in the following
way:

* Class names are set in bold italic type.
* Comments are set in italics.
* Reserved words are set in bold type.

For each line, we can look for any special words or symbols.

#89 (wO0-I-java enhance Java code) =
735 while ($_) {
736 (w0-1-java look for special words or symbols #90 (p.48))
737

(This code is used in #84 (p.46).)

However, first we check for comments:

#90 (wO0-I-java look for special words or symbols) =
s 1f (s|M\sx//.«$|]) {

739 print "icode:$&;\n"; redo;
740 } elsif (s|A\s*/\*.*\=*/]]) {

741 print "icode:$&;\n"; redo;
742}

(This code is extended in #90, (p.48). It is used in #89 (p.48).)

On the other hand, string and character literals are just ordinary code:

#90, (wO0-I-java look for special words or symbols #90(p48)) +=

13 A (s:M\s+"(\\"|[A"])*"::) {

744 print "code:$&;\n"; redo;
745}

ue 1f (s:M\sx=’ A\’ [[~])’::) {
747 print "code:$&;\n"; redo;
748}

(This code is extended in #90,, (p.49).)

Now, we can look for reserved words:

48



#90,,
749
750
751
752
753
754
755
756
757
758
759
760
761
762

™

#90,
763
764

#91
765
766
767
768
769
770
771
772

#92

773

#92,

774

#92,

775

(w0-1-java look for special words or symbols #90(p.48)) +=
if (s|A(\s*)($Java_other_id)||o) {
my ($space, $id) = ($1, $2);

if ($id =~ /A$Java_class_id$/o0) {
print "code:$space;\n" if $space;
print "bicode:$id;\n";

} elsif ($Res_words{$id}) {
print "code:$space;\n" if $space;
print "bcode:$id;\n";

} else {
print "code:$space$id;\n";

}

redo;

}
(This code is extended in #90, (p.49).)

Anything else is just ordinary code:

(w0-1-java look for special words or symbols #90(p.48)) +=
S:M\s*[AA-Za-z_""/]+:: or S:A\S*.?::;
print "code:$&;\n" if $&;

2.6.3 The IATEX language filter w0-1-latex

This filter is used to analyze IATEX code. It will put new commands in boldface and
comments in italics; it will also collect information on which commands are used.
The filter is written in Perl.

(wO-l-latex) =
#1 (perl #105(p.549)

(wO0-1-latex definitions #92(p.49))
(wO0-1-latex parameter handling #93 (p.50))
(wO-1-latex read LaTeX code #94(p.50)
exit O;

(user message functions #112(p.57)
(This code is not used.)

2.6.3.1 Definitions Even the language filters should be able to identify themselves
with their name and version number.

(wO-1-latex definitions) =
my ($Prog, $Version) = ("wO-1-latex", "(version #107p50)");
(This code is extended in #92, (p.49). It is used in #91 (p.49).)

The syntax for [#TgX identifiers is use more than once so it is an advantage to name it.

(w0-I-latex definitions #92(p.49)) +=
my $LaTeX_id = "\\\\([A-Za-z@]+]|.)";
(This code is extended in #92, (p.49).)

Normally, the text is not enhanced (i.e., not printed in boldface or italics).

(wO0-I-latex definitions #92(p.49)) +=
my ($Bcode, $Icode) = ("code", "code");
(This code is extended in #92, (p.50).)

49



2.6.3.2 Parameter handling This loop will handle all the parameters; however, only
-e and -v have any effect.

#93 (wO0-I-latex parameter handling) =

776 PARAM:

777 while (@ARGV && $ARGV[O0] =~ /A-/) { $_ = shift;

778 /7-e$/ and do { $Bcode = "bcode"; $Icode = "icode";
779 next PARAM; };

780 /7A-v$/ and do {

781 print STDERR "This is $Prog (version $Version)\n";
782 next PARAM; };

783}

(This code is used in #91 (p.49).)

Variables $Bcode and $Icode will record use of the —e option.

#92, (w0-I-latex definitions #92(p.49) +=
7 my ($Bcode, $Icode) = (0, 0);

2.6.3.3 Reading the IATEX code Now it’s time to read the I#TEX code. All tokens read
will be printed, but only the code requires further handling.

#94 (wO0-l-latex read LaTeX code) =
s5 while (<>) {

786 unless (/Acode:(.*);$/) { print; next; };
787 chomp($_ = $1);

788 (w0-1-latex check LaTeX code #95(p.50))

789}

(This code is used in #91 (p.49).)

Is there any IATEX code that requires attention?

#95 (wO0-I-latex check LaTeX code) =
o while (/[%\\1/) {

791 print "code:$‘;\n" if $°;

792 $_ = $&.%’;

793 (wO-1-latex check for comments #96(p.50))
794 (wO-1-latex check for declarations #97(p.50))
795 (wO-1-latex check for use #98(p.51))

796 }

797 print "code:$_;\n" if $_;
(This code is used in #94 (p.50).)

2.6.3.4 Look for comments A “%” indicates a comment. This extends to the end of the
line.
#96 (wO0-I-latex check for comments) =
¢ /A%/ and do { print "$Icode:$_;\n"; $_ =""; last; };
(This code is used in #95 (p.50).)

2.6.3.5 Look for declarations New I4TEX commands are declared using \newcommand,
\renewcommand, or \def.

#97 (wO0-l-latex check for declarations) =
799 S/A(\\(re)?newcommand\s+\*?\s*\{)(.+?)(\})// and do {

©

800 print "code:$1;\n$Bcode:$3;\ncode:$4;\n";
801 print "fdef:$3;\n";

802 next; };

so3 S/A(\\def\s+*)($LaTeX_id)//o and do {

804 print "code:$1;\n$Bcode:$2;\n";

805 print "fdef:$2;\n"; next; };

(This code is extended in #97, (p.51). It is used in #95 (p.50).)

50



New environments are declared using \newenvironment or \renewenvironment.

#97, (wO0-l-latex check for declarations #97(p50) +=
sos S/A(\\(re)?newenvironment\s+\{)(.+?)(\})// and do {
807 print "code:$1;\n$Bcode:$3;\ncode:$4;\n";
808 print "vdef:$3;\n"; next; };

2.6.3.6 Look for use If the “\” does not start a command definition, it must indicate
usage. First we check to see if it starts or terminates an environment.

#98 (wO0-I-latex check for use) =
sos  S/M\\begin\s*\{(.+?)\}// and do {
810 print "code:$&;\n";
811 print "vuse:$1;\n"; next; };
(This code is extended in #98, (p.51). It is used in #95 (p.50).)

The corresponding \end is ignored.

#98, (wO0-I-latex check for use #98(p51) + =

siz s/M\\end\s*\{(.+?)\}// and do {
813 print "code:$&;\n"; next; };
(This code is extended in #98, (p.51).)

Then we look for use of ordinary IATEX commands.

#98;, (wO0-l-latex check for use #98(p51) +=
sia s/A$LaTeX_id//o and do {
815 print "code:$&;\n";
816 print "fuse:$&;\n"; next; };
(This code is extended in #98,(p.51).)

If the “\” does not start a legal I4TEX command, we will not speculate about why this is so,
but just print it as a normal character.

#98. (wO0-l-latex check for use #98(p51) +=
s17 print "code:\\;\n"; s/A.//; next;

2.6.4 The Perl language filter w0-1-perl

This part of the code contains the optional Perl filter whose job it is to find the varibales
and functions used in the program. It can also enhance the printing of the code by using a
bold or italic font for some of the text.

