
The Human Factors and the Hard Skills
Shaping the Role of the Software

Tester in Agile Teams

A Grounded Theory Study

Lucas Paruch

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Institute for Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2020

The Human Factors and the Hard
Skills Shaping the Role of the

Software Tester in Agile Teams

A Grounded Theory Study

Lucas Paruch

© 2020 Lucas Paruch

The Human Factors and the Hard Skills Shaping the Role of the Software Tester in Agile
Teams

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract
My Master Thesis aims to fill a research gap within the area of software testing, focusing
on the human dimension of the software testing role. Although there has been extensive re-
search on the technological aspect of software testing - such as tool usage, test automation,
and test processes - little research has been conducted within the human factors shaping
the role of the software testers.

In the first part of my thesis, I demonstrate this gap, by conducting two systematic lit-
erature reviews. I continue by presenting the design, and implementation of a qualitative
analysis, and by creating a theory on the combination of human factors and hard skills that
shape the software testing role, as described by the professionals working with software.

The qualitative study was conducted in collaboration with an international software ser-
vice providing company, who facilitated the interviewing of different professionals, as well
as allowing me to observe a team developing a customer-project within the financial sector.
I interviewed a total of 13 professionals, six with software testing roles and seven with non-
testing roles, and observed over 14 workdays on the project.

The research method applied was Grounded Theory along with Thematic Analysis, well
suited given the scope of the thesis, as well as the data collection and analysis. Through
interviews and observations, I obtained a set of human factors and hard skills as described
by the interviewed professionals, and sequentially, I obtained an emerging theory on how
these factors influence one another.

The qualitative analysis findings suggest that the professionals working with agile soft-
ware development see the following qualities as definitory for the software testing role: be-
ing adaptable, detail-oriented, creative, structured, curious, having good communication
skills, and able to see the whole picture. The emerged theory shows that for software
testers, both domain knowledge and technical knowledge will have a influence on being
creative, adaptable, detail-oriented, and being able to see the whole picture. In addition,
being structured will positively impact the ability to be detail-oriented. Software testers
that are constantly curious, are able to learn domain-knowledge and technical-knowledge
at an easier and faster pace. The theory also shows that having good communication skills,
being detail-oriented, and able to see the whole picture as a software tester will benefit the
team’s effectivity.

This thesis’ findings contribute by bringing to light the knowledge about the human factors
and their combination that give uniqueness to the software testing role. For practitioners,
this thesis can benefit the industry by providing factors that testers should possess, and
useful as a check-list to those in charge of hiring new testing personnel. For researchers,
this thesis contributes by adding knowledge to the little research available in this field, and
can serve as a foundation for future work.

i

ii

Acknowledgements
Writing this Master’s Thesis has been a unique experience in a challenging yet rewarding
way. Firstly, I would like to give commendation to my supervisor, Viktoria Stray. I am
deeply grateful for her tremendous support and insight. Her valuable knowledge, experi-
ence, feedback, as well as our lively discussions paved the way to different ideas, many of
which are currently implemented in the thesis. I also wish to extend my gratitude to Raluca
Florea for her incredible knowledge in the software testing field, her exceptional input and
guidance helped me shape the thesis into its current state.

I would like to express my thankfulness to Charlotte Bech Blindheim. The company col-
laboration set-up would not have been possible without her encouragement and continuous
support. A special thanks goes to the interview participants, for allowing me to conduct
interviews, and to collect data, as well as to the software team members, for allowing me to
conduct observations on project Sierra.

I thank my fellow students and the employees of the research group Programming and
Software Engineering for fruitful discussions and help. Lastly, I owe deep gratitude to my
family for their continuous support and inspiration - for I would not be where I am today
without your support.

PS: if there are any errors in this thesis - as surely there must be - they are probably the fault
of Viktoria as she is my supervisor and really should have trained me better :)

iii

iv

Preface
In 2015, I enrolled into the study program called Informatics: Programming and Network.
During the first two years, I learned basic programming skills, as well as got used to think
as a developer. Two years later, I chose to enroll in a course that was relatively new at
the time - Software Testing. Thus, the doors into the world of testing opened up for me.
During the course, I learned different testing types, techniques to test the software, and
how to think like a tester. I hadn’t done anything like this before, but the more I learned,
the more intrigued I became. It was a unique and educational experience, that made me
become a Teacher’s Assistant twice for the course, during my time at the university. How-
ever, I longed for more practical experience, as the most of the course was theoretical. How
was testing actually performed in the real world? An opportunity presented itself when a
software service providing company offered me a test-coordinator summer internship.

I began working at the company as an intern during the summer of 2019. We, the stu-
dents benefiting of this apprenticeship, were placed into cross-functional teams and asked
to be working in actual projects. The company’s software development methodology was
agile, therefore we faced a multitude of tasks and changes, in a relatively short time span.
Most of the curriculum I learned at the testing course were not applicable in this kind of
projects; needless to say, I felt out of place. I gained a consistent amount of practical expe-
rience during that summer, for instance on how testers are the ’middle-layer’ between the
technical and business side. I assisted the UX professionals in shaping the user-experience
and provided them with technical insights from the developers’ stand point. I helped the de-
velopers in understanding the software architecture while translating the UX requirements
into more concrete technical details. From the business side, I performed risk assessment
together with the business analyst and acquired good domain knowledge - which was fur-
thermore translated into technical detail. I still had my own testing tasks, such as creating
test plans, test reports, making test-cases, and reporting bugs.

After my internship, I realized that my perception of testers was inaccurate; they did much
more than test the code produced by the developers. Testers needed to possess good com-
munication and interpersonal skills, being able to work well in a team, regularly adapt
themselves, and needed to possess a sense of commitment. The book which we used as the
curriculum in the course [8], based on the ISTQB Foundations syllabus - had little mention
within this regard. Coming back from the internship and onto my last year of Master’s,
I realised this topic was something I wanted to research. The motivation for writing this
Master’s Thesis therefore originated from my personal experience as a software testing
course participant, and as an intern. With anticipation, this thesis would hopefully benefit
both the research field, as well as the industry focusing on software testing.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Area and Question . 1
1.3 Thesis Structure . 2

2 Background 4
2.1 Agile Development Processes . 4

2.1.1 Scrum . 4
2.1.2 Kanban . 6
2.1.3 Scrumban . 6

2.2 Agile Testing Practices . 6
2.2.1 Early Involvement & Task Delegation 6
2.2.2 Test-Driven Development & Test Automation 7
2.2.3 Continuous Integration . 7

3 Software Testing In Agile Development 9
3.1 Selection Process . 11
3.2 Three Categories of Agile Software Testing Papers 11

3.2.1 Innovative Artifacts . 13
3.2.2 Comparative Studies . 14
3.2.3 Evaluation Papers . 15

3.3 Lack of Human Factors Research in the Testing field 17

4 Human Factors In Software Testing 18
4.1 Selection Process . 18
4.2 Four Categories of Human Factors Papers . 19

4.2.1 Software Testing as a Profession . 20
4.2.2 Testers’ Motivation . 21
4.2.3 Personal Characteristics . 21
4.2.4 Miscellaneous . 23

5 Research Method 24
5.1 Qualitative Research . 24
5.2 Grounded Theory . 24

5.2.1 Grounded Theory Procedures . 25
5.2.2 Reflexive Thematic Analysis . 26

5.3 Data Collection . 28
5.3.1 Interviews . 28
5.3.2 Observations . 31
5.3.3 Chat Software . 33

vii

5.4 Data Analysis . 33
5.5 Validity . 34

5.5.1 Construct Validity . 35
5.5.2 Internal Validity . 35
5.5.3 External Validity . 35
5.5.4 Reliability . 36

6 Research Context 37
6.1 The Organization . 37
6.2 The Project . 37

6.2.1 The Team . 38
6.2.1.1 Responsibilities . 39

6.2.2 Processes . 41
6.2.2.1 Daily Stand-up Meetings . 42
6.2.2.2 Test-status Meetings . 42
6.2.2.3 Feasibility Meetings . 42
6.2.2.4 Sprint Planning and Retrospective Meetings 43

6.2.3 Tools . 43

7 Results 44
7.1 Human Factors . 44

7.1.1 Adaptable . 44
7.1.2 Good Communication Skills . 45

7.1.2.1 Friendliness and Constructive Feedback 45
7.1.2.2 Meticulous Bug Reports . 45
7.1.2.3 Provide Information, ask for Additional 46
7.1.2.4 Introversion and Extraversion 47
7.1.2.5 Bridging the Gap Among the Team 47

7.1.3 Detail-oriented . 48
7.1.3.1 Detail-oriented in Terms of User-experience 48
7.1.3.2 Detail-oriented in Terms of Technicalities 48

7.1.4 Creative . 49
7.1.5 Curious . 50
7.1.6 Structured . 52
7.1.7 See the Whole Picture . 53

7.2 Hard Skills . 55
7.2.1 Domain Knowledge . 55

7.2.1.1 Rapid Acquisition . 56
7.2.2 Technical Knowledge . 56

7.3 External Factors . 57
7.3.1 Community of Practice . 57
7.3.2 Motivational Factors . 58
7.3.3 Support System . 58
7.3.4 Trust and Respect . 58

7.4 An Emerging Theory of Software Testers’ Human Factors 59

viii

8 Discussion 64
8.1 Adaptable . 64
8.2 Good Communication Skills . 64
8.3 Detail-oriented . 65
8.4 Creative . 65
8.5 Curious . 66
8.6 Structured . 66
8.7 See the Whole Picture . 66
8.8 Additional Findings . 68

8.8.1 Software Testing as a Profession . 68
8.8.2 Motivational Factors . 68

8.9 An Emerging Theory of Software Testers’ Human Factors 69
8.10 Implications for Practice . 71
8.11 Implications for Theory . 72
8.12 Validity . 73

8.12.1 Construct Validity . 73
8.12.2 Internal Validity . 73
8.12.3 External Validity . 73
8.12.4 Reliability . 74

8.13 Limitations . 74
8.13.1 Limitations Regarding the Data . 74

9 Conclusion 76

10 Bibliography 77

A NSD Consent form 84

B Interview Guide for Testers 86

C Interview Guide for Non-testers 90

D Observation Protocols 93

E EASE2020 Article 94

ix

x

List of Tables
1 Research Databases used for Conducting Literature Review 10
2 Search String for Software Testing in Agile Development 10
3 Selection Stages . 10
4 The Results at each Stage of the Selection Process 11
5 Three Categories Generated from Findings . 13
6 Evaluation Papers . 16
7 Search String for Human Factors . 18
8 The Results at each Stage of the Selection Process on Human Factors 18
9 Four Principles of data Collection . 29
10 Interview Types . 30
11 Overview of the interviews . 31
12 List of Meetings Observed . 33
13 Team Members, Their Roles, and Their Placement 39
14 Constructs, Propositions, Explanations, and Scope of the Theory 60

xi

xii

List of Figures
1 Results Grouped into Patterned Categories . 12
2 Research methodology Utilized Sorted by Category 14
3 Categories Within Innovative Artifacts . 15
4 Categories Within Comparative Studies . 16
5 Four Categories of Investigated Findings . 20
6 Example of how data was Coded . 35
7 Simplified Technical Structure of the Project 38
8 Sierra Seating area . 40
9 A Theory of Human Factors . 63

xiii

xiv

1 Introduction
Agile software development began in the late 1990s, as organizations found it burdensome
to apply sequential approaches for small to medium-sized projects [80]. Its methods are
based on iterative and incremental development, characterized by qualities such as short
time-boxed or task-boxed cycles, and rapid customer feedback. Today, methodologies such
as Scrum, are prevalent among agile organizations. The 12th annual report from CollabNet
VersionOne - the most significant and longest-running agile survey in the world - revealed
that over 50% of the 1400 respondents’ organizations are currently practicing Scrum [18].
From the perspective of software testing, agile might appear radical at first. The short
iterations might give the impression that agile does not allow as much time for test prepa-
ration, planning, and organisation as the sequential-development software projects, and
neither the twelve agile principles or the agile manifesto explicitly states how software
testing should be conducted.

1.1 Motivation

Popular testing activities within agile methodologies such as test-driven development, test
automation, and continuous integration have been identified and proven to be effective.
Technological aspects of software testing, such as new testing tools, techniques, and frame-
works, have also been presented in recent years. However, through my searches in the
academic literature , I found that there has been little research conducted on the quali-
ties of the software testers in recent years. The ISTQB syllabus - Foundations of Software
Testing - mentions only briefly the psychology of testing [8]. As such, there is a need for
research on the human aspects of testers working in an agile environment. This thesis
therefore investigates the human factors and their combinations that are seen as relevant
by the practitioners for the software testing role.

1.2 Research Area and Question

This thesis is a concatenation of systematic literature reviews, an ample qualitative study,
comprising of a series of interviews, and a case study, as well as the formation of a grounded
theory on the human aspects of the software testing role. The purpose is to understand the
desirable human factors and skills for the software testing role, as well as the way they
shape each other, as viewed by both software testers and other roles within the development
teams. As such, those we interviewed were both testers as well as non-tester personnel, in
order to create the full picture of the software tester’s role. In addition to the interviews, I
have also conducted a case study by observing a project involving a cross-functional team

1

using an agile development methodology. Since the software testing role was the main focus
of my research, I focused primarily on the software testers during my time of observation
- taking additional notes, such as the individual’s behaviour and interactions. The two lit-
erature reviews I conducted, which are to be described further in the thesis, confirm that
little investigation has been conducted within this topic. The scarcity of existing research
led me to construct the following research question:

RQ: Which human factors and skills are perceived as determinant for the agile
software testers role, and how can they shape one another?

1.3 Thesis Structure

The rest of the thesis is structured as follows:

Section 2: Background provides contextual information used in framing my research
work, in the scope of the thesis. Since the thesis over-arches across two research areas, the
background work on agile software development methodologies and popular agile software
testing techniques are presented in this chapter.

Section 3: Software Testing In Agile Development presents the first literature review
conducted, to present a summary of the past ten years within software testing in agile de-
velopment. The outcome of the first literature review is also used to demonstrate the lack
of research on the tester-role human factors within agile testing.

Section 4: Human Factors In Software Testing presents the second literature review,
where the identified gaps in the previous chapter are tested. This literature review broad-
ens the summary of human-factors academic research, and looks for literature on human
factors in software testing, regardless of development methodologies.

Section 5: Research Method outlines the research method of the Thesis, research design,
data analysis approach, data collection procedure, different data types, and validity of the
results.

Section 6: Research Context presents both the organizational and project context in
which I gathered my data from, in order to familiarize the reader with the research set-
tings.

Section 7: Results elicits my findings from data analysis and data collection, and attempts
to present an introductory theory grounded from the data.

2

Section 8: Discussion aims to compare my findings with the relevant, existing research
literature and discuss my results and theory in light of those. Implications for both practice
and theory will also be presented.

Section 9: Conclusion summarizes and concludes the thesis as a whole, and elicits contri-
butions to existing works, as well as potential future research within this interdisciplinary
topic.

3

2 Background
This section presents relevant software development methodologies used in agile develop-
ment. Following, the currently popular agile software testing practices are presented. Both
sections are aimed to give the reader a frame of understanding for the research-object of
the thesis.

2.1 Agile Development Processes

The agile approach is based on the four fundamental values and twelve principles found in
the Agile Manifesto. Process models such as Scrum, Kanban, and Scrumban all emphasize
these guidelines. Their iterative and incremental methods characterize agile models. An
agile project is usually broken into a series of small cycles. During each iteration/cycle, the
team aims to deliver a subset of the functionality agreed upon with the customer. Sequen-
tial, single-function teams are not viable for such a process. A rethinking of team structure
was needed, due to fundamental activities being interleaved rather than separated. Au-
tonomous cross-functional teams became the essence within agile processes [2], as these
teams included people who possess primary specialty within one field and secondary spe-
cialties within several.

Compared to sequential software development methods, agile process models with their
distinct activities offered an increase in both quality and productivity [12, 42]. It is note-
worthy to mention that the root of agile began with Extreme Programming (XP), which has
contributed a significant amount to the agile community with its development practices.
Some of the commonly known techniques used in agile frameworks mentioned above in-
clude test-first development, continuous integration, and refactoring. The current section
presents the background work on both software development models and agile software
testing techniques. As the thesis is mainly focused on agile development, only process mod-
els within the category will be elaborated. The aim is to give the reader an insight into the
history and current information on the subject.

2.1.1 Scrum

Scrum is a framework based on iterations and delivering product increments. Projects us-
ing this framework are broken down into a set of manageable and understandable cycles
that both the stakeholders and the development team can relate. Its work-flow is based on
time-boxed series called sprints, which usually last around 2 - 4 weeks. Time-boxed signi-
fies that the sprint ends on a specific date with non-extendable deadlines. There are differ-
ent roles and groups within the agile framework including, among others, cross-functional
teams, the backbone of Scrum. These teams operate with high cohesion and possess dif-

4

ferent functional expertise within in order to deliver a potentially ship-able product each
sprint [15]. Knowledge sharing is high between team members: for instance, a UX designer
may assist with software testing tasks if needed. Other roles within the team include Scrum
Master; these facilitators guide cross-functional teams and the Product Owner (PO) in the
right direction and assist them on the values and practices of Scrum [15]. The role PO rep-
resents the customer’s side. They may introduce the Product Backlog artifact - a list of items
or features that the customer(s) wishes to be implemented into the product [15]. In Scrum,
there are so-called ceremonies that occur during a sprint. These include Sprint-Planning
Meeting, Daily Stand-up, Sprint Review Meeting, and Sprint Retrospective Meeting.

Sprint-Planning Meeting
During the start of a sprint, a sprint-planning meeting is usually held with the PO, the
Scrum Master, and the team. The PO and Scrum Master review the items held in the Prod-
uct Backlog and re-prioritize them if necessary, and they determine the goals for the sprint.
The team may select items from the product backlog (usually from a top-down approach)
and into the sprint backlog - a list of items and features which the team aims to complete
by the end of the sprint.

Daily Stand-up Meeting
During each day of the sprint, a daily stand-up meeting is held. Its duration should not
exceed beyond 15 minutes [76]. Within the time-frame, each team member should answer
the following questions:

1. What did I do yesterday?

2. What will I do today?

3. Are there any impediments?

Studies show stand-up meetings are commonly being used for reporting what had been
done rather than what will be done. According to Stray [75], the time devoted to each of the
three questions are as follows: Question 1: 53%, Question 2: 25%, Question 3: 22%. Stray
et al. [76] proposes improvements to stand-up meetings by both removing Question 1 as
well as making each member present in the meeting to be standing instead of sitting down,
in order not to exceed the allocated time frame.

Sprint Review Meeting
During the end of a sprint, a review meeting is to be held between the PO, the team, and
the Scrum Master. The purpose of this meeting is inspect and adapt the product - meaning
learning and evolve based on feedback given. The PO learns what is going on with the
product and the team, while the team learns what is going on with the PO and the market.
The review meeting usually includes a demo of the product.

5

Sprint Retrospective Meeting
The sprint retrospective meeting is about inspect and adapt of the process. The team learns
what is working and what to improve for the next sprint. Retrospective meetings are useful
for making visible bottlenecks as well as areas for improvement [3].

2.1.2 Kanban

The Kanban process utilizes many of the concepts from Lean but is focused more on soft-
ware development. Kanban principles include: Visualize the workflow, limit Work-In-
Progress, Measure and manage flow, and improve collaboratively [1]. As such, it is often
used in conjunction with a tangible board and pull-based system [51]. Ahmad et al. argue
that the fundamental principles of Lean are mainly overlapping with the principles of Kan-
ban. Agreeably, both Kanban and Lean reflects on characteristics such as working towards
flow, develop skillful individuals, increase product quality while minimizing waste. In order
to visualize the workflow, a tangible board is used. The Kanban board provides visibility to
the software process because it shows the assigned work of each developer, clearly communi-
cates priorities, and highlights bottlenecks. [1]. Compared to Scrum, Kanban is task-boxed.
Meaning it does not emphasize time deadlines as much as number-of-tasks-done deadlines.
Kanban focuses on the completion of prioritized items as opposed to Scrum’s how-much-
can-we-do within the time limit of the sprint.

2.1.3 Scrumban

Scrumban is a methodology based on both Scrum and Kanban. Scrumban uses several
Scrum practices, such as Product Backlog and its ceremonies combined with Kanban prac-
tices such as visual management and its pull-based system. According to [50], quoted by
[79], ”Scrumban is best used for projects with frequent changing user stories or program-
ming errors, as time-limited sprints of the Scrum model are of no appreciable use, but its
daily meetings and other practices can be applied, depending on the team and the situation
at hand”.

2.2 Agile Testing Practices

2.2.1 Early Involvement & Task Delegation

A noticeable divergence from sequential development methods entails involving testers
right from the beginning of the development cycles. One of the seven testing principles
states that quality assurance activities should be started as early as possible in the life-
cycle in order to avoid additional cost and time [8]. In agile, early involvement of testers at

6

the start of the project, or iteration, enables discussions about user stories or the system ar-
chitecture to which primary testing personnel will acquire a better understanding of what
to test. It also allows them to identify different test environments and scenarios early on -
thus increasing the overall productivity and test validity. The delegation of testing tasks is
also an essential feature of agile. It is expected that developers perform unit-tests on their
own. The encouragement of having multiple roles in a team ensures that developers may
also do other testing tasks, such as reviewing user stories and creating test conditions. Ded-
icated testers, therefore, have more time to focus on other techniques such as exploratory
testing, usability testing, and improving test coverage with the developers [68]. Knowledge
transfer also happens more frequently and naturally amongst developers and testers, as
both testing and development happen concurrently during each iteration. While new team
members may benefit from the active feedback, testers also ensure that no misunderstand-
ings or confusion occurs during development. The tight coupling between testers and the
rest of the team enables fast learning and greater understanding of each other.

2.2.2 Test-Driven Development & Test Automation

Test-Driven Development has its origin from Extreme Programming and interleaves testing
and code development. Its basic principle is to create the tests before implementing code,
and its purpose involves producing simple, more cohesive, and less coupled code compared
to the more traditional ways [43]. Additionally, the popularity of agile methodologies is due
to the assumption that quality software may be produced with a limited workforce. This is
achievable with activities that enable automate engineering in a software test process - also
known as test automation. Regression testing - the art of executing tests to confirm that
defects fixed did not introduce new incidents in other areas - are most efficient when auto-
mated [29], thus reducing time compared to manual conduction and increases efficiency. As
the code is developed in small increments, the need for recurrently running previous tests,
to make sure a modification has introduced no defects to the product, is crucial. Automated
regression tests, therefore, can drastically reduce the time and cost of the project.

2.2.3 Continuous Integration

The introduction of multi-skilled workers in agile highlighted a possible nuisance, and sev-
eral team members may concurrently edit the source code. Old Version-Controlled Systems
(VCS) defaulted to strict locking - meaning only one person could edit the source file at a
time. With the introduction of agile, new VCS system enabled optimistic locking - mean-
ing several people could edit a source file concurrently. While it is safe to assume that
developers need to spend some amount of time with merge-conflicts due to the new locking
system, continuous integration was seen as an improvement to the old ways. The continu-
ous integration practice entails that developers should commit small, often, and daily [58].

7

Integration happens frequently, with small-increments rather than the big-bang method of
sequential development models [8]. For some VCS tools, if the source code pushed to the
VCS fails to compile or successfully integrates, the tool will notify the developer. Fixing a
failed integration is the one of the highest priority in agile development [42].

8

3 Software Testing In Agile Development
In order to investigate the current research within software testing in agile development, I
conducted a literature review. To name a few courses I took before starting my work on the
thesis: Software Testing, System Development, and Smart processes and Agile Methods in
Software Engineering. The curriculum books and the lecture slides served as a guideline
for understanding concepts such as software development approach, agile methodologies,
and the different aspects of software testing. According to Kitchenham, a systematic liter-
ature review is identifying, evaluating, and interpreting all available research relevant to
a particular research question, topic area, or phenomenon of interest [49]. By conducting a
literature review, I aimed to gather as much relevant information concerning the topic as
possible.

An existing systematic review regarding the topic, conducted by Fortunato et al., was found:
Quality Assurance in Agile Software Development: A Systematic Review [28]. Their system-
atic literature review included academic studies published between 2001 and 2015, and
their research questions aimed to answer which practices are used for quality assurance
in agile projects?, and What are the main challenges and limitations of quality assurance
on agile methods?. I attempted to replicate the results using the same search string and
databases, which proved to be inconsistent with the results they published as some of their
findings did not appear in mine. In addition, their literature review had no keywords for
software testing in their search string. I sent an e-mail to the authors, asking for elabora-
tion, but a reply has yet to be received at time of this writing. My literature review takes
inspiration from Fortunato et al. [28], but it is not a continuation or replication from theirs.

