
Questioning Software Maintenance Metrics:
A Comparative Case Study

Dag I.K. Sjøberg
Department of Informatics,

University of Oslo, P.O. Box 1080
Blindern, NO-0316 Oslo, Norway

Dag.Sjoberg@ifi.uio.no

Bente Anda
Department of Informatics,

University of Oslo, P.O. Box 1080
Blindern, NO-0316 Oslo, Norway

Bente.Anda@ifi.uio.no

Audris Mockus
Department of Software,
Avaya Labs Research,

Basking Ridge, NJ 07920. USA

audris@avaya.com

ABSTRACT
Context: Many metrics are used in software engineering research
as surrogates for maintainability of software systems. Aim: Our
aim was to investigate whether such metrics are consistent among
themselves and the extent to which they predict maintenance
effort at the entire system level. Method: The Maintainability
Index, a set of structural measures, two code smells (Feature Envy
and God Class) and size were applied to a set of four functionally
equivalent systems. The metrics were compared with each other
and with the outcome of a study in which six developers were
hired to perform three maintenance tasks on the same systems.
Results: The metrics were not mutually consistent. Only system
size and low cohesion were strongly associated with increased
maintenance effort. Conclusion: Apart from size, surrogate
maintainability measures may not reflect future maintenance
effort. Surrogates need to be evaluated in the contexts for which
they will be used. While traditional metrics are used to identify
problematic areas in the code, the improvements of the worst
areas may, inadvertently, lead to more problems for the entire
system. Our results suggest that local improvements should be
accompanied by an evaluation at the system level.

Categories and Subject Descriptors
D.2 SOFTWARE ENGINEERING

General Terms
Measurement, Experimentation

Keywords
Software maintenance, software metrics

1. INTRODUCTION
It is well known that software maintenance is costly and effort
intensive. Therefore, software systems should be maintainable.
However, how do we know which systems will be maintainable?
What designs and implementations of a given set of requirements
would be most maintainable? How can source code be improved
to make it more maintainable?
To help answer such questions, much of software engineering
research over the years has been devoted to software maintenance

metrics. Examples are the Maintainability Index [16], the CK
metrics, including coupling and cohesion [5] and various code
smells [9].

Previous research on the validation of these metrics and
approaches has investigated systems that were functionally
different. Differences in functionality make it difficult to isolate
the effects of design choices from the functionality of the systems.
In contrast, we are in a unique situation in that we have access to
four industry-quality systems that are functionally equivalent. As
a part of an investigation on the trade-offs between the costs of
developing the systems and quality improvement, we assessed the
maintainability of the four systems by using the metrics described
above and the results of a particular maintenance study of these
systems with six developers from two companies. In summary,
the research questions of the study reported in this paper are as
follows:

RQ1: Are commonly used software maintainability metrics
mutually consistent at the system level?

RQ2: Are commonly used software maintainability metrics related
to the actual maintenance effort observed in our study?

The remainder of this paper is organized as follows. Section 2
describes the four systems that are being the objects of this
comparative study. Section 3 describes the maintenance metrics
that were applied to the systems. Section 4 describes the results of
the maintenance study on the systems. Section 5 discusses the
results reported in the previous sections. Section 6 concludes.

2. THE FOUR SYSTEMS
The four systems available in this comparative case study were
functionally equivalent (with the same requirements
specifications) web-based information systems primarily
implemented in Java. They were developed independently by four
different companies at the costs of €18,000, €25,000, €52,000 and
€61,000. The sizes of the four systems, named Systems A through
D, are shown in the upper two rows of Table 1. The systems were
developed as part of a study on the variability and reproducibility
in software engineering [2].

3. SOFTWARE MAINTENANCE METRICS
This section describes the set of metrics that were selected
because they are among the most used and well known.

3.1 Maintainability Index
The Maintainability Index (MI) has been proposed for assessing
the maintainability of complete systems. The original three-metric
MI uses a polynomial to combine the average per module of three
traditional code measures (lines of code, cyclomatic complexity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’12, September 19–20, 2012, Lund, Sweden.
Copyright 2012 ACM 978-1-4503-1056-7/12/09…$15.00

107

and Halstead Volume) into a single-value indicator of
maintainability [16]. An improved four-metrics version of MI also
includes the number of comments.

