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Abstract 

The idea of direct communication between the brain and a computer 

emerged over 40 years ago and has been developing since. Despite 

progress, the potential of this idea to influence research in several 

fields and solve concrete problems is not yet fulfilled. In healthcare, 

brain computer interfaces (BCIs) may be used as a communication 

device that allows patients with a clear mind but lack of body 

control to control for example a robot hand, or a communication 

device. In principle, BCIs could help to restore neural function for 

patients who have suffered disease or trauma. One particular 

challenge is that some subjects seem unable to achieve high 

performance while trying to control a system by imagining a motoric 

movement, a phenomenon that is referred to as BCI illiteracy in the 

literature. The study described in this thesis was aimed at developing 

classifiers of brain signals (electroencephalograms). More specifically, 

the goal was to assess whether the use of brain signals from subjects 

performing actual motoric movements (motor execution) as training 

data affects the performance of a model when classifying brain signals 

produced during imagined movement (motor imagery), particularly 

for illiterate subjects.  

A dataset was collected by having subjects perform equal amounts of 

actual movements and imaginary movements. Several classifiers were 

explored, and the random forest classifier, which showed the best 

results, was employed together with periodogram-based features. The 

classifier trained with motor imagery (MI) data, motor execution 

data (ME), and a combination of the two. The results of varying the 

training data indicated that for this particular classifier, brain signals 

from ME could be included in the training data to improve the 
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classification of MI-related brain signals, and there were weak 

indications that this also would apply to BCI illiterate subjects.  

The fact that similar results could be obtained upon replacing MI 

data with ME data when developing an MI classifier, is encouraging. 

Generally, this could reduce the dependency on MI data, which are 

hard to collect reliably, in BCI development. Furthermore, the 

possibility of using ME data to train MI-based classifiers opens up 

the possibility to use ME data generated by a motorically competent 

person to be used in developing BCIs for disabled persons and BCI-

illiterate persons. Of note, the present study was conducted on a 

limited number of subjects and several alternative approaches have 

remained largely unexplored, more work is needed to improve the 

statistical significance and explore alternative strategies. 



University of Oslo  Henrik Eijsink 

III 

 

Acknowledgments 

I am very thankful to my supervisor Jim Torresen for his guidance 

throughout the last year. Jim provided valuable input and help 

during the research work and the writing of this thesis, for which I 

am very grateful. It has been an inspiring journey. 

I also want to thank Tor Endestad from the Department of 

Psychology at the University of Oslo, for providing access to 

equipment and laboratory space that made the data collection 

possible, as well as for his encouraging input and expertise regarding 

the neurological aspects of this work. 

The data collection would not have been possible if it were not for 

friends who volunteered to be subjects in response to my outreach on 

social media. GDPR rules prevent me from mentioning your names, 

but you know who you are, and I thank you all. 

I would also like to thank my fellow master students Katrine 

Nergård, Knut Joar Strømmen, and Jakuba Kozlowski for the many 

long hours in the study hall, and countless interesting discussions, 

both professional and otherwise. 

A special thanks goes to my parents, May Bente Brurberg and 

Vincent Eijsink, my sister, Malin Eijsink, and my friends (none 

mentioned, none forgotten), for continuous support and 

encouragement along the way.  

 

Oslo, June 1, 2021 

 

Henrik Eijsink 



University of Oslo  Henrik Eijsink 

IV 

 

List of Abbreviations 

BCI  Brain Computer Interface 

EEG  Electroencephalogram 

MI  Motor Imagery 

ME  Motor Execution 

SSVEP Steady State Visually Evoked Potential 

SCP  Slow Cortical Potential 

ERD  Event Related Desynchronization 

ERS  Event Related Synchronization 

ERP  Event Related Potential 

FT  Fourier Transform 

FFT  Fast Fourier Transform 

ANN  Artificial Neural Network 

MLP  Multilayer Perceptron 

CNN  Convolutional Neural Network 

RNN  Recurrent Neural Network 

RF  Random Forest 

RL  Reinforcement Learning 

kNN  k Nearest Neighbor 

SVM  Support Vector Machine 

GUI  Graphic User Interface 



University of Oslo  Henrik Eijsink 

V 

 

Table of Contents 

Abstract I 

Acknowledgments III 

List of Abbreviations IV 

Table of Contents V 

List of Figures IX 

List of Tables X 

1  Introduction 1 

1.1 Motivation ............................................................................. 1 

1.2 Research Goals ...................................................................... 4 

1.3 Main Outputs ........................................................................ 5 

1.4 Thesis Structure .................................................................... 5 

2  Background 7 

2.1 Brain Signals ......................................................................... 7 

2.1.1 The Origin of the Electroencephalogram (EEG) ....... 8 

2.1.2 Brain Waves ............................................................... 8 

2.2 Brain Computer Interfaces .................................................. 10 

2.2.1 Steady State Visually Evoked Potential (SSVEP) .. 12 

2.2.2 Slow Cortical Potential (SCP) ................................. 12 

2.2.3 Event Related Potential (ERP) ............................... 13 

2.2.4 Event Related Desynchronization/Synchronization 

(ERD/ERS) ........................................................................ 14 

2.2.5 Motor Imagery / Motor Execution (MI/ME) .......... 15 

2.3 Signal Processing ................................................................. 16 



University of Oslo  Henrik Eijsink 

VI 

 

2.3.1 Filtering .................................................................... 17 

2.3.2 Feature Extraction ................................................... 17 

2.4 Feature Classification .......................................................... 19 

2.4.1 Deep Learning .......................................................... 20 

2.4.2 Support Vector Machine (SVM) .............................. 22 

2.4.3 Nearest Neighbor Classifiers ..................................... 22 

2.4.4 Random Forest (RF) ................................................ 23 

2.4.5 Reinforcement Learning (RL) .................................. 23 

2.4.6 Transfer Learning ..................................................... 24 

3  Datasets 25 

3.1 Benchmarking and Coordination ........................................ 26 

3.1.1 BCI Competitions .................................................... 26 

3.1.2 BNCI Horizon 2020 .................................................. 27 

3.2 Producing a Dataset ........................................................... 27 

3.2.1 Gestures .................................................................... 28 

3.2.2 Timing Scheme ......................................................... 30 

3.2.3 Data Recording ........................................................ 31 

3.2.4 Subject Preparations and Environment ................... 34 

3.2.5 Synchronization and Data Format ........................... 35 

3.2.6 Problems Encountered ............................................. 36 

3.2.7 Final Dataset ............................................................ 37 

4  Research Methods 38 

4.1 Preprocessing ...................................................................... 38 

4.1.1 Selecting and discarding bad channels ..................... 38 

4.1.2 Removal of high-frequency components ................... 40 



University of Oslo  Henrik Eijsink 

VII 

 

4.1.3 Downsampling .......................................................... 42 

4.1.4 Removal of Power Line Interference ........................ 44 

4.2 Feature extraction ............................................................... 46 

4.2.1 Data Chunking ......................................................... 46 

4.2.2 From Temporal to Frequency Information .............. 46 

4.3 Classification ....................................................................... 48 

4.4 Model Testing ..................................................................... 50 

4.4.1 Performance Metrics ................................................ 51 

4.4.2 Cross-Validation ....................................................... 51 

5  Results and Discussion 53 

5.1 Summary of Data Structure ................................................ 53 

5.2 Summary of Model Development and Testing ................... 54 

5.3 Initial Assessment of the Results ........................................ 55 

5.4 Motor Execution (ME) Classification ................................. 57 

5.4.1 Inter-Subject Difference in Performance .................. 58 

5.4.2 Two-Class Versus Five-Class ................................... 58 

5.4.3 Multi-Subject Models ............................................... 58 

5.5 Motor Imagery (MI) Classification ..................................... 59 

5.5.1 Models Trained on Motor Imagery (MI) data ......... 59 

5.5.2 Introducing Motor Execution (ME) Data to Improve 

Performance ........................................................................ 60 

6  Summary and Conclusion 63 

7  Future Work 66 

7.1 Further Investigation of ME-based MI classifications ........ 66 

7.2 Visual response vs motor response ...................................... 67 



University of Oslo  Henrik Eijsink 

VIII 

 

7.3 Executing movement versus maintained position .............. 68 

7.4 Reinforcement Learning ...................................................... 68 

References 70 

 

 

 

 



University of Oslo  Henrik Eijsink 

IX 

 

List of Figures 

Figure 1. Number of BCI publications per year from 1991 to   

2020.. ................................................................................. 2 

Figure 2. A diagrammatic overview of a general BCI System. ...... 11 

Figure 3. The relationship between the amount of available data 

and classification performance in deep learning and 

traditional algorithms. .................................................... 21 

Figure 4. Pictures of gestures that were presented to the   

subjects............................................................................ 29 

Figure 5. Timing scheme for one run. ............................................ 30 

Figure 6. The author of this thesis wearing a head cap with 

attached electrodes.. ........................................................ 31 

Figure 7. The layout of the BioSemi head cap. .............................. 33 

Figure 8. The setup of the experiment; the motor execution task 

“Thumb Under Middle” is being performed by the author 

of this thesis.. .................................................................. 35 

Figure 9. Interactive plot for visual inspection of potential bad 

channels. .......................................................................... 41 

Figure 10. Simple GUI to select bad channels for removal. ............. 42 

Figure 11. Frequency response of the lowpass filter (blue) and the 

bandpass filter (green). ................................................... 43 

Figure 12. Application of the notch filter.. ...................................... 45 

Figure 13. Diagrammatic overview of a trial. .................................. 47 

Figure 14. Diagrammatic overview of the frequency bands. ............ 48 

https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429681
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429681
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429682
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429683
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429683
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429683
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429684
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429684
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429685
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429686
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429686
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429687
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429688
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429688
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429688
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429689
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429689
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429690
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429691
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429691
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429692
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429693
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429694


University of Oslo  Henrik Eijsink 

X 

 

List of Tables 

 

Table 1. The frequency bands of brain waves ................................. 9 

Table 2. Training and test data configurations.. .......................... 49 

Table 3. Results for the best classifiers that were trained and 

tested on ME data.. ........................................................ 57 

Table 4. Results for the best classifiers that were trained and 

tested on MI data. ........................................................... 59 

Table 5. Results of the best MI classifiers, trained on varying 

combinations of data. ...................................................... 61 

https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429695
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429696
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429697
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429697
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429698
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429698
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429699
https://uio-my.sharepoint.com/personal/henrieij_uio_no/Documents/Masteroppgave.docx#_Toc73429699


University of Oslo  Henrik Eijsink 

1 

 

Introduction 

1.1 Motivation 

The use of brain signals as input to intelligent systems is a fast-

growing research area, with the healthcare and gaming industries as 

the main market drivers. Providing an alternative communication 

medium between brain and environment or the ability to control 

external devices with brain signals may help to restore independence 

for disabled individuals. Systems using brain signals for control are 

collectively referred to as Brain Computer Interfaces (BCIs). In 

healthcare, BCIs may revolutionize a wide variety of tasks, from 

diagnostics to rehabilitation after injury or disease. The gaming 

industry sees big potential in combining BCIs with Virtual Reality to 

provide a more authentic gaming experience or even a whole new 

genre of games. Such promising possibilities have prompted a steady 

growth in research of this area in the last two decades, which is 

easily visualized by the number of yearly BCI-related publications in 

Figure 1.  