I explored several scientific literature databases for potential literature, as presented in
Table 1 on the following page. The databases SpringerLink and Wiley Inter-Science Jour-
nal were excluded, as Scopus subsume results from both. Table 2 on the next page shows
the search string. The string was modified to fit the syntax of the different databases - how-
ever, semantics were ensured to be consistent. A worthy mention is that I included the term
’quality assurance’ since there are research papers that refer to software testing activities
as quality assurance activities, and the two are interchangeable in agile projects to some
degree. My view is that ’quality assurance’ is a responsibility taken on by the whole team,
whereas ’software testing’ refers specifically to the tester role and the specific activities.
Nevertheless, both concepts have been included in the search string, for a broader catch.
As Kitchenham suggests, selection criteria are ”intended to identify those primary studies
that provide direct evidence about the research question” [49]. They should also be decided
before study selection in order to reduce the likelihood of bias. I devised protocols that
include both inclusion and exclusion criteria. They are as follows:

9

Databases Link
ACM Digital Library https://dl.acm.org/

IEEE Xplore https://ieeexplore.ieee.org
Science Direct https://www.sciencedirect.com/

Scopus https://www.scopus.com/

Table 1: Research Databases used for Conducting Literature Review

(”agile software development” OR ”agile development” OR agile) AND
(”software testing” OR ”quality assurance” OR ”QA” OR ”SQA”)

Table 2: Search String for Software Testing in Agile Development

Inclusion Criteria

• Relevant academic and industry studies

• Relevant conference, journal, and workshop works

• Review articles, research articles, book chapters, and conference papers

• Qualitative / quantitative research studies published between 2009 - 2019

Exclusion Criteria

• Non-English contributions

• Contributions not related to Information Technology

• Encyclopedias, prefaces, book reviews, case reports, correspondences, discussions, in-
terviews, tutorials, editorials, mini reviews, news.

The selection stages consist of four steps, as presented in Table 3 below:

Stage 1 Identify studies matching search string, inclusion criteria,
and exclusion criteria. Discard duplicate studies.

Stage 2 Exclude studies with no mention of quality assurance or soft-
ware testing and agile in either title, keywords, or abstract.

Stage 3 Review abstract, discarding irrelevant studies for research
topic. Conform - and discard - secondary studies with cur-
rent literature review. Review of introduction, methodology,
results, and discussion.

Stage 4 Assess full papers, snowballing references for further study.

Table 3: Selection Stages

10

Database Stage 1 Stage 2 Stage 3 Stage 4
ACM 96 7 6 5

IEEE Xplore 262 45 27 21
Science Direct 1344 10 5 5

Scopus 492 29 19 17
Total 2194 results 91 results 57 results 48 + 2 results

Table 4: The Results at each Stage of the Selection Process

3.1 Selection Process

I began the review by applying the search string onto the four scientific databases. The
application of inclusion criteria, exclusion criteria, and the removal of duplicated studies
resulted in a total of 2194 articles during stage one. All articles were skimmed through,
excluding the ones that did not mention any form of agile methodology or quality assur-
ance/software testing in the title, abstract, or keywords. The exclusion eliminated over 95%
of the initial total - resulting in 91 works. Furthermore, I carefully interpreted the abstract
of each article. Studies without their primary focus on software testing were excluded.
Studies that did not write about software testing used in conjunction with agile practices
or present new agile testing practices were also eliminated. I discarded secondary studies
that provided no actual empirical data. However, I used them as a checklist in comparison
to my current literature. They also proved useful candidates for snowball sampling. The
exclusion eliminated over 30 studies from the selection pool. Finally, each of the 48 papers
was carefully assessed. By using snowball sampling, two additional papers were found to
be relevant for the review. During the readings of the 50 papers, I noticed a particular pat-
tern of what each article was about. Some entailed evaluating existing techniques within
a specific context, while others made comparisons throughout their paper. There were also
papers concerning existing activities with innovative mechanisms. I, therefore, began to
group research papers which exhibited similar themes. I produced three main categories in
which each article was classified and assigned to.

3.2 Three Categories of Agile Software Testing Papers

Figure 1 shows the result of category aggregation. Each research article have been given a
classification of either innovative, comparative, or evaluation - each explained respectively
in table 5 on page 13.
Six articles were hovering between two categories [21, 17, 63, 56, 6, 34]. These were care-
fully read and placed into one specific category to the best of my ability following the ar-
ticles’ main focus points. The result of the aggregation shows that most of the papers are
an evaluation of existing software testing techniques, strategies for choosing appropriate

11

Figure 1: Results Grouped into Patterned Categories

methods or attributes to improve overall quality in conjunction with agile development.
Yet, there is no scarcity of papers researching innovative techniques or tools to be used in
agile testing, as one-third of the 50 results fall into that category.
The categorized papers were furthermore studied to see the research methodology used.
Figure 2 shows that the majority of studies were conducted using a case study. There may
be several reasons for why such an empirical method is the favored research methodology.
One is due to the industry and research field being tightly integrated in the field of soft-
ware testing and agile methodology. A case study allows the investigation of a phenomenon
within its real-life context, and especially appropriate for theory building and theory test-
ing. Evaluation of testing tools, methods, techniques cannot be realistically measured in
terms of usage in an experiment. Seeing how experiments are the only research strategy
that can prove causal relationships and provide high precision in measuring outcomes and
data analysis, it is reasonable to think why experiments are a significant portion of research
methodology used in the innovative category

12

Category Explanation

Innovative artifacts Studies modifying existing ceremonies/techniques/processes
which directly/indirectly affect software testing activities in
agile development are mentioned here. In addition, papers
presenting new ceremonies/techniques, etc. also fall under
this category

Comparative studies Papers falling under this category are comparative studies.
For example, the difference in software testing techniques be-
tween plan-driven processes and agile processes

Evaluation papers Papers subsumed under this category include the evaluation
of existing known methods/technologies used. Skills required
to perform specific tasks related to software testing. Evalua-
tion of testing usage from foreign companies. Challenges re-
garding utilizing a specific artifact in agile development.

Table 5: Three Categories Generated from Findings

3.2.1 Innovative Artifacts

Innovative artifacts can be divided into Models, Practices, Tools, Processes, and Others,
seen in Figure 3. There were two models created in order to assist in agile software test-
ing. A proposed reference model to measure maturity level similar to that of CMMI [72],
and a proposed process model focusing on software quality assurance called Agile Qual-
ity Assurance Model (AQAM) [39]. There were four practices identified as been developed /
modified, these concern new techniques for continuous integration [42], new agile ceremony
with purpose of finding and reporting defects [78], automated regression testing [44], and
new techniques for creating test cases [77]. In addition, tools for UX-testing have been de-
veloped, and specific testing tools were creating for context-specific applications [35]. There
have also been developed tools aimed at testing cloud applications [56], as well as cre-
ating an E-learning system for agile software development [7]. The two processes entail
modification/overhaul of agile process models, one being integrating agile testing with the
V-model [4], and the other modifying Scrum to incorporate new testing tasks when develop-
ing safety-critical systems [34]. The category ’Others’ include different subjects that had no
aggregation of more than 1, such as evaluation of new tester role [53], new testing metrics
[47], approach for simulation testing [70], or framework for model-based testing [54].

13

Figure 2: Research methodology Utilized Sorted by Category

3.2.2 Comparative Studies

Two studies were focusing on Test-Driven Development vs. Test Last [40, 60]. In essence,
both findings show that Test First-programmers spent a higher percentage of time on test-
ing, a lower percentage of time coding. However, the benefits of test-driven development
are small compared to test-last as products delivered were neither higher quality nor were
more productive. Nevertheless, using TDD endorsed better branch coverage. Two studies
were focusing on the difference of test activities conducted in an agile project compared to
plan-driven projects [48, 24]. Kettunen et al. initiated a study criticizing the absence of
guidance in agile methods on how testing should be arranged in parallel with development
[48]. The study thus raises the question of whether testers are needed in agile development
at all as testing is emphasized on developers . The study conducted by Dhir and Kumar [24]
compared the process of conducting testing on a web application in a sequential environ-
ment and agile environment. Results showed that there was an improvement in the agile
model compared to the sequential model. The agile model had increased test coverage, but
also reduces cost and improved productivity of the team. Similarly, the study investigating
whether dedicated testers are needed or not in an agile context reported that it entirely
depends on the team [62]. In order for the team to be efficient without testers, they need
to feel fully responsible for the software, have sufficient freedom to decide and control all
relevant aspects of their work, and have common ground with users of the software in or-
der to properly interpret the feedback. Disadvantages include integration testing beyond
the team level becomes harder to conduct. The last study compared motivation factors
for testers [21]. The results are that sequential testers have a higher degree of stress but

14

Figure 3: Categories Within Innovative Artifacts

a more positive attitude for tacking challenges. In contrast, agile testers are better inte-
grated into their teams but expressed unhappiness about their relationship with developers
as they found it difficult in communication with them.

3.2.3 Evaluation Papers

The 28 studies in the ’Evaluation’ category had an immense amount of subjects, Figure
6 shows a total of 13 categories. The summary of each article within this category has
refrained from being written. Rather, an explanation of each article can be found in the
literature review excel sheet - which I have uploaded on figshare. There are some subjects
requiring explanation. ’Perception’ indicates that a study focuses entirely on the subjective
opinions of agile testing within a company. ’Foreign Usage’ evaluates the different agile
testing techniques in non-western countries. Although teamwork focuses on the interaction
between team members, it can be an underclass to Human Factors which focuses on the soft
skills required of a particular role. The reasoning behind splitting up the two is due to scope
and focus. Studies placed in teamwork do not have personal skills as their primary focus,
whereas studies placed in human factors, does. Attributes for success indicate what factors
are essential to consider in order to have the highest possibility of a successful project /
deliver a product of the highest quality possible. Assessment deals with the adoption of
existing techniques and measuring their effectiveness.

15

https://figshare.com/articles/LiteratureReviewMastersThesis_xlsx/12022551

Figure 4: Categories Within Comparative Studies

Category Amount Examples
Quality attributes 7 Variables to improve quality and productivity
Test automation 4 Test automation strategies / challenges in Scrum
Process model transition 3 Transition from plan-driven to agile process model
Assessment 3 Assessing testing methods in an agile context
Foreign usage 2 Testing techniques used in Korea and Pakistan
Teamwork 2 Collaboration among team members to foster testing
Human factors 1 Soft skills wanted by employers, for testers
Exploratory testing 1 Enacting exploratory testing in an agile project
Perception 1 Agile testers’ opinion on agile
Security testing 1 Synchronization between agile team and security team
Test-driven development 1 Automated acceptance test-driven development
Usability testing 1 Integration of Scrum med usability testing

Table 6: Evaluation Papers

16

3.3 Lack of Human Factors Research in the Testing field

The literature review resulted in 50 studies that focused on research related to software
testing within an agile environment. Over half of these focused on evaluating existing
known methods or technologies used within their respective context. About one-third of
the studies focused on researching new constructs in order to assist and improve the soft-
ware testing field, and 10% of the studies focused on comparing known techniques such as
Test-Driven Development with test-last development - the categories from all these stud-
ies varied considerably. The majority of the research relates to covering the performance
of applications of some testing techniques, automation benefits, or differences of practices
applied in project contexts that follow sequential or agile development methods. Studies
dealing with human behavior within the field of software testing are scarce, even with the
introduction and focus on agile methodology highlighting the importance of people, team-
work, and communication.

The lack of such research in human factors within the testing field enhanced my specu-
lation that the topic at hand is under-researched and fueled my motivation to focus my
thesis on human factors - for several reasons. First, the literature review shows that little
research has been conducted within this area. The Master’s Thesis would, therefore, benefit
the research field by building a foundation for future work regarding human factors in soft-
ware testing. Secondly, human factors should be considered crucial in order to build useful
theories and results in other topics. They should be considered, as there may be risks of
producing results that do not uncover the key factors when determining the success or fail-
ure of a research project. For example, in an agile software project where test automation
improvement is needed, reluctance to change might be more important to consider than
which automation strategy to apply. Thirdly, supposing that research about human factors
within software testing has been conducted, this literature review shows that they have not
been researched in conjunction with agile software development. It would, therefore, still
be of relevance to research the human factors required/desirable for testers within agile
software development.

17

4 Human Factors In Software Testing
I decided to conduct another literature review regarding human factors and software test-
ing outside of agile development. It is to ensure that the research gap is present and that
human factors in software testers have generally not been researched to an extent. There-
fore, the main goal of the second literature review is to find research related to human
factors within software testing and confirm that scarce research has been conducted within
my chosen topic. The secondary goal of conducting another SLR is to highlight current lit-
erature within the topic and investigate research gaps for further study. The importance
of highlighting human factors applies to both researchers and practitioners. For practic-
ing software testers - if human factors are the determining factor for a successful project -
then identifying, motivating, and rewarding testers possessing such factors are vital. For
researchers, if human factors prove to be more important than techniques and tools - a new
research topic arises. Identifying the most critical factors, and develop ways to identify in-
dividuals who possess these factors, as well as determining if these factors are teachable.

The second literature review is consistent with the first one. Scientific databases, inclu-
sion, and exclusion criteria were ensured to be as close in resemblance as possible with
regards to the first literature review. Table 7 shows the search string to be used on the four
databases presented in table 1 on page 10. Figures regarding protocols and selection stages
were refrained from creation, as they are nearly identical as table 2 on page 10 and 3 on
page 10.

(”human factor” OR ”human factors” OR ”soft skills”) AND (”software test-
ing” OR ”quality assurance” OR ”QA” OR ”software quality assurance” OR
”SQA”)

Table 7: Search String for Human Factors

4.1 Selection Process

Database Stage 1 Stage 2 Stage 3 Stage 4
ACM 35 1 1 1

IEEE Xplore 60 15 9 9
Science Direct 956 3 2 2

Scopus 109 3 3 3
Total: 1160 22 15 15

Table 8: The Results at each Stage of the Selection Process on Human Factors

18

By doing the same protocol as before, I began the review by applying the search string onto
the four databases. I applied the same inclusion and exclusion criteria and the removal
of duplicated studies. The search on the four databases yielded over 1000 results, most
of them stemming from the Scopus database. I quickly skimmed through the articles by
title, abstract, and keywords, removing the ones who did not mention human factors and
software testing. The majority of the 1000 results found were irrelevant, as most of them
did not focus on human factors. The ones that did, focused not on software testing, and
belonged primarily in the medical and psychology field. A total of 22 studies were selected
for stage 2, and was carefully read. The research papers which were not complete or did
not focus on human factors within the field of software testing were further excluded from
the selection. This literature review identified 15 studies to be of relevance. In addition to
the two research articles focusing on human factors from the first literature review, there
are a total of 17 relevant studies from the period 2009 - 2019 that focuses on human factors
in software testing.

The 17 research papers were carefully read, taken notes of, and checked references to see
if any additional papers complied with the inclusion criteria, and which were not found by
the search string. There was no additional literature found using this technique. However,
a notable trend was that research papers that were recently published cited the same ex-
isting research papers within the pool. The research papers that got cited a lot conducted
their research based on literature regarding human factors within software engineering in
general, and had no specific focus on software testing. Based on this finding, I felt that
the literature within the topic of human factors in software testing during this period have
mostly been caught.

4.2 Four Categories of Human Factors Papers

Following the literature review in the previous section, I grouped the research papers that
exhibited similarities. I aggregated a total of four categories, these include: (1) software
testing as a profession, (2) motivational factors for software testers, (3) personal character-
istics of software testers, and (4) a miscellaneous category. The lastly mentioned category
includes research papers that comprise of different subjects and had no aggregation of more
than one. Figure 5 on the following page shows the assigned categories. Note that there are
two papers belonging to two categories. Unlike the previous literature review, the contents
from the papers were tangible, which proved difficult to assign them into one distinctive
category. Each of these categories, as well as the research papers belonging to that cate-
gory, are elaborated in the next section.

19

Figure 5: Four Categories of Investigated Findings

4.2.1 Software Testing as a Profession

Studies have been conducted on investigating software testing as a profession. Capretz et
al. [13] conducted a quantitative survey amongst professionals in four geographic regions,
to find out the degree of attraction of the profession. Results indicate that testing was not a
popular career option among software professionals. De-motivators include the treatment
of ”second-class citizen” and complexities resulting in stressful and frustrating situations.
Shah et al. mentioned similar opinions voiced by senior testers in a service-based software
company located in India [71]. The majority of the seniors had a negative attitude towards
testing and considered it to be necessary. They voiced the profession as secondary tasks
or a stepping stone for a developer career. Being involved in testing allows individuals
to gain a more in-depth understanding of the product, and thus make a more substantial
contribution to the development of the product. This opinion was also reflected in the ju-
nior testers, but with a positive attitude, testing helped them learn the system better so

20

they could become skilled programmers in the future. The study found that all except one
participant did not want to work permanently as a tester. In addition, Deak et al. found
that agile testers were more unhappy about their relationship with developers than testers
working in a sequential model, which was interesting as agile encouraged more teamwork
and blurred line of profession [21].

4.2.2 Testers’ Motivation

Studies have also been conducted regarding the motivation of software testers. Mainly,
research has proposed a set of motivational factors (i.e., what keeps a tester motivated in
order to do his/her job) and a set of de-motivational factors (i.e., factors that could negatively
affect the tester in terms of efficiency, creativity etc.). Santos et al. point out the importance
of highlighting the testing activities as ”a set of human dependent tasks,” therefore empha-
sizing the need for research within motivation [69]. They argue that five factors influences
the motivation of software testers: acquisition of useful knowledge during work, work va-
riety, creativity in solving tasks, well-defined work with the precise sequence of steps, and
recognition of work. The authors highlight the last factor, which has a lasting impact on
the testers’ motivation as well as an increase in individual productivity and teamwork en-
hancement.

Deak et al. also report similar motivational factors [23], such as enjoying challenges, variety
of work, and recognition such as positive feedback received from both management and de-
velopers. Deak et al. also identified de-motivational factors, exemplified by time pressure,
delaying/sacrificing testing activities until the end of projects, lack of resources/planning re-
sulting in inefficiency for testers, or lack of influence and recognition amongst the project.
Moreover, some of the participants mentioned the tedious routine of some testing activities
and the ”feeling of boredom” [23], which would furthermore increase the assumption that
the profession is unattractive. Kanji et al. also identified motivation as one of the factors
crucial in being an effective software tester [45]. However, their research focused more on
personality traits rather than motivations alone.

4.2.3 Personal Characteristics

While designers and programmers are constructive in the sense that they design and build
something, a tester’s job is destructive; they attempt to break the software constructed.
Kanji et al. argue that the effectiveness of a tester role is somehow related to their per-
sonality. The authors utilize theory from psychology in order to illustrate the personality
traits of software testers [46], which includes five factors: extraversion, agreeableness, con-
scientiousness, neuroticism, and openness to experience. Results from findings indicate
that testers have a significantly higher level in conscientiousness compared to other soft-

21

ware engineering roles. Conscientiousness is closely related to discipline, hard-working,
and dedication. In a similar article, Kanji et al. [45] investigates factors affecting software
testers for practical testing. Most of the respondents answering the survey agreed that
dedication, thoroughness, interpersonal skill, and punctuality are essential qualities. In
addition, the researchers argue that dedication - which is closely related to traits like hard
work and responsibility - is partly innate but particularly important for software testers.
Furthermore, more than 90% of the respondents believed that good domain knowledge is
a must-have for an effective software tester - which is also supported by other researchers
[41, 55].

Itkonen et al. investigated what knowledge types testers utilized during exploratory soft-
ware testing, and came up with three knowledge types. Besides domain knowledge, their
analysis revealed system knowledge (the act of knowing the system’s mechanisms, logic, in-
teractions) and generic software engineering knowledge (knowledge of usability of the sys-
tem and the ability to interpret error messages) as the three main knowledge types used.
Livonen et al. investigated the characteristics of high performing testers - characterized by
high defect detection rate, in addition to seen as important by managers and testers alike
[55]. They found four themes that are important: experience, ability to reflect, motivation,
and personality. Experience refers to implementation and domain knowledge, as well as
skill. Reflection entails the ability to maintain the big picture and allowing the tester to
prioritize important parts of the software. Motivation was seen as necessary as intervie-
wees mentioned the efficiency of testing correlated with how motivated the testers were.
The most personal characteristics of high performing testers were thoroughness, careful-
ness, patience, and conscientiousness - which supports previously mentioned research.

Two studies focused purely on what soft skills are required for software testers [57, 26].
Matturro investigated what software companies in Uruguay required soft skills [57], 43 ad-
vertisements were analyzed and frequency distributed for soft skills within software test-
ing. The results were that the majority of the ads asked for skills like communication
skills, teamwork, initiative, and eagerness to learn. Similarly, Florea et al. [26] analyzed
400 advertisements specifically for software testers across 33 countries. The most popular
traits asked were communication skills, analytical problem-solving skills, team-play, and
independent-working skills. Both articles suggest that there is a more definite need for
teamwork and communication skills, analytical solving skills, and pro-activeness. These
traits have also to some degree been confirmed by other researchers - Deak et al. [22] and
Livonen et al. [55],

22

4.2.4 Miscellaneous

Other articles that did not fit any of the categories above are mentioned here. Salman
et al. conducted a controlled experiment on graduate students, intending to find out if
testers exhibit confirmatory behavior - also known as positive testing - when designing
functional test cases, and whether such behavior increased under time pressure. The find-
ings resulted in the conclusion that confirmatory test cases were present regardless of time
pressure; it is therefore necessary to let testers develop self-awareness and increase their
dis-confirmatory attitude [67]. However, the graduates were merely limited to designing
the test cases and not executing them. It is possible that by executing the test cases them-
selves, the testers would gain a sense of accomplishment - thereby further motivated them
to design dis-confirmatory test cases - which may alter the results of the experiment.

Cavin assessed the viability of military veterans in becoming software testers by initiat-
ing a coursework program [14]. Findings show that most veterans possess human factors
that were aligned with the characteristics of a tester - such as communication, adaptability,
collaborative, persistent, and work ethic. Hernandez et al. investigated experience and the
challenges software testers faced in the automotive industry [36]. Motivation was a critical
mention, in addition to openness, friendly attitude, and communication skill - since collab-
oration with other (non-technical) department was needed. The most recurrent problems
found were: unrealistic project planning and estimation, reduced time to perform testing,
and late inputs in terms of software, hardware, or requirements. These results are on par
with findings from Deak et al. [23].

Going back to psychology, Goncalves identified three main human factors for software
testers. Cognitive, operational, and organizational [32]. Cognitive aspects include stress,
psychological pressure, retention of the information under mental workload subjection. Op-
erational aspects include conflict, receptiveness, and monotony, whereas organizational as-
pects entail a lack of training, participation, and division of activities. In addition, the study
shows that professional testers faced many factors that are discouraging. Such as outdated
testing environment, demobilization, and devaluation of testing career, and often seen as
a mere extension of development. Likewise, Ekwoge et al. also identified three main cate-
gories affecting testers: cognition, conation, and affection [25]. Cognition refers to memory,
problem-solving, decision making. Conation includes impulse, desire, striving, which af-
fects testers’ goals, motivation, and commitment. Affection elicits feelings and emotion,
influencing respect, team belonging, and social factors of a tester. Finally, Ekwoge et al.
also mentions that a tester’s job is often destructive but did not mention that the tester role
is related to individuals’ personality [46].

23

5 Research Method
This section presents the type of research method I have chosen and the reasoning behind
it. I elaborate on the research design and plan for the thesis, and also present the process
of data collection and how data analysis was performed.

5.1 Qualitative Research

When conducting a study, it is important to consider which research method to use. There
are two main approaches to research, qualitative and quantitative. Qualitative research
methods focus on discovering and understanding things in their natural settings, as well as
the experiences and perspectives of individuals within that context. In anthropology and
sociology, it is commonly known as the Verstehen approach [59]. Robsen et al. [65] states
that research data gathered within this research spectrum are typically non-numerical, of-
ten in the form of words. The qualitative research process includes creation questions and
procedures, collecting data from a context-specific environment, data analysis, and the re-
searchers’ interpretation of the data. The method of choice within this research category
includes observation, interviews, action research, and case studies. The second research
type is known as quantitative research, which attempts to maximize the generalizability
and replicability of findings [38] - often using methods such as surveys for the former and
experiments for the latter. Quantitative research methods may analyze causal relation-
ships between variables, and data gathered within this research type are often numerical
and analyzable using statistical procedures in some sense [65].

