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ABSTRACT 
Context: Many metrics are used in software engineering research 
as surrogates for maintainability of software systems. Aim: Our 
aim was to investigate whether such metrics are consistent among 
themselves and the extent to which they predict maintenance 
effort at the entire system level. Method: The Maintainability 
Index, a set of structural measures, two code smells (Feature Envy 
and God Class) and size were applied to a set of four functionally 
equivalent systems. The metrics were compared with each other 
and with the outcome of a study in which six developers were 
hired to perform three maintenance tasks on the same systems. 
Results: The metrics were not mutually consistent. Only system 
size and low cohesion were strongly associated with increased 
maintenance effort. Conclusion: Apart from size, surrogate 
maintainability measures may not reflect future maintenance 
effort. Surrogates need to be evaluated in the contexts for which 
they will be used. While traditional metrics are used to identify 
problematic areas in the code, the improvements of the worst 
areas may, inadvertently, lead to more problems for the entire 
system. Our results suggest that local improvements should be 
accompanied by an evaluation at the system level. 

Categories and Subject Descriptors 
D.2 SOFTWARE ENGINEERING 

General Terms 
Measurement, Experimentation 
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1. INTRODUCTION 
It is well known that software maintenance is costly and effort 
intensive. Therefore, software systems should be maintainable. 
However, how do we know which systems will be maintainable? 
What designs and implementations of a given set of requirements 
would be most maintainable? How can source code be improved 
to make it more maintainable? 
To help answer such questions, much of software engineering 
research over the years has been devoted to software maintenance 

metrics. Examples are the Maintainability Index [16], the CK 
metrics, including coupling and cohesion [5] and various code 
smells [9].  

Previous research on the validation of these metrics and 
approaches has investigated systems that were functionally 
different. Differences in functionality make it difficult to isolate 
the effects of design choices from the functionality of the systems. 
In contrast, we are in a unique situation in that we have access to 
four industry-quality systems that are functionally equivalent. As 
a part of an investigation on the trade-offs between the costs of 
developing the systems and quality improvement, we assessed the 
maintainability of the four systems by using the metrics described 
above and the results of a particular maintenance study of these 
systems with six developers from two companies. In summary, 
the research questions of the study reported in this paper are as 
follows: 

RQ1: Are commonly used software maintainability metrics 
mutually consistent at the system level? 

RQ2: Are commonly used software maintainability metrics related 
to the actual maintenance effort observed in our study? 

The remainder of this paper is organized as follows. Section 2 
describes the four systems that are being the objects of this 
comparative study. Section 3 describes the maintenance metrics 
that were applied to the systems. Section 4 describes the results of 
the maintenance study on the systems. Section 5 discusses the 
results reported in the previous sections. Section 6 concludes. 

2. THE FOUR SYSTEMS 
The four systems available in this comparative case study were 
functionally equivalent (with the same requirements 
specifications) web-based information systems primarily 
implemented in Java. They were developed independently by four 
different companies at the costs of €18,000, €25,000, €52,000 and 
€61,000. The sizes of the four systems, named Systems A through 
D, are shown in the upper two rows of Table 1. The systems were 
developed as part of a study on the variability and reproducibility 
in software engineering [2]. 

3. SOFTWARE MAINTENANCE METRICS 
This section describes the set of metrics that were selected 
because they are among the most used and well known. 

3.1 Maintainability Index 
The Maintainability Index (MI) has been proposed for assessing 
the maintainability of complete systems. The original three-metric 
MI uses a polynomial to combine the average per module of three 
traditional code measures (lines of code, cyclomatic complexity 
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and Halstead Volume) into a single-value indicator of 
maintainability [16]. An improved four-metrics version of MI also 
includes the number of comments. 

In conventional non-object-oriented systems, the values of the 
improved MI have been classified as follows: >85 indicate good 
maintainability; 65-85 indicate moderate maintainability; and 65 
and below indicate poor maintainability with very poor pieces of 
code (big, uncommented, unstructured) [16]. 
To our knowledge, there are no heuristics for MI classification 
values for object-oriented systems. However, because classes are 
smaller in such systems than modules in conventional systems, 
researchers have argued that the thresholds for object-oriented 
systems should be higher [17]. This observation is consistent with 
the values that we found for our four systems. Table 1 shows that 
the MI values range from 113 (System A) to 120 (System D). 