Chapter 1 
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The simple goal for BCIs is to be able to control a computer system 

by using brain signals as input and this is already possible to some 

extent. However, despite numerous start-ups and large tech firms 

working on making safer, cheaper, and more accurate BCIs, 

penetration of this technology into commercial markets is still slow. 

There are some commercialized devices to record brain activity [1], 

but the majority of published research and achievements are still 

primarily based on using research-grade equipment. One of the 

challenges is to make a system that is easily set up by a doctor, 

caregiver, or layperson while maintaining the high accuracy of the 

state-of-the-art systems. For some uses, it is also essential that the 

Figure 1. Number of BCI publications per year from 1991 to 2020. 
Obtained by the PubMed query “brain computer interface” on April 
19, 2021. 

 

0

100

200

300

400

500

600

700

800

900

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

2
0

1
5

2
0

1
7

2
0

1
9

N
u

m
b

er
 o

f 
P

u
b

lic
at

io
n

s

Year



University of Oslo  Henrik Eijsink 

3 

 

device is wireless, which may add additional challenges related to 

latency or robustness. 

A critical, and still largely untackled obstacle in BCI development for 

medical applications is the large variability in performance between, 

and even within, subjects. Some subjects are not able to achieve 

satisfactory performance levels even after an extensive training 

regimen. These subjects are referred to as BCI-illiterate and 

estimates, suggest that they account for up to 30 % of users [2]. A 

large fraction of BCI-illiterate subjects may prevent BCIs from being 

widely applied. While BCIs could be the next big step in the 

rehabilitation of patients with neurological injuries, BCI illiteracy 

and the need for extensive training programs, if such training is 

possible at all, may pose severe limitations.  

For a subject to produce brain signals corresponding to physical 

motoric action, the subject can either carry out the action or imagine 

the action. These two scenarios are referred to as motor execution 

(ME), which is the actual performance of the movement, and motor 

imagery (MI), which is imagining performing the movement. MI can 

be seen as the planning of movement, with the overt execution being 

inhibited, and although these two abilities are evolved or impaired 

independently in the subject, both make the subject exhibit very 

similar brain signals from the same brain areas [3].  

Healthcare-related BCI research is naturally focused on MI as most 

patients for which BCI could be a suitable enabling tool, have 

disabilities that make them unable to perform ME. For example, one 

could assume that an amputee has no way of performing ME and can 

only provide MI data to train the classifier. As an alternative, one 

could explore the possibility of training a classifier for use by an 

amputee on ME data from different subjects. It should be noted that 

Raffin et al. managed to distinguish between executing a movement 
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of an amputees phantom limb and imagining moving the missing 

limb [4]. 

While the potential of BCIs is evident and while health care 

applications of BCIs will only increase with an aging population, 

there is a need to develop better BCIs that are less susceptible to 

failure due to BCI-illiteracy. This need was the main motivation for 

the work described in this thesis. 

1.2 Research Goals 

This project is a collaboration between the Department of 

Informatics and neuroscience experts at the Department of 

Psychology at the University of Oslo, who are working on a project 

to build a complete, complex BCI system. They plan on using 

multiple inputs, namely eye-tracking, electromyography (i.e., 

measuring electrical currents in skeletal muscles), in addition to brain 

signals obtained by functional near-infrared spectroscopy and EEGs. 

The first step will be to use EEGs to enable non-disabled volunteers 

to make a robot hand perform simple hand movements by either 

imagining or executing the movements with their own hands. 

This work addresses the challenge of developing good BCIs and the 

problem of BCI illiteracy and aims at contributing to solving 

problems that limit BCI applications within the health care industry. 

Next to aiming at tackling the problem of BCI illiteracy, another 

goal was to provide a fresh perspective on the use of motor execution 

data versus motor imagery data and to identify possible approaches 

that could help to develop BCIs that are less susceptible to BCI 

illiteracy. This work was based on analyzing brain signals in the form 
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of electroencephalogram (EEG) related to hand and foot control by 

human subjects. 

1.3 Main Outputs 

The main contributions of the work described in this thesis are as 

follows: 

• A new dataset was collected consisting of both motor imagery 

and motor execution data, for developing and training BCIs 

based on hand gestures. 

• A simple random forest model with periodogram-based 

features was implemented and used as a basis for the research.  

• The impact of exchanging training data from motor imagery 

to motor execution on model performance was analyzed, with 

extra attention being given to possibly BCI illiterate subjects.  

1.4 Thesis Structure 

This thesis is structured in a way that chronologically represents the 

steps taken to produce this research. The chapters are structured as 

follows: 

• Chapter 2: Background                                                                     

An introduction to the theoretical background of the research, 

addressing Electroencephalograms, BCIs, signal processing 

approaches, and classifiers. 
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• Chapter 3: Datasets                                                                              

A brief overview of publicly available datasets and the 

institutions that provide these, as well as a detailed summary 

of the collection process for, and the characteristics of, the 

dataset that was produced as part of this work. 

• Chapter 4: Research Methods                                                             

A detailed description of the process of handling a raw dataset 

and implementing a working classifier. 

• Chapter 5: Results and Discussion                                                      

An evaluation of the implemented models, and discussion of 

the performance of models trained with ME data versus purely 

MI-based models. 

• Chapter 6: Summary and Conclusion                                                 

A summary of the results, and conclusions with regards to the 

research goals presented in section 1.2. 

• Chapter 7: Future Work                                                                      

A discussion of some uninvestigated aspects and possible 

topics for future research. 
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Background 

2.1 Brain Signals 

There are several different approaches to acquire signals from brain 

activity which are divided into invasive and non-invasive methods. 

Invasive procedures are characterized by the American National 

Cancer Institute as “A medical procedure that invades (enters) the 

body, usually by cutting or puncturing the skin or by inserting 

instruments into the body.” [5]. In a BCI setting, invasive methods 

typically correspond to inserting electrodes into the brain. For 

example, Hochberg et al. used such methods to enable patients with 

long-standing paralysis to perform simple reaching and grasping 

actions with a BCI-controlled robot arm [6].  

Invasive methods are resource-demanding and can easily cause 

immune reactions, infections, or other negative side effects. This has 

drawn the attention of the field to non-invasive methods that record 

brain activity from the scalp and have significantly better portability 

and lower cost while lowering damage to human bodies and being 

easier to use. One such non-invasive method, which is widely favored 

Chapter 2 
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in BCIs because of its ease of use is electroencephalogram (EEG). 

When recording EEGs, cortical electrical activity is recorded through 

electrodes attached directly onto the scalp. As an example of the 

potential of this approach, Pfurtscheller et al. used EEG signals from 

partially paralyzed patients, together with functional electrical 

stimulation, which is a way to make the muscle of a patient move by 

electrical stimulation via electrodes, they enabled patients to reach 

and grasp with their own paralyzed hand [7]. 

2.1.1 The Origin of the Electroencephalogram (EEG) 

As early as 1875, Richard Caton reported having measured electrical 

activity in the brains of rabbits and monkeys using a simple 

galvanometer, both from the scalp and directly from the cortex. 

Caton even suggested that the electrical currents measured were 

afflicted by functional activity and outside stimuli [8]. This quite 

groundbreaking discovery went largely unnoticed, and it took a 

surprisingly long time before Hans Berger took the next step and 

discovered similar electrical activity in the human brain in 1929. 

Berger was the first to coin the term Electroencephalogram (EEG) 

and his work touched upon different EEG phenomena, like EEG 

changes correlated with cognitive effort or attention [9]. The 

discoveries by Berger were disbelieved at first, until Adrian and 

Matthews reproduced the results in 1934 [10]. This marked the 

emergence of the EEG research field, and many important 

breakthroughs were made in the following years.  

2.1.2 Brain Waves 

Berger already coined the terms “alpha” and “beta” for denoting 

frequency ranges of brain waves, that is, much in the same way as 
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they are defined today [11]. Today, there are five well-established 

frequency bands, referred to as delta (δ), theta (θ), alpha (α), beta 

(β), and gamma (γ), as shown in Table 1. 

Alpha frequencies in the visual cortex are the strongest known EEG 

signals, and they are associated with visual processing. Markand has 

given an extensive summary of the numerous discoveries regarding 

alpha rhythms and their correlation to cognitive function, primarily 

visual processing and memory function [12]. A very interesting 

characteristic of alpha frequencies in the visual cortex is that they 

tend to be attenuated or blocked when the subject is presented with 

visual stimuli [13]. In the motor cortex (i.e., the part of the brain 

mainly responsible for planning and execution of movements), the 

frequencies in the alpha band are often referred to as mu 

frequencies(μ). With some similarity to normal alpha frequencies, mu 

frequencies are attenuated or blocked if the subject performs or 

visualizes a motor action [13].  

Beta frequencies are found in the frontal and central regions of the 

brain. Much like alpha frequencies, brain waves in the lower part of 

the beta band have been shown to attenuate in association with 

certain types of brain activity, in particular in association with 

imagining or executing motor activity [14]. 

Table 1. The frequency bands of brain waves 

Frequancy Band Frequency

Delta (δ) < 3 Hz

Theta (θ) 3 - 6 Hz

Alpha (α) 6 - 14 Hz

Beta (β) 14 - 30 Hz

Gamma (γ) > 30 Hz
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Gamma frequencies are the highest frequency oscillations in the brain 

and are almost continuously present. Increases in the amplitude of 

gamma waves have been suggested to be associated with both 

focused attention and powerful muscle contractions [15]. 

Furthermore, it has been shown that motor actions that attenuate 

the amplitude of alpha frequencies simultaneously increase gamma 

amplitudes [16].  

In normal awake adults, both delta and theta frequencies are a minor 

part of the EEG frequency spectrum. Larger amounts of delta and 

theta frequencies are seen in children, as well as in adults who are in 

a drowsy, meditative, or sleepy state. Additionally, increased 

occurrence of delta and theta frequencies in awake adults is 

associated with brain damage and certain neurological diseases, such 

as a meningeal tumor or cerebral infarction [17]–[19].  