The qualitative research approach seems to be the appropriate fit for this thesis. Rob-
son and McCartan divides research design into two types, fixed and flexible design [65]. A
fixed design requires attentive planning of the design, which may consume considerable
time before data is collected, while a flexible design does not require fixed order of conduct
in advance and is liable to change as the study proceeds. As this study may have uncertain-
ties tied to it, the flexible research design was therefore suitable. Flexible research design
is commonly used for qualitative approaches, such as case studies, ethnographic studies,
and grounded theory studies [65]. Additionally, Ritchie and Lewis state that the use of a
qualitative research approach aimed to understand human behaviors in their social and
material context [64], which further validates my use of this approach.

5.2 Grounded Theory

The term ’Grounded Theory’ first emerged in 1967 by Barney Glaser and Anselm Strauss
[31]. It was developed in the context of the social sciences field and aimed to seek to create
a causal link from research to theories. Charmaz states that grounded theory consists of

24

“systematic, yet flexible guidelines for collecting and analyzing qualitative data to construct
theories ’grounded’ in the data themselves” [16] - hence the name grounded theory. Char-
maz also explains grounded theory’s nature to go iteratively back and forth between data
gathering and data analysis in order to emerge theories from data.

Since its introduction in 1967, grounded theory has gained popularity in research do-
mains such as psychology and anthropology [19]. However, in recent times grounded theory
methodology has gained popularity within the field of informatics [37]. Hoda et al. suggest
that grounded theory is an appropriate research method in order to “explore the human
and social aspects of Software Engineering” [37]. This is due to several reasons. Firstly,
grounded theory allows for study of social interactions and investigating individuals’ be-
havior - how they interact with the environment around them. This is also agreeable by
Badreddin, stating that grounded theory is renowned for its suitability for analyzing hu-
man behavior [5]. Since my thesis strongly related to this, grounded theory seems to be
the preferable choice. Secondly, grounded theory is useful when studying a relatively lit-
tle explored area [37]. Both literature reviews in previous sections show that there has
been limited research conducted concerning human factors in the field of software testing.
Thirdly, grounded theory allows for the generation of concepts and categories which would
make practitioners attentive [37] of the content.

5.2.1 Grounded Theory Procedures

There are main procedures for discovering, verifying, and formulating a grounded theory.
Note that these steps are not sequentially set in stone during the evolving phase of this
study, a significant difference between this type of analysis and other qualitative analysis
modes lies in the number of combinations between these procedures in order to develop a
sound theory [74]. According to Strauss, there are a total of 10 operations needed for a
grounded theory study. A brief explanation is given to each of them.

Grounded theory generates conceptual coding from a set of empirical indicators. These
indicators emerge in forms of interview transcriptions and documents regarding some ac-
tions and events described by the participants [74]. The researcher uses these indicators in
order to derive concepts from them. Strauss calls this concept-indicator model, and states
that grounded theory is based on such a model. Furthermore, grounded theory’s form of
data collection may be built on a diverse range of data types. According to Charmaz, these
include field notes, interviews, and information in records and reports [16]. Data collection
never entirely ceases because “coding and memoing continue to raise fresh questions that
can only be addressed by the gathering of new data or the examining of previous data” [74].
Coding is an essential procedure in grounded theory. It denotes the act of naming segments
of data - usually interview transcripts - with a small label that summarizes and accounts

25

for each piece of data [16]. This process is the first step in transforming statements in data
into analyzable interpretations [74].

Generation of theories revolves around a core category. A core category should amount
for “most of the variation in a pattern of behavior” [74]. Its prime function is to integrate
theory and to render it dense and saturated as relationships are discovered. The iterative
nature of data analysis and data collection means that codes are categories are constantly
compared against each other, and emerging concepts from the study process. This constant
comparison ensures that codes can be refined in order to achieve the best fit for data [74].
Grounded theory also utilizes memos, a researcher’s informal reflection notes intending to
capture one’s own thoughts [31]. According to Charmaz, memos are useful for construct-
ing analytic notes in addition to “give you space and place for making comparisons between
data and data, data and codes, codes of data and other codes, codes and category, and cat-
egory and concept and articulating conjectures about these comparisons”. The motion of
theoretical sampling elicits concurrent decisions made by the researcher about data sam-
pling and data analysis in order to develop the emerging theory for the next iteration [74].
Its purpose is to saturate - elaborate and refine existing categories until “no new properties
emerge”. Thus, one is able to, integrate, and sort the data accordingly in order to develop
theories.

5.2.2 Reflexive Thematic Analysis

The production of a ’full’ Grounded Theory is often demanding and requires larger research
projects that are not constrained by time and resources [9]. For the actual data analy-
sis phase, I will, therefore, use reflexive thematic analysis - a somewhat lite version of
Grounded Theory with its feature of bottom-up and achievable saturation determined by
sample size [10, 11]. Thematic Analysis is a flexible qualitative data analysis approach aim-
ing at identifying, analyzing, and reporting patterns (or themes) within qualitative data-
sets [11]. It is an umbrella term in the sense that there are different approaches to conduct
the data analytic process and not limited to one qualitative approach. I have chosen this
method of data analysis due to its strengths; its flexibility means there is no specific re-
search design associated with Thematic Analysis. It is accessible to researchers with little
or no qualitative research experience, often more comfortable to learn and use compared
to other qualitative analytic methods [9]. The method is also very adaptable in terms of
the research question, methods of data collection, and sample size [10, 9], and just like
Grounded Theory - Thematic Analysis’ form of data collection may be built upon a diverse
range of data types, such as field notes, interviews, and information in records and reports
[16].

Braun and Clarke divides Thematic Analysis into three approaches, Coding reliability

26

approaches, Code book approaches, and Reflexive approaches [11]. In coding reliability
and codebook approaches, data analysis is typically done through coding by multiple re-
searchers with pre-defined codebook and reaching a consensus level of agreements. Thus,
these approaches indicate that data are allocated to pre-identified themes. Coding relia-
bility and codebook approaches follow a scientific method, where researchers move from
theory to hypothesis, to evidence gathering [11]. Reflexive Thematic Analysis is commonly
inductive as the researcher’s subjectivity is often portrayed as a resource rather than an im-
pediment [11, 81]. Themes in reflexive approaches are therefore not pre-defined but built
on top of the codes generated from the researcher’s interpretation of the data.

Similar to Grounded theory, Reflexive Thematic Analysis provides an iterative way for cod-
ing and offers flexibility in the sense that codes may evolve during the process [11]. As
an inductive approach is more common in Reflexive TA, it allows the coding to become
the building blocks for the themes/theory [9], which matches this thesis’ exploratory study.
Braun and Clarke defines six phases to conduct a reflexive thematic analysis [9]. I aim to
follow the framework as closely as possible.

Familiarization is the first phase occurring after an iteration of completed data collection.
The researcher becomes ’immersed’ in the data through reading and re-reading the textual
data, he/she may make casual notes about potential possibilities and connections between
the data gathered, the participant, and existing literature [9]. By ’knowing’ the data and
noticing things of interest, this phase can significantly help during the next stage.

The second stage is to attach clear labels to chunks of data in order to group them into
patterns and which exhibits similar phenomenons - coding. There are two broad orienta-
tions to coding [11, 81]. Inductive approach denotes working ’bottom-up,’ using the data as
a starting point to generate themes. This approach does not assume that the researcher
has no prior knowledge of the subject - rather, it signals a data-led analysis over one from
existing concepts or theories. Another approach is for researchers to analyze the data with
existing concepts, theories, and literature as foundations - a deductive approach. This ap-
proach is commonly used in coding reliability and codebook approaches, hence the usage of
a pre-defined codebook. Additionally, the researcher also needs to decide between coding
types - semantically or latently [11, 81]. Semantic (or descriptive) codes capture the explicit
meaning of the data. In contrast, latent (or interpretive) codes capture the implicit meaning
- ideas, concepts, meanings - which reside beneath the surface of the data and require the
researcher’s interpretive lens [9].

Through familiarization and coding, the researcher may begin to form and identify pat-
terns. These patterns can then be used to generate themes. A theme consists of a set of

27

data that exhibits similarities or overlaps each other, providing a patterned meaning of the
data [11, 81]. Developing themes is an active, iterative process, meaning themes may be
constantly replaced, refined, and rejected as the researcher analyses more data and further-
more, revises and defines them. Therefore, one should not get too attached to the prototype
themes created in the early stages of data analysis [11].

Review phase is a constant, iterative process. It advocates the researcher to ensure that
the data within a specific theme ’makes sense,’ and whether the themes have distinctive
boundaries from each other [11]. According to Willig and Rogers, reviewing makes sure the
themes “work well in relation to the coded data, the data-set, and answering the research
question” [81]. Braun and Clarke introduced thematic map, “a process of virtually exploring
potential themes and sub-themes, and connection between them” [11] that can be used both
when starting to generate themes and for reviewing them at a later date. Thematic maps
are useful for checking how themes fit together - whether they work well - and checking that
there is no overlap between them [81]. Defining themes helps with clarity and cohesion be-
tween the themes by renaming them so that each theme exhibits a core idea and meaning.
Both of these phases “ensure that themes, and theme names, clearly, comprehensively and
concisely capture what is meaningful about the data, related to the research question” [11].

Finally, producing the report lets the researcher rise ’above’ the analytic phase, and see
the big picture. The researcher connects all of his findings and notes with existing research
and literature on the topic in order to answer the research question [81]. This last phase
acts as the final test of “how well the themes work, individually in relation to the data-set,
and overall [11].

5.3 Data Collection

This thesis is based on the data collected through qualitative measures such as observation
and semi-structured interviews. Data collection was ensured to comply with Yin’s four prin-
ciples of data collection [82]. Table 9 on the next page shows how I applied these principles
during my thesis.

5.3.1 Interviews

Interviews were conducted throughout the data collection period. These interviews pro-
vided a deeper insight into the interpersonal characteristics and behaviors of testers, see-
ing by the testers and other roles. According to Yin, interviews are to be considered ”guided
conversations rather than structured queries” [82]. Table 10 on page 30 shows the three
main categories of interview types. For my thesis, I have selected semi-structured inter-
views with the most appropriate type.

28

Principle My Approach
Use Multiple Sources of Evidence Observation, semi-structured interviews, and

conversations logs are used as data sources in or-
der to achieve data triangulation and increase the
quality of this thesis.

Create a Case Study Database Data collected are inserted into a qualitative data
tool for analysis. Relevant notes were also cre-
ated, both analog and digitally.

Maintain a Chain of Evidence Observations, and interviews were noted with the
place and time of the conduct. The data collected
were aggregated by type and date. Traceability
was also kept in mind during the coding of the
data. These measures were taken in order to in-
crease construct validity of the information for
this thesis.

Exercise Care When Using Data
from Electronic Sources

Data collected from electronic sources were scru-
tinized and kept in their contextual domain. If
possible, they were cross-checked using other
sources in order to assess their validity.

Table 9: Four Principles of data Collection

Semi-structured interviews offered to cover most of the relevant topics I was after, as well
as including certain flexibility such that additional information that may be relevant, could
be discussed further. Unstructured and structured interviews were not preferable, as the
former emphasized openness and the latter more on a structured form. I wished for a bal-
ance between the two. While keeping the discussion open was important, it was also focal
I did not lose sight of the objective during the interview. An interview guide was created
beforehand and followed as main guidelines for each interview (which can be viewed in Ap-
pendix B, C). Additionally, a report form was sent to the Norwegian Centre for Research
Data (NSD) asking for permission to conduct interviews - the report form was approved
without complications. Moreover, before the interview, the interviewees were given a writ-
ten consent form with the information of the interview, the usage of the data, and their
commitment during the interview (see Appendix A). Interviewees were notified both orally
and in written form that they may withdraw from the interview at any time.

The interviews were allocated a time-slot of 45 minutes. However, the actual length of
each interview varied from participant to participant. The interviewees’ names were obfus-
cated in order to ensure full anonymity. A tape recorder was utilized in order to record the
interviews. The data were furthermore transcribed for data processing, saved, and linked
together with the corresponding participant. Using a tape recorder meant that I could focus

29

Interview type Explanation Reasoning

Unstructured interviews Does not contain pre-made
questions that are expected to
be asked to an interviewee. An
unstructured interview resem-
bles a guided conversation be-
tween two individuals. The in-
terviewer may probe the topic
area and come up with ques-
tions on the spur of the mo-
ment [20].

This was not suitable for
me as accurate, consis-
tent information needed
to be extracted within a
specified time-frame.

Semi-structured inter-
views

Adds a certain magnitude
of formality in contrast to
the above mentioned by in-
troducing predetermined,
open-ended questions and
predetermined orders in the
form of an interview guide.

Semi-structured inter-
views offers flexibility
as the interviewer may
ask additional ques-
tions emerging from the
dialogue [20].

Structured interviews Known for having little to no
wiggle room in terms of open-
mindedness [20]. These in-
terviews are strict in terms
of questions and guidelines,
ensuring that all participants
provide the same data given
the same predetermined ques-
tions [30].

Some degree of open-
ness needed to be incor-
porated due to the sub-
ject of this thesis, I have
therefore not chosen to
pick this interview type.

Table 10: Interview Types

30

more on the actual conversation-flow and ask the right follow-up questions instead of fran-
tically taking notes. These were stored at a secure server. The interviews were conducted
in Norwegian - as such, so were the transcriptions. Citations taken from the transcrip-
tions were, however, translated into English. They were ensured to convey semantically
the same as in Norwegian. Even though transcription was the most difficult part in this
process, I gained much insight and reflection on what has been said during the interviews.
Existing transcriptions also helped later on as I conducted more interviews, seeing how I
could connect the phenomenons from previous transcriptions even before coding.

It is worth noting that interviews were my primary source of data. The sources are mem-
bers of a software service providing company - which are to be further elaborated in section
6.1 on page 37. These professionals have varying profession and years of experience. I felt
that it was important to gather data from non-testers, obtaining their perception of testers
in order to understand the complete picture for the study. These interviewees are all cur-
rently utilizing agile methodologies in their respective teams, and are listed as follows:

Interviewee software field Work experience Interview length
Software testing 7 months 53 min
Software testing 1 year 1hr 3 min
Software testing 4 years 51 min
Software testing 6 years 1hr 6 min
Software testing 3 years 41 min
Software testing 11 years 30 min

Software development 1 year 23 min
Software development 1 year 24 min
Software development 2.5 years 20 min
Software development 2 years 26 min
Software development 10 years 38 min

Interaction design 1.5 years 37 min
Interaction design 4 years 41 min

Table 11: Overview of the interviews

5.3.2 Observations

I was also fortunate to be allowed to observe the project in which one of the interviewees
is working at. Both the organization and the project context are given in section 6.2 on
page 37. Yin divides observation into two categories, direct observations and participant-
observation [82]. Direct observation entails a passive observer within the environment,

31

whereas in participant-observation, the observer can interact with the participants. Obser-
vations provide valuable data that complement interviews with specific individuals.

My observations were direct, since I tried to minimize my interaction with the team as
much as possible in order to minimize the external influence that may impact their every-
day work behaviors. However, I was engaged in social discourse with the observed team
members, such as making small talks during lunch. Additionally, I became friends with
one of the testers and made small-talks during social events. Some information was cat-
egorized as useful, which were noted down at a later date and used in order to refine the
interview-guide.

I started observing the project from the 1st of November 2019 to January 2020. During
the time of observation, these ceremonies were present:

• Observation of meetings

• Non-participatory observation of daily work-flow and team interactions

• Observation in form of casual and formal interactions during work-hour and lunch-
hour

Observation of meetings includes daily stand-up, status meetings, and workshop cere-
monies. During these meetings, I noted down the participant’s identities, their role within
the team/company if possible, the duration of the meeting, and the topics being discussed.
Additionally, I noted down who was acting as the facilitator, the behavior of the tester
during these meetings if present, and personal thoughts that arose both during and post-
meetings. I categorized the meetings into different types and noted down the amount of
each.
During the work-day, I noted down the timestamp and points of interest should they occur
to me. Points of interest include conversations between the tester and another team mem-
ber, a team member’s interaction with a tester, or when a tester asks another tester for
help. I also noted down what each participant in the team was doing, with a special focus
on the tester of the project. If nothing significant happens, I logged everyone’s status every
10 minutes.

When observing casual and formal interactions during the work-day, I followed the same
procedure as above - noting down the timestamp and the participants during the interac-
tion. I also documented the topic that was discussed to the best of my abilities. During
lunch-hours, I was participating in small-talks, things that strike me as interesting were
noted down either in my laptop or in my notebook after the lunch break. All of these proce-
dures stem from the observation protocols, which were constructed under the guidance of
my supervisor. The observation protocol can be viewed in Appendix D.

32

Meeting type Participants Length
Daily stand-up 7 8 min
Daily stand-up 7 12 min
Daily stand-up 8 12 min
Daily stand-up 6 8 min
Daily stand-up 8 11 min
Daily stand-up 8 14 min
Daily stand-up 8 15 min
Daily stand-up 8 17 min

Test status meeting 9 27 min
Test status meeting 8 38 min

Domain expert workshop 6 2 hours 40 min

Table 12: List of Meetings Observed

5.3.3 Chat Software

Chat software was also used to extract additional support for the data collected through
observations and interviews, such as follow-ups questions or elaborations. The software
utilized is called Slack, a chat application aimed for business purposes. Data collected from
the logs were data deemed of relevancy and therefore were treated in the same way as data
collected through other means. Screenshots of the chat logs were saved and added into the
analysis tool NVivo.

5.4 Data Analysis

I attempted to follow the reflexive thematic analysis procedures as closely as I could. After
each transcript was done, I saw down and re-read each and one of them, occasionally taking
notes on interesting things. I also sat down and wrote notes shortly after each interview,
these notes - such as associated ideas, compelling remarks, and interesting quotes - stored
valuables that could have been quickly forgotten if not written at once. Furthermore, the
interview questions were iteratively refined to reflect on the previous participants’ answers.
During the initial stage of data collection, I focused mainly on questions that asked partic-
ipants what he/she thought was desirable for a tester, then gradually used those answers
to look for common patterns and continually refined questions in order to probe for more
in-depth elaborations.

Before any themes could be established during this study, the raw data had to be processed
and analyzed. The data were grouped into different sections; interview transcriptions, ob-
servation notes - both passive and meeting-specific - and chat logs. I used NVivo 12 to do
most of the coding. NVivo is a Computer Assisted Qualitative Data Analysis Software [66]

33

(abbreviated CAQDAS). The raw data were uploaded onto NVivo and processed. Braun
and Clarke mentioned two main coding approaches, selective coding and complete coding
[9]. With selective coding, the researcher only selects the data of a certain phenomenon
in which he is interested in analyzing. At the same time, complete coding codes all data
that could potentially be relevant towards the study, and then becomes selective towards
the later analytic process. I opted for a complete coding approach as using the other might
make me miss out on ’hidden’ phenomenons that have yet to emerge.

Though Clarke and Braun did not explicitly state the optimal coding technique for use
in conjunction with Thematic Analysis, I chose to follow Saldana’s descriptive coding tech-
nique [66]. The technique entails summarizing topics as a single word or a short phrase.
The descriptive coding technique is particularly suitable for beginner qualitative researchers,
and when the data are embedded in various forms, such as interview transcripts, field notes,
and documents. I constantly made folders, and kept my data as organized and systematic
as possible. Since the scope of this study is quite large, I had to be wary when naming the
codes. However, even when codes were quite varied, they may fall under the same umbrella
of a theme. Like Braun and Clarke stated: “A theme is like a wall or a roof panel of a house,
made up of many individual bricks (codes). Good code will capture one idea; a theme has
a central organizing concept, but will contain lots of different ideas or aspects related to the
central organizing concept” [9]. Towards the end of coding, I had a total of (around) 120
codes and sub-codes. Some of the codes described a similar phenomenon, but with a small
variety. Throughout my data collection and analysis phase, I continuously went through
each and one of my codes, grouping and renaming them in different ways whenever possi-
ble, and deleting the ones that did not make sense. I ended up with 95 codes and sub-codes
in total. Figure 6 shows an example of how the raw data was processed into a code, and
then allocated to a theme.

5.5 Validity

In qualitative research, it is imperative to assess the degree of soundness and cogency of a
study [82]. In other words, the validity of the research must be explained and examined.
There are multiple threats when conducting a qualitative research [82]. Both Yin [82] and
Robson [65] identifies four types of validity. construct validity, internal validity, external
validity, and reliability. Each particular explanation can be found below. Section 8.12 on
page 73 explains how I took these validity’s into concern, and aims to convince the reader
that the trustworthiness of the results are sound, and minimal participant (and researcher)
bias have been upheld.

34

Figure 6: Example of how data was Coded

5.5.1 Construct Validity

Construct validity refers to how well a study measures its claimed construct. It concerns
whether the study has been affected by the researcher’s subjective judgment [82]. According
to Yin, Multiple sources of evidence, letting key informants review draft case study report are
tactics that can be used in order to increase construct validity of a study [82].

5.5.2 Internal Validity

Internal validity aims to evoke the causal relationship between the treatment and the out-
come [65], ensuring that the findings of the research is valid ’internally’ to the specific
research. According to Robson, common threats to internal validity includes ’history’, la-
beled by Campbell and Stanley [65]. History refers to something that may happen at the
same time as the investigation - which may interfere with the interpretation of the causal
relationship between the treatment and the outcome [82].

5.5.3 External Validity

External validity, also known as generalizability, refers to whether the study’s findings are
generalizable beyond the contextual setting of the case study [82]. For case study, special
attention is recommended for analytic generalization - that is, striving for generalizable

35

findings and ”going beyond the setting for the specific case or experiment that had been
studied” [82].

5.5.4 Reliability

Reliability entails that if a researcher at a later date conducts the same study using the
same procedure, the individual should arrive at the same findings and conclusions [82].
Yin states that case study follows an analogous logic and that the case study should reflect
either a literal replication - where one predicts a similar result, or a theoretical replication
- where one predicts conflicting results, but for anticipated reasons [82]. Reliability is,
therefore, a concern for the case study due to its complexity for replication.

36

6 Research Context
In order to get an adequate understanding of the findings that resulted from this thesis, it
is principal to be aware of the research context in which the study took place. This chapter
presents the contexts, such as a brief description of the organization and the project permit-
ted to observe, as well as the team structure and team members’ roles in the project. The
elaboration serves to inform the reader well enough to understand the findings presented
in section 7 on page 44.

6.1 The Organization

The primary source of my data, the interviews, were gathered from professionals working
for the same company, which I refer to as Software Service Providing Company. The Soft-
ware Service Providing Company is a medium-sized company with over 500 employees in
Norway, Denmark, Kyiv, and Bratislava. The company offers expertise within project man-
agement, software testing, software development, interaction design, maintenance, secu-
rity. In Norway, Software Service Providing Company possesses over nine software testers
who are spread across different projects.

6.2 The Project

I was also permitted to observe a project in which one of the tester-interviewees is currently
employed to. The project takes place in a customer-organization (now referred to as Sierra)
prominent within the financial sector. The organization consists of over 1000 employees in
Scandinavia and has focused, among other things, on automotive financing, sales financ-
ing, and loans. Sierra employs professionals, which assists Sierra in software development,
maintenance, and innovation of services. The project consists of one team of professionals,
all hired from Software Service Providing Company, working on multiple projects simulta-
neously.

The conventional single product-development was not at the center of attention within this
case. Instead, the group of professionals works as a ’Concurrent Integration Team.’ Seeing
how the technical architecture of Sierra is modular, the team was therefore working with
the integration of different projects with different systems across Sierra. The group had
two main projects in focus. Project One entailed information extraction, which is used at a
governmental level. Exemplified, if a governmental entity requests information regarding
an individual, the - result from the completion of the project - will extract all relevant infor-
mation about the specific individual. The team was therefore required to integrate several
systems in order to achieve the functionality. A simplified illustration of the project can be
seen in Figure 7 on the next page, where the team works on the Sierra External Service.

37

Figure 7: Simplified Technical Structure of the Project

Although Project One was heavily prioritized, the team was also working on Project Two.
Project Two was similar in the sense that several systems also need to be integrated, hence
the name ’Concurrent Integration Team’. Project Two entails automating the process of
information exchange between a consumer loan and a national register. This process is
currently done manually and tediously. Project Two, therefore, served to ease the tedious
process through automation, saving resources and time.

6.2.1 The Team

The team numbered in a total of eight team members. As the projects are mainly integra-
tion and maintenance, there were no typical UX-designers or a dedicated business analyst
member within the team. Four members were performing testing activities, and four are

38

conducting development tasks. It is worth noting that the team members were halfway dis-
tributed, since they were divided into two locations. Half the team was located at Sierra’s
headquarters, while the other half sat together in Kyiv. Note that obfuscated names have
been provided to each of the team members.