3.2 Structural Measures  
The most common set of metrics for assessing code 
maintainability is structural measures (SM), including the CK 
metrics [5]. A previous study [3] used an adapted version of a 
subset of the CK metrics to evaluate the four systems that are also 
the subject of this study. The subset includes the coupling 
measure OMMIC (call to methods in an unrelated class), the 
cohesion measure TCC (tight class cohesion) and the measure of 
size of classes WMC1 (number of methods per class; each method 
has a weight of 1) and depth of inheritance tree (DIT). The values 
of the respective systems are shown in Table 1. By combining 
these and a few more metrics, the previous study ranked System D 
as the most maintainable one, System A slightly ahead of System 
B, and System C as the least maintainable system [3]. 

3.3 Code Smells 
The concept of code smells was introduced as an indicator of 
problems with the software design [9]. Code smells have become 
an established way of indicating issues with software designs that 
may cause problems for future development and maintenance [9], 
[12]. However, a systematic review [18] found only five studies 
that investigated the impact of code smells on maintenance. 

Nevertheless, we recently conducted a study [14] on the effects of 
12 code smells on the maintenance effort in the four systems that 
are the subject of the study reported here. We found that only two 
smells negatively affected the maintenance effort (Feature Envy 
and God Class). However, this result was derived before we had 
adjusted for the file size and the number of changes. When we 
adjusted for these aspects, we found no effect. Still, to illustrate 
the use of code smells, we included the average number per 
KLOC of these two smells in the four systems in Table 1.  

Note that the paper [14] identified the effects of various code 
smells on maintenance effort by analyzing the number of smells 
and the maintenance effort at the file level. We did not study the 
variation among the systems per se. Neither did we study whether 
refactoring of files to reduce smells, which may lead to reductions 
in size of the individual files, might increase the total system size 
and thus not improve the overall system maintainability. In 
contrast, the study reported here operates at the system level. 

4. MAINTENANCE STUDY 
Several maintenance metrics that were applied to the four systems 
were described above. However, how well do these metrics 
indicate actual maintainability (how easy it is to maintain the 
systems in practice)? 

To find out, we conducted a controlled maintenance study on the 
four systems. We hired six developers for a total cost of €50,000 
to perform three maintenance tasks each on two of the four 
functionally equivalent but independently developed Java 
systems. Three of the developers worked for a software company 
in the Czech Republic, and another set of three developers worked 
for a software company in Poland. We recruited the developers 
from a pool of 65 participants in an earlier study on programming 
skill [4] that also included maintenance tasks. Based on the results 
of that study, we selected these six developers because they could 
program reliably at medium to high levels of performance, 
reported high levels of motivation to participate in the study and 
were available to take part in new studies. In this case, the results 
of the former study became the pre-test measures for our study. In 
general, using pre-test measures to maximize the interpretability 
of the results is recommended [11]. 

The developers implemented two adaptive tasks that were needed 
to allow the systems to become operational again after changes 
had been made to the web platform. The developers also imple-
mented a third task that was requested by the users. The amount 
of time that each developer spent on each file was automatically 
recorded by a plug-in to an Eclipse IDE. The study lasted three to 
four weeks in the Czech Republic and three weeks in Poland. 

Each developer conducted the same three tasks on two different 
systems. There are two reasons for having the same developer 
maintain two systems. First, the relative impact of a system can be 
separated from the impact of the developer. Second, we could 
observe the developers’ learning process when they implemented 
the same tasks the second time. These two rounds also correspond 
to two different settings commonly found in maintenance work: 
maintainers who are newcomers to a system and maintainers who 
are already familiar with it. Although the systems were assigned 
randomly to each developer, the four systems were maintained the 
same number of times (two) by each developer, and all of the 
systems were maintained at least once in each round. 

The next lowest row of Table 1 shows the average amount of time 
that the developers spent on each of the systems. On average, the 
developers spent 39% less time on performing the tasks in the 
second round. We adjusted for this difference in the calculation of 
the average values in Table 1. 