Taken together, current knowledge on brain waves indicates that 

brain signals with frequencies in the alpha and lower parts of the 

beta band are dominant with regard to motor imagery and motor 

execution. 

2.2 Brain Computer Interfaces 

BCI systems in themselves consist of signal acquisition, signal 

processing, feature extraction, and classification (see Figure 2). On 

top of that comes the translation of classification results into 

actuation of the application system (e.g., making the robot hand 

move), which is outside the scope of this thesis. The different parts of 

such BCI systems may vary a lot, depending, for example on the 

type of brain signals that are used as input. 
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The possible ways in which EEG-based BCI systems translate the 

EEG signals from the brain fall into five different categories, which 

are based on steady-state visual evoked potential (SSVEP), slow 

cortical potential (SCP), event-related potential (ERP), event-related 

Figure 2. A diagrammatic overview of a general BCI System. 
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desynchronization/synchronization (ERD/ERS), and motor 

imagery/execution (MI/ME). These categories differ in terms of what 

kind of patterns in brain activity are being looked for and used. 

Thus, and more eminently, the choice translation system category 

also determines the type of input that is required from a subject to 

be able to use the BCI satisfactorily. 

2.2.1 Steady State Visually Evoked Potential (SSVEP)  

SSVEP is a response generated at the primary visual cortex by visual 

periodic stimuli. When the retina is excited by periodic stimuli 

between 3.5 Hz and 75 Hz the brain responds with electrical activity 

at the same frequencies in the area of the brain responsible for visual 

processing [20]. By equipping physical or virtual objects with 

different repetitive visual stimuli like checkerboards, or light-emitting 

diodes (LEDs) with appropriate frequencies, a BCI can determine 

which object the subject is looking at.  

While SSVEP-based BCIs require little to no preparations or training 

time, because all the subject needs to do is look at what it wants to 

choose, the environment is required to have frequency-coded 

features/objects to work. This fits perfectly in for instance virtual 

reality applications, where the environment is highly customizable, 

however, it is not a great approach for most health care applications 

where the desired environment is simply the daily life of the patient, 

and thus SSVEP will not be focused on in this thesis. 

2.2.2 Slow Cortical Potential (SCP) 

Voltage changes in the brain with a frequency below 2Hz (in the 

lower parts of the delta band, see Table 1) are the lowest frequency 

EEG features, and these are called slow cortical potential (SCP). 
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Negative shifts in SCPs are typically associated with movement and 

other functions involving cortical activation, while positive shifts in 

SCPs are usually associated with reduced cortical activation, for 

example during sleep [21]. It has been shown that people can learn to 

control their SCPs and thereby control the movement of an object on 

a screen in one dimension [22]. Kübler et al. showed that two 

patients with late-stage Amyotrophic Lateral Sclerosis were able to 

learn to self-regulate their SCPs and use this to select letters or 

words in a language support program [23].  

While good results have been achieved with SCP, it is only ever 

possible to control the SCP in two ways, positive and negative shifts. 

With only two actions, a working BCI would have to perform 

multiple binary decisions to choose from a large set of options. 

Combined with the extensive training period required to perform 

well, this leaves SCP unsuitable for BCIs aimed at motor control, 

and thus SCP will not be focused on in this thesis 

2.2.3 Event Related Potential (ERP) 

ERPs are voltage changes generated in the brain in response to 

specific events or stimuli and ERP waveforms are found by averaging 

EEG signals from multiple neighboring electrodes [24]. The idea 

behind this approach is to ignore the parts of the EEG signals that 

not a response to the event at hand. Because of this approach, ERPs 

are time-correlated to cognitive, sensory, or motor events. ERPs in 

humans can be divided into two categories. The early waves, peaking 

roughly within the first 100 milliseconds after the stimulus, are 

termed ‘sensory’, as opposed to the later, ‘cognitive’, waves which 

depend on how, and in which part of the brain, the subject processes 

the stimulus [25].  
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A lot of research has been done aimed at discovering and categorizing 

different ERP waveforms. They are described by their latency and 

amplitude and most of the identified waveforms have been linked to 

some type of cognitive or sensory event. In 1965 Sutton et al. [26] 

discovered a waveform termed P300, which has become a major 

component of research in the field of EEG research. A wide collection 

of strategies has been used to elicit the P300, of which the ‘oddball’ 

paradigm is the most used. The subject is presented with a series of 

similar stimuli, and occasionally a different one, i.e., the oddball. The 

oddball provokes the brain of the subject, and the P300 wave will be 

elicited [25]. 

ERPs, and the P300 waveform, is particularly used in language 

support programs, where the letters are highlighted on a screen one 

at a time, and the subject elicits the P300 when their desired letter is 

highlighted. ERPs are mostly suitable for BCIs where options can be 

shown on a screen, which is not optimal for the applications aimed at 

in this thesis. 

2.2.4 Event Related Desynchronization/Synchronization 

(ERD/ERS) 

Event Related Desynchronization (ERD) describes the regional 

amplitude attenuation of oscillations in the alpha and beta bands 

that occur in relation to an event [27]. Event Related 

Synchronization (ERS) describes the opposite effect, namely the 

regional increase of amplitude in the alpha and beta band. Both can 

be elicited either internally (i.e. by voluntary movement), or 

externally (i.e., in response to outside stimuli as with ERP) [28]. 

Early observations by Berger (1929), Jasper and Penfield (1949), and 

Chatrian et al. (1959) linked the attenuation or desynchronization of 
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rhythms within the alpha and beta bands to the preparation and 

execution of movement [9], [29], [30]. 

ERD and ERS have been shown to be highly subject-specific, stable, 

and consistent over time, and suggested for further investigation as a 

biometric measure [31]. It can be seen as an underlying feature of 

brain signals, that to a slight extent explains motor imagery and 

motor execution (subsection 2.2.5), however, ERD and ERS, will not 

specifically be focused on in this thesis. 

2.2.5 Motor Imagery / Motor Execution (MI/ME) 

Motor Execution (ME) is simply performing a movement, while 

Motor Imagery (MI) can be seen as a mental rehearsal of a movement 

without any overt motor output. Brain signals elicited by MI and 

ME are somewhat dependent on the movement performed but 

generally exist in the alpha and beta band (Table 1).  

MI/ME signals, which tend to be similar for the executed and the 

corresponding imagined movement [3], are important for the 

development of BCI systems for motor control. Subjects/patients can 

be trained to induce activity in the motor cortex by imagining motor 

movements without any limb movement or external stimulus [32]. 

Various machine learning methods can be used to recognize and 

classify distinct motor cortex activity and their corresponding 

physical movements. ME signals are not obtainable by paralyzed 

patients or amputees. However, since MI and ME produces very 

similar brain signals, it could be beneficial to consider them together, 

which is an important part of this study. 

One disadvantage of MI is the large variation between subjects. Some 

people can perform MI reasonably well with little training, while 

others (10-50% of the general population) are not able to achieve 
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satisfactory performance even after extensive training [33]. Such 

subjects are referred to as BCI-illiterate and this imposes a big 

challenge on the further development of BCIs that are usable by 

anyone. The problem of BCI illiteracy is an important challenge to 

be tackled in the upcoming years. 

MI and ME is the natural choice for motor control based BCIs, and 

this work is solely focused on MI/ME as opposed to the other 

paradigms presented in this section.  

2.3 Signal Processing 

One of the biggest drawbacks of using EEGs as input to a BCI is the 

high occurrence of noise. The amplitude of EEG signals is in the 

order of microvolts, which makes the signal very sensitive to noise. 

The electrodes used to measure the signals can pick up on external 

electrical noise from various types of electrical equipment that are 

commonly found in close proximity to the subjects, such as 

computers, and electrical wiring. Additionally, the signals are 

susceptible to internal noise like flicker noise, i.e. noise from 

imperfect contact between two conducting materials, and thermal 

noise, where thermal energy causes free electrons to move randomly 

in a material [34]. Thus, major efforts, such as the use of robust 

electrode systems, are needed to minimize the noise, and 

preprocessing of the EEG signals is required to minimize the 

disadvantageous effects of noise. 
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2.3.1 Filtering 

Preprocessing methods are aimed at maximizing the amount of useful 

information in the signal and minimizing the amount of irrelevant 

information. The first step is to increase the signal-to-noise ratio, i.e., 

removing noise. Methods to do so are mainly based on frequency-

domain filtering, which aims at removing/reducing specific 

frequencies or frequency bands.  

Notch filters can be used to remove stationary interference from for 

instance the electrical wiring in the room, by singling out the specific 

frequency of the alternate current in the electrical wiring and 

filtering out that frequency.  

Band-pass filters are designed to reduce or remove all frequencies 

outside of a specified frequency range, for example, a band-pass filter 

between 8 and 13 Hz will extract the alpha rhythms of the signal. 

Variations of band-pass filters include high-pass and low-pass which 

reduces all frequencies below or above a certain threshold.  

2.3.2 Feature Extraction 

Recognizing and extracting features from the EEG signal is a central 

part of the signal processing required for this study, and vital for the 

to-be-developed BCI system. Most of the commonly used approaches 

involve some way of translating signals from the time domain to the 

frequency domain, to quantify the frequency information in the data, 

which has been shown to be valuable features for MI-based EEG 

classification [35]. Other methods aim at using mathematical 

procedures to extract the features that are the most distinguishable 

from each other. A brief introduction to some of the commonly used 

methods follows below. 
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Fourier-based methods are tools that use a mathematical transform 

to decomposes a function depending on time/space into a function 

depending on temporal/spatial frequency. The origin of Fourier-based 

methods is the Fourier transform (FT), discovered by Joseph Fourier 

in 1822 [36]. The FT produces the power spectral density of a signal, 

and other Fourier-based variants aim at producing an estimate of 

this. 

One variant of the FT is the aptly named Fast Fourier Transform 

(FFT). The FFT divides the signal into multiple smaller parts, to 

compute the FT of each part and put them together to form an 

estimated power spectral density. This reduces computation time 

drastically. 

The wavelet transform (WT) is an algorithm that uses a basis 

function that introduces additional special properties in the 

transform. It produces a time-frequency plot with variable resolution 

in both time and frequency. It provides good time resolution and 

poor frequency resolution at high frequencies while the opposite is 

the case for low frequencies.  