This filter is not without fault. For instance, in the statement

print "Program $Prog [-v] file...\n";

the filter will assume that the array @Prog is referenced. Getting this correct, however, is
too difficult to be worth the bother.
The Perl filter is, of course, written in Perl.

#99 (wO0-l-perl) =
sis #! (perl #105p.59)
819
s20 (wO-I-perl definitions #100(p.52))
s21  (wO0-I-perl parameter handling #101(p.52)
822 (wO-I-perl read Perl code #102(p.52))
s23 exit O;
824
s25  (user message functions #112(p.57)
(This code is not used.)

51



2.6.4.1 Definitions Even the language filters should be able to identify themselves
with their name and version number.

#100 (w0-I-perl definitions) =
s26 my ($Prog, $Version) = ("wO-l-perl"”, "(version #107p50)");
(This code is extended in #100, (p.52). It is used in #99 (p.51).)

The syntax for Perl identifiers is used so often that it should be given a name.

#100, (wO-I-perl definitions #100(p52)) +=
s27 my $Perl_id = "[A-Za-z]\\w=";
(This code is extended in #100y (p.52).)

2.6.4.2 Parameter handling This loop will handle all the parameters; however, only
-e and -v have any effect.

#101 (w0-I-perl parameter handling) =

s2s PARAM:

s20 while (@ARGV && $ARGV[O] =~ /A-/) { $_ = shift;

830 /7-e$/ and do { $Enhance = "yes"; next PARAM; };

831 /7A-v$/ and do {

832 print STDERR "This is $Prog (version $Version)\n";
833 next PARAM; };

834 F

(This code is used in #99 (p.51).)

The state variables must be declared.

#100,, (wO-I-perl definitions #100(p52) +=
s35s my $Enhance = 0;
(This code is extended in #100,(p.53).)

2.6.4.3 Reading the Perl code Now it’s time to read the Perl code. All tokens read will
be printed, but only the code tokens will require further handling.
#102 (w0-l-perl read Perl code) =

83 My $line;
ss7 while (<>) {

838 unless (/Acode:(.*);$/) { print; next; };

839 chomp($1line = $1);

840 $_ = $line; (wO-I-perl check Perl code for functions and variables #103(p.52))
841 if ($Enhance) {

842 $_ = $line; (wO-l-perlenhance Perl code #104(p.53))

843 } else {

844 print "code:$line;\n";

845 }

846 F

(This code is used in #99 (p.51).)

2.6.4.4 Check for functions First, check for function definition and use. Perl functions
are defined using the reserved word sub and used by being prefixed with a &.1!

#1038 (w0-I-perl check Perl code for functions and variables) =
se7 while (s/\bsub\s+($Perl_id)//o) { print "fdef:&$1;\n"; }
sss While (s/&($Perl_id)//o) { print "fuse:&$1;\n"; }
(This code is extended in #103, (p.53). It is used in #102 (p.52).)

HMore lax notation is permitted in Perl, but checking for that becomes too difficult by far.

52



2.6.4.5 Check for variables Now, we can look for the variables. Since there is no
explicit declaration of variables in Perl, only occurrence will be monitored.
First we can check for array variables which can occur in two forms:

@var or $var[...]

The default variable @_ is used so often that there is no need to record that.

#1038, (w0-l-perl check Perl code for functions and variables #103(p.52) + =
se9 while (s/\@($Perl_id)//o) { print "vuse:\@$1;\n" unless $1 eq "_"; }
sso while (s/\$($Perl_id)\s*\[//0) { print "vuse:\@$1;\n" unless $1 eq "_"; }
(This code is extended in #103;, (p.53).)

Then we can look for hash variables which also occur in two variant forms:

%var or $var{...}

#103,, (wO-I-perl check Perl code for functions and variables #103(p52) +=
ss1 while (s/%($Perl_id)//o) { print "vuse:%$1;\n"; }
ss2 while (s/\$($Perl_id)\s*\{//0) { print "vuse:%$1;\n"; }
(This code is extended in #103,(p.53).)

And finally we can search for ordinary variables. The default variable $_ is so commonly
used that indexing it will provide little information; consequently, it is ignored.

#103, (wO0-l-perl check Perl code for functions and variables #103(p.52) +=
g3 while (s/\$($Perl_id)//o) { print "vuse:\$$1;\n" unless $1 eq "_"; }

2.6.4.6 Enhance the Perl code This filter enhances the Perl code in the following
naive way:

* All line comments (i.e., lines starting with a “#”) are set in italic type.

* Reserved words are set in bold type. (This is done even if they occur in text strings or
comments.)

First, we look for the all comment lines:

#104 (w0-I-perl enhance Perl code) =
ssa /M\s*#/ and do { print "icode:$_;\n"; next; };
(This code is extended in #104, (p.53). It is used in #102 (p.52).)

For the other lines, we can look for any reserved words.

#104, (wO-l-perl enhance Perl code #104(p53) +=
ss55 while (/\b($Res_Perl)\b/o) {

856 print "code:$‘;\n" if $°;
857 print "bcode:$&;\n";

858 $_ = $’;

859 }

sso print "code:$_;\n" if $_;
The search pattern $Res_Perl is composed from all the reserved words in Perl.
#100, (wO-l-perl definitions #100(p.52)) +=

ss1 my @Res_word = ("and", "continue", "die", "do", "dump", "else",
862 "elsif", "eval", "exec", "exit", "for", "foreach", "fork",
863 "if", "kill", "last", "next", "or", "return", "sub",

864 "unless", "until", "wait", "while");

ses my $Res_Perl = join("|", @Res_word);

120ne might argue what is a reserved word in Perl; is print? or and? or join? I have chosen to include
only those words that have a syntactical purpose, or that directly influence the order of execution.

53



2.7 Miscellaneous
2.7.1 The Perl interpreter

The macro named (perl) defines the location of the Perl interpreter. This definition may be
modified if necessary.
#105 (perl) =
sss /usr/bin/perl (perl utf-8 specification #106(p.54))

(This code is extended in #105,(p.54). It is used in #1(p.12), #8(p.15), #18 (p.19), #32(p.25), #46 (p.31),
#72(p.41), #81 (p.45), #91 (p.49), and #99 (p.51).)

The option —CSD specifies use of UTF-8 character encoding as default.

#106 (perl utf-8 specification) =
se7  —CSD
(This code is used in #105 (p.54).)

Using the strict option reduces the number of errors.

#105, (perl #105(p50) +=
ges use strict;

2.7.2 Program version

For compatibility reasons, all subprograms are assigned the same program version.

#107 (version) =
se9 2.0.4
(This code is used in #2(p.12), #9 (p.15), #19 (p.22), #33 (p.26), #47 (p.31), #73 (p.41), #82(p.45), #92 (p.49),
#100 (p.52), #118 (p.58), and #126 (p.66).)

2.8 Adapting text for processing by IATEX

Most text in the LATIN-1 encoding may be processed as it is by IATEX, but some characters
have a particular meaning to IATEX. Also, we must take care of some other special
characters, and we must avoid unwanted ligatures.

The function &Latexify translates a text into IATEX code. It accepts up to three
parameters:

1. the original text,

2. an indication whether the spaces in the text are breakable (by default, they are not,
as this parameter is optional) and

3. an indication that the text may contain embedded IATEX commands (which they
normally won’t, as this parameter is optional).

#108 (latex generation functions) =
so sub Latexify {

871 local $_ = shift;

872 my $break_spaces = shift;

873 my $allow_latex = shift;

874

875 (Latexify: handle embedded LaTeX #109 (p.55))
876 (Latexify: adapt text #110(p.55))

877 return $_;

878}

(This code is used in #46 (p.31).)