Usually in human-centric studies in software engineering, one 
measures the quality of the tasks performed by the subjects in 
addition to time (effort). Perhaps the most commonly used quality 
attribute is the number of defects. However, in our case, the 
acceptance tests showed that there were few defects in the systems 
after the maintenance tasks had been performed. Therefore, it was 
not meaningful to use defects as a quality indicator. Instead, we 
used the number of changes completed in the course of the task as 
an indicator of quality. The number of changes is typically found 
to be a good predictor of later defects, with more changes 
increasing the fault-proneness [10], [8]. Consequently, we also in-
cluded the number of changes (revisions) performed to implement 
the tasks as the last control variable. The numbers were calculated 
using SVNKit [15], which is a Java library for obtaining infor-
mation from Subversion the Subversion version control system.  

The last row of Table 1 shows the average number of revisions 
per system. By combining the scores for effort and quality, Table 
1 shows that System C is the most maintainable system. In 
contrast, System B has the lowest quality, and System A had the 
highest maintenance effort. 
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Table 1. Maintenance metrics and a maintenance study applied to the four systems 
Legend: green indicates the best system and red the worst one 

Category Metrics System A System B System C System D 

Size  
 

Number of Java files 63 168 29 119 
Java lines of code (LOC) 8205  26679  4983  9960  

Maintainability Index 
(MI) 

LOC, # of comments, cyclomatic 
complexity, Halstead’s volume 

113 117 114 120 

Structural measures (SM) Coupling (OMMIC)  7.7 5.3 8.6 4.7 
Cohesion (TCC)  0.26 0.17 0.20 0.11 
Size of classes (WMC1) 6.9 7.8 11.4 4.9 
Depth of inheritance tree (DIT) 0.46 0.75 0 0.83 

Code smells 
 

Feature Envy (# per KLOC of code) 4.51 1.27 3.41 2.51 
God Class (# per KLOC of code) 0.12 0.19 0.60 0.20 

Study of actual 
maintainability 

Average effort (hours) 18 33 13 23 
Predictor of quality (avg. # changes) 148 125 76 124 

 

5. COMPARISON AND DISCUSSION 
Table 1 shows that none of the tailored maintenance metrics 
ranked the system that performed best in the maintenance study 
(System C) as the best one.  

The Spearman rank correlations among the maintainability 
metrics and the observed maintenance effort and quality are 
shown in Table 2. High values of metrics MI, TCC and DIT are 
supposed to indicate high maintainability. (Note that higher DIT 
values are considered good at least up to three [6]. The DIT values 
in our study vary from 0 to 0.83 on average.) Therefore, to 
compare the variables directly with maintainability, expressed in 
the number of hours spent on the maintenance tasks, we inverted 
the MI, TCC and DIT. 

The only two metrics that are highly correlated with effort are size 
and the inverse of cohesion (1/TCC). The remaining 
maintainability surrogate metrics are negatively correlated with 
the observed effort. Three of them, 1/MI, OMMIC and FE, have a 
high negative correlation. 

The inconsistency among the metrics is striking. One reason for 
the inconsistency is that some metrics are strongly interdependent; 
that is, for a given system, improving the value of one metric may 
imply less favourable values for other ones. For example, 
achieving low coupling is more difficult if one also attempts to 
achieve high cohesion, and vice versa. Achieving high cohesion 
and low coupling among modules or classes would generally be 
easier if one were to increase their size, but then the overall 
maintainability would decrease because of the increase in the size 
of the module or class. 

Similarly, some practices, such as the refactoring of God Classes, 
may lead to more files. Although this practice may decrease the 
size of what was originally a God-Class file, it would lead to a 
larger system overall. Thus, such apparent improvements induced 
by reducing the size of God Classes may make it more difficult to 
maintain the new refactored system.  

The conformance between code size and the outcome of the 
maintenance study may not be surprising. Software engineering 

folklore states that reducing functionality will reduce maintenance 
problems. The systems in our study demonstrate the positive 
effect of reducing size (measured in number of files or total LOC) 
without reductions in functionality. 
The answers to our research questions are as follows: 

RQ1: The considered common maintainability metrics were not 
mutually consistent in the considered projects. 