The periodogram is an estimate of the power spectral density, that is 

computed by performing the FT of the signals estimated 

autocorrelation sequence. This method exploits the convolution 

theorem, which states that the FT of a convolution of two signals is 

the pointwise product of their FTs. Since the estimated 

autocorrelation is the signal convolved with a copy of itself, the 

calculation of the periodogram becomes quite simple. To reduce bias, 

the signal can be split into overlapping segments, for which the 

periodogram is calculated for each and array averaged, to result in an 

averaged periodogram. This method is commonly known as the 

Welch method, and is the method that is implemented in this work. 
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Common Spatial Pattern (CSP) is a technique that has been shown 

to produce strong results on MI-based BCI, exemplified by Ang et al. 

[37], who won a BCI competition which was very relevant to this 

work and will be covered in subsection 3.1.1. CSP weighs the 

electrodes according to their significance in the classification task and 

suppresses noise in individual channels by using correlations with 

neighboring electrodes [38]. CSP has the disadvantage of needing an 

extensive number of electrodes, which increases the electrode 

application time and cost, while reducing the portability of the 

system. 

2.4 Feature Classification  

BCIs are based on using the brain as the medium to communicate 

commands to a system. This requires the system to recognize which 

commands the subject is trying to convey by classifying the brain 

signals into predefined actions or decisions of for example a robot 

hand or computer simulation. Some of the most established methods 

are described in the following subsections 

The methods used for feature classification are based on machine 

learning and classical statistics and these methods are often 

categorized into supervised and unsupervised methods. Supervised 

methods use data that are labeled, which makes it easy to evaluate 

the result, while unsupervised methods use unlabeled data and 

instead of classifying input into predefined classes, groups input that 

are similar into unnamed classes. Some interesting work has been 

done with unsupervised learning, as a means for making BCIs that 

are able to self-adapt while in use [39], however, it seems to be the 
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common conception is that supervised learning is the way to go for 

BCIs. 

2.4.1 Deep Learning 

Deep learning is a group of modern and powerful classification 

techniques, based on Artificial Neural Networks (ANNs). ANNs are 

inspired by the biological neural networks in human brains. The 

most basic ANN called the Multilayer Perception (MLP) is based on 

a network of neurons organized in layers with weighted connections 

between them. Input signals are fed into the first layer, and 

processed through all the layers, to produce results in the last layer. 

Each neuron gets input from the neurons in the previous layer, 

processes it, and signals to the neurons in the next layer based on the 

outcome. The output from the last layer decides the classification, 

and the result is checked against the true value for the input that 

was provided. If the classification was correct, the weights of all 

inter-neuron connections are adjusted in a way that will make sure 

that other inputs that are very similar will be classified the same. If 

the classification was incorrect, the weights are adjusted in a way 

that will make sure that similar inputs will be classified differently.  
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Deep learning techniques require a lot of data, however, if enough 

data is available, deep learning techniques are often able to find 

patterns in the data that are impossible to find with traditional 

algorithms (Figure 3). The connections between neurons and the 

function for updating weights can be implemented in various ways to 

make variations of ANNs. These include Convolutional Neural 

Networks (CNNs) which take advantage of the spatial and temporal 

structure of the input data and Recurrent Neural Networks (RNNs), 

Amount of data
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Traditional algorithms

Deep  earning

Figure 3. The relationship between the amount of available data 
and classification performance in deep learning and traditional 
algorithms. 
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which give the neurons memory to use the previous output as 

additional input. 

2.4.2 Support Vector Machine (SVM) 

Support vector machines (SVMs) are increasingly popular in various 

biological applications [40]. An SVM is a supervised learning 

algorithm that induces a linear optimal hyperplane to discriminate 

between classes based on the maximum margin principle. If it is not 

possible to classify the data linearly, SVMs can use a kernel function 

to map the data into a higher-dimensional space in which linear 

classification is possible. Since SVMs use a linear hyperplane they are 

typically used for binary classification tasks, but they can also be 

implemented as multiclass classifiers by breaking the problem down 

into multiple binary classification cases. 

2.4.3 Nearest Neighbor Classifiers 

A simpler group of classifiers are called Nearest Neighbor Classifiers, 

where a feature vector is assigned to a class based on the class of its 

nearest neighbor (s). The majority vote of the k nearest neighbors is 

called k Nearest Neighbor (kNN) and is the most widely used 

classifier in this group. The kNN approach requires lower training 

and testing time than the more complex SVM and MLP, but with 

comparable classification accuracy [41]. Nearest neighbor classifiers 

are inherently unsupervised, but can be modified to include labels, 

which makes them more suited for BCI classification. 
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2.4.4 Random Forest (RF) 

Random Forest (RF) is a classification algorithm that uses standard 

decision trees, which are simple classifiers that predict the value of 

an output based on binary decisions on each input value. Such a 

simple classifier could be effective in some cases, but it is prone to 

fitting too closely to the training set, causing it to perform badly on 

new independent data. This is referred to as overfitting and RF aims 

to solve this by fitting many different trees and setting the final 

classification based on a vote by all trees. This reduces the variance 

and creates a more robust classifier. RF has performed surprisingly 

well considering its simplicity and is believed to have the potential 

for BCIs, thus it will be the main classification algorithm in this 

work. 

2.4.5 Reinforcement Learning (RL) 

Reinforcement Learning (RL) is a machine learning algorithm with 

similarities to the way a human child learns to operate in the world, 

by trial and error. Initially, the system tries to process input (often 

simply the state of the environment) and executes an action. The 

environment responds with a negative or positive reward (i.e., 

reinforcement), and the system learns based on these rewards. If the 

system receives a strong negative reward, the system will learn that 

it was a bad action, in response to the input received, and thus be 

less likely to repeat that action if presented with similar input. 

Reinforcement Learning is very powerful but is dependent on a good 

way to set the strength of the reinforcements, which can be difficult 

for many classification problems, including BCI-related classification. 

Although RL is not explored any further in this thesis, a simple idea 

of how to implement Reinforcement Learning in BCI is proposed in 

section 7.4 
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2.4.6 Transfer Learning 

Transfer learning is not a classification algorithm in itself but is a 

technique that aims to exploit patterns found in a dataset from one 

problem to help find patterns in another dataset, potentially from 

another problem. This is done by training a model on one dataset, 

and then continuing the training with another dataset, with little 

modifications in between trainings, transferring as much trained 

information from the first to the second dataset. For the problem 

described in this thesis, transfer learning can be to train a model on 

data from one subject, and retraining on another model, or to train a 

model on ME data, and retraining on MI data. 



University of Oslo  Henrik Eijsink 

25 

 

Datasets 

A key aspect of machine learning algorithms is the need for large 

data sets to be able to train a classifier. It is also of great importance 

that the data used for training is of high quality, with little noise, 

and has a high resemblance to the data that would be used in a real-

world application. The general conception is that the more available 

data, the better performance can be achieved, with eventual 

convergence towards the upper boundaries that are set by the 

algorithm and/or the classification problem.  

In many research areas, deep learning has made great positive 

impacts over the last decade. This is mainly because deep learning 

methods have a higher upper boundary of performance compared to 

traditional methods. Since the amount of available data is growing 

exponentially in many fields, reaching these higher upper boundaries 

of performance becomes increasingly realistic. With a large enough 

dataset, deep learning methods have the potential to achieve better 

performance than traditional methods (see Figure 3). 

In the field of EEG-based BCI, data collection is considerably more 

resource-demanding than many other fields, which makes the growth 

Chapter 3 
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of available data lower compared to for example various image-based 

classification problems. 

3.1 Benchmarking and Coordination 

When research in BCIs started to take off around the year 2000 

(Figure 1), algorithms were reported to give impressive results quite 

quickly [42]. However, due to the naturally large variability in 

datasets and performance metrics in BCI systems, there was no good 

way to compare research results to assess their true quality and 

impact.  

3.1.1 BCI Competitions 

In 2003 a group of researchers from multiple research groups started 

a collaboration on organizing BCI competitions with publicly 

available datasets that could serve as benchmarks for various BCI 

applications [43]. The collaboration included researchers from 

Germany, Austria, and the USA, including the eminent Gert 

Pfurtscheller and Niels Birbaumer, who are two of the most 

influential researchers in the field of BCI.  

By encouraging researchers to implement their methods on the same 

datasets, within the framework of a small set of simple guidelines, the 

competitions served as benchmarks for BCI research for some time. 

Although the last competition was in 2008 and other datasets are 

taking over as benchmarks today, research is still being published 

using the original BCI competition datasets. 
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3.1.2 BNCI Horizon 2020 

In 2013, an EU coordination and support action was funded, named 

the Brain/Neuronal Computer Interaction Horizon 2020 (BNCI 

Horizon 2020). The initiative aimed at providing a roadmap for 

research efforts in the BCI field until 2020 and beyond [44]. Some of 

the researchers involved in the organization of the BCI competitions 

were also involved in the BNCI Horizon project.  

BNCI Horizon has provided the research community with more than 

25 different publicly available data sets that, in the same way as the 

earlier BCI competitions, contribute to better benchmarking of 

research in the field, provided that these data sets are being used. 

3.2 Producing a Dataset 

Despite the possibility of using publicly available datasets, this 

research included the production of a unique dataset that was 

tailored for addressing the research questions that we asked. The 

motivation behind producing a dataset specifically for this master’s 

thesis work was to be able to simplify the BCI problem and separate 

the problem into multiple levels of complexion (as presented in a list 

in section 3.2.1, below). This approach was chosen upon 

recommendation by experts in neuroscience at the University of Oslo 

with strong experience in EEG research, to increase the chance of 

producing useful results.  

Another motivating factor for producing a dataset specific for this 

work was to have a dataset with a combination of MI tasks and ME 

tasks, with data for both tasks being generated with otherwise 

identical parameters. The technical challenges of producing the 
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dataset and the considerations made are described in the following 

subsections.  

3.2.1 Gestures 

The nature of the dataset used for BCI development in studies like 

the present needs attention. Most of the available datasets on hand 

gestures either is a binary right hand / left hand problem or include 

many similar gestures, which poses interesting challenges, because 

discriminating between gestures is difficult, making it difficult to 

obtain high classification accuracy between those gestures. Therefore, 

in the present study, a mixture of both quite similar and quite 

different gestures was chosen, to allow working at different levels of 

complexity. Five gestures were chosen, including a foot gesture 

(slight outwards rotation of foot), to be used as a reference, and four 

hand gestures (Figure 4). Subjects were explicitly instructed to do 

the foot gesture and the hand gestures with the hand/foot at the 

same side. 

Among the four selected hand gestures, two gestures are very simple 

and are expected to be natural for most subjects (Thumbs Up and 

Perfect Sign). The other two gestures are more difficult and are 

expected to feel somewhat odd for the subjects and to demand a 

higher level of focus (Thumb Under Middle and Pinkie Out). 