Name Role Location
Amelia Functional architect / technical test-lead Sierra HQ
Vanessa Test-coordinator Sierra HQ
Eugene Architect / tech-lead Sierra HQ

Alice Test automation engineer Distributed
Adam Test automation engineer Distributed
York Developer Distributed

David Developer Distributed
Robert Developer Distributed

Table 13: Team Members, Their Roles, and Their Placement

The person of interest within this case is Vanessa, since during my time of observation,
Amelia acted more as a functional architect rather than a test-lead. However, she also
performed testing tasks from time to time. Observing Alice, Adam, York, David, and Robert
would prove to be infeasible due to the extensive distance between the team-member and
myself. Concerning work experience, both Amelia and Eugene worked on both projects for
over two years. In contrast, Vanessa is a graduate that arrived in March, and one of the
reason why Vanessa sat next to Amelia. Figure 8 on the following page shows the seating
structure of the team during my time of observation. The figure shows an open office area
divided into two, one for externally hired professionals and another for Sierra’s employees.
The team sits together with other professionals from the same Software Service Providing
Company, but who are working on different projects. Sierra workers’ area consists mainly
of technicians, some with excellent technical knowledge with the databases seen in figure
7 on the previous page, which fostered increased communication between Vanessa’s team
and Sierra workers. Every day around 09:05, Vanessa’s team went into the meeting room
and, with the help of Microsoft Teams, performed the daily stand-up together with the rest
of the team members.

6.2.1.1 Responsibilities
During my observation, I got to know most of the team members’ everyday tasks with some
exception to the developers. The responsibilities of each team member varied a lot, but were
sometimes also overlapping. Even though the team does not have a project leader, Amelia
seemed to have assumed the role as everyone respects her decision and values her input.
Amelia’s work included inspecting the functional architecture, and devise potential areas-
of-failure within systems - these are noted down as descriptions for Vanessa. Vanessa’s

39

Figure 8: Sierra Seating area

40

primary everyday task was to create test-cases based on Amelia’s descriptions. However,
she also needed to check if the descriptions were correct (i.e., validating potential assump-
tions and verifying potential failures occurring in specific modules). Secondly, since Vanessa
is a graduate recently arrived in March, she also had to spend a lot of time learning about
the domain, due to her inexperience compared to the rest of her team members, who have
worked on the project for over two years.

During my time of observation, Vanessa spent a significant amount of time inspecting
the technical aspects and understanding the business domain knowledge. Seeing as how
Amelia possesses more experience in both technical and domain knowledge, she acted as
a mentor for Vanessa. It was observed that the two communicated a vast amount during
work hours. At regular intervals, Vanessa asked Amelia both technical and domain ques-
tions. Additionally, when Vanessa found a bug, she forward it to Amelia, who investigated
it further before registering it on the board.

Eugene’s responsibilities lied in being an architect with the technical overview. He spends
lots of time understanding the technical architecture of different systems. Additionally,
Eugene acts as a tech-lead for the distributed developers by assisting them, such as per-
forming code reviews and replying to technical questions. Furthermore, he took upon the
most challenging and complicated tasks, such as overhauling the data access technology
used in one of the projects. Both him and Amelia also spent considerable time in meetings,
such as feasibility meetings and weekly meetings with team leaders for the different sys-
tems that needed to be integrated. As for the distributed team members, their everyday
tasks were less detailed, seeing how I was not able to observe them. However, small talks
during lunch with Vanessa and Amelia disclosed some everyday task that Alice and Adam
are performing. The test automation engineers’ job was to automate all the test-cases cre-
ated by Vanessa. Therefore, Alice and Adam had more contact with Vanessa than the rest
of the team members.

6.2.2 Processes

The team’s development process was mostly agile, using Kanban’s development methodol-
ogy combined with some of Scrum’s ceremonies. However, according to the team members,
there were times when the team was forced to work with a waterfall development process.
The development process was, therefore, a combination of agile/waterfall, depending on the
state of the projects. During my observation, however, the team was only utilizing agile
development methodology. From my observation and discussion with the team members,
it appears that the agile approach occurred most of the time when a Product Backlog Item
(PBI), usually in the form of a user story, appear on the board, Amelia and Eugene creates
development task and a corresponding testing task. As soon as the PBI is complete - mean-

41

ing both the tasks are marked as developed and confirmed tested - the team releases a new
increment. The team operated in the sense that there are no time-boxed sprints but works
preferably continuously as backlog items appear. If an update is required for a PBI, the
team members will merely add a new task on it, as there is no need to go through a long
process of re-evaluation. Also, each working test-case is automated by Alice and Adam,
thus enhancing agile development by automation-as-they-go.

6.2.2.1 Daily Stand-up Meetings
The daily stand-up meetings were held every day at 09:00. All of the three questions - as
presented in Section 2.1.1 on page 4 - were asked during the meeting. During my obser-
vations, it was noted that these meetings’ purposes were to update team members on each
other’s progression and to bring up problems with regards to specific fields. On average,
the meetings lasted from five to ten minutes and rarely reached the 15 minutes mark. The
meeting was conducted online using Microsoft Teams and video-chat, so everyone was able
to get real-time contact with each other.

6.2.2.2 Test-status Meetings
Test-status meetings were held on a bi-weekly basis. Not every team member was included
during these meetings, Vanessa and Amelia were the ones participating from the integra-
tion team. Testers joined Test-status meetings from different projects. The purposes of
these meetings were to establish coordination through communication between projects in
Sierra. Each member was able to report on their current test status in their projects, and
discuss any issues they are currently facing. Additionally, testers could ask other testers for
help. It was observed that during one of the test-status meetings, one tester asked Amelia
for assistance with regards to integration testing. Furthermore, these meetings proved to
be useful for developing potential countermeasures against common problems. I observed
a discussion regarding the common test-environment used by all projects, as the projects
are partly dependent on each other, each needs to make sure that data are correct and not
manipulated by others during their respective testing.

6.2.2.3 Feasibility Meetings
Since the integration team’s main objective is to integrate most of Sierra’s systems, they
do not have one single product owner and instead, receive feature requests from many
different business divisions in Sierra. Feasibility meetings are, therefore, ubiquitous within
the team. These meetings - or rather, discussions - often consist of only Amelia and Eugene,
since the two have the most experience and insights. The two evaluate feature requests -
if it is feasible, Amelia creates a PBI in the backlog with a technical description of possible
solutions.

42

6.2.2.4 Sprint Planning and Retrospective Meetings
The abnormality with this case was the absence of sprint planning and retrospective meet-
ings, the team had neither of those. The lack of sprint planning meetings was due to several
reasons. First, the integration team had no product owner. The team, therefore, had a high
level of autonomy and was self-governing. Most tasks that appear on the board were tasks
that have been approved during the feasibility meeting. Secondly, the team felt like sprint
planning meetings were unnecessary due to the effectiveness of daily stand-up meetings -
providing a good overview of prioritized assignments. With a specific product owner omit-
ted, the team, therefore, saw no point in having sprint planning meetings. Nevertheless,
retrospective meetings have been discarded by the team. One of the team members re-
marked that the team was not too glad about it, the team is not “in the mood” to talk about
what it has been doing good, what can be done better, and discussing the current work
process. It seemed that the team possessed an ’if there is work, it works’ kind of mindset.

6.2.3 Tools

The integration team was using several tools to increase the effectiveness of their work,
with the most notable being Microsoft’s Azure DevOps. With the team being most proficient
in technical aspects, Azure DevOps offered an excellent platform for coordination between
team members and across different fields - ensuring consistent overview over backlog items
on the visual board between members. Additionally, its integrated version control system
and test-plan capabilities allowed developers to become more intertwined with the testers.
The team also utilized Microsoft Teams for communication between Sierra HQ’s members
and the distributed ones. The use of such a tool made it easier to coordinate with the
addition of video chats.

43

7 Results
This section presents the results found during the data collection and analysis stage. Note
that a theme could have several sub-themes; as such, a thorough explanation is given to
each. It is also noteworthy to mention that some themes are mentioned more often than
others from the data, these are not any less essential or insightful since frequency does not
determine value [9]. Because interviews, especially semi-structured ones, generate fluid
and flexible data, it is thus possible to end up with data variation. Part of the findings pre-
sented here are in line with my preliminary results reported in Paruch et al. [61] (Appendix
E), while others have emerged from further data analysis.

7.1 Human Factors

This section describes the human factors as perceived by the professionals both working as
software testers, and with software testers. Human factors here refers to the ’interpersonal’
skills that are applicable to any type of job (e.g. being structured, or creative). Note that
it is possible for other skills than the ones described here to appear; the factors presented
here are the ones that have emerged upon analyzing my current data-set. These findings
are mainly backed up with citations and statements from the software professionals.

7.1.1 Adaptable

Adaptable is the ability for a person to be flexible, respond quickly to change, and adapt to
changing work conditions. Three testers mentioned that one has to adapt to oneself follow-
ing the current situation quickly. One commented: “Yes, it can sometimes be as early as after
I looked over my tasks and feel ready to start, someone would pat me on the shoulder and say
that I have to do something else”, another said: “We work with prioritization, when an item
of high priority is incomplete from the developers’ side, I’ll start to work on something with
medium (priority). However, often the developers finish before I get to complete the testing on
that item, so I have to drop it and start testing on the other one (with high priority)”.

It was further observed that Vanessa from the project often had this issue. She often men-
tioned that since she was newly qualified, the constant context-switching proved to be quite
challenging to keep up with the rest of the team since testers were often the ones that had
to deal with both domain-specific tasks and testing the technical aspect of the system. Since
she sat together with a more experienced tester, I observed that Vanessa frequently asked
questions regarding both knowledge types. Out of all testers interviewed, three commented
on the importance of adaptability in correlation with agile software development, stating
that this trait was somewhat less of a focus on sequential projects.

44

According to the majority of professionals, being adaptable was a needed trait due to the
constant changes happening in agile environments. During the interview with Vanessa, she
said “I think this is sort of the highlight of someone who is working agile, the fact that one
can quickly ’switch’ between things and the fact that one has sufficient control so that it does
not take long to adapt something different”. When asked the ones who also have worked
sequentially in prior times, the participants preferred the agile way of working. One ex-
perienced tester noted that agility improved the team’s effectivity, but he had to learn to
switch between assignments quickly.

7.1.2 Good Communication Skills

7.1.2.1 Friendliness and Constructive Feedback
During the interviews, all testers stated they were the ones who had to report bugs to the
rest of the team; this led to the testers having to adapt friendliness and constructive feed-
back during their work. All software testers mentioned that the two are essential behaviors.
For example, one participant mentioned that “I was on a project a few years back where I
sat next to the developers. When I found a bug, I stood up and walked towards them with a
friendly smile”. Constructive feedback means that the testers focused purely on what went
wrong and not whose fault it was, all testers stated that this was important to possess. One
tester exemplified: “Whenever I find a bug, I go to the developer in mind and ask him if it is
supposed to be like that. I try not to point any fingers because that is never pleasant for any-
one, and it’s not appreciated”. As for non-tester participants, an interaction designer and
a developer had the common conception that testers need to be empathetic and positive.
They both mentioned that testers should not irritate themselves over the fact that things
do not work as supposed to and be positive even during ’dark’ times for the team.

7.1.2.2 Meticulous Bug Reports
In addition to being friendly and giving constructive feedback, all testers mentioned that
they gave detailed information regarding bug reports. Each one described their procedure
as describing what went wrong, the expected result and actual result, and the steps they
took to reproduce it. This was particularly observed with Vanessa, which during the inter-
view she stated: “I’m very heedful (when it comes to reporting bugs), since we have so many
services, I usually write which service it applies to, which method, what type of test-data so
that they (developers) can reproduce the bug. Then I write expected result, actual result, and
the problem itself as an extra sentence”

Two of the testers liked to be especially diligent when trying to report a bug. One of them
said “...I always try to find whether it is a specific scenario or not. If it’s a specific scenario,
then I’ll attach the user with the specific test-data. If not, then I try to generalize as much
as possible like all user’s with this type of insurance receive this error...”. The second tester

45

said that she also tries to generalize and make certain of the bug’s coverage; “you are sup-
posed to try and reproduce the bug several times with different test-data before you tell and
developers. If not, then you’ve perhaps found a bug that only happens once in a while, and
you don’t know why...”

One software tester liked talking to the developers after finding a bug, not for reasons
stated above - but rather, to see if it is solvable without spending time logging it on the
respective digital task board “..because it may be so that the bug can be fixed without much,
so I don’t have to spend much time to register a bug”. Others have noticed the testers’ sys-
tematic ways of reporting bugs. One interaction designer said that the tester in her team
does things very methodically, “He is very analytical, he will often find a concrete example
of a scenario with the bug, I understand immediately what the fault is and what he’s talk-
ing about, so he is very communicative”. Three developers mentioned similar phenomenons
exhibited by testers interviewed. They experienced and preferred testers to be as much
descriptive as possible.

A developer expressed his frustration for former testing-colleagues not giving enough de-
tailed information. He stated: “In prior times, the testers just attached a screenshot of some-
thing, I couldn’t understand where they’ve clicked, what they’ve done, what kind of data
they’ve used...”. However, when prompted the question to another developer, he mentioned
that it is context-dependent; “It varies from project to project. If we have a one-pager of a
website, then it does not need to write ’enter the website’ because we know that everything is
on the site. However, in big, complex systems, details become very important - because of the
more details, and easier it is for me to understand where the fault is coming from”

7.1.2.3 Provide Information, ask for Additional
There have been several occurrences of mentioning that testers need to be good at asking
for additional information. A tester mentioned that “...if the specification is too vague and
we find that there can be many different ways to interpret it, then often I’m the one who has to
go ask the ones who wrote the specification and find out what exactly do they mean, because
I’m the one who specifies concrete requirements to the developers”. A developer expressed
that it was important for testers to ask about commodities and try to find out how things
work; “They are very active in meetings and ask questions about functionalities and what
they need to find out about in order to set up test-scenarios”. Although this was not neces-
sarily observed in Vanessa, she often asked information to Amelia. The reasoning came up
during the interview; “It might have something to do with my personality type, but I don’t
feel so confident. I feel like I ask stupid questions - and then I’m rather not asking. I’m work-
ing with myself to take more space and become confident to ask questions on things I really
don’t understand...”. During my period of observation, I saw Vanessa gradually improving

46

her confidence by becoming more active during meetings, asking questions to customers,
and relying a bit less on Amelia.

The majority of the testers mentioned that they communicate, mostly and rigorously, with
the developers. Two testers mentioned that they talk mostly with developers because they
are the ones requiring additional information while fixing the bugs. The ability to provide
more information in an understandable, coherent way was therefore essential. One of the
two testers noted that the bug described by ’business’ staff are not always very detailed;
“...we have many testers from the business aspect, and it varies how good they are at describ-
ing. I often need to add additional information so that the developers don’t have to engage
in dialogue with them”. As of the case study, I observed that other workers from the orga-
nization Sierra often came to Vanessa for help due to not knowing where to find test-data
and the different interoperability between core-systems. In addition, Vanessa often asked
Amelia for the root cause of a bug. Amelia spent lots of time investigating the bug before
relaying the information to Vanessa.

7.1.2.4 Introversion and Extraversion
One developer noted his perception between the two professions. Whereas developers are
more introverts, testers are - at least more than developers - extroverts. This statement
was somewhat supported by one of the interaction designers, who said “if there is a devel-
oper that’s maybe a bit introverted and not so fond of communicating, then in my mind,
that person shouldn’t be a tester. Because a tester is supposed to be a middle-man, asking
for information and clarifying things and not as much to create and produce than control
and discuss - a tester doesn’t only sit with his assignment, their assignments come from de-
velopers and designers’ backlog. A tester should act as a scaffold around the team”. Yet, it
was interesting to note that a different developer commented otherwise: “The testers are
not very full of initiative during meetings and work-hours, I have a feeling that they are
very introverted - I think it’s because they feel like they’re not ’developers’ and can’t have a
say in how things should be done”. Nevertheless, another interaction designer mentioned
something in between; “He (the tester) is not extrovert, nor an introvert. He is somewhere in
between. I know that he enjoys being alone at home or playing board games with his closest
friends. However, he is very professional during work and meetings, and you can’t notice
that he is an introvert. He is very flexible and adapts himself in a situation”

7.1.2.5 Bridging the Gap Among the Team
Even though the majority of the testers mentioned that they were the middle-man of the
team - bridging the gap between mostly interaction designers and developers - one tester
explicitly mentioned an example where she was able to bring the teamwork from a mini-
mum to functional: “When I arrived, the team dynamic was pretty bad. There were almost
no communication across professions except for times when it was necessary”. She men-

47

tioned how she worked as a middle man, trying to convey the designers’ requests and ideas
into something more concrete to the developers, and how she managed to convey developers
technical jargon to something comprehensible to designers. Over time, each party became
more comfortable with her as the middle-man, and she was able to conduct meetings with
one from each profession; “...eventually I got them into the same room, and it went great.
They became way more conscious of each other. Designers’ idea of only using 15 minutes to
implement a single button were not possible, as it turns out the developers will have to make
a whole lot of changes, which could result in 20 hours of work just to create a new button”.

7.1.3 Detail-oriented

In addition to giving detailed information regarding bugs, it became clear that being at-
tentive to detail was important for software testers. Majority of the testers mentioned
possessing this trait themselves, and that it is focal to have in their line of work. One tester
stated that he possesses a considerable amount of small details on things he’s worked on,
to the point where he gets dragged into several meetings well beyond his line of profes-
sion. In general, the non-tester professionals voiced that having such a trait is determinant
for a tester to become successful. Every professional voiced that testers were very detail-
oriented and used the trait to improve the product at a great pace. There are mainly two
common phenomenons; detail-oriented in the sense of user experience, and in the sense of
technicalities.

7.1.3.1 Detail-oriented in Terms of User-experience
Both interaction designers stated that their tester has helped them spot user-experience
faults that the respectively overlooked. One of them mentioned: “I remember he went
through an old application, he began to carefully read the text that was there. I thought
we were pretty attentive on death insurances - the fact that someone needed to report it when
a person dies. He tested the whole process and made me aware of the text; it wasn’t pleasant
in a highly sensitive situation. So yeah, he is very aware of details”. The second interaction
design mentioned that her colleague has very good knowledge within the domain “...as a
designer, you’re also supposed to click through the system and try out stuff. But often, it
is the tester that discovers something weird. Like this one time where she came to me and
said ’I clicked through this and this, but they are actually the opposite of each other and it
shouldn’t be possible to click both at the same time (in this domain)’.

7.1.3.2 Detail-oriented in Terms of Technicalities
Like the designers, the developers perceived that testers need to be detail-oriented. One
developer stated that the best testers have this trait without exception, since they notice
the ’small-things’ that no one else sees. Another developer stated that they are very detailed
in terms of logic; “...this is why I love working with them, because they pick up things that we

48

don’t see, and things we haven’t even thought of. They inform us that ’this is wrong’ and ’this
wouldn’t work because of this method and this module’, very logical individuals...”. This was
similar to the third developer’s remark, stating that one of the biggest benefits of testers
is that they are able to deduce things the developers haven’t thought of, and “...spot things
earlier than us if we were to discover it, and that makes us more prepared.”. Nevertheless,
one of the developers stated that it gave them a feeling of psychological safety if a tester is
present during development; “If it’s a complex, tangible product, then it is really nice to have
a tester next to you. It gives me reassurance in the form of ’okay, he confirms that everything
I do is correct. Then it’s very likely that what I’m doing is correct”

7.1.4 Creative

Both designers mentioned that their testers are very creative, and suggests that testers
need to be creative. One of them stated that the tester is creative in the sense that he con-
tinually tries new combinations on things that could go wrong, mainly because even though
tedious and unique faults occur, they can still occur after release. She stated that the tester
was also very creative regarding problem-solving, such as suggesting several alternative
ways that could resolve obstacles. The second designer stated that her colleague is very
much the same, and tries to find unique faults. She recalled one time when the tester noted
a problem in the user interface because the tester made up a persona with 52 insurances
(this was an application within finance and insurance), a highly unlikely scenario - but still
needed in order to ensure that the product is “idiot-proof”. Furthermore, she stated that
a creative mind is what makes testers valuable; “...one finds strange things and loopholes
by being creative. This is very much appreciated from a tester because we (non-testers) have
’tunneled’ ways of testing, there are many non-testers that test precisely how it’s supposed to
be used, meaning we’d only test the system’s behavior when we do things right”

When it came to the developers, there were mixed opinions on whether testers were behav-
ing creatively. Out of the five developers interviewed, two were quite uncertain whether
testers needed to be creative - one of them stated testers should ’think outside the box,’
but countered that technical people are quite creative in general. The second developer
was unsure if creativity was needed to be able to get into testing. However, he stated that
testers might need to be able to find creative test-scenarios to test things out of the or-
dinary. One developer did not see any correlation between creativity and tester, however
stating that neither developer nor testers were known for creativity. The two remaining
developers expressed strongly that creativity was a central factor for testers to possess.
One of them mentioned that both developer and tester should be creative, but in different
ways, “On the developer side, I reckon it’s more how one constructs together things. While for
the tester, it’s more like ’how can I find ways to destroy the system?”. The second developer
mentioned that being creative was more important for a tester to possess than a developer,

49

mainly because of the difference in the profession: “As a developer, you receive a business
requirement. Your job is to only fulfill those requirements. You can have a creative process
where you construct the architecture, choose frameworks etc. But in the end, you’re fulfilling
a requirement. Testers are supposed to test a system that’s going to work 100%, and there
could be so many anomalies. So a creative tester is most likely more important to have in a
team, than a creative developer”

All the tester professionals stated that being creative was necessary for the profession.
One participant mentioned the importance of creativity in finding strange bugs; “I’ve man-
aged to find weird bugs by being creative, such as mid-way force shutdowns and performing
unusual process-sequences. One has to test like that because the users are always creative”.
She also stated that even though one can think logically and see the flow throughout the
product by being structured, creativity is needed in order to allow one test the abnormali-
ties during the flow. Another brought-up that this was why being a tester was fun, because
of the destructive mindset that entails the effort to try and destroy the system as much as
possible and do things in unusual ways that the customer would not have done. A third
tester stated that even though creativity can help find weird bugs, it can be so unique that
the team does not bother fixing it; “I daresay I use a lot of creativity to the point that I was
told ’the bug you’ve reported, it is so specific that it only affects one specific customer during
a leap year, so we’re not going to fix it’. He also mentioned that it is not always he gets to
use his creativeness, mainly due to time pressure. The participant stated that some of the
bugs found post-testing could have been found during the QA stage, if only he would have
time to think or toyed with it more; “There isn’t always enough time, so I have to focus on
getting the most important pieces to work, and then deliver it to the business analysts to test”

Three of the testers stated that their projects had considerable leeway, both them and the
team were highly autonomous to a certain degree. One tester remarked that projects with
considerable leeway can allow creativity to flow and enhance ways of testing things. How-
ever, she also stated that in order to become creative, one needs to have enough knowledge
both from the customer’s field and the technical aspect; “...because if you don’t know it, then
it’ll be hard for you to be creative. You need to understand the domain, know enough about
domain-knowledge and technical-knowledge in order to open the doors to creativity”

7.1.5 Curious

Most of the testers admitted that they are very curious and eagerly to learn when it comes
to meeting the unknown. One stated that continually learning new things is his passion.
Another commented: “I think it is super important as a tester if you’re eager and possesses
a wish to learn. I think acquiring domain-knowledge quickly and uses it...It goes without
saying that the more you know, the better you can conduct testing”. Furthermore, he voiced

50

that his eagerness has helped somewhat with the customers’ relation. He reasoned that it
made him ask ’stupid’ questions during meetings, such as “I’m not familiar with that, can
you tell me more about it? Is this something we need to test?”. In this way, he stated that the
customer perceived him as committed, which became more accepted towards testers. The
tester mentioned that one of his characteristics is that he is a quick-learner; this made him
the go-to man for the rest of his team. He is also very inclined to share knowledge to others;
“I focus a lot on learning others my domain-knowledge and testing, and it gets noticed. It’s
not the fact that they panic when I’m not at work, but rather everyone works much better
when I’m here. You contribute in a way to build everyone else up and not making yourself a
bottleneck”

One tester stated that she learned the most through observation and practical experience.
She felt that although literature gave her an idea of how things should be done, it became
more concrete as she received actual hands-on experience during work. Another tester re-
vealed during the interview that he wanted to start doing security-testing, but was unsure
about where to start. His willingness lead him back to becoming a student when he was
made aware that the University of Oslo held a practical course regarding ethical hack-
ing. The tester stated that the course helped immensely with deepening his technological
knowledge. Furthermore, after the course, he gained pointers on specific areas that he
wanted to improve and continually learned new techniques. This similar behavior was also
found on Vanessa, who wished to develop skills to be able to perform penetration testing.
Throughout my observation, it became known that she willingly took contact with special-
ists within the subject and received both literature and a pointer on a sandbox website
aimed specifically at trying out penetration-testing. She stated that it is very important
for testers to continually willing to learn as the software testing theory does not completely
reflect the practical world; “I feel like I’m learning something new all the time, and I have
never gotten any training in how to write test-cases either, so I’ve acquired the knowledge
through experience”. She also mentioned that learning domain-knowledge within the fi-
nancial sector was challenging, but because the more she got into it, the more intrigued she
became, and thus the more curious she was in finding out how the financial aspects worked.

