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Abstract

Brain-computer interfaces (BCIs) enable machines to be controlled by
brain signal activity. Electroencephalogram (EEG) devices are widely
used to record these signals. In the last few years, several wireless
EEG headsets have been commercialized, providing speed, ease of use,
affordability, and mobility. The focus of this study is EEG-based motor
imagery BCIs. These are systems controlled by signals that are evoked
upon the imagination of movement.

It has been shown that imagining movement triggers the same
areas in the brain as when generating the movement [54]. High
accuracy scores have been achieved for large body parts. However,
discriminating finer movements within the same limb has shown to be
a more challenging task. Being able to do this would however, increase
the number of available control signals significantly, paving the way
for a more practical BCI.

In this thesis, EEG signals were collected from nine subjects per-
forming executory and imagery grasping tasks with both dominant
and non-dominant hands. The signals were analyzed using traditional
state-of-the-art methods, and well-validated convolutional neural net-
works, designed for limited data.

The main classification problem was between two grasping tasks
under two different conditions, the left-hand side and right-hand side.
Using automatic channel selection based on a Riemannian geometry
criterion prior to feature extraction and/or classification revealed a
significant difference in accuracy with regards to hand-side for the
majority of the subjects. There was no clear trend as to what side was
more accurate, this was dependent on either the subject, algorithm or
session.

An accuracy of 70% is assumed to be a required threshold for
BCI applications [14]. Five out of nine subjects achieved accuracies
above this threshold for classification within the same limb. This
indicates that the possibility of utilizing EEG-based BCIs for single-
limb classification without handcrafted features should be further
investigated.
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Preface

In this master thesis, brain signals are analyzed with the objective
to examine the effect of hand dominance for a set of motor imagery
grasping tasks. The report has been written at the Department
of Informatics, Robotics and Intelligent systems during the spring
semester of 2021.

The project is undertaken together with neuroscience experts at the
Department of Psychology at the University of Oslo. In general, the in-
terest lies in developing models that use brain signals to either predict
mental states or provide some control functionality. The ambition is
to inform the development of using thoughts in human-machine/robot
interfaces.
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1 Introduction

In this chapther an introduction to the general outline of the report is
given, along with motivation and objectives for the study.

The chapter is divided into five sections. Section 1.1 provides
basic background knowledge and motivations. Section 1.2 states the
objectives. Section 1.3 describes the contributions of this work. Section
1.4 the limitations. Finally, section 1.5 presents the overall structure
of the report.

1
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1.1 Background and Motivation

Humans controlling machines with their minds become a reality
through brain-computer interfaces (BCIs). A a BCI is a system that
translates brain activity into commands for an interactive application.
Many application areas have the potential to be revolutionized,
such as control of assistive technologies for severely motor-impaired
users, rehabilitation for stroke patients, gaming devices, and adaptive
human-computer interfaces reacting to the mental state of the user, to
name a few.

Both startups and established companies are racing to strengthen
the link between humans and machines. In 2017, Facebook announced
that they would be investing in the development of non-invasive,
wearable BCIs that would allow users to "type with their brains".
Elon Musk, one of the founders of Neuralink, expressed in 2019 that
the company wants to start by treating brain injuries and eventually
"achieve a symbiosis with artificial intelligence".

Brain activity is often captured using electroencephalography
(EEG), and there is a growing interest in the commercialization of
EEG products for BCI applications. Several new electrode headsets
designed for speed, ease of use, comfort, and mobility in real-world
environments, have entered the market in the last few years.

A number of control signals can be employed in a BCI system,
divided into different paradigms. Motor imagery (MI) signals are
generated when imagining a motor task. Research has confirmed that
imagining a movement activates the same area in the brain as when
actually generating the movement [54]. This study will be limited to
EEG-based BCIs following the motor imagery paradigm.

Promising results have been obtained for distinguishing between
the MI tasks of large body parts. The number of commands that
can be decoded corresponds to the number of MI tasks that can be
distinguished by the BCI system. The ability to discriminate between
finer motory tasks would largely increase the number of available
commands and hence the functionality of such a BCI. One of the
motivations in this thesis is to serve as a stepping stone towards
increasing the number of available commands. Popular competitions,
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such as Kaggle’s Grasp and Lift EEG Detection Competition from 2015,
and the 2020 International BCI Competition, where participants were
asked to decode single-limb related motor imagery, illustrate the field’s
growing interest in this particular topic.