The different levels of the classification can be simplified as follows: 

− Differentiate between hand gestures and the foot gesture 

− Differentiate between “complex” and “simple” hand gesture 

− Differentiate between all gestures 
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(a) Thumb Up (b) Perfect Sign 

(c) Thumb Under Middle (d) Pinkie Out 

(e) Foot Movement 

Figure 4. Pictures of gestures that were presented to the subjects. 
Picture (e) refers to an outwards rotation of the right foot, this was 
clarified prior to the first run. 
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Before the experiment, each subject went through the gestures one 

by one, to make sure that the subject was able to execute the 

gestures. It was explained to the subject that specific angles or 

alignment of their fingers was not important, as long as the subject 

had their way of doing the gestures consistently.  

3.2.2 Timing Scheme 

Each session comprised up to 16 runs of three minutes each, 

separated by short breaks, of anywhere from 30 seconds to five 

minutes. Eight of the 16 runs were used to generate Motor Imagery 

data, and the other eight to generate Motor Execution data. Each 

run consists of 35 trials (seven trials for each of the five gestures), 

yielding a total of up to 280+280 trials (MI+ME) per subject.  

Every run was initialized by presenting a grey screen to the subject. 

After an initial 5 seconds, the first trial started by presenting a 

gesture image in the middle of the screen. The images were presented 

in a randomized order, such that the subject did not know which 

image to expect next, at any given time during a run. The gesture 

image was shown for 3 seconds, followed by a 2-second break, before 

the next trial (Figure 5). The subjects were instructed to 

Figure 5. Timing scheme for one run. 
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execute/imagine the gestures for the full 3 seconds that the image 

was shown.  

After each run, the subjects had the opportunity to drink some 

water, and decide the duration of the break before the next run. The 

subjects were asked to share how they felt they performed. If a 

subject expressed signs of severe fatigue and/or drop in focus, or 

upon request by the subject, the session was cut. For one of the 

subjects in the final dataset, this was the case, and as such, only one 

run of MI data is available in addition to ME data is available for 

that subject (later referred to as subject 1). 

3.2.3 Data Recording 

The experiment was performed in a laboratory at the Department of 

Psychology at The University of Oslo using equipment for recording 

Figure 6. The author of this thesis wearing a head cap with 
attached electrodes. Picture by Katrine Nergård. 
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EEG from BioSemi [45]. The EEG signals were recorded with sixty-

four Ag-AgCl active electrodes with a sampling frequency of 2048 Hz. 

The electrodes were arranged on the scalp according to the 

international 10-20 system [46], illustrated by a diagram provided by 

BioSemi shown in (Figure 7). This was achieved by using BioSemi 

head caps which are available in multiple sizes and thus can be 

adapted to the size of the subject’s head (Figure 6). The head caps 

have multiple holes in them, corresponding to the correct sites for 

the electrodes to be attached, given that the head cap is correctly 

fitted to the subject. Before attaching the electrodes, these holes were 
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filled with saline gel to maximize contact between the scalp and the 

active electrodes. Fitting the head cap to consequently achieve the 

intended electrode placement (Figure 7) was performed as accurately 

as possible to ensure comparability between subjects.  

Figure 7. The layout of the BioSemi head cap. The labels in pink 
font are the electrode names according to the international 10-20 
system. The labels in blue font are the electrode labels as they are 
used in the datasets. The cap is adjusted so that Fpz and Oz are 
placed on the line from Nasion to Inion at intervals 10%, 80%, and 
10%. The Nasion is also known as the bridge of the nose, and the 
Inion is can be located by finding the small bump on the lower 
backside of the skull. Similarly, T7 and T8 are placed on the line 
from preauricular to preauricular at intervals 10%, 80%, and 10%. 
The preauriculars are the small holes in front of the upper ear on 
each side of the skull. Image Source: BioSemi [38]  
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3.2.4 Subject Preparations and Environment 

The subjects were asked to make sure that they were well-rested and 

to eat a proper meal before the experiment. Upon arrival at the 

experiment site, the subject was presented with a brief explanation of 

the project and details about the methodology, followed by 

familiarization with the task at hand (i.e., executing and imagining 

the gestures). When the subject had no more questions and seemed 

to understand the experiment, the subject was given the opportunity 

to go to the toilet, drink some water, and make any other last-minute 

preparations of choice.  
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Subsequently, the subject was seated in a comfortable, adjustable 

armchair in front of a computer screen in a separate room, with their 

face approximately 1 meter from the screen (see Figure 8).  

3.2.5 Synchronization and Data Format 

When producing a dataset with brain signals and markers that 

represents the visual stimuli presented, it is important to achieve 

highly accurate synchronization between the brain signals and the 

markers. Synchronization is crucial for obtaining accurate 

information about exactly which brain signals were produced during 

the stimuli periods (i.e., when the picture was present on the screen). 

Synchronization of the data collected in this study was optimized 

Figure 8. The setup of the experiment; the motor execution task 
“Thumb Under Middle” is being performed by the author of this 
thesis. Picture by Katrine Nergård. 
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using Labstreaminglayer, which is known for its sub-millisecond 

accuracy [47]. Labstreaminglayer is an open-source and cross-

platform software package that was developed to streamline the data 

acquisition process and supports data collection from a large range of 

hardware, including BioSemi, and the python package psychopy [48]. 

Psychopy is a simple tool for presenting stimuli to subjects. By 

creating a simple loop in python, stimuli were presented, and 

accurate time stamps were sent to the Labstreaminglayer, which 

saved the data in the xdf-file format. The xdf-file format is a 

compressed binary file, that can easily be opened in python with the 

pyxdf package [49]. 

3.2.6 Problems Encountered 

After the initial data collection (9 subjects), analysis of the data 

revealed signals that caught attention because they looked like a type 

of artifact that was not expected. The raw signal showed short spikes 

in voltage with incomparably higher amplitude than all other 

rhythms seen in the data. While these spikes could just represent 

noise, their magnitude rendered them impossible to remove, even 

with a thorough assessment of various noise removal procedures. 

After investigating the BioSemi system, it was concluded that the 

observed spikes were due to an erroneous electrode set-up, which had 

caused the active electrodes to effectively only record strong signals 

derived from the blinking of an error light that overshadowed the 

weaker brain signals. Upon instruction from the developers of 

BioSemi, the problem was fixed by attaching BioSemi’s Common 

Mode Sense electrode, and Driven Right Leg electrode, a set-up that 

essentially replaces the ground electrodes in traditional systems, and 

should always be done when using BioSemi’s active electrode system. 
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Unfortunately, the originally collected data from nine subjects had to 

be discarded, which was a big setback, as multiple weeks had passed 

when working on data collection, and fixing the problem.  

3.2.7 Final Dataset 

At the time of the second round of data collection, the infection rate 

of the Covid-19 pandemic had reached new heights in Oslo. The 

university naturally had to restrict access to the EEG lab and 

decided to forbid access for non-University employees, non-students, 

as well as employees and students that did not already have access to 

the lab for their own projects. This made data collection difficult, as 

access to subjects was severely limited. Considering the reduced 

number of possible subjects, the choice was made to only collect data 

from three well-instructed subjects, assuming this would provide 

sufficient data to critically and reliably assess traditional algorithms 

and yield results that could identify limitations as well as identify 

opportunities for subsequent studies with larger datasets. The view 

was that if the situation would improve, more data could be collected 

at a later stage. 
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Research Methods 

4.1 Preprocessing 

When presented with EEG data, either in a live BCI system or after 

collecting data in an experiment, as has been done here, the raw 

signals contain a considerable amount of noise. Naturally, the next 

part of the successful development and application of a BCI is to 

process these raw signals into filtered signals that contain as much 

useful information as possible, with as little noise as possible. This 

section provides a step-by-step description of the preprocessing 

methods that were used in this project. 

4.1.1 Selecting and discarding bad channels 

The equipment and procedure used to capture EEG signals, with its 

64 electrodes, has elements that are vulnerable to both user errors, 

and technical errors. Other than severe errors, as described in 

subsection 3.2.6, which need to be corrected, it is quite common to 

experience “bad channels”, which are either “dead” (exclusively white 

noise) or significantly noisier than the other channels. This could be 

Chapter 4 



University of Oslo  Henrik Eijsink 

39 

 

due to an electrode having a twisted or even broken cable, improper 

placement of electrodes, or bridging of two electrodes by the saline 

gel. 

The most common way of detecting bad channels is by visual 

inspection and tools to do so are a standard feature of most 

established EEG-handling software. Since this work relied on 

implementing a custom EEG-handling software, a tool was 

implemented that looped through every raw EEG file and provided 

sufficient visual information to be able to detect the bad channels. 

For each raw file in the selected folder, the function presented two 

windows, a simple graphic user interface (GUI), and an interactive 

plot of the raw EEG data (Figure 9 and Figure 10). The plot allows 

the user to hide and show individual channels as well as to zoom in 

and move the plot around if needed. Furthermore, the GUI shows 

basic metrics to help the user identifying potentially bad channels 

and provides a check box per channel that is to be ticked if the 

channel is deemed bad. Selected channels were removed from the 

data, and this was done by setting their values to 1.0, thus ensuring 

that the dimensions of the data were kept constant. 

The metrics that were used as a guideline to identify potential bad 

channels, were selected by trial and error. This means that an initial 

visual inspection was performed, and the metrics were estimated 

based on the channels deemed bad by the inspection. Thus, the 

selection of these metrics is not thoroughly justified but proved to 

help speed up the visual inspection process when inspecting 

processing the entire dataset. The metrics considered were: 

• win_stdev_max – The maximum value for the windowed 

standard deviation with window size = 1024 samples (0.5 

seconds).  
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• win_stdev_mean – The average value for the windowed 

standard deviation with window size = 1024 samples (0.5 

seconds). A low value could indicate a “dead” channel 

• stdev_ratio – The ratio win_stdev_max / win_stdev_mean. 

A large value indicates large variations in the signal’s behavior 

over time. A high value indicates sudden spikes/drops in 

voltage that are considerably more powerful than the general 

fluctuations in the signal, which could be a sign of a loose 

contact or damaged wire. 

• mean – The average of the entire channel values. A very high 

value indicated a channel with a bad connection. 

As examples, the flat grey line at about 250 000 μV in Figure 9 has a 

very high mean, a very low win_stdev_mean. The pink line at about 

100 000 μV in Figure 9 also has a quite high mean, and has an 

extremely high win_stdev_mean, visualized by the large oscillations 

compared to the rest of the signals. By just visual inspection, both 

the mentioned channels were almost immediately identified as “dead” 

electrodes (Figure 9). 