When using this function, please note that it assumes that the IATEX package textcomp
has been loaded.

54



2.8.1 Handling embedded IATEX code

The user may be allowed to embed IATEX commands in the text by placing it in a pair of
vertical bars, as in

Pu|\v{z}|ar

#109 (Latexify: handle embedded LaTeX) =
sro 1f ($allow_latex && /\|(C.*?)\|/) {

880 return &Latexify($‘,$break_spaces,$allow_latex) . $1 .
881 &Latexify($’,$break_spaces,$allow_latex);
882}

(This code is used in #108 (p.54).)

2.8.2 Handle “\”, “{”, and “}”

The three characters “\”, “{”, and “}’ are translated as follows:

\ — \textbackslash{}
{- \{
}— \}

Since the characters occur in each other’s definition, they are slightly tricky to translate.
Using a temporary text — chosen so that it is extremely unlikely to occur by accident in
any user text'® — makes this possible.
#110 (Latexify: adapt text) =
ss3 S/\\/\\textbackslash%temporaer bakslask%/g;
ssa - S/\{/\\{/g;

sss S/\}/\\}/g;
sss  S/\\textbackslash%temporaer bakslask%/\\textbackslash{}/g;

(This code is extended in #110, (p.55). It is used in #108 (p.54).)

2.8.3 Handle the other special IATEX characters

The seven other special IATEX characters all have well-known command equivalents.

#110, (Latexify: adapt text #110(p55) +=
ss7 S/\#/\\\#/g;
sss S/\$/\\\$/g;
889  S/\%/\\\%/g;
g0 S/\&/\\\&/g;
so1 S/\_/\\\_/8g;
se2  S/\A/\\textasciicircum{}/g;
ss3  S/\~/\\textasciitilde{}/g;
(This code is extended in #110y (p.56).)

2.8.4 Handle other Iso Latin-1 characters

Some characters from the Iso Latin-1 character set produce math symbols in the inputenc
package. We want the text version, both because they look better and because we want to
avoid changing into math mode. Fortunately, we can find them in the textcomp package.

Math version Text version Math version Text version
- 1 1
-
+ + H n
2 2 X X
3 3 - =

13The text is in Norwegian to be even safer.

55



#110,

894
895
896

#110,

(Latexify: adapt text #110@55) +=
s/-/\\textlnot{}/g; s/x/\\textpm{}/g; s/2/\\texttwosuperior{}/g;
s/2®/\\textthreesuperior{}/g; s/*/\\textonesuperior{}/g;
s/pw/\\textmu{}/g; s/x/\\texttimes{}/g; s/+/\\textdiv{}/g;

(This code is extended in #110, (p.56).)

2.8.5 Avoing unwanted ligatures

Most I#TEX fonts contain some ligatures that we do not want because they are totally
different characters.

Original Ligature Original Ligature
<< « >> »
! & I ? €

l

(Latexify: adapt text #110@p55) +=

so7  S/<</<\\null</g;

sss  s/>>/>\\null>/g;

g9 s/---/-\\null-\\null-/g;

900 S/--/-\\null-/g;

oot s/!'¢/"\\null‘/g; s/\?‘/\?\\null‘/g;

o2 s/°“/*\\null‘/g; s/’’/’\\null’/g; s/,,/,\\null,/g;

#1104

(This code is extended in #1104 (p.56).)
Note that the text ligatures “ff”, “ffi”, “f£1”, “fi”, and “f1” are not translated; they look

all right the way they are.
2.8.6 Handle blanks

Finally, unless specified by the second parameter, we want to keep all blanks in the input.
(Latexify: adapt text #110@p55) +=

93 S/ /~/g unless $break_spaces;

#111

2.9 Expanding TAB characters

If the input contains TAB characters, they must usually be expanded to so many space
characters that the following character’s position is a multiple of 8 (if we start counting
from 0).

The following piece of code assumes that the line is kept in the standard $_ variable.
(The code is “stolen” from Programming Perl[ WCS96, page 66].)

(expand TAB characters) =

904« while (s/\t+/’ ’x(length($&)+*8-length($‘)%8)/e) {};

(This code is used in #23 (p.23).)

2.10 Printing user messages
This section describes two functions that occur in nearly every Perl program:
&Error prints an error message and terminates the program.

&Message just prints a message.

Both functions start the first message line with the program name; this implies that the
variable $Prog must be defined.

56



2.10.1 The function &Error

As mentioned, this function will print an error message (using &Message) and terminate
with status code 1. If something needs to be fixed before exiting, it can be handled by
defining a function named &Tidy_up.

#112 (user message functions) =
905 sub Error {

906 &Message(@_);

907 &Tidy_up if defined &Tidy_up;
908 exit 1;

909

(This code is extended in #112,(p.57). It is used in #1(p.12), #8(p.15), #18(p.19), #32(p.25), #46 (p.31),
#72 (p.41), #81 (p.45), #91 (p.49), and #99 (p.51).)

2.10.2 The function &Message

The function &Message will print the text strings supplied as parameters. They will
automatically be prefixed with the program name (or spaces), and line terminators will

be added.

#112, (user message functions #112(p57) +=
910 sub Message {

911 print STDERR "$Prog: ", shift, "\n";

912 while (@) {

913 print STDERR " "x(2+length $Prog), shift, "\n";
914 }

915

2.11 Alphabetical sorting
Alphabetical is quite simple in Perl, but we need a small modification to handle Perl
variable names like $a or @Names.

#1138 (alphabetical sorting) =
916 sub alphabetically {

et

917 (alphabetical sorting: simple first tests #114(p.57))
918 (alphabetical sorting: test initial character #115@57)
919 (alphabetical sorting: test other characters #116(p.58))

920
(This code is used in #46 (p.31).)

If the two texts are equal, or one is empty, the result is found quickly.

#114 (alphabetical sorting: simple first tests) =
921 return 0 if $a eq $b;
922 return -1 unless $a;
923 return 1 unless $b;
(This code is used in #113 (p.57).)

If neither text is empty, we examine the initial characters for the special Perl notation. If
they are identical, we can ignore them.

#115 (alphabetical sorting: test initial character) =
924 1f ($a=~/A[$@%&]/ && $b=~/A[$@%&]/) {
925 return substr($a,0,1) cmp substr($b,0,1)
926 if substr($a,0,1) ne substr($b,0,1);
927 local($a, $b) = (substr($a,l), substr($b,1));
928 &alphabetically;
920 }

(This code is used in #113(p.57).)

Then we may sort according to the internal representation, which works fine for English.

57



#116

#117

#118

#119

930

931
932
933
934

935
936
937

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

(alphabetical sorting: test other characters) =
return 1c($a) cmp 1lc($b);
(This code is used in #113 (p.57).)

3 IATEX support

This part describes the webzero package and the webzero document class used when
webyp documents are typeset with IATEX.

3.1 The webzero package

This package contains the necessary definitions for including weby documentation into
any I4TEX document.

Names that are part of the user interface start with “wz” and contain no “@”. All internal
names start with “wz@” to avoid confusion with declarations in other packages.

(webzero.sty) =
(webzero.sty identification #118(p.58))
(webzero.sty options #119(p.58))
(webzero.sty package loading #120 (p.60))
(webzero.sty main code #121(p.61))

(This code is not used.)

3.1.1 Package identification

Every IATEX package should contain version information.

(webzero.sty identification) =
\NeedsTeXFormat{LaTeX2e}[1994/12/01]
\ProvidesPackage{webzero}[2020/10/04 v(version #107ps54)

Ifi package for webO documents]

(This code is used in #117 (p.58).)