There are several challenges to overcome in the development
of more practical BCIs. EEG signals are noisy, non-stationary,
and the data is highly complex. Also, the statistical distribution
of MI data is highly variable across subjects, runs, and sessions.
Hence a calibration process with hand-engineered feature extraction
techniques has traditionally been necessary to achieve acceptable
performances by the classifier. Emerging deep learning techniques
has, however, shown great promise in tackling these challenges.
They do not rely on hand-engineered features and can merge feature
extraction, selection, and classification. Sometimes they require no
preprocessing and can be used to build subject-independent systems
with no calibration time, dealing with highly complex data. The
literature shows that Convolutional Neural Networks (CNNs) have
been the most popular choice, but advantages compared to traditional
EEG processing approaches, remain uverified [60].

1.2 Objectives

This project shall research both traditional approaches and convolu-
tional neural networks to classify an EEG dataset collected explicitly
for this study. Principal understanding of the oscillatory activity based
brain-computer interfaces will be emphasized.

The main objective is to determine whether finer motory tasks are
easier to classify when executed/imagined with the non-dominant hand
compared to the dominant one. Another objective is to determine
whether such finer motor tasks on a single limb can reach acceptable
performance criteria to pass as additional commands in a BCI. There is
a consensus in the field that the required accuracy level for real-world
application is around 70% [14, 33, 37].

To establish a baseline, current state-of-the-art algorithms in tra-
ditional machine learning will be explored and compared to a novel,
promising EEG-tailored convolutional neural networks. Different data



CHAPTER 1. INTRODUCTION 4

augmentation- and feature selection techniques will be explored.

The following research questions have been formulated:

1. Does hand-dominance affect the discriminative properties of a set
of hand grasps?

2. To what extent do tasks within the same limb reach decoding ac-
curacies above the required threshold (∼70%) for BCI applica-
tions?

1.3 Contributions

The main contributions related to this work are:

• A dataset containing EEG signals of single-limb movements,
with the potential to contribute in other experiments than those
limited to this project.

• Increased knowledge on the effect of hand dominance when
decoding upper-limb motor imagery tasks. A thorough search of
relevant literature yielded no existing articles on this matter.

• A comparison of different models and various approaches for
performance enhancement.

It is more challenging to classify MI tasks related to a single limb
than tasks of different limbs. This is due to the high similarity of
the recorded signals and the proximity of the cortical regions emitting
those signals. Very few publicly available datasets include finer motory
tasks within the same limb, making the collected dataset and the
following classification experiments a contribution to the field.

1.4 Limitations

The work presented in this report can be considered an early-stage
feasibility study, to provide insight as to whether further research is
worthwhile. The results are limited by the small amount of available
data, focusing only on a few tasks.
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1.5 Structure of the Report

Chapter 1: Introduction
The introduction presents the general outline of this report, as well as
motivation and objectives for the study.

Chapter 2: Background
A basic introduction to brain-computer interfaces (BCI), the human
brain, and electroencephalography (EEG) is given in this chapter, along
with relevant application areas. Finally, different paradigms are de-
scribed, focusing on motor imagery.

Chapter 3: Data sets
This chapter provides an overview of key distinctions of publicly avail-
able datasets belonging to the motor imagery paradigm and a thorough
description of the EEG experiment conducted to collect data. Finally,
some preliminary analysis results are presented.

Chapter 4: Signal Processing
A description of a general EEG-based processing pipeline, followed by
the current state-of-the-art in traditional machine learning and an in-
troduction to relevant deep learning techniques for classification.

Chapter 4: Methods
An overview of the pre-processing steps performed in this study, to-
gether with details on the implemented models.

Chapter6: Experiments and results
This chapter presents details about all the conducted experiments and
their results. A comparison of the implemented models is made.

Chapter 7: Discussion
An evaluation of the results and ethical dilemmas. Research questions
are answered. Recommendations for further research are also given.

Chapter8: Summary and Conclusion
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This chapter presents the conclusion of this study by summarizing the
results.



2 Background

This chapter introduces some of the core aspects of brain-computer
interfaces, including relevant knowledge of brain anatomy and and
methodology for recording and deploying brain signals.

The chapter is split into four parts. First, section 2.1 gives a
general introduction to brain-computer interfaces. Section 2.2 dives
into the human brain and its anatomy. Section 2.3 introduces
electroencephalography, the most widely used recording technology for
brain activity. Finally, section 2.4 presents different approaches for
utilizing various control signals from the brain, called paradigms. The
focus is mainly on motor imagery.