4.1.2 Removal of high-frequency components 

There is some disagreement on how far the gamma frequency band of 

the brain waves stretches (Table 1), where some studies indicate the 

presence and relevance of frequencies well above 100 Hz [50]. 

However, it seems to be the general conception that for motor tasks, 

both executed and imagery, only frequencies from the theta band up 

to and including the lower part of the gamma band (≈ 45 Hz) are 

essential [51]. With a sampling frequency of 2048 Hz and, 

consequently, a Nyquist frequency of 1024 Hz, the data collected in 

this study included frequency information from 0 to 1024 Hz. The 
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overshooting frequency information can be filtered out using a 

bandpass or lowpass filter. 

The straightforward thing to do is to filter the data with a bandpass 

filter ranging from 3 Hz to 45 Hz. However, from a machine learning 

perspective, where more is better in terms of data amount, it is 

interesting to include some margin in the hope that additional 

information can be extracted from outside the known essential 

frequency range. Two separate Butterworth filters were created using 

the python package Scipy [52], namely, one lowpass filter with cutoff 

at 80 Hz, and one bandpass filter with passband 3 Hz – 45 Hz 

(Figure 11). Hereinafter, the two variants of the datasets will be 

referred to as dataset A (lowpass at 80 Hz) and dataset B (bandpass 

at 3 Hz - 45 Hz). Both filter variants, were implemented as 

Figure 9. Interactive plot for visual inspection of potential bad 
channels.  
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Butterworth filters, with the cutoffs defined as the point where the 

gain was reduced to 1
√2

⁄ ≈ 0.71.  

4.1.3 Downsampling 

After removing/reducing a large portion of the frequencies using the 

filters described above, the size of the data is still approximately the 

same. The Nyquist frequency is still 1024 Hz, which theoretically still 

enables us to identify the magnitude of frequencies that are outside 

the desired ranges, even if they are insignificant. We can downsample 

the data by simply keeping only the nth sample, without losing 

frequency information, as long as  𝑓𝑠  2𝑛⁄  >  𝑓𝑚𝑎𝑥 , where 𝑓𝑠 is the 

sampling frequency, 𝑓𝑚𝑎𝑥 is the largest frequency component in the 

Figure 10. Simple GUI to select bad channels for removal. The 
metrics are listed on each row are listed and explained in subsection 
4.1.1 
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signal (after filtering). This process is referred to as decimating by a 

factor of n and essentially lowers the Nyquist frequency to be just 

above the maximum frequency that is of interest. Dataset A was 

decimated by a factor of 12 and dataset B was decimated by a factor 

of 22.  

Order of downsampling and high-frequency removal 

It is important to note the impact of the order of the two operations 

described above, downsampling and filtering out high-frequency 

components. If a signal that is downsampled has frequency 

components larger than half the new sampling frequency aliasing 

noise will be introduced into the data. Aliasing noise is when voltage 

changes from frequencies higher than the Nyquist frequency (i.e., 

frequencies which cannot be observed because the sampling frequency 

Figure 11. Frequency response of the lowpass filter (blue) and the 
bandpass filter (green). 
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is too low), are projected into lower frequencies. Bandpass or lowpass 

filters that are used before downsampling are often referred to as 

anti-aliasing filters, as their main goal can be considered to be 

avoidance of introducing aliasing noise during downsampling. 

Reusing discarded samples when downsampling - Splitsampling 

To fully utilize the data available, a method was employed that 

reuses the samples that would otherwise be discarded when 

downsampling. This method, introduced by Frydenlund et al. [53], 

involves making n new dataset, taking the nth sample starting at 

sample 0,1,…,n-1. This gives n “parallel” datasets and, that can be 

seen similar versions of the same data, but with varying white noise. 

This data augmentation method will be referred to as splitsampling. 

The method is similar to a data augmentation method widely used in 

image recognition problems where multiple rotated and/or scaled 

variants of an image are included in the training set to increase scale- 

or rotation-invariance. In the case of time series like EEG data, the 

method is adding slight temporal invariance [53]. 

4.1.4 Removal of Power Line Interference 

The power line frequency is the theoretical frequency of the 

alternating current available in normal electrical outlets. This 

frequency is different around the world, and the most common is 

either 60 Hz or 50 Hz. In Norway, where this data was collected, was 

expected, and found, to be 50 Hz. As the voltage in the power lines is 

in the range of 106 - 107 as high as the voltage of the EEG signals, 

the power lines are very likely to contaminate the EEG signals.  
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To remove the noise from the power line, a notch filter was 

implemented using the python package Scipy [52]. The center 

frequency was set to 50 Hz, and the width of the filter was set to 

0.25 Hz. Figure 12 shows the power spectrum of one channel from 

dataset A before and after the notch filter was applied, as well as the 

frequency response of the notch filter itself. 

Figure 12. Application of the notch filter. The green and red lines 
are the estimated power spectral density of electrode A1 (Fp1) from 
one run in dataset A. The green is before, and the red is after the 
notch filter was applied. The blue line is the frequency response of 
the notch filter. 
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4.2 Feature extraction 

4.2.1 Data Chunking 

An important aspect of time series classification is deciding how big 

chunks of the data (defined by a time range, or tchunksize) that are to 

be handled at a time. Generally, the goal is to make a system that 

classifies the incoming signal live, which equates to reducing tchunksize 

to near-zero. However, the more tchunksize is reduced, the less low-

frequency information remains in the chunk. This is because the 

relationship between frequency f and the duration T of a full 

oscillation: 𝑓 =  1
𝑇⁄  . For example, in a chunk with a length of 0.05 

seconds, frequencies under 20 Hz will not be recognizable, as the 

chunk is not long enough for a full oscillation. 

The total lag is equal to 𝑡𝑡𝑜𝑡 = 𝑡𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒 +  𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 , where 

tcomputing is the time that is needed to do the classification. While this 

is very important when eventually implementing a real-life system, 

optimization of this aspect was not part of the study described in 

this thesis, and therefore, optimization of these metrics is not 

discussed any further. The data were split into 3 seconds (i.e., the 

time period during which the stimulus was present on the screen (see 

subsection 3.2.2), and each 3-second chunk was processed as one 

trial, with a corresponding label (i.e., the name of the gesture). 

4.2.2 From Temporal to Frequency Information 

Because of the large amounts of noise in EEG signals, the raw signals 

in the time domain is are not appropriate for use as classifier input. 

As discussed in subsection 2.3.2, there are many ways to convert the 

signals into features based on their characteristics, with most 
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methods including a transformation from the time domain to the 

frequency domain. The method that was used in this project is based 

on generating periodograms with the Welch method as described in 

subsection 2.3.2. This is one of the most commonly used methods to 

estimate the spectral density of a signal. 

To retain some temporal information, each trial was split into five   

1-second parts with a 0.5-second overlap, and these 1-second parts 

will be referred to as stages (Figure 13). The Welch periodogram for 

each stage was computed using the Scipy package in python[52]. 

Since we expect the most influential frequencies to be in and around 

the alpha band and lower parts of the beta band (Table 1), these 

frequencies should be weighted heaviest. The Welch periodogram 

produced an estimate of the power spectral density with a frequency 

resolution of 1 Hz, which equals frequency bands of width 1 Hz. In 

the range 5 – 16 Hz, these bands were taken directly as features, 

while outside that range, the bands were averaged to widths of 2, 4, 

or 8, as visualized in Figure 14.  

This leads to a feature vector that, for dataset A, consists of: 

5 𝑠𝑡𝑎𝑔𝑒𝑠 × 25 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑𝑠 × 64 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 8000 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠.  

For dataset B, these numbers are: 

5 𝑠𝑡𝑎𝑔𝑒𝑠 × 19 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑𝑠 × 64 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 6080 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. 

Stage  

0s 1s  s 3s

Stage 1 Stage 3

Stage  

Stage  

Figure 13. Diagrammatic overview of a trial. The trial, with a total 
length of 3 seconds, was split into 5 1-second stages with 0.5 second 
overlap. 
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4.3 Classification 

For classification, Random Forest (RF), Support Vector Machine 

(SVM), and Multilayer Perceptron (MLP) algorithms were 

implemented. During the initial exploration of models, the RF 

algorithm outperformed the other models and was therefore chosen as 

the method for further development within the boundaries of this 

study.  

As described in subsection 2.4.4, RF has several advantages, 

including low bias and variance, reasonably fast computation time, 

and good performance on small datasets. The RF was implemented 

using the scikit-learn package in python [54], which includes versatile 

tools for machine learning algorithms, including RF, and performance 

analytics.  

One of the main goals of this research was to look at the possibilities 

to utilize ME data when training an MI-based BCI. Apart from using 

ME and MI data separately as training data, in one case, the 

0   0  10  0 30  0 0 0  0

              

Dataset B

Dataset A

Figure 14. Diagrammatic overview of the frequency bands. The grey 
boxes correspond to the frequency bands that were used as features, 
and the number within them corresponds to the width of the 
frequency band. Non numbered bands have a width of 1 Hz 
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classifier was trained on ME and MI data together, while in another 

case the classifier was trained on ME data first and then retrained on 

MI data. Table 2 provides an overview of the various configurations 

of training and test data that were used. 

Because of the splitsampling technique that was employed to increase 

dataset size, extra measures had to be taken to avoid ensure proper 

generalization. Typically, in classification problems similar to this, a 

test set is drawn at random from the dataset. In the case of 

splitsampling, this would imply a probability for testing on brain 

signals related to the same physical movement as for brain signals in 

the training set, however, sampled in parallel. Instead, the test data 

was chosen as all the trials from one specified run, this ensured that 

no trial would have splitsampled versions in both the training and 

test set. 

Table 2. Training and test data configurations. ME + MI denotes 
training on a dataset that consists of all available ME and MI data 
together. ME -> MI denotes training on ME data first, then 
retraining on MI data. The set-up depicted in the lowest row was 
included for benchmarking as this set-up is expected to yield high 
classification performance. 

Training Data Test Data

ME MI

MI MI

ME + MI MI

ME -> MI MI

ME ME
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4.4 Model Testing 

To assess the different configurations of which data is used for 

training and testing (MI, MI, or a combination) and find the 

parameters that would produce the most optimal classifier, a search 

was conducted, training classifiers using a multitude of combinations 

of configurations and parameters. In the following list, the variations 

are described:  

• Training data – Either ME, MI, ME + MI, or ME -> MI, as 

shown in the first column of Table 2 

• Test data – Either ME or MI, as shown in the second column 

of Table 2 

• Number of classes – Classify all 5 classes or classify only foot 

movement versus hand gesture (Figure 4). 