3.1.2 Package options

The webzero package recognizes these options:

3.1.2.1 The options american and USenglish are used when the document is
written in American English. This is the default.

Note that some command names contain no “@”; these commands provide headings that
may be modified by the user.

(webzero.sty options) =

\DeclareOption{american}{%
\def \wzclassindexname{Classes}%
\def \wzfuncindexname{Functions}%
\def \wzlastsep{, and }%
\def \wzmacroindexname{Macro names}%
\def \wzmacroindexstartext{(Macro names marked with * are not

used internally.)}%

\def \wzsep{, }%

\def \wztwosep{ and }%

\def \wzvarindexname{Variables}%
\def \wz@extendedname{extended in}%
\def \wz@filename{File}%

\def \wz@itisname{It is}%

\def \wz@notusedname{not used}%
\def \wz@pagename{page}%

58



953
954
955
956

\def \wz@shortpagename{p.}%
\def \wz@thiscodename{This code is}%
\def \wz@usedname{used in}}

\DeclareOption{USenglish}{\ExecuteOptions{american}}
(This code is extended in #119, (p.59). It is used in #117 (p.58).)

3.1.2.2 The options english and UKenglish are used when the document is written

in British English. At present, this is equivalent to using option american.

#119,
957
958

(webzero.sty options #119(p.58) + =
\DeclareOption{english}{\ExecuteOptions{american}}
\DeclareOption{UKenglish}{\ExecuteOptions{english}}

(This code is extended in #119; (p.59).)

3.1.2.3 The option normalsize will produce program code in normal type size.!* The

leading is reduced, however.

#119,
959
960

#119,
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

#1194
979
980
981
982
983
984
985
986

(webzero.sty options #119(p58) +=
\DeclareOption{normalsize}{\def \wz@codesize{\small}%

\def \wz@codestretch{0.9}}

(This code is extended in #119,(p.59).)

3.1.2.4 The option norsk is used when the document is written in Norwegian
“Bokmal”.

(webzero.sty options #119 (p.58)) +=
\DeclareOption{norsk}{%

\def \wzclassindexname{Klasser}%

\def \wzfuncindexname{Funksjoner}%

\def \wzlastsep{ og }%

\def \wzmacroindexname{Makronavn}%

\def \wzmacroindexstartext{(Makronavn merket med * er ikke
brukt internt.)}%

\def \wzsep{, }%

\def \wztwosep{ og }%

\def \wzvarindexname{Variable}%

\def \wz@extendedname{utvidet i}%

\def \wz@filename{Fil}%

\def \wz@itisname{Den blir}%

\def \wz@notusedname{ikke brukt}%

\def \wz@pagename{side}%

\def \wz@shortpagename{s.}%

\def \wz@thiscodename{Denne koden blir}%
\def \wz@usedname{brukt i}}

(This code is extended in #1194 (p.59).)

3.1.2.5 The option nynorsk is used when the document is written in Norwegian
“Nynorsk”.

(webzero.sty options #119(p58) +=
\DeclareOption{nynorsk}{\ExecuteOptions{norsk}%

\def \wzfuncindexname{Funksjonar}%

\def \wzmacroindexname{Makronamn}%

\def \wzmacroindexstartext{(Makronamn merkte med * er ikkje
nytta internt.)}%

\def \wz@extendedname{utvida i}%

\def \wz@itisname{Han vert}%

\def \wz@notusedname{ikkje nyttal}%

14 Actually, the code for normalsize is set in \small which looks better with normal size text.

59



987 \def \wz@thiscodename{Denne koden vert}%
988 \def \wz@usedname{nytta i}}
(This code is extended in #119, (p.60).)

3.1.2.6 The option sf will use the standard \sffamily fonts when printing program
code.
#119, (webzero.sty options #119(p.58) +=

989 \DeclareOption{sf}{\def \wz@family{\sffamily}}
(This code is extended in #119;(p.60).)

3.1.2.7 The option small will produce program code in a type size smaller than
normalsize.!® The leading must be adjusted accordingly.
#119¢ (webzero.sty options #119(p.58) + =
990 \DeclareOption{small}{\def \wz@codesize{\footnotesize}%
991 \def \wz@codestretch{0.95}}
(This code is extended in #119,(p.60).)

3.1.2.8 The option tt will use the standard \ttfamily fonts when printing program
code. This is the default.
#119, (webzero.sty options #119(p58) +=

992 \DeclareOption{tt}{\def \wz@family{\ttfamily}}
(This code is extended in #119j, (p.60).)

3.1.2.9 Default options are american,normalsize and tt.

#119,, (webzero.sty options #119(p.58)) +=

993 \ExecuteOptions{american,normalsize,tt}
994 \ProcessOptions \relax

3.1.3 Package loading

The calc and ifthen packages are used in the \wz@alpha macro; see Section 3.1.7.2 on
page 65.

#120 (webzero.sty package loading) =
995 \RequirePackage{calc,ifthen}
(This code is extended in #120, (p.60). It is used in #117 (p.58).)

The relsize package is used when typesetting macro numbers; see Section 3.1.7.3 on
page 65.

#120, (webzero.sty package loading #120p.60)) +=
996 \RequirePackage{relsize}
(This code is extended in #120;, (p.60).)

As mentioned in Section 2.8 on page 54, the textcomp package is required.

#120,, (webzero.sty package loading #120 (p.60)) +=
997 \RequirePackage{textcomp}

3.1.4 Implementation of interface

These command constitute the standard package interface.

15The actual font size for the code will be \footnotesize; for an explanation, see footnote no 14.

60



3.1.4.1 Macro definition is done using the command \wzdef. It takes three
parameters:

1. the name of the macro,
2. its number, and

3. its extension number.

Starting a new macro definition involves the following:
* Add some vertical space.
¢ Select a suitable typeface.

* Modify the paragraph parameters. Note that the baseline distance is given with a
little stretch and shrink. This is necessary to avoid messages about “Underfull
\vbox” when we have pages completely filled with code.'®

[l

¢ Print the macro number and its name, followed by a “=” or a “+ =”. The subsequent
line change is preceded by a \nobreak to avoid widow lines.

The modifications are done inside a local group (\begingroup... \endgroup); this makes
it easier to revert to the original parameters afterwards.

#121 (webzero.sty main code) =
998 \newcommand{\wzdef}[3]1{\par
999 \ifthenelse{\parskip>0}{\vspace{\parskip}}{\medskip}
1000 \begingroup
1001 \renewcommand{\baselinestretch}{\wz@codestretch}%
1002 \wz@codesize\wz@family
1003 \setlength{\parindent}{lem}
1004 \setlength{\parskip}{Opt plus 0.3pt minus 0.1pt}\frenchspacing
1005 \noindent
1006 \1llap{\normalfont\bfseries {\wz@num{#2}{#3}}\hspace*{lem}}%
1007 \ifthenelse{#3=0}{\wzmacro{#1}~$\equiv$}%
1008 {\wzmacro[#2]{#1}~$+\!\equiv$}\label {wO-#2-#3}%
1009 \wzeol[\nobreak]}
(This code is extended in #121, (p.62). It is used in #117 (p.58).)

3.1.4.2 Macro termination is signaled by use of the \wzenddef command. It takes
four parameters:

1. the macro’s number,
2. its extension number,
3. value 1 if the macro has an extension or 0 if it has not, and

4. information on its usage.
The termination involves the following actions:
* Print extension and/or usage information.

* Add some vertical space.