In a similar sense, all testers have or are currently coaching junior testers voiced that
junior testers need to be eager to learn new things, and through practical experience if
possible. All participants explained that they would show the juniors on how something is
done in their own way, and then encourage the junior testers to perform their own testing
tasks often through a trial-by-error trajectory. For example, one tester noted “I usually sit
together with them and say: ’okay, here is some test-cases I have written. I can walk you
through the first one, feel free to ask any questions’, then I’ll ask them to write the next test-
case. Finally, I’ll tell them to write some without my supervision”. He also stated that this

51

was a way to challenge themselves: “I’d ask them: ’is there something you think could go
wrong? Are there any other test-cases you can think of? Should we talk to a domain-expert
if you’re unsure?’ In a way to challenge them to a certain degree so that they are used to this
way of working”.

As for non-testers, one developer touched upon the subject. He stated that an excellent
tester should always be curious; “For example, if I say ’we also have to test the APIs.’ A
good tester would admit that API-testing isn’t something familiar, and would request half
an hour get more insight in it”. The developer mentioned that it was always better for a
tester to spend some time and come prepared to meetings instead of not knowing what to
do even after the information was received.

7.1.6 Structured

As for being structured, professionals voiced that testers should be organized and struc-
tured - more so than any other professions in a development team, according to some.
During the interviews, all testers disclosed that they are very structured - not only dur-
ing work hours but also in general. The majority of testers remarked that they usually
note everything down to checklists, notes, or in their calendars. One tester stated that she
cannot function without structure and that she is not spontaneous at all, and mentioned
that writing things down helped her organize and has even managed to catch small details
that proved to be significantly important. Another voiced her usual course-of-action when it
comes to planning and being structured; “Every Friday, I look at the calendar to see what’s
happening next week. Also, once a month, I look through the whole calendar for the next
month so that I can plan and leave some room for unexpected meetings”. A third tester com-
mented that he always write down notes, to-do lists, and checklists, similar findings were
also found from both interaction designers and one developer regarding their colleagues.
The third tester voiced that even though he is a structured person, he can often be eas-
ily distracted and forgetful. The same tester also stated in order to succeed as a tester;
one has to be structured; “...Even if one performs exploratory testing - through just playing
around - if you’re not structured, then it’s possible that you’re not able to describe the steps
you performed when you have found a bug or even catch some small mistakes. If you’re just
exploring without being structured, then I don’t think you can retrace your steps. So, in
my opinion, all testers must be structured”. During my time of observation, I noticed that
Vanessa wrote down a lot of notes and placed each work-activity in her calendar. She also
wrote down a lot of notes during each meeting. When prompted, she told me that she wrote
about key-points from the meetings and began to see how she could relate the content per
her testing work. She told me that she always wrote things down in order to have some
guideline or serve as future references that always could prove to be useful.

52

Most of the developers perceived that testers need to be more structured than them. The
common justification is that developers do not have the same responsibilities as testers.
One developer said that it is not a crisis for developers if they are not structured, it just
means that they may sub-optimally implement the features. At the same time, for testers,
it was more critical to check that things work well. Another developer stated: “For me, it’s
easy to move some files here and there or write a bunch of code. But for a tester, it is im-
portant that absolutely all steps must be reviewed and...testers are supposed to be the devil’s
advocate and point at details I’ve overlooked”. A third developer remarked how the project
became much, much more organized and structured when testers arrived. He mentioned
that the project lacked both concrete work process and had vague requirement specifica-
tions, in addition to lots of things not being documented down; “...they worked really hard
to systematically map, find out and clarify the requirement specifications for us, and even
found out things that we never looked at. And as a result, also adjusted and improved our
work processes”

Seeing it from the designers’ perspective, one commented that even though she helped
with testing - the tests that were conducted by the actual tester are much more thorough
because the tester notes down procedures and generates a test-matrix. The second designer
mentioned that most testers should like working structured; she mentioned that the tester
in her team walkthroughs the product quite precisely, but that the tester has to do it in
a structured way to make sure all conditions are covered. Also, the same designer voiced
that being a structured tester has benefited the team as a whole; “...it is easy for us to know
with what’s going in and out next release, what’s tested and not, and it is easy to follow the
test-cases she sets up...she always seems to know what the next task is.

7.1.7 See the Whole Picture

All professionals stated that having to understand the project as a whole is momentous
for a tester. The ability to see the total picture with a helicopter-perspective was voiced
as a main testers’ trait, by those working with them. Additionally, it was found a common
pattern among testers, that having such a perspective was somewhat required as a tester,
often helping them to find unusual bugs and see things from another perspective.

One interaction designer stated that her colleague has a right mix of knowledge within
both domain and technical, there have often been times where the tester have found holes
within the journey-experience from consumer-side, which the designer has overlooked; “...if
she only saw my sketches and took for granted this is how insurance works, then it’s highly
probable that I’ve missed out on something, so it is always good that she asks: ’is this sup-
pose to work like this’?. She stated the ability to reflect was necessary for testers, and in
order to do that, testers needed to know the domain. At the same time, she remarked that

53

it would also be hard to report bugs and suggest alternative solutions to the developers if
the tester did not have technical competence. She states that her tester is impressive in
terms of possessing both knowledge types and that a good tester would require a balance
between the two. The second interaction designer expressed similarities with her colleague
as well; he is often her go-to man when she has any question regarding domain-knowledge,
and: “...he is the only one in the team who has a good overview of how things are connected,
how insurance works, the scope of different insurance types, how things are connected back-
end”. She stated that a common trait with all testers she worked with is that they always
had/has a good overview over the service and able to find “unusual bugs that no one else has
control over”.

As for the developers, all felt testers needed to have the ability to understand the total
picture. One developer remarked that testers needed to see the whole, in terms of what
the business-side requires and down to the smallest detail from the developer-side. The
majority of the developers feel that testers need to have more of the ’complete picture’ than
developers mostly due to the way these two professions work: they remarked that devel-
opers work module-by-module while the testers are supposed to test modules against other
modules or the system as a whole; Developers tend to work in specialized contexts, usually in
the form of ’now I’m working on this module.’ While a tester is supposed to test this module
against all other modules or the service to other services, this makes it more vital for them
to understand what response service B and C and D gives. While for developers, it’s like ’I
got a task to create module A, here you go”. Similarities were voiced by all other developers,
stating that modular development is very common nowadays, and they do not pay as much
attention to previous modules as testers. One developer expressed that, according to his
prior experience, testers become testers in order to understand the system as a whole and
not just the plain technical part. He stated that in projects where no testers were present,
he had to take more responsibility in order to have a more totality view on things and thus
had to take on more domain-specific tasks.

All tester stated that this trait is important to have in order to make a logical conclusion
as to where common bugs can appear and test effectively. One tester indicated that the
trait is significant for reasons similar to developers’; that the developers are busy working
with the current part and not bothering to look at prior modules, “...they sit and work with
tunnel vision”, while as a tester the ability to understand things as a whole is a must. She
further supported her statement by arguing that testers need to understand the critical
parts of the system, and “It’s not about finding most bugs or fewest bugs or run most test-
cases. A tester who completed one test-case but have found that the system works the way it
is supposed to, is often more effective than a tester who ran a hundred test-cases and have
not found anything. So it’s about being able to see the total picture”. Vanessa from the case

54

study mentioned that this trait was mainly the reason why she chose software tester as her
profession; “I liked the freedom it gave......I saw how it was during the summer internships.
Of course, it varies from place to place, but I saw that as a developer - you receive a task and
you do it...They’re not very much involved in the process as a whole. I feel it’s more exciting
to be involved and....have a functional perspective as well, not just the technical”. Lastly, a
third tester, stated that he is constantly curious and able to acquire knowledge at a fast
pace, and therefore able to have comprehensive knowledge about totality, more specifically
domain-knowledge, than everyone else on the team.

7.2 Hard Skills

In addition to the human factors, hard skills are also perceived by professionals as im-
portant in shaping the role of software testers. Hard skills are ’technical’ abilities re-
quired to perform a specific task within a specific industry. My findings indicate that
for software testers, it mainly boils down to two fields: domain-knowledge, and technical-
knowledge. Domain-knowledge indicates knowledge of a specific field, such as insurance
or loan. Mainly, it is knowledge regarding the customers’ field. Technical-knowledge can
mean technological knowledge, such as specific testing tools or framework, but mainly it
means being able to read and interpret code, as well as having a slight idea on what might
at fault in terms of the technical solution.

7.2.1 Domain Knowledge

Most of the developers’ perception was that testers needed to have domain-knowledge, more
so than other members of the team. The developers felt that currently, the tester in their
teams has much better control within the domain, which has helped them much. One de-
veloper exemplified an earlier event; “...we made a system that adhered to the requirement
specification, but our tester was proficient within the domain and legal affairs, he came over
and told us that the system is wrong. We said that the system gives the correct output, he
responded that it is correct - but the problem is that the invoice output is not legally valid.
Even though what we had created conformed to the specification, it was invalid in a legal
sense.”. A second developer stated that the tester needed to understand more domain as-
pects than the developers, stating that developers have more requirement on making what
the system is supposed to do - but that developers do not always have a clear overview on
how it all connects to the domain/business side. In addition, one interaction designer stated
that her tester has a much better overview of how the application is supposed to behave un-
der different coverage when someone reports an injury. She said that although she is aware
of how the system should respond to simple coverage, the tester is the one who has made
her conscious of how different coverage mixed does not produce the right result.

55

Although most of the testers stated that domain-knowledge is a relevant skill at possess-
ing, there are some distinctive opinions on it. Domain knowledge has its downsides, as one
of the testers gets dragged into different meetings because of his high domain-knowledge.
He also became very stressed because these meetings took time, and he did not get to com-
plete his work tasks for the day. A second tester notes how she switched domains every six
months to two years. She said it was fun to continually learn new domains and that she did
not know how much ’behind-the-scenes’ different domains had - such as pension, roads, and
tunnels. She remarked that this was partly why she chose the profession. A third tester
argued that there has to be a balance between domain-knowledge and technical proficiency;
“(Technical) skills are things you need to do your job better - but if you don’t have domain-
knowledge, then it doesn’t matter if you are technically skilled”. According to him, it is not
sufficient to have expertise within testing but also domain-knowledge in order to succeed
at doing one’s work. It was observed that during a meeting regarding domain-knowledge
with Vanessa, Amelia, and three domain-experts, there were unclear definitions on specific
terminologies and a somewhat confusion on how processes should proceed (loan, leasing,
balancing) between the domain-experts. Both testers later admitted that it was hard for
them to follow along when even domain experts disagree on specific topics.

7.2.1.1 Rapid Acquisition
Both interaction designers stated that their testers acquire domain-knowledge at a fast
pace. One of them said: “...he made himself an overview over which coverage/scope we
needed to test rather quickly, and why they must be tested, and who should do it, and how
far we have come - and he always know these things”. When asked if there is any direct
correlation between acquisition of domain-knowledge and any traits, the same designer
said that her colleague is very curious to learning just about everything. One tester stated
that rapid acquisition is not necessarily exclusive to testers. She remarked that obtaining
domain-knowledge quick is important to professionals regardless of profession: “If you can’t
manage that, then it’s no point being in this line of work...”.

7.2.2 Technical Knowledge

In addition to domain knowledge, there have also been mentioned technical proficiency
from professionals as an important qualification for a tester to possess. This qualification
- according to the interviewees - allowed for an increase in teamwork, specifically between
tester and developers, as each can do their job at a more exceptionally.

During the interviews, half the developers began talking about how good their testers were
at ’getting their hands dirty’ through looking at the code. A common occurrence from the
developers was that the testers could give recommendations on alternative solutions by be-
ing technically-adept. One developer mentioned: “...they keep analyzing the code, and they

56

can give us advice on how the fault can be solved and attack the issue in a different way than
our mindsets”. One developer mentioned how it made their job easier through being able
to speak the same ’language’; “...Like when I say ’the code does not compile’, they’re able to
understand what that means, and how long it will take to fix something like that’.

All the testers acknowledged that possessing good technical proficiency helped them with
cooperating with the developers. The most noticeable occurrence of reasoning was that the
testers had an understanding of the implementation and thus able to point out what is
possible and not possible from a customers’ perspective. In addition, testers should be able
to give a more detailed description when a bug is found. One tester remarked: “...not neces-
sarily ’the bug is on line 87’, but more ’this bug has something to do with database storage,
or this has something to do with module integration,’ stuff like that”. Another tester worked
prior as a developer and stated that he appreciated testers with good technical knowledge,
and also being able to guess potential bugs before implementation, even suggesting optional
ways of implementing features.

One tester noted that she became a tester because she thinks coding is boring; “I don’t
have the patience to be a developer... but that working with software - reading, interpreting,
and working with codes - is exciting”. Two testers noted that they are not as technical pro-
ficient as they would like to be. Both wanted to develop specialties within test-automation
further, and are currently expanding their skill-set. The wish to become more technical was
also noted in the case study, where Vanessa told me she wanted to develop more technical
qualifications in order to conduct penetration testing.

7.3 External Factors

This section includes factors that indirectly influence the testers. Some testers mentioned
factors such as making it enjoyable in being a tester, and others that are needed in order
to allow for growth. In this section, I present additional findings that emerged from all
interviews and observations. It is also noteworthy to remind the reader that there were no
questions allocated to investigate these factors specifically. Instead, these external factors
were mentioned by the professionals as a side-track from other questions. Thus, there are
few factors here that are mentioned by all participants collectively.

7.3.1 Community of Practice

During the case study, I observed the so-called test status meetings. Since the projects
were somewhat intertwined with each other, these testers had a meeting about once ev-
ery third week in order to talk about any issues and current progress in each respective
project. Both Vanessa and Amelia remarked that these meetings were somewhat useful

57

because of coordination aspects and a place to talk about testing. During one interview
with another tester, this topic surfaced - he stated how such meetings were missing from
his workplace; “One thing I’ve been thinking of is...all the testers from those different teams
should have a stand-up once a week, just to exchange challenges, what one is working on,
trade experiences”.

7.3.2 Motivational Factors

The majority of testers mentioned that being able to challenge oneself and learn new things
every day was one major factor. Two testers mentioned demanding projects and work-days
that are fun, and that it requires them to use their heads. Two others mentioned that they
are motivated by learning new things. Additionally, there have been mentions of enjoyable
work environments by all testers, which also referred that socializing with co-workers after-
work had a considerable impact on their every-day motivation. There have been mentioned
several occasions where the team went out to eat, drink, go to the cinema, or even have
wine-night in their homes. One tester mentioned that ’work’ does not feel like work as much
as play and that it helps on teamwork and effectivity; “...cause then we’re more confident in
each other and knows that it is easier to ask ’silly’ questions”.

7.3.3 Support System

The support system indicates the ability for testers to seek and receive help, either from the
customer’s side or from the company’s side. One tester expressed frustration in her previous
job; “During the period where I became a tester, I did not have a good leader without that
other guy - but he was overworked...”. Another tester remarked that other members of her
team had worked as testers before, so if she needed help, all she could do was to ask them.
She said that this ’safety-net’ had boosted her confidence in being a tester. Four testers
noted that a joint-sharing culture was important within a company. Joint-sharing culture
denotes the willingness for one individual to share knowledge with another individual. All
four noted that joint-sharing allowed them to learn more efficiently and effectively than
if they were alone. In addition, a buddy-mentor system seems to affect the testers’ learn-
ability. It was observed from the case study that Vanessa always learned new things thanks
to Amelia, who acted as a mentor and explained different specifics.

7.3.4 Trust and Respect

Trust was something mentioned by almost all the testers - both trust from the customer’s
side and internally in the team. One tester mentioned how she gave a strong recommen-
dation not to release an increment of a product, with sound reasoning regarding little time
to test. She also made a risk-matrix to show the customer consequences and went through

58

a list of high-severity faults. The tester stated that the customer decided to hold the re-
lease, it was later confirmed that releasing the increment would lead to increased cost from
rollbacks and fixing than delaying, and thus the customer became more trustworthy of the
tester. Another tester mentioned that the team has a lot of trust in her. She expressed what
to prioritize or develop; this was similarly expressed by another tester, stating that because
of his domain-knowledge, he rarely gets any objections from both customer-side and inter-
nally in the team. He also stated that gaining so much trust allowed him to get involved
in many things and learn more. A different tester stated that the more domain knowledge
one has, the more external trust one is perceived.

Additionally, one interaction designer mentioned that testers should have a little respect
among the team. She exemplified it from one internship where the tester was not sure of
the role, and the team did not know what the tester was supposed to contribute with or how
correct it is when the tester said something is wrong - which mainly affected the coopera-
tion between the tester and the developer. She stated that the internship thus became a
but complication, and even though it was a internship with students, it could apply in the
real world as well.

7.4 An Emerging Theory of Software Testers’ Human Factors

Since these human factors are not exhibited in isolation, I was able to find correlation
between them. This lead to the emerging theory presented as follows. This theory uses
framework presented by Sjøberg et al. [73] which consists of four parts: the constructs
which are the essential elements of the theory, propositions which elicits how do the con-
structs interact with each other, explanations on why the propositions are specified, and
scope in which the theory is applicable. The scope of this theory is software testers working
in agile development projects. As for the constructs, they are the themes I have presented
in the sections above. I, therefore, will give a description of both explanations and propo-
sitions between the constructs. In addition, it was found that some of these factors benefit
the team as a whole. As such, I have also included teamwork and noted down the factors
that can improve the team’s effectivity to work together. It is important to note that the
propositions between constructs are entirely grounded from the data. Even though there
is a possibility that ’everything could affect everything else’ (in a holistic sense), I will only
present correlations that have directly been proved with evidence. Thus, the theory and
propositions presented here have their roots directly from analysis and findings.

59

Constructs
C1 See the whole picture
C2 Detail-oriented
C3 Good communication skills
C4 Structured
C5 Creative
C6 Adaptable
C7 Curious
C8 Hard skills (domain-knowledge, technical-knowledge)

Propositions
P1 Hard skills positively affects being able to see the whole picture
P2 Being detail-oriented positively affects teamwork
P3 Good communication positively affects teamwork
P4 Being structured positively affects detail-oriented
P5 Hard skills positively affects being creative
P6 Hard skills positively affects being detail-oriented
P7 Hard skills positively affects being adaptable
P8 Being curious positively affects hard skills
P9 Being able to see the whole picture positively affects teamwork

Explanations
E1 Good domain-knowledge and technical-knowledge are useful for software testers to properly
be able to see the whole picture
E2 Testers with attention to detail can assist both in the designers’ and developers’ tasks, which
increases teamwork with both parties
E3 Often enough, testers need to speak with every other role in the team. Good communication
is therefore vital for testers and can increase team transparency
E4 Testers who are structured are more likely to be detail-oriented than others, structured
testers are a valuable member of the team
E5 Both domain-knowledge and technical-knowledge will enhance testers creativity - which is
used mainly in two dimensions
E6 Testers should be good at both domain-knowledge and technical-knowledge for them to effec-
tively be detail-oriented
E7 Domain-knowledge and technical-knowledge should be well versed for software testers, seeing
that context-switching between tasks are not unusual in agile teams
E8 Testers who are curious, are able to attain domain-knowledge and technical-knowledge at an
easier and faster pace through their wish to investigate
E9 Testers who are able to see the whole picture, can reduce others’ misunderstandings and
forgetfulness, while increasing transparency amongst team members

Scope
S Software testers working in small agile development projects.

Table 14: Constructs, Propositions, Explanations, and Scope of the Theory

60

Explanation E1

Testers need to see the whole picture. In other words, what business-side requires, if the
user-journey is plausible and whether the technical modules work with each other as in-
tended. Having a helicopter view of the whole product is important as a tester, and the
ability to do that is greatly increased with good domain and technical-knowledge. Good do-
main knowledge is useful for both business and interaction design, while technical knowl-
edge helps with reporting the root cause of bugs and ’speaks the same language’ with the
developers.

Explanation E2

Testers who are detail-oriented can usually assist in UX’s user-journey with their domain-
knowledge. If testers also possess adequate technical-knowledge, they can provide alterna-
tive solutions for the developers. Additionally, detail-oriented also tends to lead to meticu-
lous bug reports, which benefits the developers the most. Findings show that being atten-
tive allowed testers to catch mistakes earlier, which had an increase in teamwork, effec-
tiveness, and motivation.

Explanation E3

It emerged from the interviews that the agile software testers were often needed to provide
support for their fellow team members, by clarifying requirements or providing additional
information. This often lead to an increase in teamwork through transparency, efficiency,
and constructiveness, suggesting that testers have much social navigation to do as to miti-
gate potential negative team dynamics.

Explanation E4

Most of the testers stated that writing check-lists and creating notes allowed them to free
up their brain and were more likely to be attentive of minor details that no one else had
given a second thought. Being structured also helped other team members as it became
easy for them to follow his/her work of a tester, while also having the tester systematically
keeping a tab on what is going in and out of the next release.

Explanation E5

It was shown that software testers mainly used creativeness in two ways: to conduct soft-
ware testing by making up different user personas in different scenarios, and to come up
with creative ways of testing the technicalities of the system. Both courses of action can be
greatly extended in performance with good knowledge in both domain and technical aspect
of the product.

Explanation E6

61

Being detail-oriented revolves around two main phenomenons: assisting in shaping the
user experience, and the technical part of the product. Each phenomenon requires good
proficiency within domain-knowledge and technical-knowledge respectively in order to act
as an effective, detail-oriented tester.

Explanation E7

In an agile environment, software testers need to be adept context-switchers. Having good
knowledge in the domain and technical field of the product can greatly enhance the ability
to respond quickly to changes, such as changing, adding, or improving test cases, and foster
effective communication with domain experts, product owners, or technical staff in order to
shape the product to its highest quality.

Explanation E8

Curious software testers, who possesses a desire to investigate, are able to gain hard skills
at an easier and faster pace, be updated on the current scenarios, and thus can conduct
testing more properly. It was found that testers who are enthusiastic, willing, and able
to actively learn on their own made sure to take up every learning opportunities, and
excel themselves in both domain-knowledge and technical-knowledge. Additionally, curi-
ous testers liked to learn through practical experience, which often resulted in continuous
growth

Explanation E9

Being able to retain a helicopter view of the whole product makes it easier to resolve issues
and potential mistakes coming from the team. Testers who are able to see the whole pic-
ture can bridge the gap between the domain and the technical part of the product, while
also commenting on each respective part on what to keep in mind for the other during
implementation. This has the potential to increase team transparency, making teamwork
more fruitful while keeping misunderstandings and forgetfulness to a minimum.

Figure 9 on the next page shows the corresponding illustration of the theory. Factor that
have a direct influence on each other are highlighted with arrows. The factors listed with
arrows have according to my data, a direct casual relationship to each other and teamwork.
In addition, since the human factors are so intertwined and complex to research, is it dif-
ficult to rank which ones are the ’best’ to possess. These human factors presented in this
theory, therefore, adhere to a ’flat-structure,’ meaning no trait is better than the other.

62

Figure 9: A Theory of Human Factors

63

8 Discussion
This section discusses the results presented in the previous section. Specifically, they are
used to answer the research question proposed in section 1.2 on page 1. I also discuss my
findings with existing research. Since my themes are primarily concerning human factors,
I compare my results in light of the categories I introduced in section 4.2 on page 19, and
discuss whether the results confirm existing results or have found gaps. I then move on
to implications for practice in order to shed some light on how both relevant organizations
and newcomers to software testing can benefit from reading this thesis. Consequently,
implications for theory detail how other researchers may be able to use my research. Finally,
I present the validity and the limitations of my results.

8.1 Adaptable

There is a great variety of human factors identified in the previous section. Adaptable was
identified in conjunction with testers who worked in agile environments. Cavin’s aim of
study [14] found that military veterans returning to the civilian workforce were suited to
be software testers, as many of them had similar characteristics. Communication skills,
dedication, adherence to schedules, working under pressure, and commitment - in which
some of my findings do align - and adaptability; veterans are trained to think quickly and
adapt quickly to any situations. It is interesting to note how many similar traits were found
in veterans as in mine. Additionally, Ekwoge et al. [25] mentioned adaptability was needed
for new tool usage and techniques of testing. My results suggest that although adaptability
does indeed benefit the technical proficiency, the trait is more holistic in the sense that
being adaptable also concerns domain-knowledge, and the ability to quickly switch between
different context and different mindsets.