• Which subjects – All 3 subjects, one individual subject, the 

two best performing subjects, train on the best or the two best 

subjects and test on the worst subject. 

• Test run – Which run to use for testing, ranging from the first 

run to the eighth and last run that was performed (for either 

MI or ME). This run was not included in the training data. 

• Number of trees – How many trees were trained in the random 

forest. Ranging from 5 to 85 in steps of 5 

• Number of additional trees for retraining – In the case of    

ME -> MI training data, 10, 20, 30, or 40 trees were added for 

retraining with MI, after the initial training with ME 
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4.4.1 Performance Metrics  

To properly assess the performance of the classifier, different 

performance metrics were used. The first and most basic one was 

accuracy, which is simply the number of instances that were 

classified correctly divided by the total number of instances. The 

accuracy is not a very good performance metric as it will not consider 

the expected accuracy by a random classifier, and it will suffer when 

the number of instances differs a lot between the various classes. 

However, accuracy is far more intuitive than other, more informative 

performance metrics. Therefore, accuracy is sometimes included in 

the presented results to help understand what the performance would 

equate to in a live system. 

Of the more informative, and robust performance metrics, the 

Cohen’s Kappa metric was used in this study [55]. Although this 

metric has been criticized by some [56], Cohen’s kappa has been 

widely used as a performance metric in similar classification 

problems, for example in BCI Competition IV, dataset 2a and 2b 

[43]. Kappa is a measure of accuracy with random classification 

excluded, and it is calculated like this: 

𝐾𝑎𝑝𝑝𝑎 =  
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 −  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

(1 −  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
 

Here, the expected accuracy is the accuracy one would expect if using 

a random classifier. 

4.4.2 Cross-Validation 

To properly assess the performance of the models, leave-one-out 

cross-validation was employed. This means that for every model, 

eight separate trainings were performed, each leaving one run out of 

the training data, which was used as testing data. This is the same 
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parameter listed as test run in section 4.4. The mean performance for 

these eight trainings is the cross-validated kappa, later also referred 

to as mean kappa. A large surprisingly variation in kappa within 

these eight trainings were discovered, therefore, the maximum kappa 

was also reported (this is thoroughly motivated in section 5.3). 
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Results and Discussion 

5.1 Summary of Data Structure 

Data collection is described in detail in Chapter 3 and was done with 

three subjects. Subjects 2 and 3 generated eight ME and eight MI 

runs, while subject 1 generated eight ME runs and one MI run (i.e., 

the data collection was terminated early by request from the 

subject). Each run comprises 35 trials, corresponding to 3 seconds of 

active execution/imagining of a gesture, yielding a total of 840 ME 

trials and 596 MI trials to be used for training and testing. Sixty-four 

electrodes were used to record the data, of which, between one and 

eight had to be discarded due to the technical issues described in 

subsection 4.1.1.  

Further processing of the data, namely noise removal and 

downsampling, is described in detail in section 4.1 and resulted in the 

creation of two variants of the dataset, referred to as dataset A 

(lowpass filter at 80 Hz) and dataset B (bandpass filter at 3 Hz/45 

Hz). The splitsampling method described in subsection 4.1.3, 

Chapter 5 
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effectively multiplied the amount of data available for training and 

testing, by a 12 or 22 for dataset A and dataset B, respectively. 

During the initial assessment of the results, no obvious performance 

variation was found between models trained on the two different 

datasets. Therefore, the difference between using dataset A and 

dataset B was not further investigated, and all results presented, are 

from models trained with dataset B, as dataset B is in compliance 

with the accepted best practice [51]. 

Feature extraction (section 4.2) was set to extract 3-second-long 

chunks of data, corresponding to one trial, and convert the temporal 

information to frequency information that was then to be used for 

classification. As explained in subsection 4.2.2, we ended up with 

8000 (dataset A) or 6080 (dataset B) features for each trial (5 stages 

* 64 channels * 25 or 19 frequency bands).  

5.2 Summary of Model Development and 

Testing 

Several thousands of models were set up, trained, and tested, using 

every possible combination of the parameters listed in section 4.4. 

The type of training and testing data (MI, ME, or a combination of 

the two), full classification of all classes or only foot versus hand, all 

subjects, or individual subjects, varying the run used for testing, the 

number of trees that were trained in the random forest, and the 

number of additional trees for retraining (in the case for ME->MI 

training data). In all cases, the run, which was used as testing data, 

was explicitly kept separate from the training data. 
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5.3 Initial Assessment of the Results 

Upon a first look at the results, one significant and unexpected 

feature was noted: The performance of otherwise equal classifiers 

depends heavily on which run that was used for testing the trained 

model. For example, models achieving a cross-validated kappa score 

of 0.6 could have maximum and minimum kappa scores of 0.9 and 

0.0, respectively. It should be pointed out that the runs used for 

testing were not included in the training data, as outlined in 

subsection 4.4.2. Generally, the standard deviations for kappa 

obtained when testing the same model on different runs were 

between 0.15 and 0.30, which is considered rather high. Effects as 

large as those observed were not expected and may suggest that the 

models do not perform reliably.  

There are possible explanations for the relatively high sensitivity of 

kappa for the choice of testing data. The data collection (Chapter 3) 

is a wearing procedure for the subjects. Both MI and ME were 

generally perceived as quite tedious, and especially MI was expressed 

by the subjects to be very mentally demanding. In both situations, 

intense concentration is demanded from the subjects. The total time 

of concentrated attention equated to a maximum of                   

2 ×  23: 20 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 =  46: 40 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, which might have been too 

much to ensure adequate focus for the full duration of the procedure.  

When recording data, comments given by the subjects in between 

runs indicated that there could be seemingly random variations in 

how successful a run was. When asked about why a run felt 



University of Oslo  Henrik Eijsink 

56 

 

unsuccessful, it was suggested by the subjects that a failed, clumsy, 

or uncomfortable trial at the beginning of a run made the subjects 

lose their concentration. Such variability corresponds well with the 

seemingly random distribution of performance obtained when varying 

which run is being used for testing of one classifier.  

Improvements could likely be obtained by revising the data collection 

procedures. For example, while it is useful to have MI and ME data 

from the same subject, achieving this prolonged the sessions per 

subject, likely reducing the level of concentration maintained by the 

subject.  

Considering the plausible explanations for the relatively large kappa 

value standard deviations, there is no reason to assume that the 

models were generally flawed. In the discussion of the outcomes 

below, if nothing else is specified, the kappa performance metrics will 

be reported as the cross-validated kappa, hereinafter referred to as 

mean kappa, with maximum kappa in parenthesis, which is the 

kappa value for the most successful choice of test run, for that 

specific model. The reason for including the maximum is that this 

could be perceived as the potential for the model. A live BCI system 

would require high levels of concentration, and this will equate to 

removing or reducing the number of runs that were deemed 

unsuccessful by the subjects, which would drive the average 

performance up towards the maximum. 
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5.4 Motor Execution (ME) Classification 

The results for various combinations of the three subjects and the 

number of classes were found by varying the number of trees in the 

random forest algorithm, as described in section 4.4. The 

performance of the best models is shown in Table 3. The number of 

trees in the random forest for each of the models were between 10 or 

15 for the single-subject models on the two-class problem, and 

between 45 and 85 for all other models, which results are presented 

in Table 3. This indicates that more complex datasets, both in the 

sense of multiple subjects and multiple, less differentiable classes, 

require more trees in the random forest, to converge to the best 

possible performance. This corresponds well to previous studies on 

the number of trees in random forests [57], as such, the number of 

trees will not be discussed any further. 

Table 3. Results for the best classifiers that were trained and 
tested on ME data. Subject numbers separated by comma refers to a 
model trained and tested on data from both/all subjects.  

Subject Mean Max Mean Max

1 0.57 1.00 0.23 0.40

2 0.21 0.67 0.22 0.30

3 0.74 1.00 0.24 0.31

1, 3 0.63 0.97 0.22 0.31

1, 2, 3 0.36 0.60 0.21 0.26

2 Classes 5 Classes

Kappa Kappa
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5.4.1 Inter-Subject Difference in Performance 

For the two-class problem, the best performance scores were 0.57 

(1.00) for subject 1, 0.21 (0.67) for subject 2, and 0.74 (1.00) for 

subject 3. Thus, there is considerable variation in performance 

between subjects. BCI illiteracy is mainly considered in MI-based 

applications, however, it has been shown that BCI illiteracy exists for 

other paradigms as well [58], [59]. The results indicate that subject 2 

might be BCI illiterate. Of note, all subjects gave similar results 

when using five classes but in this case, the performance scores were 

generally low. 

5.4.2 Two-Class Versus Five-Class 

The results for the five-class problem including all hand gestures for 

the best subject are not impressive, with a kappa score of 0.24 (0.31), 

and an accuracy of 0.38. For the two-class problem (foot movement 

versus hand movement), the scores were considerably better (Table 

3) and in that case, the highest kappa score was 0.74 (1.00) 

corresponding to an accuracy of 0.92. It is thus clear that either the 

models were not good enough, or the dataset not big enough to 

succeed in solving the five-class problem. Of note, for the putatively 

BCI-illiterate subject 2, there is no significant difference in the score 

for the two-class and five-class problems.  

5.4.3 Multi-Subject Models 

If the classifier would be invariant to subject-specific features, the 

performance of a multi-subject model would be expected to be 

equivalent to the mean performance of models based on individual 

subjects. For subjects 1 and 3, the average score is 0.66 (1.00), and 

the score for the combined model is 0.63 (0.97), which could be 
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considered equivalent. However, if we include subject 2, the average 

score is 0.51 (0.89), and the score for the combined model is 0.36 

(0.60), which implies a considerably greater difference.  

Considering the deviating results for subject 2, leading to the 

suggestion that subject 2 is BCI illiterate, it is not surprising that the 

combined model based on all three subjects did not perform well. 

This underpins the importance of recognizing such subjects when 

dealing with datasets, not only because a model trained on the data 

from the illiterate subject performs poorly, but also because such 

data weakens the results of a multi-subject model. 

5.5 Motor Imagery (MI) Classification 

5.5.1 Models Trained on Motor Imagery (MI) data 

The straightforward way to do MI classification is to train a model 

on MI data, and this will be the benchmark for comparisons with 

models incorporating ME data in training (subsection 5.5.2). The 

best-performing MI-based models are presented in Table 4. Note that 

Table 4. Results for the best classifiers that were trained and 
tested on MI data. Subject 1 is not included because this subject was 
not able to perform a sufficient number of MI runs. 