16The standard IATEX 2¢ document classes use a different scheme to avoid such messages: it ensures that
the \textheight is equal to an integral number of \baselineskips. This produces better results for regular
texts like novels, but I prefer the stretch and shrink method for documents with greatly varying font sizes.

61



#121,

(webzero.sty main code #121(p61) +=

110 \newcommand{\wzenddef}[4]1{%

1011

\ifthenelse{#2=0}{(webzero.sty: info on base definition #123(.62))}

1012 {{webzero.sty: info on extended definition #1221.62)}\par

1013

\endgroup

1014 \ifthenelse{\parskip>0}{}{\medskip}

1015 (suppress indentation of subsequent paragraph #124p.62))}

#122

(This code is extended in #121; (p.62).)

The extensions give only information on further extensions (if any).

(webzero.sty: info on extended definition) =

116 \1fthenelse{#3=0}{}
1017 {\wz@info{\wz@extendedname\ \wz@numandpage[#3]1{#1}}}

#123

(This code is used in #121, (p.62).)

We provide both extension and usage information the first time a macro is defined.

(webzero.sty: info on base definition) =

1018 \wz@info{\ifthenelse{#3=0}{}
1019 {\wz@extendedname\ \wz@numandpage[#3]{#1}. \wz@itisname\ }%
1020 \ifthenelse{\equal{#4}{}}{\wz@notusedname}

1021

#121,

{\wz@usedname\ #4}{}}
(This code is used in #121, (p.62).)

The \wz@info command defines the appearance of the information.

(webzero.sty main code #121(p.61)) +=

122 \newcommand{\wz@info}[1]{\hspace*{-\wzext}\\*[0.2ex]

1023

#124

1024

#121,
1025
1026
1027

#1214

1028

#121,

1029

\textsl{\rmfamily\footnotesize (\wz@thiscodename\ #1.)}}
(This code is extended in #121,(p.62).)

We want to suppress any indentation of the paragraph immediately following a macro
definition. The code to do this was found in Section A of the IATEX 2¢ source code.

(suppress indentation of subsequent paragraph) =
\everypar{{\setbox0=\1astbox}\everypar{}}
(This code is used in #121, (p.62).)

3.1.4.3 Code line termination is specified using the \wzeol command. It has an
optional parameter which is inserted just before the new line is started; this parameter is
used to suppress a page break before the first code line; see Section 3.1.4.1 on the preceding

page.

(webzero.sty main code #121(p61) +=
\newcommand{\wzeol}[1][]1{\hspace*{-\wzext}\par #1\leavevmode
\addtocounter{wz@lnum}{1}%
\1llap{\normalfont\tiny \thewz@lnum \hspace={\parindent}}}
(This code is extended in #1214 (p.62).)

The line counter wz@lnum must be declared.

(webzero.sty main code #121(p61)) +=
\newcounter{wz@lnum}
(This code is extended in #121,(p.62).)

The length \wzext specifies how far the code lines may extend into the right-hand margin.
The default is 0 pt.

(webzero.sty main code #121(p.61)) +=
\newlength{\wzext}
(This code is extended in #121¢(p.63).)

62



3.1.4.4 File name notification using the command \wzfile occurs whenever a new
source file is being read. The file name is saved for later inclusion in the page header.

#121; (webzero.sty main code #121(p6D)) +=
1030 \newcommand{\wzfile}[1]{\markright{\wz@filename: \textsl{#1}}}
(This code is extended in #121,(p.63).)

3.1.4.5 Macro names are typeset using the \wzmacro command. This command is
used in macro definitions, but the user may also employ it if he or she wishes.

The command has an optional parameter. If this is a non-zero number, the macro’s
number and page where first defined will be included.

#121, (webzero.sty main code #121(p.61) +=

1031 \newcommand{\wzmacro}[2][0]{$
1032 \langle \mbox{\it #2\ifthenelse{#1=0}{}{~~\smaller[2]\upshape
1033 \wz@numandpage{#1}}\/} \rangle $}

(This code is extended in #121;, (p.63).)

Previously, this command was called \wzmeta, and the old name is kept for campatablity
reasons.

#121, (webzero.sty main code #121(p61D) +=
03¢ \let \wzmeta = \wzmacro
(This code is extended in #121;(p.63).)

3.1.5 Typesetting the index

The wzindex environment is used for typesetting the variable, function, and macro name
indices. It has two parameters:

1. the name of the index (like “Variables”), and
2. the number of columns to use (1 or 2).

#121; (webzero.sty main code #121(p.6D)) +=
1035 \newenvironment{wzindex}[2]%
1036 {\ifnum #2=2 \twocolumn[\section*{#1}]\else \onecolumn \section={#1}\fi
1037 \markboth{\MakeUppercase{#1}}{\MakeUppercase{#1}}

1038 \begingroup
1039 \vspace={4pt}
1040 \setlength{\emergencystretch}{3cm}

1041 \setlength{\parfillskip}{Opt}
1042 \setlength{\parindent}{Opt}%
1043 \setlength{\parskip}{1lpt plus 1pt}
1044 \small \sloppy \hbadness = \tolerance }%
1045 {\onecolumn \endgroup }
(This code is extended in #121;(p.63).)

3.1.5.1 The macro \wzinitial This command is used whenever the index changes
the initial letter. It has one parameter: the initial letter.
#121; (webzero.sty main code #121(p.61)) +=
146 \newcommand{\wzinitial}[1]{\vspace{1l6pt plus 4pt}
1047 {\raggedright \textbf{\large #1}\par}\vspacex{2pt plus 1pt minus 0.5pt}}
(This code is extended in #121; (p.63).)

3.1.5.2 The macro \wzul This macro \wzul is used to typeset an underlined line
number (which signifies that the element was defined on that line).

#121,, (webzero.sty main code #121(p6D)) +=
1048 \newcommand{\wzul}[1]{\underline{#1}}
(This code is extended in #121;(p.64).)

63



#121,

3.1.5.3 The macro \wzindexsep This macro defines the separator between successive
line numbers. The default definition is a comma followed by a space with a lot of stretch.
The comma is placed in an \rlap so that it will stick into the margin if it comes at the end
of a line.

(webzero.sty main code #121(p61) +=

149 \newcommand{\wzindexsep}{\rlap{, }\hspace{0.5em plus lem minus 0.lem}}

#121,,

(This code is extended in #121,, (p.64).)

3.1.5.4 The macro \wzx This macro typesets the name of the variable, function, or
macro being indexed presently. It is followed by a \dotfill to connect the name with the
following line numbers.

(webzero.sty main code #121(p.61)) +=

1050 \newcommand{\wzx}[1]{\setlength{\hangindent}{2em}%

1051

#121,

\hangafter=1 {\wz@family #1}\hspace={0.5em}\dotfill}
(This code is extended in #121,, (p.64).)

3.1.5.5 The macro \wzxref This macro is used when referencing other macros.

(webzero.sty main code #121(p.61)) +=

1052 \newcommand{\wzxref}[2]{\wz@numandpage[#2]{#1}}

#121,

(This code is extended in #121,(p.64).)

3.1.5.6 The macro \wzlongpageref This macro is used when typesetting the macro
name index. Here we need to reference page numbers, like “page 123”. This definition
provides space for page numbers with up to three digits.

(webzero.sty main code #121(p61) +=

1053 \newcommand{\wzlongpageref}[1]{ \wz@pagename~%
1054 \makebox[2em] [r]{\pageref{wO-#1-0}}}

#121,

(This code is extended in #121, (p.64).)