In conventional non-object-oriented systems, the values of the
improved MI have been classified as follows: >85 indicate good
maintainability; 65-85 indicate moderate maintainability; and 65
and below indicate poor maintainability with very poor pieces of
code (big, uncommented, unstructured) [16].
To our knowledge, there are no heuristics for MI classification
values for object-oriented systems. However, because classes are
smaller in such systems than modules in conventional systems,
researchers have argued that the thresholds for object-oriented
systems should be higher [17]. This observation is consistent with
the values that we found for our four systems. Table 1 shows that
the MI values range from 113 (System A) to 120 (System D).

3.2 Structural Measures
The most common set of metrics for assessing code
maintainability is structural measures (SM), including the CK
metrics [5]. A previous study [3] used an adapted version of a
subset of the CK metrics to evaluate the four systems that are also
the subject of this study. The subset includes the coupling
measure OMMIC (call to methods in an unrelated class), the
cohesion measure TCC (tight class cohesion) and the measure of
size of classes WMC1 (number of methods per class; each method
has a weight of 1) and depth of inheritance tree (DIT). The values
of the respective systems are shown in Table 1. By combining
these and a few more metrics, the previous study ranked System D
as the most maintainable one, System A slightly ahead of System
B, and System C as the least maintainable system [3].

3.3 Code Smells
The concept of code smells was introduced as an indicator of
problems with the software design [9]. Code smells have become
an established way of indicating issues with software designs that
may cause problems for future development and maintenance [9],
[12]. However, a systematic review [18] found only five studies
that investigated the impact of code smells on maintenance.

Nevertheless, we recently conducted a study [14] on the effects of
12 code smells on the maintenance effort in the four systems that
are the subject of the study reported here. We found that only two
smells negatively affected the maintenance effort (Feature Envy
and God Class). However, this result was derived before we had
adjusted for the file size and the number of changes. When we
adjusted for these aspects, we found no effect. Still, to illustrate
the use of code smells, we included the average number per
KLOC of these two smells in the four systems in Table 1.

Note that the paper [14] identified the effects of various code
smells on maintenance effort by analyzing the number of smells
and the maintenance effort at the file level. We did not study the
variation among the systems per se. Neither did we study whether
refactoring of files to reduce smells, which may lead to reductions
in size of the individual files, might increase the total system size
and thus not improve the overall system maintainability. In
contrast, the study reported here operates at the system level.

4. MAINTENANCE STUDY
Several maintenance metrics that were applied to the four systems
were described above. However, how well do these metrics
indicate actual maintainability (how easy it is to maintain the
systems in practice)?

To find out, we conducted a controlled maintenance study on the
four systems. We hired six developers for a total cost of €50,000
to perform three maintenance tasks each on two of the four
functionally equivalent but independently developed Java
systems. Three of the developers worked for a software company
in the Czech Republic, and another set of three developers worked
for a software company in Poland. We recruited the developers
from a pool of 65 participants in an earlier study on programming
skill [4] that also included maintenance tasks. Based on the results
of that study, we selected these six developers because they could
program reliably at medium to high levels of performance,
reported high levels of motivation to participate in the study and
were available to take part in new studies. In this case, the results
of the former study became the pre-test measures for our study. In
general, using pre-test measures to maximize the interpretability
of the results is recommended [11].

The developers implemented two adaptive tasks that were needed
to allow the systems to become operational again after changes
had been made to the web platform. The developers also imple-
mented a third task that was requested by the users. The amount
of time that each developer spent on each file was automatically
recorded by a plug-in to an Eclipse IDE. The study lasted three to
four weeks in the Czech Republic and three weeks in Poland.

Each developer conducted the same three tasks on two different
systems. There are two reasons for having the same developer
maintain two systems. First, the relative impact of a system can be
separated from the impact of the developer. Second, we could
observe the developers’ learning process when they implemented
the same tasks the second time. These two rounds also correspond
to two different settings commonly found in maintenance work:
maintainers who are newcomers to a system and maintainers who
are already familiar with it. Although the systems were assigned
randomly to each developer, the four systems were maintained the
same number of times (two) by each developer, and all of the
systems were maintained at least once in each round.