8.2 Good Communication Skills

My findings show that having good communication skills was perceived as important for ag-
ile software testers, as was also found in earlier studies. Kanji et al. [46] investigated what
factors to consider for effective software testers; they found out that dedication, thorough-
ness, and punctuality are important factors. Additionally, the majority of the participants
also mentioned interpersonal skills: the ability to communicate and interact with others.
My findings seem to support theirs, as communication skills were found to be quite valuable
- if not more important than ’logical’ skills. During the interviews with all non-tester par-
ticipants, when asked if they preferred a tester with good communication skills and sub-par
technical skills or vice versa, all participants chose tester with good communication skills.
Deak [22] found out that the most frequently cited characteristics for software engineers
did not apply to software testers and that good communication skills are the most cited

64

characteristic for a tester to possess in their results. Consequently, Florea et al. [26] found
that the most popular traits asked of a tester were analytical problem-solving skills, com-
munication skills, team-play, and independent-working skills. A recent study showed that
people were more careful in their communication if a conflict was thought to occur [33]. As
the software testing role implies bringing unwanted news to the team, my findings confirm
the need for good communication skills, in a way that does not provoke conflicts.

8.3 Detail-oriented

It was interesting to note that the majority of the professionals voiced that being detail-
oriented was imperative for a software tester, since it was useful in both user-experience
and technical solutions. This was also in line with the study conducted by Kanij et al. which
most respondents agreed this trait was something a good software tester should have [45].
However, Capretz et al. found a set of demotivated factors, in which Cuban software testers
were demotivated by the requirement of detail-oriented skills: “In fact, ’finding mistakes’
was the most voted CON by Cuban professionals’ [13].

8.4 Creative

My study shows that being creative was perceived as necessary mainly in two courses of
action: to conduct software testing by making up different user personas in different sce-
narios, and to come up with creative ways of testing the technicalities of the system. Even
though creativity was useful for all the roles in software development, the degree of impor-
tance varies greatly amongst the roles; Li, Ko, and Begel’s findings suggest that creativity
and being systematic is a ’should-have’ trait amongst software developers [52]. My find-
ings indicate that these traits are ’must-haves’ for testers. Even though creativity is useful
for all the roles in software development, this comparison can indicate a variation in the
degree of importance of the trait amongst the roles. My findings also confirm the results
obtained by Itkonen et al. [41], who studied knowledge related to conducting exploratory
testing, and found out that this testing approach emphasized/nurtured diverse and creative
opportunities of testing. Santos et al. [69] found out that creativity was a significant factor
in motivating software testers. Although my research did not strictly focus on this aspect, it
is not impossible to think that there could be a relation, as all testers expressed that it was
fun to work when creativity was involved. Deak et al. [22] found that although creativity
was one of the tester characteristics that was most frequently mentioned amongst intervie-
wees, it was lower ranked than both communication skills and detail-oriented skills, with
communication skills deemed most wanted. Although I did not sort my characteristics in
ranked order, my discussion regarding communication skills does seem to hint that the
characteristics support the findings of Deak et al. Kanij et al. [45] also stated that being
creative was an important trait to have. However, unlike Deak et al., they did not sort the

65

characteristics in ranks.

8.5 Curious

As for curiosity, Kanij et al. found participants agreeing that intellectual curiosity was an
important characteristic, implicating that the trait was useful in enhancing the destructive
mindset of a tester and helps in deliberately trying to ’break’ a system. Their study also
revealed that testers should make an active effort to improve their work. The need for
learning both new testing techniques and about the “problem and business domain of their
work” proved to be a common occurrence from their software tester respondents [45]. In
a similar sense, Deak et al. found that participants considered being curious and eager
“incentive for continuously improving the understanding of the product” as well as coming
up with unusual testing scenarios [22]. My findings support somewhat both claims, as all
professionals I get to interview regarding this factor, said it was an essential factor for a
tester to have. My findings also build upon results from Deak et al. in the sense that testers
are indeed continuously improving the understanding of the product through continuously
learning domain-knowledge and technical-knowledge; although leaning more towards the
prior than the latter.

8.6 Structured

Most testers stated that writing check-lists and creating notes allowed them to free up their
brain in order to focus on other things. Kanji et al. utilized the Big Five Taxonomy from
psychology to highlight testers’ personalities. Their findings show that testers generally
have a higher level in conscientiousness compared to other roles - conscientiousness being
orderliness, self-discipline, hard-working, and dedication [46]. My results show that testers
tend to be more organized, detail-oriented, and structured - which all can be subsumed
under conscientiousness. However, my findings will also suggest that testers show a high
level of openness due to traits such as creativity and curiosity.

8.7 See the Whole Picture

My results show that testers need to have, in addition to technical abilities, an even more
complex overview than other roles in agile teams. This finding supports Florea et al. [27]
with regards to the number and diversity of skills necessary for the software testers. Addi-
tionally, my current results show that testers are leaning more towards domain-knowledge
over technical-knowledge - which also somewhat applies to Florea et al. - In their study
on what employers look for in software testers’ skills, findings show that domain-specific
knowledge is less of a focus than actual testing skills when looking for testers to hire, ex-
cept for area pertaining to financial services software. This can alter the current results
in that domain-knowledge is more critical than technical skills, since all the data gathered

66

were from professionals working within the financial sector. Li, Ko, and Begel conducted
a study in order to contribute to holistic, developer-centric insight into what distinguishes
great software engineers [52]. Aside from being a competent coder, their research suggests
that great engineers should possess ”internal personality traits,” such as the ability to en-
gage with others, decision-making skills, and continuous learning [52]. The majority of my
traits were identified in their study. However, the trait of being able to see the total picture
was not present during their study - which might hint the trait being more prevalent for
testers than developers or team members in general.

Livonen et al. investigated characteristics of high performing testers - characterized by
high defect detection rate and seen as important by managers and other testers alike [55].
They found that experience, motivation, personality, and ability to reflect as important. My
findings also somewhat support each of these characteristics. Firstly, they referred ability
to reflect as the ability to maintain the big picture, which my findings positively support.
Secondly, experience relates to both implementation and domain knowledge - my findings
show that testers should have a balance of both. This could indirectly enhance the ’deval-
uation’ career perception of testers presented by Capretz et al. and Shah et al. [13, 71].
In their findings, developers state that people become testers because they are not as pro-
ficient in technical skills. My results show that testers need to have a more overview - or
the ability to see the whole picture - than developers. These rumors likely occur because
testers are too busy with the totality and thus, can lean more towards domain-knowledge
instead of the technical knowledge. Testers are not necessarily bad regarding technical
proficiency, but they have to have less focus on it and more on the domain as they are seen
as team members needing to have a helicopter perspective in order to perform their job well.

My findings also support Hernandez et al. [36], who found out that testers felt a positive at-
titude towards software testing and do not consider it a dull and monotonous activity. This
is in line with my findings, suggesting that testing is not an ’unattractive career.’ More-
over, Hernandez et al. found out that software testers work on a wide variety of topics,
because it “requires a complete view of the software”, this is also in line with my finding,
suggesting that software testers need a totality view on the whole system as well as com-
munication skill as a necessary trait to possess, to factor for effective collaboration with
other departments. In essence, my findings also seem to support this, as testers often work
as the middle-man within in the team and have to foster communication between different
professions.

67

8.8 Additional Findings

8.8.1 Software Testing as a Profession

Capretz et al. [13] found out that testing was not a popular profession due to the treatment
as the profession as ’second-class citizens’ and unattractive career development. Currently,
this perception has drastically changed, as all software testers voiced the full recognition
of the merits of their role. Furthermore, both the testing and non-testing professionals
stated that testers were seen on the same line as other roles and that the teams had a
flat-structure. This incidentally improved their motivation in improving their work - which
is an exciting find considering existing research such as Shah et al. [71], who found that
testing is a stepping stone for the developer career. However, my findings have shown that
the majority of the testers wished to become more in-depth in the technical test, which is in
line with the prediction of Capretz et al. - stating that the testing profession is: “changing
with the advent of agile methods, DevOps and other paradigms” [13].

8.8.2 Motivational Factors

Deak et al. highlighted a set of motivational and de-motivational factors [23, 21]. Mo-
tivational factors include enjoying challenges, work variety, recognition, and technically
challenging work - while de-motivational factors included lack of influence and recognition,
unhappy with management, time pressure, boredom, and poor relationships with develop-
ers. My findings align with Deak et al. in that all testers loved challenging oneself - both
domain and technical - and have work variety. Similarly, Deak et al. defined recognition as
“...awareness of the importance of testing, both among management and development teams,
as well as positive feedback received from developers in relation to discovering and fixing
bugs”. This behavior was similarly found out from the interviews and observations, and
the testers felt verily appreciated both from the customer and the team internally - which
likely had a positive impact on their motivation and the wish to perform their work well.
As for the de-motivational factors, they were not visible in my findings. All testers had good
relationships with developers, and did not mention boredom. Even though time pressure
occurred amongst testers, some worked better under pressure while others did not - but no
one mentioned that it was de-motivational. There was one single case from a tester who
became somewhat de-motivated from poor management due to a non-existent support sys-
tem. Deak et al. found out that agile testers were unhappy about their relationship with
developers. They stated that it “might be related to a situation where a company applies a
customized version of agile methods”. I found that testers were generally happy with every-
one’s relationships. As for the software development process used in projects, it was unsure
whether they used a customized version or a combination of Scrum and Kanban.

Livonen et al. also found out that motivation was seen as necessary in order to perform

68

effective and efficient testing [55] - I showed that testers gained motivation by socializing
with co-workers, which can lower the threshold of asking stupid questions and being more
friendly with co-workers during work hours. Secondly, Livonen et al. found out that testers
were thorough, careful, and systematic - this is both supported from my findings suggest-
ing that testers need to be organized and structured, as well as from existing research
previously discussed. Finally, the ability to reflect meant testers’ ability to maintain the
big picture, allowing testers to focus on important aspects of the software and understand
the users’ needs. I have also found out that being able to see the whole picture is a desir-
able trait for testers; it often helped them find unusual bugs and see things from another
perspective.

8.9 An Emerging Theory of Software Testers’ Human Factors

As for the emerged theory, the existing research regarding human factors of software testers
has mentioned some occurrences that can strengthen parts of my causal relations, most of
them regarding good communication skills and teamwork. In their study on personality
traits of software testers, Kanij et al. found that testers emphasised good communication
with developers and customers [45]. Goncalves et al. found that the most indicated diffi-
culty among test professionals was bad communication with developers, and can affect the
final quality of the product [32]. Consequently, the study conducted by Shah et al. found
that testers were building friendly relations with developers and as a result, the two teams
worked more willingly with each other [71]. Their study also found communication gaps
among the team created confusion among team members, which lead to missed deadlines.
Furthermore, findings from Hernandez et al. shows that the most effective factor for col-
laboration with others was based on two main human factors: “openness and attitude of the
people and the understanding of shared goals” [36]. These are all in line with my current
theory. However, my theory also suggests that it is not just communication with developers
that should be emphasised. Rather, it is important that testers need good communication
and relations with interactions designers, developers, project leaders, and product man-
agers alike in order to attain good teamwork. My results also expand the findings from the
study conducted by Hernandez et al. [36], in that apart from openness and understanding
of shared goals - friendliness and constructiveness are also emphasised for software testers.

Livonen et al. found from their interviews that domain-knowledge is most useful when
it is utilized for understanding what the user is trying to achieve with the product, and to
understand what parts of the software would be most crucial for testing [55]. Their findings
resemble quite to my theory in that domain-knowledge can positively affect creativity, in
the sense that it is used in two courses actions; to conduct testing by making up different
user personas in different scenarios, and to come up with ways to test the different parts of
the system - both courses that seem to quite fit explanations from Livonen et al. However, in

69

my theory, I have showed that not only is domain-knowledge needed in order to conduct this
type of testing creatively, technical-knowledge is also important for understanding things
such as interaction between front-end and back-end, APIs, and data-flow between different
modules of the system. This, in turn, can allow testers to increase their understanding of
how the whole system works, and thus able to creatively create unique user personas that
aims to break down the product.

Furthermore, Itkonen et al. found that exploratory testers need both domain-knowledge
and system-knowledge. Both knowledge types can be divided into two categories and ap-
plied respectively: “focused knowledge of separate features or details, and holistic knowledge
of interactions” [41]. Their findings presented are very much similar to mine, in the sense
that focused knowledge resembles detail-oriented and holistic the ability to see the whole
picture. Following this, it can be argued that my findings support their study, in that both
domain-knowledge and technical-knowledge can affect the ability to be detail-oriented - ex-
ercising focused knowledge - and to see the whole picture - exercising the holistic knowledge
of the product.

Findings from Kanij et al. also identified a number of factors that relates to the effec-
tiveness of software testing, with good domain-knowledge being mentioned by respondents
as very important [45]. However, some of them also mentioned the ability to learn resulted
in continuous growth of knowledge and fostered experience, to the point where testers were
able to identify error-prone parts to focus testing on. Results from Matturo showed that
one of the top five soft skills that are usually demanded by software companies is eager-
ness to learn [57], and as mentioned before - findings from Deak [22] shows that curiosity
was advantageous for coming up with unusual testing scenarios, as well as an incentive
for continuous learning of the product. My theory seems to support these studies, that it
is important for software testers to be curious. However, I have shown that they should
be curious of not only domain-knowledge, but also technical-knowledge in order to have a
better understanding of the product, and able to conduct testing effectively. My findings
also show that curious testers possessed an independence to learn new things unprompted
by others, strengthening the findings from Deak, in that curiosity is an incentive for con-
tinuous improvement.

In addition to the current findings from existing research, my theory proposes new rela-
tionships among these human factors and hard skills. I have found that the ability to see
the whole picture affects teamwork as a whole. Stated in the results sections, majority of
the testers mentioned that they are usually the middle-man of the team. By retaining a
helicopter view of the product, testers bridge the gap between domain aspect and the tech-
nical aspect by conveying comprehensible information to the other party. Teamwork became

70

more productive and transparent as testers reminded each party of the knowledge field that
they are not well versed in. Even when agile teams foster multi-disciplinary teams, it can
still get quite difficult for designers to understand technical jargon spoken by developers.
Additionally, the theory shows that being detail-oriented as a software tester can positively
affect teamwork. This is shown by software testers able to spot user-experience faults that
interaction designers overlooked, as well as technical abnormalities that developers have
mistakenly forgotten or ignored. Both of these aspect will affect team effectivity and effi-
ciency. Furthermore, it was shown that testers generated a feeling of psychological safety
when they worked with other professions, because it gave other team members reassurance
that the software tester confirms every aspect and thus, it is less likely that actual mistakes
appear.

My theory also shows that a structured software tester is more detail-oriented. Specifically,
structured in the sense that testers are more systematic and organized, and writes down
everything in check-lists and to-do’s. While some testers note things down to serve as guide-
lines or saved as future references - acting as a reminder on details that everyone else had
forgotten, other testers have noted that writing things down freed up their head to focus on
other things, and were thus able to pick up on abnormal details. Nevertheless, techniques
such as exploratory testing still requires a somewhat systematic approach to conduct in
order for one to know what is been tested and what not, and to retrace their steps when a
bug is found. Software testers that are structured, together with their thoroughness and
systematic mapping, can thus spot deviations much easier. Finally, my theory indicates
that both hard skills: domain-knowledge and technical-knowledge, will affect the ability
to be adaptable for an agile software tester. Seeing from both the case study and inter-
views, software testers’ tasks varies greatly between domain-specific to technical-specific.
Domain-knowledge is of minimal help during a tasks that aims to test the technical so-
lution and vice versa. Software testers are often helping both designers and developers in
their work, which makes it apparent that good knowledge within both domain and technical
should be needed in order to adapt to the constant context-switching.

8.10 Implications for Practice

The motivation for writing this thesis was to figure out the desirable human factors for a
software tester to have, mainly because I intend to work as one in the near future, but also
because I have a fondness over the software testing field. The results of this thesis should,
therefore, be considered highly relevant for the industry in the sense that to-be testers can
get a sense of the factors presented in this thesis by setting a frame of expectations for
the role, and existing software engineers thinking of a career within software testing. This
thesis can also benefit the industry by providing a set of relevant skills / traits that testers
should possess, useful as a check-list to those in charge of hiring new testing personnel -

71

for example, giving interviewees a case to work on before the interviews might prove to
discover some skills such as being creative, structured, detail-oriented, and able to see the
whole picture.

As for organizations with existing testers, these personal skills can prove to be challenging
to modify. It is therefore recommended for organizations to apply the factors presented in
section 7.3 on page 57. Community of practice enabled testers to have a place to discuss
issues, share their experience, and receive advice. A community of practice in this sense
can mean weekly-meetings for all testers, online forums dedicated to testing, etc. This can
benefit immensely for newcomers to testing, as a community of practice can act as scaffolds
for supporting growth. Meetings could be done either online or offline, but from what I have
discovered - offline works best as individuals are physically there. But if meeting present
proved to be challenging to manage, online with video call works just as well - according to
the findings. Secondly, ensure that testers are continuously learning and working on chal-
lenging projects - but it also should be the right amount of challenge. Organizations should
be in close contact with testers regarding this aspect. Finally, co-workers should aim to
socialize with each other during off-work hours. It was shown that motivation increased
when testers got to know everyone in a social setting, which made it easier to coordinate
with each other during work.

Organizations could also incorporate a support system for testers. In addition to con-
structing Community of Practice, there is a need for joint-sharing culture. Cultural values
that highlights the ’sharing-is-caring’ mentality and that sharing is beneficial for everyone.
Testers should not feel to forced ’give-away’ their knowledge that makes them unique. In-
stead, testers need to be automatically willing to share their knowledge to impact everyone
else positively. Even with a support system in place, testers could still have trouble asking
for specific advice within their specific work context. Buddy-mentor relationships should,
therefore, also be established within the team as guidance for any newcomers learning the
ropes. As for trust and inter-team relationships, testers need to be friendly and respect
the customer and other team members’ decisions. Seeing as trust comes from experience,
buddy-mentor relationships further enhances its importance as to gain the customers’ trust
and add some credibility. For a team to coordinate well, everyone should respect everyone
else. Therefore, the suggestions for implementing these external factors also apply to other
professions working in a software development team.

8.11 Implications for Theory

For researchers looking to build upon the theory I presented in 7.4 on page 59, it is im-
portant to remember that these human factors are not set in stone. Researchers may also
reveal other traits that are not present in this thesis or find different correlations compared

72

to my theory. It is important to remember that the results were found in a specific group
of professionals operating in a specific area, working for a specific organization in a specific
geographical location. Nevertheless, the theory I presented had a direct connection in my
data, meaning some other relations could have been omitted due to the lack of concrete
data proving the causal relation. Researchers could look deeper into cultural variations
and how that impacts the factors that are needed in order to make an effective software
tester. Since many software development organizations are multinational and multicul-
tural, researchers could differentiate the findings discovered here versus factors needed in
order to cross-cultural boundaries. The human factors described within this thesis have
emerged from individuals working in agile frameworks (Scrum, Kanban), and thus the
newly-founded theory is mostly applicable to this context.

8.12 Validity

In this section I describe the steps I took in ensuring the four validity types presented in
section 5.5 on page 34 - Construct validity, Internal validity, External validity, and Relia-
bility.

8.12.1 Construct Validity

Construct validity was supported by using different data-gathering methods. I also placed
interview data as a higher priority than observational data to reduce bias or subjectivity.
I did not twist the data to fit my personal view or opinion, and I refrained from using any
data that was open to more than one interpretation as evidence. Nevertheless, I followed
Yin’s principle [82] by maintaining a chain of evidence throughout this whole study.

8.12.2 Internal Validity

Since internal validity elicits the extend to which pieces of evidence support the causal
relationship between cause and effect, I upheld this validity type through using multiple
sources of evidence before claiming a theme - such as observation notes, interview tran-
scripts, and meeting notes.

8.12.3 External Validity

The aspect of generalizability is hard to impose within the field of Software Engineering.
This is due mainly to the vast variations in organizations, projects, teams, and processes,
etc. One of the countermeasures I applied was to interview individuals that were working
in different contexts - but that all used agile processes - in order to try and generalize the
findings in a vacuum. A much better way to reduce external validity was to conduct a
multiple-case study. That, however, proved to be challenging to attain.

73

8.12.4 Reliability

Reliability is important to ensure that future researchers can reproduce the results. This
can be achieved by having multiple sources of evidence. I enforced this aspect by using
quotes, observational field notes, and conversation logs in my results chapter. Additionally,
I created a Case Study Database used during data analysis. Both principles are recom-
mended by Yin [82], and hopefully, future researchers can replicate my method.

8.13 Limitations

It is essential to note the limitations of this study. The most significant limitations of
my thesis are context, time, and inexperience. This thesis was conducted mainly using
data gathered from professionals working work at one specific company in one specific ge-
ographical location. The findings discovered can, therefore, be influenced by both cultural
and organizational values/standards. Had this been a multi-case study with different or-
ganizations across borders, the human factors discovered might have been dissimilar than
my current findings. Secondly, if there were more time, I would have been able to confirm
my findings more securely and most likely fill some gaps and found discrepancies within
my results by gathering more data. Consequently, my inexperience in research has, in all
likelihood, impacted this study. However, I have tried to minimize this impediment through
reading as much as I could on the different research artifacts, and followed as closely as I
could on the research methods chosen. I have kept my own bias out of the study and had a
systematic, organized mindset when conducting this whole study.

8.13.1 Limitations Regarding the Data

There are a few limitations to the current study, given its qualitative nature. It is worth
mentioning that interviews have several disadvantages. For example, poorly constructed
questions may lead to poorly given answers - I tried, to the best of my knowledge, to con-
struct concrete questions, so that interviewees understood beyond doubt the questions. Sec-
ondly, if the interviewees do not recall an event correctly, their answers may vary depending
on their own interpretation at the time or after they have given some thoughts. This is es-
pecially important to note for studies researching interpersonal aspects. I interpreted this
as a significant data analysis and interpretation validity, as it was not possible to confirm
the interviewees recall of the events. Thirdly, the interviewees might have given erroneous
answers, which may have further increased my own bias. Neutral non-leading question for-
mulations were, therefore, crucial for me to construct and consider. Measures were taken
prior, and during these interviews, such as discussing with my supervisor and continually
refining the interview-guide. I also endeavored to minimize my own bias through conduct-
ing multiple interviews with multiple professionals that had no work relations with each
other in order to reduce bias and try to get a generalized sense. Yet, that proved to act like

74

a double-edged sword - which I explain why in the following text.

Since my primary data was gathered from interviews - half of the interviewees were asked
about their own personal perception of testers and their human factors. This might be
limited in scope, due to two major reasons. First, the interviewees may not have observed
actions that exhibit a specific trait of a tester. Meaning that two different developers work-
ing on separate projects may have had different experiences regarding the tester’s traits.
In essence, one may have observed actions done by the tester that may consider creative,
while another has not observed such actions in his/her projects. Secondly, the perception of
whether a trait is exhibited is influenced by personal views and opinions. For instance, a
developer can describe a software tester by their actions, but however one perceives those
actions is subjective: if two developers are describing the same tester, one may state that
the tester is creative while the other might not. One’s world view directly influences things
we do or perceive in some way, and both of these reasons - in my opinion - share a weak
spot to the reliability of the data.

75

9 Conclusion
To sum-up the whole thesis, I conducted a Grounded Theory study consisting of interviews
and project observations of an agile software development team within the financial sector,
in the period November 2019 - January 2020. The scope of my thesis was to investigate the
human factors and skills perceived by the software professionals as determinant for the
software tester role.

I presented background information related to the thesis, followed by the conduction of
two systematic literature reviews, in order to obtain the overview of the current state of
research within the topic I focused on. I described research methods and the reasoning
behind why they were chosen, as well as the research context, data collection, and data
analysis procedures - all which acted as the foundation of my thesis and theory. The emer-
gent theory is meant to outline the relationship between how the human factors of the role
can influence one another, and although the theory itself is open to further development,
my findings serve as building blocks for other researchers to build upon. I presented my
findings and discussed these in light of relevant research literature, and elicited implica-
tions for practice and for theory. Finally, I reflected on the validity and limitations of the
study.

My findings show that all the professionals, testers and non-testers, see the following hu-
man factors as pivotal for the agile software testing role: able to see the whole picture, hav-
ing good communication skills, being detailed-oriented, structured, creative, curious, and
adaptable. In addition, software testers are also expected to be proficient in hard skills,
such as domain-knowledge and technical knowledge. The emerged theory I presented,
shows that for software testers, being curious will help in learning domain-knowledge and
technical-knowledge. In addition, both domain-knowledge and technical-knowledge will
have a influence on being creative, adaptable, detail-oriented, and being able to see the
whole picture. Software testers that are structure will positively impact their ability to be
detail-oriented. Finally, good communication skills, being detail-oriented, and able to see
the whole picture as a software tester will increase teamwork.