RQ2: Among the considered maintainability metrics, only size 
and the inverse of cohesion were strongly correlated with 
the actual maintenance effort observed in the study. 

It is possible that metrics apart from size may play a role in 
reducing maintenance effort in large projects where it takes a long 
time (> 3 years) for developers to become fluent [19], but we see 
no evidence that they matter in our context. 
 

Table 2. Spearman rank correlation matrix 
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# 
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LOC 1	   -‐0.6	   -‐0.8	   0.6	   -‐0.4	   0.6	   -‐0.8	   -‐0.4	   1	   0.4	  

1/MI -‐0.6	   1	   0.8	   -‐1	   0.4	   1	   0.8	   -‐0.4	   -‐0.6	   0.4	  

OMMIC -‐0.8	   0.8	   1	   -‐0.8	   0.8	   1	   0.6	   0.2	   -‐0.8	   -‐0.2	  

1/TCC 0.6	   -‐1	   -‐0.8	   1	   -‐0.4	   -‐1	   -‐0.8	   0.4	   0.6	   -‐0.4	  

WMC1 -‐0.4	   0.4	   0.8	   -‐0.4	   1	   0.5	   0	   0.4	   -‐0.4	   -‐0.4	  

1/DIT -‐0.5	   1	   1	   -‐1	   0.5	   1	   0.5	   -‐1	   -‐0.5	   1	  

FE -‐0.8	   0.8	   0.6	   -‐0.8	   0	   0.5	   1	   -‐0.2	   -‐0.8	   0.2	  

GC -‐0.4	   -‐0.4	   0.2	   0.4	   0.4	   -‐1	   -‐0.2	   1	   -‐0.4	   -‐1	  

Hours 1	   -‐0.6	   -‐0.8	   0.6	   -‐0.4	   -‐0.5	   -‐0.8	   -‐0.4	   1	   0.4	  

# chgs 0.4	   0.4	   -‐0.2	   -‐0.4	   -‐0.4	   1	   0.2	   -‐1	   0.4	   1	  
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Even though the study controlled for functionality and other 
factors, having only four sample points makes it difficult to make 
sweeping generalizations. The inherent inconsistency of 
maintainability metrics and the strength of the anti-correlations 
with observed maintainability, strongly suggest that, at least in the 
context of smaller scale projects, the size of the system may be the 
decisive factor determining actual maintainability. 

6. CONCLUSIONS  
The results of this comparative case study indicate that the 
existing software maintenance metrics are mutually inconsistent 
and that none of them, apart from size and the inverse of cohesion, 
are consistent with the results of a maintenance study of four 
systems that implemented the same functionality. Still, these 
metrics are used to validate a great number of technologies 
(processes, methods, techniques and tools) for supporting 
software maintenance. The choice of metrics, rather than actual 
maintainability, may determine the outcome of a study. For 
example, using the Maintainability Index, one could argue that 
hiring an expensive company with heavy processes (System D) 
improves maintainability. On the other hand, using size, one could 
claim that it is better to hire an inexpensive company with light 
processes (System C) because it will produce smaller systems 
that, consequently, are more maintainable.  

Our results are consistent with the findings of a related systematic 
literature review [13]. The researchers of this study found that 
there was little evidence regarding the effectiveness of software 
maintainability prediction techniques and models.  

Our study controlled for a number of factors including 
functionality, application domains and programming language, 
and the authors did not develop any of the metrics (lack of 
experimenter bias).  Our contribution is the observation that at the 
entire system level, the simplest metric of size was the best 
predictor of maintainability.  
Consequently, this study indicates that overall system size (as 
opposed to, e.g., file size or class size) as a measure of 
maintainability has been underrated in the software engineering 
community. However, the other “sophisticated” maintenance 
metrics are overrated. Researchers in software engineering should 
be cautious when using such metrics as surrogates for actual 
maintainability unless the metrics have been properly evaluated in 
the same context for which they serve as surrogates. 
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