The next lowest row of Table 1 shows the average amount of time
that the developers spent on each of the systems. On average, the
developers spent 39% less time on performing the tasks in the
second round. We adjusted for this difference in the calculation of
the average values in Table 1.

Usually in human-centric studies in software engineering, one
measures the quality of the tasks performed by the subjects in
addition to time (effort). Perhaps the most commonly used quality
attribute is the number of defects. However, in our case, the
acceptance tests showed that there were few defects in the systems
after the maintenance tasks had been performed. Therefore, it was
not meaningful to use defects as a quality indicator. Instead, we
used the number of changes completed in the course of the task as
an indicator of quality. The number of changes is typically found
to be a good predictor of later defects, with more changes
increasing the fault-proneness [10], [8]. Consequently, we also in-
cluded the number of changes (revisions) performed to implement
the tasks as the last control variable. The numbers were calculated
using SVNKit [15], which is a Java library for obtaining infor-
mation from Subversion the Subversion version control system.

The last row of Table 1 shows the average number of revisions
per system. By combining the scores for effort and quality, Table
1 shows that System C is the most maintainable system. In
contrast, System B has the lowest quality, and System A had the
highest maintenance effort.

108

Table 1. Maintenance metrics and a maintenance study applied to the four systems
Legend: green indicates the best system and red the worst one

Category Metrics System A System B System C System D

Size

Number of Java files 63 168 29 119
Java lines of code (LOC) 8205 26679 4983 9960

Maintainability Index
(MI)

LOC, # of comments, cyclomatic
complexity, Halstead’s volume

113 117 114 120

Structural measures (SM) Coupling (OMMIC) 7.7 5.3 8.6 4.7
Cohesion (TCC) 0.26 0.17 0.20 0.11
Size of classes (WMC1) 6.9 7.8 11.4 4.9
Depth of inheritance tree (DIT) 0.46 0.75 0 0.83

Code smells

Feature Envy (# per KLOC of code) 4.51 1.27 3.41 2.51
God Class (# per KLOC of code) 0.12 0.19 0.60 0.20

Study of actual
maintainability

Average effort (hours) 18 33 13 23
Predictor of quality (avg. # changes) 148 125 76 124

5. COMPARISON AND DISCUSSION
Table 1 shows that none of the tailored maintenance metrics
ranked the system that performed best in the maintenance study
(System C) as the best one.

The Spearman rank correlations among the maintainability
metrics and the observed maintenance effort and quality are
shown in Table 2. High values of metrics MI, TCC and DIT are
supposed to indicate high maintainability. (Note that higher DIT
values are considered good at least up to three [6]. The DIT values
in our study vary from 0 to 0.83 on average.) Therefore, to
compare the variables directly with maintainability, expressed in
the number of hours spent on the maintenance tasks, we inverted
the MI, TCC and DIT.

The only two metrics that are highly correlated with effort are size
and the inverse of cohesion (1/TCC). The remaining
maintainability surrogate metrics are negatively correlated with
the observed effort. Three of them, 1/MI, OMMIC and FE, have a
high negative correlation.

The inconsistency among the metrics is striking. One reason for
the inconsistency is that some metrics are strongly interdependent;
that is, for a given system, improving the value of one metric may
imply less favourable values for other ones. For example,
achieving low coupling is more difficult if one also attempts to
achieve high cohesion, and vice versa. Achieving high cohesion
and low coupling among modules or classes would generally be
easier if one were to increase their size, but then the overall
maintainability would decrease because of the increase in the size
of the module or class.

Similarly, some practices, such as the refactoring of God Classes,
may lead to more files. Although this practice may decrease the
size of what was originally a God-Class file, it would lead to a
larger system overall. Thus, such apparent improvements induced
by reducing the size of God Classes may make it more difficult to
maintain the new refactored system.

The conformance between code size and the outcome of the
maintenance study may not be surprising. Software engineering

folklore states that reducing functionality will reduce maintenance
problems. The systems in our study demonstrate the positive
effect of reducing size (measured in number of files or total LOC)
without reductions in functionality.
The answers to our research questions are as follows:

RQ1: The considered common maintainability metrics were not
mutually consistent in the considered projects.

RQ2: Among the considered maintainability metrics, only size
and the inverse of cohesion were strongly correlated with
the actual maintenance effort observed in the study.