3.1.6 Page style

A new page style is provided. The page style webzero places the file name and the page
number in the footer; the header is left empty; an example is shown in Figures 3 and 4 on
pages 6 and 7.

(webzero.sty main code #121(p.61)) +=

1055 \newcommand{\ps@webzero}{%

1056 \renewcommand{\@evenhead}{}\let \@oddhead = \@evenhead
1057 \renewcommand{\@evenfoot}{\rightmark\hfill

1058 \wz@pagename\space\thepage}%

1059 \let \@oddfoot = \@evenfoot

1060 \renewcommand{\sectionmark} [1]{}%

1061 \renewcommand{\subsectionmark}[1]{}}

(This code is extended in #121,(p.65).)

3.1.7 Utility macroes

3.1.7.1 The name weby is generated by the macro \webzero. It will try to use the
\webzerologo command to produce the proper logo, but the hyperref package is used,
we also provide a much plainer version of the logo for the bookmarks.

The \webzerologo command uses the same trick as the definition of \LaTeXe in the
I4TEX 2¢ source code to decide when the subscript should be bold.

64



#121,

(webzero.sty main code #121(p61)) +=

1e2 \DeclareRobustCommand{\webzerologo}{\mbox{\m@th

1063

\if b\expandafter\@car\f@series\@nil \boldmath \fi

1064 $\mathsf{web}_{\mathsf{0}}$}}

1065 \newcommand{\webzero}{\@ifundefined{texorpdfstring}%
1066 {\webzerologo}%

1067 {\texorpdfstring{\webzerologo}{web0}}}

#121,
1068
1069
1070
1071
1072
1073
1074
1075
1076

#121,

1077

#121,
1078
1079
1080

#121,
1081
1082

(This code is extended in #121, (p.65).)

3.1.7.2 Extended alphabetical numbering The extensions are numbered
a,b,...,z,aa,ab,...,az, ba,...

(This is the standard numbering \alph extended to arbitrarily large numbers.)

This is implemented in the macro \wz@alpha. Note the use of the counter \wz@val
and the extra grouping \begingroup ...\endgroup; this is necessary to preserve the
parameter #1 (which is really \thewz@temp) across the recursive calls. (The use of
\wz@val must be written in plain TgX as \setcounter has an implicit \global.)
(webzero.sty main code #121(p61) +=

\newcommand{\wz@alpha}[1]{%

\ifthenelse{#1<27}

{\setcounter{wz@temp}{#1}\alph{wz@temp}}

{\begingroup
\count\wz@val = #l\relax
\setcounter{wz@temp}{(#1-1)/26}\wz@alpha{\thewz@temp}%
\setcounter{wz@temp}{\the\count\wz@val -

(\the\count\wz@val-1)/26+26}\alph{wz@temp}%
\endgroup }}
(This code is extended in #1214 (p.65).)

The two counters must be declared.

(webzero.sty main code #121(p.61)) +=
\newcounter{wz@temp} \newcount\wz@val
(This code is extended in #121,(p.65).)

3.1.7.3 Typesetting a macro number A macro number with its extension is typeset
as

#4,

This is done by the macro \wz@num which has two parameters: the macro number and the
extension number. (If the extension number is 0, there will be no extension.)

(webzero.sty main code #121(p61) +=
\newcommand{\wz@num}[2]{\##1%
\ifthenelse{#2>0}{\raisebox{-0.4ex}{\smaller[2]%
\hspace*{-0.0lem}\wz@alpha{#2}}}{}}
(This code is extended in #121, (p.65).)

3.1.7.4 Typesetting a macro number with page reference The IATEX command
\wz@numandpage prints the number of a macro (and its extension number if provided by
an optional parameter) together with the number of the page on which it was defined:

#4, (p.14)

(webzero.sty main code #121(p61) +=

\newcommand{\wz@numandpage}[2][0]{\wz@num{#2}{#1}%
\hspace*{0.2em} (\wz@shortpagename\pageref{wO-#2-#1})}
(This code is extended in #121, (p.66).)

65



#121,

1083

#125
1084
1085
1086
1087
1088

#126
1089
1090

#127
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

#128
1101
1102

3.1.8 End of class

It is common in IATEX to use a line with \endinput as the last line. That way it is easier
to detect whether the file has been truncated for some reason.

(webzero.sty main code #121(p.61)) +=
\endinput

3.2 The webzero document class

Since most webp documents will describe a program and nothing more, a document class
webzero is provided. This document class is based on the article document class and
the webzero package.

(webzero.cls) =
(webzero.cls identification #126(p.66))
(webzero.cls options #127(p.66))
(webzero.cls package and class loading #128 (p.66))
(webzero.cls main code #129(p.67))
(webzero.cls end #130(p.67))
(This code is not used.)

3.2.1 Class identification

(webzero.cls identification) =

\NeedsTeXFormat{LaTeX2e}[1994/12/01]

\ProvidesClass{webzero}[2019/10/16 v({version #07(p54) Ifi class for web0O documents]
(This code is used in #125 (p.66).)

3.2.2 Class options

This document class will recognize the options known to the webzero package (see
Section 3.1 on page 58) and send them on. All other options are passed on to the article
class.

(webzero.cls options) =
\DeclareOption{american}{\PassOptionsToPackage{american}{webzero}}
\DeclareOption{english}{\PassOptionsToPackage{english}{webzero}}
\DeclareOption{norsk}{\PassOptionsToPackage{norsk}{webzero}}
\DeclareOption{nynorsk}{\PassOptionsToPackage{nynorsk}{webzero}}
\DeclareOption{sf}{\PassOptionsToPackage{sf}{webzero}}
\DeclareOption{tt}{\PassOptionsToPackage{tt}{webzero}}
\DeclareOption{UKenglish}{\PassOptionsToPackage{UKenglish}{webzero}}
\DeclareOption{USenglish}{\PassOptionsToPackage{USamerican}{webzero}}
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions \relax

(This code is used in #125 (p.66).)

3.2.3 Package and class loading

As mentioned above, the webzero document class is based on the article document class
and the webzero package.
(webzero.cls package and class loading) =
\LoadClass{article}
\RequirePackage{webzero}
(This code is used in #125 (p.66).)

66



3.2.4 Main code

As most of the document will be program text, longer lines are useful:

#129 (webzero.cls main code) =
1103 \addtolength{\textwidth}{3cm}
1104« \addtolength{\evensidemargin}{-1.5cm}
o5 \addtolength{\oddsidemargin }{-1.5cm}
(This code is extended in #129, (p.67). It is used in #125 (p.66).)

.., as are taller pages, particularly because there are no page headers in the webzero
page style:
#129, (webzero.cls main code #129(p.67) +=
106 \addtolength{\topmargin}{-2.8cm}

107 \addtolength{\textheight}{4.5cm}
(This code is extended in #129, (p.67).)

We want to use the webzero page style.

#129,, (webzero.cls main code #129(p.67)) + =
1108 \pagestyle{webzero}
(This code is extended in #129,(p.67).)

Since \maketitleissues a call on \thispagestyle{plain}, we must also redefine that
page style.

#129, (webzero.cls main code #129(p.67)) +=
1o \let \ps@plain = \ps@webzero

3.2.5 End of class

And that’s all, folks.

#130 (webzero.clsend) =
1o \endinput
(This code is used in #125 (p.66).)

4 Documentation

Since the weby system is likely to be used in a UNIX environment, some users will
appreciate manual pages for the tangle0 and weaveO programs.

4.1 Man page for tangle0

The man page consists of the standard headline and the usual parts.