7
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2.1 Introduction to brain-computer interfaces

Brain-Computer Interfaces (BCIs) are systems that translate a mea-
sure of human brain activity into a command or message for an inter-
active application to a connected machine.

Hans Berger recorded the first human electroencephalogram (EEG)
in 1924 [42]. This opened completely new possibilities for the research
of human brain activities. The term "BCI" was introduced in 1973 by
Jacques Vidal [76]. Since then, many researchers have attempted to
interpret brain waveforms to establish more convenient and accurate
control over external devices. Due to advances in new technology, the
interest in the field continues to grow. Over the years, this has resulted
in many concepts, methods, paradigms, and applications. There has
also been a significant increase in the number of publications in the
last decade, see Figure 2.1.

Figure 2.1: Number of publications over the years based on a search
with the keyword “brain computer interface” on PubMed [61].

BCIs can be divided into various types and categories. A dependent
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BCI uses brain signals that depend on existing output pathways, such
as muscle activity [78]. An independent BCI does not depend on such
pathways, i.e., the message is not carried by peripheral muscles and
nerves. Actual muscle activity is not needed. The brain signals alone
are sufficient. Independent BCIs are of great theoretical interest,
as they provide the brain with new output pathways. For people
with severe neuromuscular disabilities, sometimes lacking all normal
output channels, independent BCIs can be very useful.

2.1.1 Categories of BCIs

There are several different techniques for measuring brain signals.
They can be divided into invasive, semi-invasive, and non-invasive.

Figure 2.2: Electrode types that have been used for BCIs: EEG
from scalp, ECoG from brain surface, and cortex-penetrating micro-
electrodes. [47]

Invasive
Neurosurgery is an invasive method, where microelectrodes are
implanted under the skull and into the brain. Such a microelectrode
is illustrated in Figure 2.2. Small grids of electrodes are directly
implanted in, e.g., the motor cortex or related areas. Then, a motor
imagery strategy can be used to induce brain activity changes and
subsequently control movements of a robotic arm [70]. Single-unit
BCIs detect signals from a single area of brain cells, and multi-unit
BCIs detect from multiple areas.
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Most research in this field has been performed on animals, mainly
monkeys and rats, but some systems have also been demonstrated in
humans. Recordings acquired from invasive techniques benefit from
having a very high signal-to-noise ratio and spatial resolution, result-
ing in significantly improved system performance. Many challenges do,
however, arise. As a reaction to the foreign object, the body can build
a scar around the electrodes, and this can cause signal deterioration.
Both high cost and high risk follow neurosurgery, making the target of
such BCIs mainly patients with particular needs. [51]

Semi-invasive
A technique that requires a craniotomy to implant the electrodes is
defined as semi-invasive. Electrodes are placed on the exposed brain
surface, and electrical activity from the cerebral cortex is recorded
using electrocorticography (ECoG). See Figure 2.2. A grid or strip of
electrodes covers a large area of the cortex, and the method is used in
a range of cognitive studies. ECoG studies in BCI are mostly limited
to cases where the primary need for surgery comes from other reasons,
e.g., epilepsy.

In a study from 2006 [12], electrodes were implanted in the frontal
regions of epileptic patients. The patients were asked to perform
imagery tasks for mouth, tongue, and hand. Using ECoG, the BCI
system was able to classify the imagery tasks after one single session.

This activity recording involves lower clinical risk than the invasive
one, as the electrode array does not penetrate the cortex. The
signals show robustness over long recording periods [77], high spatial
resolution and signal fidelity and resistance to noise. Muscle and eye
movement do not affect the recording, as it does with EEG.

Non-invasive
There are multiple non-invasive techniques used to record brain
signals, where EEG is the most common. With EEG technology, the
signals are recorded without any penetration as the sensors are placed
on top of the scalp, see Figure 2.2. The electric activity of the brain
is measured with high temporal- and low spatial resolution. EEG is a
popular choice for building BCIs due to its deployability, low cost, and
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ease of integration with other technologies [18, 46]. See section 2.3 for
more details.

Examples of other non-invasive techniques include magnetoen-
cephalography (MEG), positron emission tomography (PET), functional
magnetic resonance imaging (fMRI), and near-infrared spectroscopy
(fNIRS). MEG measures the brain’s magnetic activity, and fMRI, PET,
and NIRS rely on changes in blood flow. PET and MEG have a high
spatial and temporal resolution. fMRI and NIRS have a high spatial
resolution but poor temporal.