It is possible that metrics apart from size may play a role in
reducing maintenance effort in large projects where it takes a long
time (> 3 years) for developers to become fluent [19], but we see
no evidence that they matter in our context.

Table 2. Spearman rank correlation matrix

 L
O
C

1/
MI

O
M
M
I
C

1/
T
C
C

W
M
C
1

1/
D
I
T

F
E

G
C

H
o
u
r
s

c
h
g
s

LOC 1	
 -­‐0.6	
 -­‐0.8	
 0.6	
 -­‐0.4	
 0.6	
 -­‐0.8	
 -­‐0.4	
 1	
 0.4	

1/MI -­‐0.6	
 1	
 0.8	
 -­‐1	
 0.4	
 1	
 0.8	
 -­‐0.4	
 -­‐0.6	
 0.4	

OMMIC -­‐0.8	
 0.8	
 1	
 -­‐0.8	
 0.8	
 1	
 0.6	
 0.2	
 -­‐0.8	
 -­‐0.2	

1/TCC 0.6	
 -­‐1	
 -­‐0.8	
 1	
 -­‐0.4	
 -­‐1	
 -­‐0.8	
 0.4	
 0.6	
 -­‐0.4	

WMC1 -­‐0.4	
 0.4	
 0.8	
 -­‐0.4	
 1	
 0.5	
 0	
 0.4	
 -­‐0.4	
 -­‐0.4	

1/DIT -­‐0.5	
 1	
 1	
 -­‐1	
 0.5	
 1	
 0.5	
 -­‐1	
 -­‐0.5	
 1	

FE -­‐0.8	
 0.8	
 0.6	
 -­‐0.8	
 0	
 0.5	
 1	
 -­‐0.2	
 -­‐0.8	
 0.2	

GC -­‐0.4	
 -­‐0.4	
 0.2	
 0.4	
 0.4	
 -­‐1	
 -­‐0.2	
 1	
 -­‐0.4	
 -­‐1	

Hours 1	
 -­‐0.6	
 -­‐0.8	
 0.6	
 -­‐0.4	
 -­‐0.5	
 -­‐0.8	
 -­‐0.4	
 1	
 0.4	

# chgs 0.4	
 0.4	
 -­‐0.2	
 -­‐0.4	
 -­‐0.4	
 1	
 0.2	
 -­‐1	
 0.4	
 1	

109

Even though the study controlled for functionality and other
factors, having only four sample points makes it difficult to make
sweeping generalizations. The inherent inconsistency of
maintainability metrics and the strength of the anti-correlations
with observed maintainability, strongly suggest that, at least in the
context of smaller scale projects, the size of the system may be the
decisive factor determining actual maintainability.

6. CONCLUSIONS
The results of this comparative case study indicate that the
existing software maintenance metrics are mutually inconsistent
and that none of them, apart from size and the inverse of cohesion,
are consistent with the results of a maintenance study of four
systems that implemented the same functionality. Still, these
metrics are used to validate a great number of technologies
(processes, methods, techniques and tools) for supporting
software maintenance. The choice of metrics, rather than actual
maintainability, may determine the outcome of a study. For
example, using the Maintainability Index, one could argue that
hiring an expensive company with heavy processes (System D)
improves maintainability. On the other hand, using size, one could
claim that it is better to hire an inexpensive company with light
processes (System C) because it will produce smaller systems
that, consequently, are more maintainable.

Our results are consistent with the findings of a related systematic
literature review [13]. The researchers of this study found that
there was little evidence regarding the effectiveness of software
maintainability prediction techniques and models.

Our study controlled for a number of factors including
functionality, application domains and programming language,
and the authors did not develop any of the metrics (lack of
experimenter bias). Our contribution is the observation that at the
entire system level, the simplest metric of size was the best
predictor of maintainability.
Consequently, this study indicates that overall system size (as
opposed to, e.g., file size or class size) as a measure of
maintainability has been underrated in the software engineering
community. However, the other “sophisticated” maintenance
metrics are overrated. Researchers in software engineering should
be cautious when using such metrics as surrogates for actual
maintainability unless the metrics have been properly evaluated in
the same context for which they serve as surrogates.