Subject Mean Max Mean Max

2 0.06 0.28 0.08 0.21

3 0.68 0.94 0.24 0.36

Kappa Kappa

2 Classes 5 Classes
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subject 1 is not included as it was not able to perform more than one 

run of MI. The best model for subject 3 has a kappa score of 0.68 

(0.94) for solving the two-class problem, which is reasonably good. 

On the other hand, the best model for subject 2 has a score of 0.06 

(0.28), which is very bad. Combining these observations with those 

described for ME classification (section 5.4) supports the idea that 

subject 2 is BCI illiterate.  

5.5.2 Introducing Motor Execution (ME) Data to Improve 

Performance 

To investigate how ME data would affect the training of a MI 

classifier, three variations were implemented. One model was trained 

on ME data, one was trained on ME and MI data together, and one 

was trained on ME data, and then retrained on MI data. The results 

are presented in Table 5, and to clarify, the rows with MI as training 

data correspond to the two rows of Table 4. 
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The total number of trees in the random forest that gave the best 

results for the models that are presented in Table 5 varied greatly, 

from 5 to 85 trees. Findings by Oshiro et al. [57] suggest that the 

convergence of the number of trees (i.e. the point at which the model 

will not improve significantly by increasing the number of trees) is 

expected to be between 64 and 128. This might indicate that the 

dataset is too small and that improved results could be achieved by 

increasing the size of the dataset. 

When analyzing the results in Table 5 for subject 3, there does not 

seem to be any significant difference in performance between the 

models trained solely on MI data and models trained combinations of 

MI and ME. This could indicate a potential for including ME in the 

training data for an MI-based BCI, without negatively impacting 

Table 5. Results of the best MI classifiers, trained on varying 
combinations of data. MI and ME corresponds to training solely on 
MI or ME data, respectively. ME + MI corresponds to using a 
training data set that is a combination of ME and MI data.          
ME -> MI corresponds to initial training solely with ME, followed by 
continued training with MI. Subject 1 is not included because this 
subject was not able to perform a sufficient number of MI runs. 

Subject Train Data Mean Max Mean Max

2 MI 0.06 0.28 0.08 0.21

ME 0.10 0.30 0.05 0.23

ME + MI 0.07 0.15 0.11 0.23

ME -> MI 0.11 0.23 0.10 0.19

3 MI 0.68 0.94 0.24 0.36

ME 0.56 0.81 0.17 0.34

ME + MI 0.62 0.91 0.30 0.36

ME  -> MI 0.65 0.91 0.24 0.39

Kappa Kappa

2 Classes 5 Classes
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performance. This could have a positive influence on data collection, 

because a portion of the mentally demanding MI process could be 

exchanged for less demanding ME, making subjects able to collect 

more data. It should be noted though that models that were trained 

on a combination of MI and ME data were trained on more data 

compared to the models trained on only MI or ME data since ME 

data were added to the MI data rather than replacing parts of these. 

It is worth noting that training of the MI classifier with only ME 

data gave a reasonable result, with a kappa score of 0.56 (0.81). 

While this value is lower than the value obtained with all the other 

set-ups, all including MI data in the training set, it is still reasonable. 

This adds to the idea that indeed, it should be possible to utilize ME 

data to train MI classifiers 

It should be noted that for subject 2, which is considered BCI 

illiterate, the ME-data-including variations of the classifier all 

performed marginally better, while for subject 3, they performed 

marginally worse. Although this observation is not statistically 

significant, it is tempting to interpret this observation as a slight 

indication in support of what was one of the goals of this research, 

namely the use of ME data in training, to improve MI classification 

for BCI illiterate subjects.  
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Summary and Conclusion 

This thesis presents research aimed at providing insight into BCI 

development, with a special focus on BCI illiteracy. One specifical 

goal was to explore the possibility of incorporating ME into the 

training data for a model that aims to classify MI data. A novel 

dataset is presented that consists of both ME and MI data for a 

combination of hand gestures and one foot movement. While the 

dataset is of limited size, for reasons described in subsection 3.2.6, it 

proved useful for exploring the issues that we set out to explore. This 

being said, clear limitations were also met, such as the low 

performance in solving the five-class problem. The quality and 

quantity of the dataset may have something to do with this, 

although further improvements may also come from improving 

methods and exploring other strategies, as outlined in Chapter 7.  

The large variation in the number of trees that made up the best 

random forest classifiers for the different data set configurations, 

subjects, and the number of classes, further indicates that more data 

could increase performance towards a point of convergence. 

ME data tend to be overlooked a bit in BCI development for health 

care applications because BCIs naturally are most needed to help 

Chapter 6 
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individuals lacking motor abilities. Thus, a goal was to assess the 

value of ME data in developing MI-based classifiers, the premise 

being that ME data should not be overlooked in BCI, even in 

applications where the end goal is an MI classifier. The results show 

that models trained on a combination of ME and MI data generally 

performed at a similar level as purely MI-based models, with a strong 

subject achieving marginally worse performance and a BCI illiterate 

subject achieving marginally better performance.  

The fact that similar results could be obtained upon replacing MI 

data with ME data when developing an MI classifier, is encouraging 

since this could reduce the dependency on MI data in BCI 

development. Collection of ME data is easier because it puts less 

strain on the subject compared to the collection of MI data. 

Furthermore, BCI illiterate subjects are usually better at producing 

useful ME data, compared to MI data, also suggested by observations 

in this study. Thus, increased use of ME data means that more 

subjects can contribute to BCI development. Most importantly, the 

possibility of using ME data to train MI-based classifiers opens up 

the possibility to use ME data generated by a motorically competent 

person to be used in developing BCIs for disabled persons. Inter-

subject models are of great interest and should be the focus of future 

work (see section 7.1). 

Importantly, the present study is too limited to reach firm 

conclusions and point decisively at future directions. For example, 

the very interesting observation that for a BCI illiterate subject, 

including ME in the training data could even improve the 

performance of an MI classifier is based on differences that are not 

statistically significant. Further work is needed to back up the 

observed trends, which may, when investigated with larger datasets, 

turn out not to be trends at all. Regardless, it is encouraging that the 
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data collected in this study do not dismiss the possibility of increased 

use of ME data. 
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Future Work 

As summarized in Chapter 6, the results presented in this thesis 

provide slight indications as to if, and how, ME data can help tackle 

the BCI illiteracy problem. On the way towards developing successful 

BCIs, in particular, BCIs that work well for BCI illiterate subjects, 

much more work and larger datasets are needed. The sections below 

describe some lines of research that could be explored in future work  

7.1 Further Investigation of ME-based 

MI classifications 

Clearly, the results and preliminary conclusions presented in this 

thesis need to be backed up by additional work. By increasing the 

size of the dataset, it should be possible to establish the statistical 

foundation needed to either verify or reject the preliminary 

conclusions that were presented. 

Another natural next step would be to investigate inter-subject 

models, that is, models that are tested and used on a subject that did 

Chapter 7 
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not contribute with training data. This type of approach is crucial for 

increasing the possibility of successful development of BCIs for BCI-

illiterate subjects, including motorically disabled subjects. 

Alternatively, one could produce a base model from multiple 

subjects, and employ transfer learning (subsection 2.4.6) to fine-tune 

the model for the proposed user of the system. This would make the 

implementation of a BCI system for healthcare purposes much less 

extensive, as the use of an already trained base model would reduce 

the training time needed for the patient in question. 

7.2 Visual response vs motor response 

Both Motor Imagery and Motor Execution rely on performing an 

imaginary or physical movement. Importantly, for the dataset 

presented in this work, there is no obvious way to separate between 

brain signals related to the subject seeing and understanding the 

visual stimuli, and the actual MI/ME. It would be interesting to 

investigate the effect this has on the performance of the model. One 

simple way to test this is to set up a similar data collection 

procedure as in this work, but with an added text as part of the 

visual stimuli, that for example prompts the user to “imagine” or 

“ignore”. Results from such an experiment could potentially be used 

to exclude certain features related to the visual stimuli from the 

training data, to ensure that the BCI model uses only brain signals 

related to the actual movement or the imagining of the movement. 

Another possible approach to remove the effects of the visual stimuli 

on the brain signals is having the stimuli be removed and instruct 

the subjects to start the execution or imagining of the movement 

after the stimuli is no longer visible.  
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7.3 Executing movement versus 

maintained position 

In the dataset presented in this work, subjects were to perform and 

maintain a gesture for 3 seconds. It would be interesting to look 

closer at which parts of these 3 seconds that are the most important 

for classification, and if it is even possible to classify a maintained 

position when the first 1-2 seconds is left out. For a live BCI system 

as proposed in this thesis, it would not be particularly interesting to 

use anything other than the first second of a movement, or preferably 

less. However, investigating this could generate insight into what 

kind of brain signals can be classified. It would also be interesting to 

look at the difference between MI and ME, as MI requires continuous 

concentration to maintain a position even for very simple gestures, 

while ME does not. 

7.4 Reinforcement Learning 

Established BCI techniques are implemented as “communication 

devices”, that communicate discrete actions to a computer, rather 

than interpreting the natural signals from the brain, translating these 

into a continuous space of fine-tuned motor control or 

communication. BCIs, as solved today, will never contain enough 

classes of hand movements to enable a guitarist or artist with an 

amputated hand be able to fully recover their original fine motor 

skills. In other words, it is currently not possible for a BCI user to 

invent a ‘new’ hand gesture, even with state-of-the-art hand control 

BCIs, the user is limited to a specified set of gestures.  
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So far regression models, which are inherently non-discrete, have 

been largely overlooked in BCI research. Regression models are not 

restricted by a discrete solution space of classes and have an infinite 

number of solutions in continuous space. This would equate to being 

able to make any combination of physically possible movements and 

rotations in all joints of a robot hand, with precision equal to that of 

the robot hand actuators. The implementation of regression models 

for BCIs has been limited, because brain signals related directly to 

the set of specific muscle contractions that comprise a movement are 

incredibly hard, if even possible, to discover.  

One approach for moving in the direction of BCIs with a less discrete 

solution space (i.e., a system that can be trained, by the subject, to 

perform new movements) could be to implement a reinforcement 

learning model. In such an approach, the subject simultaneously 

trains the control of his/her brain waves and the way the BCI 

handles these brain waves. To obtain this, the subject should be 

asked to complete a series of tasks that entailing various movements 

of a robot hand. Equipped with a keyboard, the subject should give 

feedback (i.e., an integer value between 1 and 10) that corresponds to 

how well he/she felt the robot hand movement responded to their 

intentions for each task. With the feedback from the subject as 

reinforcement rather, the reinforcement learning algorithm can 

effectively learn any new movement while in use, much like a child 

learns by trial and reinforcement by parents. 
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