#131 (man tangle0) =
unn . TH TANGLEO 1 "(man page date #132(p.67)"
112 (man tangle0 name #133(p.68))
113 (man tangle0 description #134(p.68))
1114 (man tangle0 parameters #135 (p.68))
115 (man author #140(p.69))
1116 (man see also #141(p.70))
(This code is not used.)

The date identifies the current version.

#132 (man page date) =
117 17 October 2013
(This code is used in #131 (p.67) and #136 (p.68).)

67



4.1.1 Identification

This specification gives the name of the program and a single-line description of what it
does.

#1338 (man tangle0 name) =
1118 .SH NAME
e tangle0 - a webO tool for extracting program code
(This code is used in #131 (p.67).)

4.1.2 Program description

This specification first gives the program name and a list of its parameters:

#1384 (man tangle0 description) =
120 .SH SYNOPSIS
n21 .B tangleO
122 .RI [-0 " file" ]
123 [-V]
1124 .RI [-x " name" ]
s LRI [ file... ]
(This code is extended in #134, (p.68). It is used in #131 (p.67).)

Then comes a longer desciption of what the program does.

#134, (man tangle0 description #134(p.68)) +=
126 .SH DESCRIPTION
n2r  .I TangleO
128 is part of the

1120 .B webO
s package. It is used to extract the program code from a
131 .B webO

1132 Source.

4.1.3 The parameters

This part of the man page lists the parameters and describes their use. The individual
parameter is described together with the code implementing it.

#135 (man tangle0 parameters) =
1133 .SS OPTIONS
3¢ .1 TangleO
uss accepts the following options:
1136 (tangleO man page parameters #5 (p.13))
(This code is used in #131 (p.67).)

4.2 Man page for weave(

The man page consists of the standard headline and the usual parts.

#136 (man weave0) =
137 .TH WEAVEO 1 "(man page date #132(p.67)"
13s  (man weave) name #137(p.69))
139 (man weave0 description #138(p.69))
1140 (man weave0 parameters #139(p.69))
141 (man author #140(p.69))
1142 (man see also #141(p.70))
(This code is not used.)

68



#137

4.2.1 Identification

This specification gives the name of the program and a single-line description of what it
does.

(man weave0 name) =

1143 .SH NAME
1142 weaveO - a webO tool for producing program documentation

#138

(This code is used in #136 (p.68).)

4.2.2 Program description

This specification first gives the program name and a list of its parameters:

(man weave0 description) =

1145 .SH SYNOPSIS

1146 .B weaveO

1147 .RI "[-e] [-f " filter ]
s .RI [-1 " language" ]
149 .RI [-0 " file" ]

1150
1151

-v]
.RI [ file... ]
(This code is extended in #138, (p.69). It is used in #136 (p.68).)

Then comes a longer desciption of what the program does.

#138, (man weave0 description #138(p.69)) +=
1152 . SH DESCRIPTION
1153 .1 WeaveO
use is part of the
1155 .B webO
us6 package. It is used to produce the program documentation from a
1157 .B webO

1158 Source.

#139

1159
1160
1161
1162

#140

1163
1164

4.2.3 The parameters

This part of the man page lists the parameters and describes their use. The individual
parameter is described together with the code implementing it.

(man weave0 parameters) =
.SS OPTIONS
.I WeaveO
accepts the following options:
(weaveO man page parameters #12(p.16))
(This code is used in #136 (p.68).)

4.3 Common man page information

Some man page information is the same for the two programs; it is defined here.

4.3.1 The name of the author

This information includes the name and address of the program’s author.

(man author) =

.SH AUTHOR

Dag Langmyhr, Department of Informatics, University of Oslo.
(This code is used in #131 (p.67) and #136 (p.68).)

69



4.3.2 Cross reference information

Those who read this manual page will quite probably be interested in the complete
documentation on the web system.

#141 (man see also) =
165 .SH "SEE ALSO"
1166 .1 The WebO System
167 by Dag Langmyhr; available on
ues .1 http://dag.at.ifi.uio.no/littprog/web0.pdf.
(This code is used in #131 (p.67) and #136 (p.68).)

70



References

[Knu83]

[Knu84]

[Knu92]

[Lev87]
[Ram89]

[WCS96]

Donald E. Knuth. Literate Programming. Tech. rep. STAN-CS-82-981. Stanford,
CA 94305: Stanford University, Sept. 1983.

Donald E. Knuth. ‘Literate Programming’. In: The Computer Journal 27.2
(1984), pp. 97-111.

Donald E. Knuth. «Literate programming». Center for the study of language and
information, 1992.

Silvio Levy. ‘WEB adapted to C’. In: TUGboat 8.1 (Apr. 1987), pp. 12-13.

Norman Ramsay. ‘Literate programming: weaving a language-independent
WEB’. In: Communications of the ACM 32.9 (Sept. 1989), pp. 1051-1055.

Larry Wall, Tom Christiansen and Randal L. Scwarz. Programming Perl.
2nd ed. Known as “The camel book”. O’Reilly & associates, 1996.

71



Functions

A

&alphabetically ............... 491,916, 928

E

&Error ............ 261, 285, 301, 315, 345, 905

&Expand ................ia. 286, 288, 314

F

&Find_macro_sy ................ 194, 200, 209

&Format_usage ....................... 450, 453

G

&Generate_index .......... 473,474,518,519

I

&indexwise ... 487

L

&Latexify ....ooovveviiiiiiiii.. 415,417, 419,
422, 431, 446, 493, 515, 523, 870, 880, 881

M

&Message .................. 47,51,96, 114, 144,
151, 179, 237, 270, 318, 350, 531, 906, 910

T

&Tidy_up ..o 907

U

&Usage ............ 19, 38,57,91, 109, 124, 157

W

&Warning 217,229,232, 236, 296, 317, 383, 530

72



Macro names

(alphabetical sorting #113) ...t e page
(alphabetical sorting: simple first tests #114) ... ... .o ittt page
(alphabetical sorting: test initial character #115) ....... ... .. oo iiiiiiiiiiiiiiain.n. page
(alphabetical sorting: test other characters #116) ...........ccciiiiiiiiiiiiiininiennnnn. page
(expand TAB characters #111) ... . it page
(find_macro_sy: handle abbreviated macro name #31) ............ccciiiiiiiiiiiiiin... page
(find_macro_sy: handle reference to last macro #30) ...........cccoiiiiiiiiiiiiinennn.n. page
(latex generation functions #108) . ... ... .ttt page
(Latexify: adapt text #110) .. ...ttt e e e e page
(Latexify: handle embedded LaTeX #109) ........oiuiiiiiiiiiiii i iiaaiaannn, page
(man author #140) .. ... e page
(man page date #132) ... .o i page
(man see also #IAL) ..o e e page
(man tangle0 #1B1) .. ... o page
(man tangle0 description #134) .. ... .. i page
(man tangleO name #133) ... i page
(man tangle0 parameters #135) ... .. .o page
(man weavel #186) . ...... .ttt page
(man weave0 description #188) ... ...t page
(man weaveO name #1BT) .. ... it e page
(man weave0 parameters #139) ... .. . i page
(Derl #1085 oo e page
(perl utf-8 specification #L0B) ..........iuiiii e page
(set default parameter values #14) ... .. .o i page
(suppress indentation of subsequent paragraph #124) ... ... . ... ... i page
(FangleD #1) .. o page
(tangle0 auxiliary functions #7) ... ... i page
(tangled definitions #2) ... .o . i page
(tangle0 man page parameters #5) ... ... i e page
(tangle0 parameter decoding #3) .........iiiiiii e page
(tangle0 parameters #4) ... i page
(tangle0 processing #6) .........oiiiiiii i e page
(user message functions #112) ... i it e page
(Uersion #107) ... i page
(WO-F-latex #4B) ... it e e e page
(wO-f-latex: check for range of line numbers #66) ............ccciiiiiiiiiiiiiininaannnn. page
(wO-f-latex: end code #60) . ........ioi it e e e page
(wO-f-latex: examine options #49) ... ... ittt e page
(wO-f-latex: format and print index line numbers #65) .............ccciiiiiiiiiiiiiin.. page
(wO-f-latex: generate an index entry #64) ... .. .. oot page
(wO-f-latex: generate indices #62) ..........iiiiiiii it e page
(wO-f-latex: generate the class index #T0) ......co it iii i, page
(wO-f-latex: generate the function index #63) ...........oiiiiiiiii i, page
(wO-f-latex: generate the macro index #TL) ... ..o it page
(wO-f-latex: generate the variable index #69) ..ottt i, page
(wO-f-latex: initialization #HAT) ... e e e page
(wO-f-latex: make LaTeX code #51) ... .o it page
(wO-f-latex: note output file #50) ... oo page
(wO-f-latex: option handling #48) ... . i page
(wO-f-latex: passl: note macro definition #52) ... ... ... ... i page
(wO-f-latex: pass2: handle tokens #53) ... ... oot page
(wO-f-latex: pass3: handle ‘code’ tokens #54) ... ... page