ACKNOWLEDGMENTS
We thank Aiko Yamashita for providing support with the data
collection. This work was partly funded by the Research Council
of Norway through the projects AGILE, grant 179851/I40, and
TeamIT, grant 193236/I40.

REFERENCES
[1] B. Anda. Assessing Software System Maintainability using

Structural Measures and Expert Assessments, Proc. 23rd Int’l
Conf. on Software Maintenance, pp. 204-213, 2007.

[2] B.C.D. Anda, D.I.K. Sjøberg and A. Mockus. Variability and
Reproducibility in Software Engineering: A Study of Four
Companies that Developed the Same System, IEEE Trans.
Softw. Eng, vol. 35, no. 3, pp. 407–429, 2009.

[3] H.C. Benestad, B. Anda and E. Arisholm. Assessing
Software Product Maintainability Based on Class-Level
Structural Measures, Proc. 7th Int’l Conf. on Product-focused

Software Process Improvement, LNCS 3009, Springer-
Verlag, pp. 94-111, 2006.

[4] G.R. Bergersen and J.E. Gustafsson, Programming Skill,
Knowledge and Working Memory Among Professional Soft-
ware Developers from an Investment Theory Perspective, J.
Individual Differences, vol. 32, no. 4, pp. 201-209, 2011.

[5] S.R. Chidamber and C.F. Kemerer. A Metrics Suite for
Object Oriented Design, IEEE Trans. Softw. Eng., vol. 20,
no. 6, pp. 476–493, 1994.

[6] J. Daly, A. Brooks, J. Miller, M. Roper and M. Wood. An
Empirical Study Evaluating Depth of Inheritance on the
Maintainability of Object-Oriented Software, Empirical
Softw. Eng., vol. 1, pp. 109-132, 1996.

[7] D. Darcy and C.F. Kemerer. OO Metrics in Practice, IEEE
Software, vol. 22, no. 6, Nov./Dec. 2005, pp. 17–19, 2005.

[8] S.G. Eick, T L. Graves, A. F. Karr, J.S. Marron and A.
Mockus, Does code decay? Assessing the evidence from
change management data, IEEE Trans. on Softw. Eng., vol.
27, no. 7, pp. 1-12, 2001.

[9] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[10] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell. A
Systematic Review of Fault Prediction Performance in
Software Engineering, IEEE Trans. Softw. Eng., 2011
(preprint).

[11] V.B. Kampenes, T. Dybå, J.E. Hannay and D.I.K. Sjøberg, A
Systematic Review of Quasi-Experiments in Software
Engineering. Inf. and Softw. Tech., vol. 51, pp. 71-82, 2009

[12] M. Lanza, R. Marinescu and S. Ducasse, Object-Oriented
Metrics in Practice: Using Software Metrics to Characterize,
Evaluate and Improve the Design of Object-Oriented
Systems. Springer-Verlag New York, Inc, 2005.

[13] M. Riaz, M. Mendes and E.D. Tempero. A Systematic
Review of Software Maintainability Prediction and Metrics.
3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM 2009), Lake Buena
Vista, FL, USA, 15-16 Oct. 2009, pp. 367-377, 2009.

[14] D.I.K. Sjøberg, A. Yamashita, B. Anda, A. Mockus and T.
Dybå. Quantifying the Effect of Code Smells on
Maintenance Effort. Submitted for publication in IEEE
Trans. Softw. Eng. 2012.

[15] TMate-Sofware. SVNKit - Subversioning for Java. [Cited
June 2010]; Available from: http://svnkit.com/.

[16] K.D. Welker, P.W. Oman and G.G. Atkinson. Development
and Application of an Automated Source Code
Maintainability Index. Software Maintenance: Research and
Practice, vol. 9, pp. 127-159, 1997.

[17] K.D. Welker. The Software Maintainability Index Revisited,
CrossTalk, August 2001.

[18] M. Zhang, T. Hall and N. Baddoo, Code Bad Smells: A
Review of Current Knowledge, Software Maintenance and
Evolution: Research and Practice, vol. 23, no. 3, pp. 179–
202, 2011.

[19] M. Zhou and A. Mockus. Developer fluency: Achieving True
Mastery in Software Projects. ACM SIGSOFT / FSE, pp.
137-146, Santa Fe, New Mexico, Nov. 7-11, 2010.

110