In my thesis, I build upon the existing research done on human factors of software testers
working in agile software development, contributing to identifying specific human factors
for testers, through observation and interviews of both software testers and non-software
testers. I constructed an emergent theory, however, as this thesis is inter-disciplinary, it
could benefit from research in the psychology field. Future work could arise, such as find-
ing out differences of human factors needed in agile versus sequential development models
or explore deeper the traits required for testers and other roles within a development team.

76

10 Bibliography
[1] M. O. Ahmad, J. Markkula, and M. Oivo. “Kanban in software development: A system-

atic literature review”. In: 2013 39th Euromicro Conference on Software Engineering
and Advanced Applications. Sept. 2013, pp. 9–16. DOI: 10.1109/SEAA.2013.28.

[2] A. Ahmed et al. “Agile software development: Impact on productivity and quality”. In:
2010 IEEE International Conference on Management of Innovation Technology. June
2010, pp. 287–291. DOI: 10.1109/ICMIT.2010.5492703.

[3] R. Vijay Anand and M Dinakaran. “Popular agile methods in software development:
Review and analysis”. en. In: International Journal of Scientific and Technical Ad-
vancements 2.4 (2016), pp. 147–150. ISSN: 2454-1532.

[4] Mundita Awotar and Roopesh Kevin Sungkur. “Optimization of Software Testing”. In:
Procedia Computer Science. International Conference on Computational Intelligence
and Data Science 132 (Jan. 2018), pp. 1804–1814. ISSN: 1877-0509. DOI: 10.1016/
j.procs.2018.05.142.

[5] Omar Badreddin. “Thematic Review and Analysis of Grounded Theory Application in
Software Engineering”. en. In: Advances in Software Engineering 2013 (2013), pp. 1–
9. ISSN: 1687-8655, 1687-8663. DOI: 10.1155/2013/468021.

[6] Aleksander Bai, Heidi Mork, and Viktoria Stray. “A cost-benefit analysis of accessi-
bility testing in agile software development: results from a multiple case study”. en.
In: International Journal on Advances in Software 10.1, 2 (2017), pp. 96–107.

[7] Nada Bajnaid, Rachid Benlamri, and Boris Cogan. “An SQA e-Learning System for
Agile Software Development”. en. In: Networked Digital Technologies. Ed. by Rachid
Benlamri. Communications in Computer and Information Science. Springer Berlin
Heidelberg, 2012, pp. 69–83. ISBN: 978-3-642-30567-2.

[8] Rex Black, Erik van Veenendaal, and Dorothy Graham. Foundations of Software Test-
ing ISTQB Certification. 3rd. Cengage Learning EMEA; 3 edition, 2012. ISBN: 978-1-
4080-4405-6.

[9] Virginia Braun and Victoria Clarke. Successfull Qualitatie Research: A Practical Guide
for Beginners. en-US. SAGE Publications, 2013. ISBN: 978-1-84787-582-2.

[10] Virginia Braun and Victoria Clarke. “Using thematic analysis in psychology”. en.
In: Qualitative Research in Psychology 3.2 (Jan. 2006), pp. 77–101. ISSN: 1478-0887,
1478-0895. DOI: 10.1191/1478088706qp063oa.

[11] Virginia Braun et al. “Thematic Analysis”. en. In: Handbook of Research Methods
in Health Social Sciences. Ed. by Pranee Liamputtong. Singapore: Springer, 2019,
pp. 843–860. ISBN: 978-981-10-5251-4. DOI: 10.1007/978-981-10-5251-4_103.

[12] Amadeu Silveira Campanelli and Fernando Silva Parreiras. “Agile methods tailoring
– A systematic literature review”. In: Journal of Systems and Software 110 (Dec.
2015), pp. 85–100. ISSN: 0164-1212. DOI: 10.1016/j.jss.2015.08.035.

77

https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/ICMIT.2010.5492703
https://doi.org/10.1016/j.procs.2018.05.142
https://doi.org/10.1016/j.procs.2018.05.142
https://doi.org/10.1155/2013/468021
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-981-10-5251-4_103
https://doi.org/10.1016/j.jss.2015.08.035

[13] L. F. Capretz et al. “Studies on the Software Testing Profession”. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). May 2019, pp. 262–263. DOI: 10.1109/ICSE- Companion.2019.
00105.

[14] Jerry D. Cavin. “The Role of Human Factors in Veteran SQA Training”. In: Proce-
dia Manufacturing. 6th International Conference on Applied Human Factors and Er-
gonomics (AHFE 2015) and the Affiliated Conferences, AHFE 2015 3 (Jan. 2015),
pp. 1535–1542. ISSN: 2351-9789. DOI: 10.1016/j.promfg.2015.07.416.

[15] H. Frank Cervone. “Understanding agile project management methods using Scrum”.
en. In: OCLC Systems & Services: International digital library perspectives (Feb.
2011). ISSN: 1065-075X. DOI: 10.1108/10650751111106528.

[16] Kathy Charmaz. Constructing Grounded Theory: A Practical Guide Through Quali-
tative Analysis. SAGE Publications, 2006. ISBN: 978-0-7619-7353-9.

[17] J. Chóliz, J. Vilas, and J. Moreira. “Independent Security Testing on Agile Software
Development: A Case Study in a Software Company”. In: 2015 10th International
Conference on Availability, Reliability and Security. Aug. 2015, pp. 522–531. DOI:
10.1109/ARES.2015.79.

[18] VersionOne CollabNet. 12th Annual State of Agile Report. en-US. Tech. rep. 12.

[19] Juliet Corbin and Anselm Strauss. “Grounded Theory Methodology: An Overview”.
In: Handbook of qualitative research. 1994, pp. 273–285.

[20] Benjamin Crabtree and William Miller. Doing Qualitative Research. SAGE Publica-
tions, 1999.

[21] Anca Deak. “A Comparative Study of Testers’ Motivation in Traditional and Agile
Software Development”. en. In: Product-Focused Software Process Improvement. Ed.
by Andreas Jedlitschka et al. Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2014, pp. 1–16. ISBN: 978-3-319-13835-0.

[22] Anca Deak. “What Characterizes a Good Software Tester? – A Survey in Four Norwe-
gian Companies”. en. In: Testing Software and Systems. Ed. by Mercedes G. Merayo
and Edgardo Montes de Oca. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014, pp. 161–172. ISBN: 978-3-662-44857-1.

[23] Anca Deak, Tor Stålhane, and Guttorm Sindre. “Challenges and strategies for moti-
vating software testing personnel”. In: Information and Software Technology 73 (May
2016), pp. 1–15. ISSN: 0950-5849. DOI: 10.1016/j.infsof.2016.01.002.

[24] Saru Dhir and Deepak Kumar. “Automation Software Testing on Web-Based Applica-
tion”. en. In: Software Engineering. Ed. by M. N. Hoda et al. Advances in Intelligent
Systems and Computing. Springer Singapore, 2019, pp. 691–698. ISBN: 978-981-10-
8848-3.

78

https://doi.org/10.1109/ICSE-Companion.2019.00105
https://doi.org/10.1109/ICSE-Companion.2019.00105
https://doi.org/10.1016/j.promfg.2015.07.416
https://doi.org/10.1108/10650751111106528
https://doi.org/10.1109/ARES.2015.79
https://doi.org/10.1016/j.infsof.2016.01.002

[25] O. M. Ekwoge, A. Fontão, and A. C. Dias-Neto. “Tester Experience: Concept, Issues
and Definition”. In: 2017 IEEE 41st Annual Computer Software and Applications
Conference. Vol. 1. July 2017, pp. 208–213. DOI: 10.1109/COMPSAC.2017.232.

[26] Raluca Florea and Viktoria Stray. “Software Tester, We Want to Hire You! an Analy-
sis of the Demand for Soft Skills”. en. In: Agile Processes in Software Engineering and
Extreme Programming. Ed. by Juan Garbajosa, Xiaofeng Wang, and Ademar Aguiar.
Lecture Notes in Business Information Processing. Springer International Publish-
ing, 2018, pp. 54–67. ISBN: 978-3-319-91602-6.

[27] Raluca Florea and Viktoria Stray. “The skills that employers look for in software
testers”. en. In: Software Quality Journal 27.4 (Dec. 2019), pp. 1449–1479. ISSN:
1573-1367. DOI: 10.1007/s11219-019-09462-5.

[28] Carlos Alberto Fortunato et al. “Quality Assurance in Agile Software Development: A
Systematic Review”. en. In: Agile Methods. Ed. by Tiago Silva da Silva et al. Commu-
nications in Computer and Information Science. Springer International Publishing,
2017, pp. 142–148. ISBN: 978-3-319-55907-0.

[29] Cesar Gil et al. “Agile Testing Practices in Software Quality: State of The Art Review”.
en. In: Journal of Theoretical and Applied Information Technology 92 (2016), p. 9.

[30] Lisa Given. The SAGE Encyclopedia of Qualitative Research Methods. Vol. 1 & 2.
2008. ISBN: 978-1-4129-4163-1.

[31] Barney G. Glaser and Anselm Strauss. The Discovery of Grounded Theory: Strategies
for Qualitative Research. 1967. ISBN: 0-202-30260-1.

[32] W. F. Gonçalves et al. “The influence of human factors on the software testing process:
The impact of these factors on the software testing process”. In: 2017 12th Iberian
Conference on Information Systems and Technologies (CISTI). June 2017, pp. 1–6.
DOI: 10.23919/CISTI.2017.7975873.

[33] Lucas Gren. “The Links Between Agile Practices, Interpersonal Conflict, and Per-
ceived Productivity”. In: Proceedings of the 21st International Conference on Eval-
uation and Assessment in Software Engineering. EASE’17. event-place: Karlskrona,
Sweden. New York, NY, USA: ACM, 2017, pp. 292–297. ISBN: 978-1-4503-4804-1. DOI:
10.1145/3084226.3084269.

[34] Geir K. Hanssen et al. “Quality Assurance in Scrum Applied to Safety Critical Soft-
ware”. en. In: Agile Processes, in Software Engineering, and Extreme Programming.
Ed. by Helen Sharp and Tracy Hall. Lecture Notes in Business Information Process-
ing. Springer International Publishing, 2016, pp. 92–103. ISBN: 978-3-319-33515-5.

[35] T. D. Hellmann, A. Hosseini-Khayat, and F. Maurer. “Supporting Test-Driven Devel-
opment of Graphical User Interfaces Using Agile Interaction Design”. In: 2010 Third
International Conference on Software Testing, Verification, and Validation Workshops.
Apr. 2010, pp. 444–447. DOI: 10.1109/ICSTW.2010.35.

79

https://doi.org/10.1109/COMPSAC.2017.232
https://doi.org/10.1007/s11219-019-09462-5
https://doi.org/10.23919/CISTI.2017.7975873
https://doi.org/10.1145/3084226.3084269
https://doi.org/10.1109/ICSTW.2010.35

[36] T. P. R. y Hernández and N. Marsden. “Understanding software testers in the auto-
motive industry a mixed-method case study”. In: 2014 9th International Conference
on Software Engineering and Applications (ICSOFT-EA). Aug. 2014, pp. 305–314.

[37] Rashina Hoda, James Noble, and Stuart Marshall. “Grounded theory for geeks”. en.
In: Proceedings of the 18th Conference on Pattern Languages of Programs - PLoP ’11.
Portland, Oregon: ACM Press, 2011, pp. 1–17. ISBN: 978-1-4503-1283-7. DOI: 10.
1145/2578903.2579162.

[38] Marie C. Hoepfl. “Choosing Qualitative Research: A Primer for Technology Education
Researchers”. en. In: Journal of Technology Education 9.1 (Sept. 1997), p. 16. ISSN:
1045-1064. DOI: 10.21061/jte.v9i1.a.4.

[39] G. Hongying and Y. Cheng. “A customizable agile software Quality Assurance model”.
In: The 5th International Conference on New Trends in Information Science and Ser-
vice Science. Vol. 2. Oct. 2011, pp. 382–387.

[40] Liang Huang and Mike Holcombe. “Empirical investigation towards the effectiveness
of Test First programming”. In: Information and Software Technology. Special Section
- Most Cited Articles in 2002 and Regular Research Papers 51.1 (Jan. 2009), pp. 182–
194. ISSN: 0950-5849. DOI: 10.1016/j.infsof.2008.03.007.

[41] J. Itkonen, M. V. Mäntylä, and C. Lassenius. “The Role of the Tester’s Knowledge in
Exploratory Software Testing”. In: IEEE Transactions on Software Engineering 39.5
(May 2013), pp. 707–724. ISSN: 0098-5589. DOI: 10.1109/TSE.2012.55.

[42] A. Janus et al. “The 3C approach for Agile Quality Assurance”. In: 2012 3rd Inter-
national Workshop on Emerging Trends in Software Metrics (WETSoM). June 2012,
pp. 9–13. DOI: 10.1109/WETSoM.2012.6226998.

[43] D. Janzen and H. Saiedian. “Test-driven development concepts, taxonomy, and fu-
ture direction”. In: Computer 38.9 (Sept. 2005), pp. 43–50. ISSN: 0018-9162. DOI:
10.1109/MC.2005.314.

[44] P. Kandil, S. Moussa, and N. Badr. “A methodology for regression testing reduction
and prioritization of agile releases”. In: 2015 5th International Conference on Infor-
mation Communication Technology and Accessibility (ICTA). Dec. 2015, pp. 1–6. DOI:
10.1109/ICTA.2015.7426903.

[45] T. Kanij, R. Merkel, and J. Grundy. “A Preliminary Survey of Factors Affecting Soft-
ware Testers”. In: 2014 23rd Australian Software Engineering Conference. Apr. 2014,
pp. 180–189. DOI: 10.1109/ASWEC.2014.32.

[46] T. Kanij, R. Merkel, and J. Grundy. “An Empirical Investigation of Personality Traits
of Software Testers”. In: 2015 IEEE/ACM 8th International Workshop on Cooperative
and Human Aspects of Software Engineering. May 2015, pp. 1–7. DOI: 10.1109/
CHASE.2015.7.

[47] Imrul Kayes. “Agile Testing: Introducing PRAT As a Metric of Testing Quality in
Scrum”. In: SIGSOFT Softw. Eng. Notes 36.2 (May 2011), pp. 1–5. ISSN: 0163-5948.
DOI: 10.1145/1943371.1943384.

80

https://doi.org/10.1145/2578903.2579162
https://doi.org/10.1145/2578903.2579162
https://doi.org/10.21061/jte.v9i1.a.4
https://doi.org/10.1016/j.infsof.2008.03.007
https://doi.org/10.1109/TSE.2012.55
https://doi.org/10.1109/WETSoM.2012.6226998
https://doi.org/10.1109/MC.2005.314
https://doi.org/10.1109/ICTA.2015.7426903
https://doi.org/10.1109/ASWEC.2014.32
https://doi.org/10.1109/CHASE.2015.7
https://doi.org/10.1109/CHASE.2015.7
https://doi.org/10.1145/1943371.1943384

[48] Vesa Kettunen et al. “A Study on Agility and Testing Processes in Software Orga-
nizations”. In: Proceedings of the 19th International Symposium on Software Testing
and Analysis. ISSTA ’10. event-place: Trento, Italy. New York, NY, USA: ACM, 2010,
pp. 231–240. ISBN: 978-1-60558-823-0. DOI: 10.1145/1831708.1831737.

[49] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Re-
views in Software Engineering. 2007.

[50] Corey Ladas. Scrumban - Essays on Kanban Systems for Lean Software Develop-
ment. Modus Cooperandi lean series. Modus Cooperandi Press, 2009. ISBN: 978-0-
578-00214-9.

[51] Craig Larman and Bas Vodde. Scaling Lean & Agile Development: Thinking and Or-
ganizational Tools for Large-Scale Scrum. Addison Wesley, 2008. ISBN: 0-321-61715-
0.

[52] Paul Luo Li, Amy J. Ko, and Andrew Begel. “What distinguishes great software engi-
neers?” en. In: Empirical Software Engineering 25.1 (Jan. 2020), pp. 322–352. ISSN:
1382-3256, 1573-7616. DOI: 10.1007/s10664-019-09773-y.

[53] O. Liechti, J. Pasquier, and R. Reis. “Supporting Agile Teams with a Test Analytics
Platform: A Case Study”. In: 2017 IEEE/ACM 12th International Workshop on Au-
tomation of Software Testing (AST). May 2017, pp. 9–15. DOI: 10.1109/AST.2017.3.

[54] Mikael Lindvall et al. “Agile Metamorphic Model-based Testing”. In: Proceedings
of the 1st International Workshop on Metamorphic Testing. MET ’16. event-place:
Austin, Texas. New York, NY, USA: ACM, 2016, pp. 26–32. ISBN: 978-1-4503-4163-9.
DOI: 10.1145/2896971.2896979.

[55] Joonas Livonen, Mika Mantyla, and J. Itkonen. “Characteristics of high performing
testers: a case study.” en. In: Proceedings of the International Symposium on Empiri-
cal Software Engineering and Measurement, ESEM 2010. Bolzano, Italy, Jan. 2010.

[56] Michael Lynch, Thomas Cerqueus, and Christina Thorpe. “Testing a Cloud Appli-
cation: IBM SmartCloud Inotes: Methodologies and Tools”. In: Proceedings of the
2013 International Workshop on Testing the Cloud. TTC 2013. event-place: Lugano,
Switzerland. New York, NY, USA: ACM, 2013, pp. 13–17. ISBN: 978-1-4503-2162-4.
DOI: 10.1145/2489295.2489299.

[57] G. Matturro. “Soft skills in software engineering: A study of its demand by soft-
ware companies in Uruguay”. In: 2013 6th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). May 2013, pp. 133–136. DOI:
10.1109/CHASE.2013.6614749.

[58] M. Meyer. “Continuous Integration and Its Tools”. In: IEEE Software 31.3 (May
2014), pp. 14–16. ISSN: 0740-7459. DOI: 10.1109/MS.2014.58.

[59] Isadore Newman and Carolyn Benz. Qualitative-quantitative research methodology:
Exploring the interactive continuum. Southern Illinois University Press, 1998. ISBN:
978-0-8093-2150-6.

81

https://doi.org/10.1145/1831708.1831737
https://doi.org/10.1007/s10664-019-09773-y
https://doi.org/10.1109/AST.2017.3
https://doi.org/10.1145/2896971.2896979
https://doi.org/10.1145/2489295.2489299
https://doi.org/10.1109/CHASE.2013.6614749
https://doi.org/10.1109/MS.2014.58

[60] Matjaž Pančur and Mojca Ciglarič. “Impact of test-driven development on produc-
tivity, code and tests: A controlled experiment”. In: Information and Software Tech-
nology. Special Section: Best papers from the APSEC 53.6 (June 2011), pp. 557–573.
ISSN: 0950-5849. DOI: 10.1016/j.infsof.2011.02.002.

[61] Lucas Paruch, Viktoria Stray, and Charlotte Bech Blindheim. “Characteristic Traits
of Software Testers”. In: Proceedings of the Evaluation and Assessment in Software
Engineering. EASE ’20. Trondheim, Norway: Association for Computing Machinery,
Apr. 2020, pp. 371–372. ISBN: 978-1-4503-7731-7. DOI: 10.1145/3383219.3383270.

[62] L. Prechelt, H. Schmeisky, and F. Zieris. “Quality Experience: A Grounded Theory
of Successful Agile Projects without Dedicated Testers”. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). May 2016, pp. 1017–1027.
DOI: 10.1145/2884781.2884789.

[63] P. Rahayu et al. “Applying usability testing to improving Scrum methodology in de-
velop assistant information system”. In: 2016 International Conference on Informa-
tion Technology Systems and Innovation (ICITSI). Oct. 2016, pp. 1–6. DOI: 10.1109/
ICITSI.2016.7858222.

[64] Jane Ritchie and Jane Lewis. Qualitative Research Practice: A Guide for Sosial Sci-
ence Students and Researchers. SAGE Publications, 2003. ISBN: 0 7619 7110 6.

[65] Colin Robson and Kieran McCartan. Real World Research. 4th ed. 2011. ISBN: 978-1-
119-14485-4.

[66] Johnny Saldana. The Coding Manual for Qualitative Researchers. SAGE Publica-
tions, 2012. ISBN: 1-4462-7142-0.

[67] Iflaah Salman, Burak Turhan, and Sira Vegas. “A controlled experiment on time pres-
sure and confirmation bias in functional software testing”. en. In: Empirical Soft-
ware Engineering 24.4 (Aug. 2019), pp. 1727–1761. ISSN: 1573-7616. DOI: 10.1007/
s10664-018-9668-8.

[68] A. M. dos Santos et al. “Testing in an agile product development environment: An
industry experience report”. In: 2011 12th Latin American Test Workshop (LATW).
Mar. 2011, pp. 1–6. DOI: 10.1109/LATW.2011.5985897.

[69] R. E. d S. Santos et al. “Would You Like to Motivate Software Testers? Ask Them
How”. In: 2017 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). Nov. 2017, pp. 95–104. DOI: 10.1109/ESEM.
2017.16.

[70] James T. Sawyer and David M. Brann. “How to Test Your Models More Effectively:
Applying Agile and Automated Techniques to Simulation Testing”. In: Winter Simula-
tion Conference. WSC ’09. event-place: Austin, Texas. Winter Simulation Conference,
2009, pp. 968–978. ISBN: 978-1-4244-5771-7.

[71] Hina Shah and Mary Jean Harrold. “Studying Human and Social Aspects of Testing
in a Service-based Software Company: Case Study”. In: Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of Software Engineering. CHASE ’10.

82

https://doi.org/10.1016/j.infsof.2011.02.002
https://doi.org/10.1145/3383219.3383270
https://doi.org/10.1145/2884781.2884789
https://doi.org/10.1109/ICITSI.2016.7858222
https://doi.org/10.1109/ICITSI.2016.7858222
https://doi.org/10.1007/s10664-018-9668-8
https://doi.org/10.1007/s10664-018-9668-8
https://doi.org/10.1109/LATW.2011.5985897
https://doi.org/10.1109/ESEM.2017.16
https://doi.org/10.1109/ESEM.2017.16

event-place: Cape Town, South Africa. New York, NY, USA: ACM, 2010, pp. 102–108.
ISBN: 978-1-60558-966-4. DOI: 10.1145/1833310.1833327.

[72] F. S. Silva et al. “A Reference Model for Agile Quality Assurance: Combining Agile
Methodologies and Maturity Models”. In: 2014 9th International Conference on the
Quality of Information and Communications Technology. Sept. 2014, pp. 139–144.
DOI: 10.1109/QUATIC.2014.25.

[73] Dag I. K. Sjøberg et al. “Building Theories in Software Engineering”. en. In: Guide to
Advanced Empirical Software Engineering. Ed. by Forrest Shull, Janice Singer, and
Dag I. K. Sjøberg. London: Springer London, 2008, pp. 312–336. ISBN: 978-1-84800-
043-8. DOI: 10.1007/978-1-84800-044-5_12.

[74] Anselm Strauss. Qualitative analysis for social scientists. Cambridge University Press,
1987. ISBN: 0-521-33806-9.

[75] V. G. Stray, N. B. Moe, and A. Aurum. “Investigating Daily Team Meetings in Agile
Software Projects”. In: 2012 38th Euromicro Conference on Software Engineering and
Advanced Applications. Sept. 2012, pp. 274–281. DOI: 10.1109/SEAA.2012.16.

[76] Viktoria Stray, Nils Brede Moe, and Dag I.K. Sjoberg. “Daily Stand-Up Meetings:
Start Breaking the Rules”. In: IEEE Software 37.3 (May 2020). Conference Name:
IEEE Software, pp. 70–77. ISSN: 1937-4194. DOI: 10.1109/MS.2018.2875988.

[77] Saurabh Tiwari and Atul Gupta. “An Approach of Generating Test Requirements for
Agile Software Development”. In: Proceedings of the 8th India Software Engineering
Conference. ISEC ’15. event-place: Bangalore, India. New York, NY, USA: ACM, 2015,
pp. 186–195. ISBN: 978-1-4503-3432-7. DOI: 10.1145/2723742.2723761.

[78] R. Tommy et al. “Dynamic quality control in agile methodology for improving the
quality”. In: 2015 IEEE International Conference on Computer Graphics, Vision and
Information Security (CGVIS). Nov. 2015, pp. 233–236. DOI: 10.1109/CGVIS.2015.
7449927.