These techniques can be used in a BCI system, but they are
expensive and technically demanding, and not commonly used. The
focus of this study will be on EEG-based brain-computer interfaces.

2.2 The human brain

The human brain works as a set of sub-systems cooperating to control
the various functionalities of the whole body. Information about the
external environment is received through our senses, such as hearing,
sight, taste, smell, and touch. Certain parts of the brain are associated
with distinct cognitive functions.

The brain can be generally divided into two main parts - the
cerebral cortex and the subcortical regions [56]. Subcortical regions
are those areas that control the basic and vital functions such as
heart rate, body temperature, respiration, and emotional responses,
including fear, reflexes, learning, and memory. The cerebral cortex
is considered newer in terms of evolution. It is the largest and the
most complicated part of the brain. This part is the focus of most BCI
research since the control of sensory and motor processing happens
here and higher-level functions such as language processing, pattern
recognition, planning, and reasoning.

The cerebral cortex is the outer layer of neural tissue of the
cerebrum of the brain [81]. It is the largest site of neural integration
in the central nervous system and contains 14 to 16 billion neurons.
The longitudinal fissure divides the cerebrum into the left and right
cerebral hemispheres. Each hemisphere can be divided into four
main lobes, as illustrated in Figure 2.3, namely the frontal, parietal,
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temporal, and occipital. They correspond to different brain functions.
Functions of the frontal lobe are organizing, planning, social skills,

flexible thinking, conscious movement, problem-solving, emotional and
behavioral control, and attention [56]. The parietal lobe handles
functions such as spatial awareness, perception, spelling, and objects
classification. The basic functions of the temporal lobe understand
language, facial recognition, memory, hearing, vision, speech, and
emotions. Finally, the occipital lobe interprets visual stimuli.

Figure 2.3: Illustration of human brain lobes.

The brain is constantly generating electric signals. The skull and
skin of the head are excellent electrical insulators, making it difficult
to record from individual neurons. However, when a large number
of neurons do the same thing simultaneously, it is possible to see the
activity with electrodes placed on the scalp’s surface [63].

2.3 Electroencephalography (EEG)

In an EEG recording, electrodes are placed on the scalp’s surface to
pick up the electrical current generated by the brain. As mentioned in
section 2.2, when groups of neurons fire together, they provide enough
signal to be measured from on top of the scalp. Hence, only clusters of
neurons can be measured.
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The electrodes are small metal plates made from various materials,
such as tin, silver, gold, or platinum. Specifically, what is recorded
is the voltage difference between a minimum of two electrodes. The
electrodes acquire the signal from the scalp, amplifiers process the
analog signal to enlarge the amplitude of the EEG signals so that an
A/D converter can digitalize the signal more accurately. Finally, the
recording device displays/stores the data.

The spatial resolution reflects the ability to localize the precise
brain regions generating a signal. In EEG, it is determined by
the number of electrodes used. When a higher spatial resolution is
required, typically, at least 32 electrodes are used, all the way up to
500. In general, spatial resolution for EEG is low (compared to, e.g.,
ECoG and fMRI) because the signal needs to travel through different
layers up to the skull, and the activity registered by an electrode is
a mixture of different signals generated by various brain regions. The
resolution, however, can be improved using certain types of filters or by
combining EEG with other tools (e.g., fMRI). High spatial resolution
is not necessarily needed, and commercial headsets often use fewer
electrodes.

EEG does, however, have excellent time resolution. It is possible
to take thousand of snapshots of electrical activity across different
sensors in a single second.

Electrodes can be placed following the international 10–20 system
(see figure 2.4) to ensure data is always collected from the same region.
This is recommended as a standard layout. 10–20 refers to specific
anatomic landmarks or inter-electrode distance, such that it is 10–20%
of the front-to-back or right-to-left head perimeters. Other systems,
such as 10-10 and 10-5, could be valid standards as well [30].

2.3.1 Neural oscillations

EEG data contains rhythmic activity, which reflects neural oscillations.
These oscillations are divided into frequency bands. Today there are
mainly five established bands. These are gamma (γ), beta (β), alpha (α),
theta (θ) and delta (δ), see figure 2.5. Research has found associations
between these rhythms and different brain states [1].
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Figure 2.4: BioSemi cap layout, based on the international 10-20
system, 64+2 channels. [28]

• Gamma can be detected at the somatosensory cortex with a
frequency greater than 30 Hz. It is present during problem-
solving and other cases where concentration is required.