57
57
57
58
56
25
24
54
55
55
69
67
70
67
68
68
68
68
69
69
69
54
54
17
62
12
14
12
13
12
13
14
57
54
31
39
37
32
39
39
38
40
38
40
40
31
33
32
31
33
34
36



(wO-f-latex: pass3: handle ‘def” tokens #55) ... . .ooiiiii i page
(wO-f-latex: pass3: handle file’ tokens #56) .........cooviiiiiiiiii i page
(wO-f-latex: pass3: handle nl’ tokens #5T) ... ..o i e page
(wO-f-latex: pass3: handle ‘text’ tokens #58) ... ... ..ot page
(wO-f-latex: pass3: handle ‘use’ tokens #59) ... ...t page
(wO-f-latex: print index line number #6T) ... ....cooiiiii it page
(wO-f-latex: produce an initial (if required) #68) ..........oioiiiiiiiiiii i page
(wO-f-latex: utility functions #61) ... ..o ittt e page
(WO-1-c HT) o e page
(wO-1-c check alphabetic name #7T8) ... i page
(w0-1-c check C code for functions and variables #T6) ............cccoiiiiiiiiiininnain.. page
(WO-1-c check for names #TT) ..o e e e e e page
(WO-1-c definitions #T3) .. ...t e e e e e page
(wO-1-c enhance C code #T) ... e e e e e i page
(wO-1-c look for special words #80) ..ot page
(wO-1-c parameter handling #T4) ... .. i page
(WO-I-cread C code #TB) ...ttt e et page
(WO-1-Jaua #81) . i page
(wO-1-java check alphabetic name #8T) ... ... .. it e page
(wO-1-java check for names #86) ..........oiuiiiiii i page
(wO-1-java check formal parameter list #88) . ... ... .coiiiiiiii i page
(w0-1-java check Java code for names #85) ...ttt page
(wO-1-java definitions #82) ... ... ... iiiii it e page
(wO-1-java enhance Java code #89) .........o.iiiii it page
(w0O-1-java look for special words or symbols #90) ......... ..., page
(wO-1-java parameter handling #83) .........ooiiii i page
(wO-1-java read Java code #84) . ... ..ot page
(WO-1-Tatex #IL) ..o e e e e page
(wO-1-latex check for comments #96) ... ... ...ttt page
(wO-1-latex check for declarations #9T) .........coiiiuiiiie it page
(wO-1-latex check for use #O8) ... .. . i page
(wO-1-latex check LaTeX code #95) . ......uiiiiit it page
(wO-1-latex definitions #92) . .......iiiiiii it e page
(wO-1-latex parameter handling #93) ... ..o it e page
(wO-1-latex read LaTeX code #94) ...t e et page
(WO-I-perl #99) .o page
(wO-1-perl check Perl code for functions and variables #103) ......................cc..... page
(wO-1-perl definitions #100) ... ... .ottt page
(wO-1-perl enhance Perl code #104) ... ... ittt page
(wO-1-perl parameter handling #101) ... ... . i it page
(wO-1-perl read Perl code #102) ..........iiuiiit ettt page
(WOcode #32) ... page
(wOcode add to macro body #39) .. ... page
(wOcode definitions #33) ..ot e page
(wOcode expand macros #40) ... ... i page
(wOcode expand: check for definition cycles #43) ..........iiiiiii i page
(wOcode expand: check that macro is defined #42) ...... ... it page
(wOcode expand: deactivate current macro #44) ... i page
(wOcode expand: expand the macro body #45) ... i page
(wOcode macro definition #38) .........oioiiiiii e page
(wOcode parameter handling #34) ... .. i i page
(wOcode parameters #35) ... ..o i e page
(wOcode read tokens #3T) ... page
(wOcode utility functions #41) ... . i page

36
36
37
37
37
40
40
38
41
43
43
43
41
44
44
42
42
45
47
46
47
46
45
48
48
46
46
49
50
50
51
50
49
50
50
51
52
52
53
52
52
25
28
26
28
28
28
29
29
27
26
26
27
28



(wOcode: note output file #36) ......ooiii i page
(WOPIe H18) i e e e page
(wOpre check for end of macro definition #26) ..........c..oiiiiiiiiiii i, page
(wOpre check for start of macro definition #24) ...........ciiiiiiiiiii e page
(wOpre check input file #28) ... .. i page
(wOpre check one line of a macro definition #25) ............cciiiiiiiiiiiiiiiieiainnn. page
(wOpre definitions #19) ... .. o i page
(wOpre handle text line #2T) .. ... i page
(wOpre initialization #20) .. ... i page
(wOpre parameter handling #21) ... ... i page
(wOpre parameters #22) ... . i page
(wOpre token recognition #23) ... ... .ot e page
(wOpre utility functions #29) ... .. .. it page
(Weavel #8) ... i e page
(weavel auxiliary functions #1T) ... ...t page
(weavel definitions #9) ... page
(weaveO man page parameters #12) ... ... . i page
(weave0 parameter decoding #10) ... i page
(weaved parameters #11) ... .. i page
(weavel processing #H16) .. ... . i page
(weaveO: note filter #18) ... o i page
(weave0: note language #15) . ... ..o e page
(Webzero.cls H125) .. ..o page
(webzero.cls end #1B0) .. ... ot e page
(webzero.cls identification #126) ...........coiiiiieee i page
(webzero.cls main code #129) ... ... it page
(webzero.cls options #H12T) ... ... i e page
(webzero.cls package and class loading #128) ..........cciiiiiiiii i, page
(webzero.sty #11T) oo i page
(webzero.sty identification #118) ... ...ttt e page
(webzero.sty main code #121) ... it page
(webzero.sty options #119) ... i i e page
(webzero.sty package loading #120) .........cooiiiiii it e page
(webzero.sty: info on base definition #123) ...........ciiiiiiii e page
(webzero.sty: info on extended definition #122) ........ ... i page

(Macro names marked with * are not used internally.)

75

26
19 *
23
23
24
23
22
24
22
22
23
23
24
15 *
19
15
16
15
16
18
16
17
66 *
67
66
67
66
66

58
61
58
60
62
62