[79] X. Wang. “The Combination of Agile and Lean in Software Development: An Experi-
ence Report Analysis”. In: 2011 Agile Conference. Aug. 2011, pp. 1–9. DOI: 10.1109/
AGILE.2011.36.

[80] L. Williams and A. Cockburn. “Agile software development: it’s about feedback and
change”. In: Computer 36.6 (June 2003), pp. 39–43. ISSN: 0018-9162. DOI: 10.1109/
MC.2003.1204373.

[81] Carla Willig and Wendy Stainton Rogers. The SAGE Handbook of Qualitative Re-
search in Psychology. 2nd ed. SAGE Publications, 2017. ISBN: 1-5264-2286-7.

[82] Robert Yin. Case Study Research and Applications: Design and Methods. 6th ed.
Thousand Oaks, California: SAGE Publications, Sept. 2017. ISBN: 978-1-5063-3616-9.

83

https://doi.org/10.1145/1833310.1833327
https://doi.org/10.1109/QUATIC.2014.25
https://doi.org/10.1007/978-1-84800-044-5_12
https://doi.org/10.1109/SEAA.2012.16
https://doi.org/10.1109/MS.2018.2875988
https://doi.org/10.1145/2723742.2723761
https://doi.org/10.1109/CGVIS.2015.7449927
https://doi.org/10.1109/CGVIS.2015.7449927
https://doi.org/10.1109/AGILE.2011.36
https://doi.org/10.1109/AGILE.2011.36
https://doi.org/10.1109/MC.2003.1204373
https://doi.org/10.1109/MC.2003.1204373

Are you interested in taking part in the research project

“Software testing in agile development”?

This is an inquiry about participation in a research project where the main purpose is to analyze human

factors involved in a tester occupation. In this letter we will give you information about the purpose of

the project and what your participation will involve.

Purpose of the project

The purpose of the master’s thesis is to investigate the tester-role working in a project where agile

methodology is utilized. The scope of the study includes interviews and observations. The project is

conducted in relation to a master’s thesis.

Who is responsible for the research project?

University of Oslo is the institution responsible for the project.

Why are you being asked to participate?

You are chosen to participate in this study because you are a person of interest, who works in a part of

an agile team.

What does participation involve for you?

Your participation in the project will entail being observed on various occasions, as well as making

yourself eligible for interviews. An interview will take approximately 45 minutes and audio recording

will be utilized after consent. The questions that will be asked to revolve around thought on your

personal traits as a software tester.

Participation is voluntary

Participation in the project is voluntary. If you choose to participate, you can withdraw your consent at

any time without giving a reason. All information about your will then be anonymized. There will be

no consequences for you if you choose to not participate or later decide to withdraw.

Your personal privacy – how we will store and use your personal data

We will only use your data for the purpose(s) specified in this information letter. We will process your

personal data confidentially and in accordance with data protection legislation (the General Data

Protection Regulation and Personal Data Act).

• The only persons who will have access to the personal data will be the master’s student Lucas

Paruch and Dr. Viktoria Stray at the University of Oslo

• All personal data will be treated confidentially. Personal data will be stored in a separate file

and protected with password and login

• No names, addresses, e-mails, or other personal data will be used in the publication resulting

from this project.

A NSD Consent form

84

What will happen to your personal data at the end of the research project?

The project is scheduled to end May 2020. Once the project is finalized, all personal data will be

deleted in such a way that the only available data will be anonymous. All digital recordings will be

deleted.

Your rights

So long as you can be identified in the collected data, you have the right to:

- Access the personal data that is being processed about you

- Request that your personal data is deleted

- Request that incorrect personal data about you is corrected/rectified

- Receive a copy of your personal data (data portability), and

- Send a complaint to the Data Protection Officer or The Norwegian Data Protection Authority

regarding the processing of your personal data

What gives us the right to process your personal data?

We will process your personal data based on your consent.

Based on an agreement with University of Oslo, Department of Informatics, NSD – The Norwegian

Center for Research Data AS has assessed that the processing of personal data in this project is in

accordance with data protection legislation

Where can I find out more?

If you have questions about the project, or want to exercise your rights, contact:

• University of Oslo via associate Professor Viktoria Stray (stray@ifi.uio.no , +47 93610848)

• Our Data Protection Officer: Maren Magnus Voll (personvernombud@uio.no)

• NSD – The Norwegian Center for Research Data AS (personverntjenester@nsd.no ,

+4755582117)

Yours sincerely,

Lucas Paruch

Master’s student

Consent form

I have received and understood information about the project Software testing in agile development

and have been given the opportunity to ask questions.

I give consent to participate in observations and interviews.

I give consent for my personal data to be processed until the end date of the project, approx. May

2020.

--

(Signed by participant, date)

Information before the interview

Thank the participant for taking his/her time to be interviewed

Present myself to the participant (name, background, goal of the interview)

Inform the participant about privacy policy and voluntary participation

• Data gathered from the interviews will be used to answer the research question

• Any personal data will be treated confidentially

• All participants will be anonymized

• It is voluntary to participate in the interview, and the participant can at any time

withdraw his/her consent

Inform the participant about the usage of audio recording

• Ask if such a device could be used during the interview

• No one else other than the interviewer will have access to the recording, the audio

will be deleted following the delivery of the thesis

Estimate the length of the interview (45-90 minutes)

Background

Can you tell me about your role, and what has generally been your tasks/assignments?

Can you shortly explain what the project is about?

How many years of experience do you have as a tester?

How long have you worked on this project?

How long have you worked at the consultancy company?

• Have you worked elsewhere before?

o If yes, why did you switch?

How many team members are there in the team?

What kind of software development process do you use for the project?

Collaboration

To what degree do you feel ‘connected/associated’ to the team?

Who do you have the most contact with, within the team?

How do you feel about the team’s coordination ability?

B Interview Guide for Testers

86

Problem-solving

Have there been challenges with working with others in the team?

• If yes, who was it with?

• What happened?

• Have there been any countermeasures after the incident?

Secondary knowledge

How much knowledge do you have about the other team members’ fields?

• Is it easier to do your work when you know what the others are working with (in a

specific sense)?

• Do you at times do work tasks meant for other team members?

Could you imagine to switch to something other than your current role?

• Within the field of testing? In another field?

o Why/Why not?

Skills / learnability

Do you feel like there are skills that you currently lack in order to do your job properly?

• How would you proceed to learn a skill?

o Have you tried to learn something new at your own discretion?

▪ How did you start? What resources did you utilize?

• Who would you have spoken with if you wished to improve an existing skill?

• How would you proceed to help someone else learn a skill?

Communication

How much time do you spend on interaction with others to complete a task?

Assume that you have found a bug during testing, how would you present it to the team?

• What if someone says it is not a bug? How would you convince them?

Do you feel that the ability to communicate is more important than technical abilities?

Structure and effectiveness

In general, how structured are you (both during work and off-work)?

Do you think being structured is something that is needed to become a tester?

• Why/why not?

How would you define an effective tester?

Is there a correlation between effectivity and how structured one is?

Stress

Do you generally feel stressed during work?

Can you give me an example on a day where you were super stressed?

Do you operate better under stress/pressure?

Are you more stress resistance now, compared to when you first started working?

Adaptability/reflectiveness

Have there been cases where you had to reprioritize a task or do something else than what

you had planned in your workday?

• Did this decision come from the product manager, the customer, or the team as a

whole? Have you ever somewhat doubted their decision?

How much pre-work do you perform before starting at an assignment?

• Do you tend to think a lot before?

Attentiveness

Have there been cases where high severely bugs have slipped through the QA environment

and onto the production?

• How did it happen?

• Were there any countermeasures taken after the incident?

Do you see things from another perspective than others?

• Have there been cases where you have pointed out things that no one has thought

of? Are you usually like that?

• In what degree do you tend to remember minuscule details? (Use an example)

Creativity

How creative are you?

Do you get to use your creativity during work?

Do you think creativity is something needed in a tester?

• Why/why not?

Motivation

What keeps you going during work?

Have there been days where you perform better than other days?

• How/why?

Do you keep contact with other team members outside work-hours?

Do you often attempt to get to know new people (both during work and outside)?

Profession

Do you feel that software testing is looked down upon in regards to other roles in a software

development project?

What attributes do you think a software tester should have?

Closing inquiries

Have you ever worked at a non-agile software tester?

• If so, how has the experience differed from your current ways of working?

How do you foresee the evolution of software testing in the future?

• Will software testing become more embedded within roles?

• Do we need dedicated testers?

• Evolution of the software testing role

If you could have started all over, would you still have chosen the career path that led you to

where you currently are?

Is there anything we haven’t discussed that you would like to add?

Information before the interview

Thank the participant for taking his/her time to be interviewed

Present myself to the participant (name, background, goal of the interview)

Inform the participant about privacy policy and voluntary participation

• Data gathered from the interviews will be used to answer the research question

• Any personal data will be treated confidentially

• All participants will be anonymized

• It is voluntary to participate in the interview, and the participant can at any time

withdraw his/her consent

Inform the participant about the usage of audio recording

• Ask if such a device could be used during the interview

• No one else other than the interviewer will have access to the recording, the audio

will be deleted following the delivery of the thesis

Estimate the length of the interview (20-45 minutes)

Can you tell me about your role, and what has generally been your tasks/assignments?

Please tell me briefly about the development project

How many years of experience do you have as X?

How many members are there in the team?

What is your relation to the software tester? (In what way do you interact with him/her?)

What knowledge do you have about the field of software testing?

• Do you sometimes do testing tasks?

Has the software tester helped you with your work tasks?

• How so?

To what degree do you have to look at the whole picture? (Domain knowledge, technical

architectures etc.)

• How is that different from the software tester, according to your experience?

Are there lots of communication between you/team and the software tester?

C Interview Guide for Non-testers

90

• How?

How do you feel about the tester’s communicative abilities? (Describing bugs, asking critical

questions, etc.)

• Do you feel like they can improve on something?

How active are the testers in meetings?

How perceptive are the software testers?

• Are they attentive for details?

• Have they brought up things that no one else has thought of?

Do you see any correlation between creativity and software tester?

• How is it different from being a X?

Do you feel that a software tester needs to be more structured than a X?

• Why, why not?

Have there been days where you perform better without a tester?

• How about with a tester? Why?

Do you remember a situation where the software did a really good job?

• Can you describe it?

• What about the opposite?

How do you define an effective tester?

If you were to choose between a tester who isn’t necessarily skilled in logic/technical but

who is extremely good in communication and team coordination vs a tester who is vice

versa, who would you prefer to work with?

• Why?

Which attribute do you think a tester should possess?

Do you feel that the software tester is connected to the team? (Cohesion)

What are your predictions for the evolution of software testing in the future?

• More embedded within teams?

• Do we still need dedicated testers?

• Evolution of the software testing role

Why do you think people want to be testers and not X?

Is there anything we haven’t discussed that you would like to add?

D Observation ProtocolsObservation Protocol

Location • Workplace layout

• Software testers’ seating

• Actors sitting in proximity of tester

Participant • Name and role of employees

• Behavior towards each other

• Attitude towards tester

• Tester’s attitude towards others

Ceremonies • Start-time, end-time, duration of
meetings

• Attendees and roles

• Facilitator

• Points of interest

• Tester’s behavior during meetings

• Personal thoughts post-meetings

Informal interactions • Who is talking?

• Conversation topic

• Classification of conversation
(problem-solving, everyday life etc.)

Tester’s attributes • Emotions throughout the day

• What does the tester do if unsure of
doing a task?

• Level of focus during work hours

• Personality exhibit

• Level of sociality

93

Characteristic Traits of Software Testers
Lucas Paruch
University of Oslo
Oslo, Norway

lucasp@ifi.uio.no

Viktoria Stray
University of Oslo
Oslo, Norway
stray@ifi.uio.no

Charlotte Bech Blindheim
Itera

Oslo, Norway
charlotte.bech.blindheim@itera.no

ABSTRACT
Although there has been extensive research on software testing
technicalities - such as testing tools and practices - little research
has been conducted within human factors of software testing. In
collaboration with Itera, a consultancy company, we begin to fill
this research gap. Our current qualitative data-set consists of ob-
servation notes, interview transcripts, and conversation logs. Our
findings suggest that creativity, being structured, having the abil-
ity to see the whole picture, having good interpersonal skills, and
eagerness-to-learn are desired traits for a software tester.

KEYWORDS
Human factors, traits, characteristics, software testing, testers, agile,
software engineering
ACM Reference Format:
Lucas Paruch, Viktoria Stray, and Charlotte Bech Blindheim. 2020. Charac-
teristic Traits of Software Testers. In Evaluation and Assessment in Software
Engineering (EASE 2020), April 15–17, 2020, Trondheim, Norway. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3383219.3383270

1 DESCRIPTION OF THE SETUP
The industrial experience described here is the current findings of
collaboration with a consultancy company, Itera. Itera has over 500
employees across Europe and is involved in the banking and finance
sector. There are currently nine consultants working as testers and
test-leads in Norway. As such, current findings are based on the
data collected from five of these consultants.

2 MOTIVATION FOR COLLABORATION
Within the software testing field, research focusing on human fac-
tors or the psychological aspect of testing is scarce [6, 8]. Moreover,
the practitioner literature, such as the ISTQB foundation level syl-
labus - one of the most recognizable certifications within software
testing - mentions little on the topic at hand [2]. We searched for
papers focusing on human factors in the field of software testing
in agile projects. A search in Scopus returned approximately 500
papers, where only 17 were relevant studies focusing on the topic
in the period 2009 - 2019.

Itera’s motivation for collaborating with researchers is to better
understand how to support the testers they have employed, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383270

what traits the company should look for when they hire new soft-
ware testers. The company aims to get a better insight into how
testing is conducted so that they can improve continuously. They
want to give their testers autonomy to think differently, be more
creative, and become more proficient in testing skills.

3 METHODS AND MODES OF ENGAGEMENT
So far, we have conducted five interviews with software testers in
the company. These testers’ working experience range from one
year to six years. We have observed participants working, and we
also have access to their communication on Slack. The data-sets,
therefore, consists of observation notes, interviews, and chat logs.
On the days of observation, the first author noted down timestamps
and points of interest with focus on the tester within the project.

Moreover, interviews were held both within and external from
the project of observation. These ranged approximately from 45
minutes to 1 hour and were held solely with testers from the con-
sultancy company. All interviews have been transcribed. Logs from
communication tools were also used in order to extract additional
support for the data collected through observations and interviews,
such as follow-ups or elaborations. We analysed the data using
thematic analysis [3].

4 TRAITS OF THE SOFTWARE TESTER
Our analysis of the data material revealed five characteristic traits
of the software testers, which we will describe in this section.

A trait that all participants mentioned was creativity. The in-
terviewees mentioned the importance of being creative in order
to find abnormal bugs. One participant stated “I’ve managed to
find weird bugs by being creative, such as mid-way force shutdowns
and performing unusual process-sequences. One has to test like that
because the users are always creative”. Several participants also
mentioned curiosity as an essential trait, such as being curious
of domain knowledge and question the requirements’ reasoning.
One participant described that curiosity allowed him to learn do-
main knowledge swiftly, and mentioned that his knowledge even
surpassed the product owner’s.

Additionally, all five participants shared a common trait of being
structured. One participant recalled “Every Friday, I look at the
calendar for what’s happening next week. Once a month, I also look
through the calendar and see what’s going to happen next month, so
that I may plan ahead”. Another participant added “I can’t function
if there is no structure. I need to have everything noted down in my
calendar, and to-do’s needs to be written down in checklists and notes.

Moreover, the ability to understand the big picture was some-
thing that was discovered from every participant; they stated it was
focal for testers to look at things as a whole and see the connec-
tions between them. One participant stated “Often as a developer,
you receive a task and you do it. They are not very involved in the

E EASE2020 Article

94

EASE 2020, April 15–17, 2020, Trondheim, Norway Paruch, Stray & Blindheim

entire process. I think it’s more exciting to be involved in both the
functional and technical aspects, not just super-technical”. Another
said “One should be somewhat technical proficient, but that is not
most important. The most important part is that you need to be able
to make sense of which part of the system is prone to bugs”.

All participants mentioned the importance of being friendly and
providing constructive feedback to other members, since testers
are often the bearers of bad news. Constructive feedback somehow
mitigates negative dynamics between testers and colleagues in
the team. For example, one participant mentioned that “I was on a
project few years back where I sat next to the developers. When I found
a bug, I stood up and walked towards them with a friendly smile”.
Another explained that he gave explanations on what went wrong
and did not focus on whose fault it was. A third mentioned that
“Whenever I find a bug, I go to the developer in mind and ask him if
it’s suppose to be like that. I try not to point any fingers because that’s
never pleasant for anyone and it’s not appreciated”. We observed that
testers were thorough with the way they reported bugs in meetings
by the respective digital task board, one participant was particularly
thorough with describing what went wrong, the expected result
and actual result, and the steps he took to reproduce it.

Lastly, participants mentioned that their motivation during work
was triggered by continually learning something new, having fun
with pleasant co-workers, and performing enjoyable yet challeng-
ing tasks. One participant, when asked what he liked about his
job, stated “Lots of things motivate me during work; cool projects,
challenging workdays - those that one actually has to use the head -
and also working with lots of different people, which is always fun”
Another mentioned ”It’s fun to work in a team, and work together
with others. When I have issues, there’s a high probability someone
else on the team has the solution. Sometimes I’m the one that helps
them. I think it’s really cool to work this way, and it becomes a lot
more social during work - I look forward to work every day”.

5 LESSONS LEARNED AND IMPLICATIONS
Based on the current results, being creative and structured are the
most important traits for a tester to possess. Burnstein [4] also
suggests that testers need to be creative and experiment-oriented,
while Kanij et al. [11] found that software testers tended to be more
organized, disciplined, and hard-working.

Communication skills are especially important for software
testers [6], and reporting faults in a constructive way is advisable in
order to foster a synergized work environment. Ahmed et al. [1] de-
scribed software testers as "the software development team’s worst
enemy" and therefore they need good interpersonal skills. A recent
study shows that people are more careful in their communication
if a conflict is thought to occur [9]. Software testers need to com-
municate in a way that does not provoke conflict within the team.
It was noted that two of the testers became friends with the rest
of the team, to the point where the team began to socialize during
off-work hours. They stated that it became easier to ask for help
and seek feedback after the get-togethers. Psychological safety has
been found to improve team performance in agile projects [10], and
making software testers less worried about offending developers
when confronting them with bugs [14]. Current findings add to

the understanding that psychological safety is important and may
occur through social interactions among team members.

We found curiosity and the ability to see totality as important
traits for testers. A recent study on the skills of software testers
also found that testers need to have both broad views and attention
to detail [7]. Two existing studies focused on motivational factors
for testers [5, 13], found that enjoying challenges and having work
variety were included in the motivational factors - our current
findings suggest confirming this.

Some of the traits we discovered as essential for software testers,
such as the ability to engage with others, having decision-making
skills, and eagerness-to-learn has also been identified as important
for software developers [12]. Future work could further investigate
differences and similarities in traits, as well as how the degree of
importance varies, for people having these two types of roles.

ACKNOWLEDGMENTS
We would like to thank all the participants that agreed to be ob-
served and interviewed. A special thanks goes to Itera for making
this collaboration setup possible.

REFERENCES
[1] F. Ahmed, L. F. Capretz, and P. Campbell. 2012. Evaluating the Demand for

Soft Skills in Software Development. IT Professional 14, 1 (Jan 2012), 44–49.
https://doi.org/10.1109/MITP.2012.7

[2] Rex Black, Erik van Veenendaal, and Dorothy Graham. 2020. Foundations of
Software Testing ISTQB Certification (4th ed.). Cengage Learning EMEA; 4th
edition.

[3] Virginia Braun, Victoria Clarke, Nikki Hayfield, and Gareth Terry. [n.d.].
Thematic Analysis. In Handbook of Research Methods in Health Social Sci-
ences, Pranee Liamputtong (Ed.). Springer, 843–860. https://doi.org/10.1007/
978-981-10-5251-4_103

[4] Ilene Burnstein. 2006. Practical software testing: a process-oriented approach.
Springer Science & Business Media.

[5] Anca Deak, Tor Stålhane, and Guttorm Sindre. 2016. Challenges and strategies
for motivating software testing personnel. 73 (2016), 1–15. https://doi.org/10.
1016/j.infsof.2016.01.002

[6] Raluca Florea and Viktoria Stray. 2018. Software Tester, We Want to Hire You! an
Analysis of the Demand for Soft Skills. In Agile Processes in Software Engineering
and Extreme Programming (LNBIP), Juan Garbajosa, Xiaofeng Wang, and Ademar
Aguiar (Eds.). Springer International Publishing, 54–67.

[7] Raluca Florea and Viktoria Stray. 2019. The skills that employers look for in
software testers. Software Quality Journal 27, 4 (2019), 1449–1479.

[8] Vahid Garousi and Mika V. Mäntylä. 2016. A systematic literature review of liter-
ature reviews in software testing. 80 (2016), 195–216. http://www.sciencedirect.
com/science/article/pii/S0950584916301446

[9] Lucas Gren. 2017. The Links Between Agile Practices, Interpersonal Conflict,
and Perceived Productivity. In Proceedings of the 21st International Conference
on Evaluation and Assessment in Software Engineering (EASE’17). ACM, 292–297.
https://doi.org/10.1145/3084226.3084269 event-place: Karlskrona, Sweden.

[10] Tomas Gustavsson. 2018. Impacts on team performance in large-scale agile
software development, Vol. 2218. CEUR-WS, 421–431. http://urn.kb.se/resolve?
urn=urn:nbn:se:kau:diva-70241

[11] T. Kanij, R. Merkel, and J. Grundy. 2015. An Empirical Investigation of Personality
Traits of Software Testers. In 2015 IEEE/ACM 8th International Workshop on
Cooperative and Human Aspects of Software Engineering. 1–7. https://doi.org/10.
1109/CHASE.2015.7

[12] Paul Luo Li, Amy J Ko, and Andrew Begel. 2019. What distinguishes great
software engineers? Empirical Software Engineering (2019), 1–31.

[13] R. E. d S. Santos, C. V. C. d Magalhães, J. d S. Correia-Neto, F. Q. B. d Silva, L. F.
Capretz, and R. Souza. 2017. Would You Like to Motivate Software Testers? Ask
Them How. In 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 95–104.

[14] Viktoria Stray, Tor Erlend Fægri, and Nils Brede Moe. 2016. Exploring norms
in agile software teams. In International Conference on Product-Focused Software
Process Improvement. Springer, 458–467.

	Introduction
	Motivation
	Research Area and Question
	Thesis Structure

	Background
	Agile Development Processes
	Scrum
	Kanban
	Scrumban

	Agile Testing Practices
	Early Involvement & Task Delegation
	Test-Driven Development & Test Automation
	Continuous Integration

	Software Testing In Agile Development
	Selection Process
	Three Categories of Agile Software Testing Papers
	Innovative Artifacts
	Comparative Studies
	Evaluation Papers

	Lack of Human Factors Research in the Testing field

	Human Factors In Software Testing
	Selection Process
	Four Categories of Human Factors Papers
	Software Testing as a Profession
	Testers' Motivation
	Personal Characteristics
	Miscellaneous

	Research Method
	Qualitative Research
	Grounded Theory
	Grounded Theory Procedures
	Reflexive Thematic Analysis

	Data Collection
	Interviews
	Observations
	Chat Software

	Data Analysis
	Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Research Context
	The Organization
	The Project
	The Team
	Responsibilities

	Processes
	Daily Stand-up Meetings
	Test-status Meetings
	Feasibility Meetings
	Sprint Planning and Retrospective Meetings

	Tools

	Results
	Human Factors
	Adaptable
	Good Communication Skills
	Friendliness and Constructive Feedback
	Meticulous Bug Reports
	Provide Information, ask for Additional
	Introversion and Extraversion
	Bridging the Gap Among the Team

	Detail-oriented
	Detail-oriented in Terms of User-experience
	Detail-oriented in Terms of Technicalities

	Creative
	Curious
	Structured
	See the Whole Picture

	Hard Skills
	Domain Knowledge
	Rapid Acquisition

	Technical Knowledge

	External Factors
	Community of Practice
	Motivational Factors
	Support System
	Trust and Respect

	An Emerging Theory of Software Testers' Human Factors

	Discussion
	Adaptable
	Good Communication Skills
	Detail-oriented
	Creative
	Curious
	Structured
	See the Whole Picture
	Additional Findings
	Software Testing as a Profession
	Motivational Factors

	An Emerging Theory of Software Testers' Human Factors
	Implications for Practice
	Implications for Theory
	Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Limitations
	Limitations Regarding the Data

	Conclusion
	Bibliography
	NSD Consent form
	Interview Guide for Testers
	Interview Guide for Non-testers
	Observation Protocols
	EASE2020 Article