• Beta is associated with being alert, busy, and having an active
mind. It falls in the range between 12-30 Hz.

• Alpha has frequencies between 8-12 Hz. It is usually associated
with relaxation, reflectivity. When the alpha activity is recorded
over the sensorimotor region, it is in the literature known as
mu (µ) activity. Suppression of this signal indicates that motor
neurons are working.

• Theta frequencies fall within the range of 4–7 Hz. It is associated
with drowsiness and deep meditation.

• Delta has a frequency range of 1–4 Hz. It is associated with deep
sleep and dreaming.



CHAPTER 2. BACKGROUND 15

Figure 2.5: Brain wave samples with dominant frequencies belonging
to beta, alpha, theta, and delta bands. [7]

2.4 BCI paradigms

BCIs are implemented using different approaches, often referred to
as paradigms. The desired application needs to be matched with
the appropriate control signal. The paradigm of choice should be
convenient, reliable, and accurate.

EEG-based BCIs can be either evoked or spontaneous [31, 50].
Evoked systems depend on external stimulation, such as sensory,
auditory, or visual stimulation. To determine the user’s will, the BCI
system’s response evoked by the stimuli is identified. In spontaneous
BCIs, on the other hand, no external stimulation is required. The
control actions are based on the decoding of activity produced as a
result of mental activity. Most users can master evoked systems,
they typically require fewer sensors and training, and have higher
throughput than spontaneous systems. However, the required gaze on
fixed stimuli and concentrations that follows can be tiring [49].

The two main categories of evoked EEG systems include event-
related potentials (ERPs) and visually evoked potentials (VEPs). ERPs
are brain signals responses to sensory or cognitive events, VEPs are
brain signals responses to a visual stimulus [49, 72]. One of the most
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widely researched areas of VEP-based BCIs is steady-state visually
evoked potentials (SSVEPs). To induce SSVEP, users can be exposed
to frequency flickering stimulus and have to shift their attention and
gaze on the desired target. This paradigm requires no training, and
the stimuli may flash in many different frequencies, leaving room for
a large number of discrete commands. A study on the usability of an
SSVEP-based system [69] performed a survey of 32 subjects, where
48% thought the system was easy to use, 52% found stimuli annoying,
and 66% considered the system to require a lot of concentration in use.

An ERP is derived by averaging EEG signals induced by a specific
event. P300 is the most studied ERP and one of the most popular
paradigms in BCI systems based on EEG [49]. The P300 wave is a
positive deflection in the ERP. Usually, it is elicited in an “oddball”
paradigm when a subject is presented with a regular train of standard
stimuli and detects the occasional target stimulus. However, the
system’s maximum throughput is restricted by the dependence of
several stimuli, which adds to the computational time taken for
decision-making [50].

Motor Imagery (MI) BCI is the most common example of a
spontaneous BCI. The paradigm requires the user to imagine limb
movement. Research has confirmed that imagining a movement
activates the same area in the brain as when actually generating the
movement [54]. A drawback is the training process involved for the
subjects to learn how to modulate specific frequency bands of neural
activity.
The experiments in this thesis follow the motor imagery paradigm.
Hence it will be focused on in greater depth.

2.4.1 Motor imagery

MI is mostly based on sensorimotor rhythms (SMR) [2]. The subject
imagines movements of certain body parts, such as tongue, hands,
and feet. The motor imagery task being carried can be identified
from mu and beta activity changes within the recorded EEG signals
[25]. This can be utilized in, e.g., prosthetic device control. Different
areas of the cortex control different parts of the body. How much of
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the cortex relates to each part of the body can be illustrated through
a cortical homunculus, see Figure 2.6. This is basically a distorted
representation of the human body, based on neurological mapping of
the proportions and areas of the human brain dedicated to processing
motor- or sensory functions for different body parts. The distorted size
of certain features correlates to how richly innervated that region is.

For better visualization of the proportions, see the 3D version of
the homunculus in Figure 2.7. The size of the hands in the motor
homunculus implies that especially different hand movements should
theoretically be distinguishable, since such a large part of the brain is
dedicated to this particular task. This is part of the reason why hand
gestures were chosen as the objective for this study.

When the motor cortex or somatic sensory cortex are not producing
motor output or processing sensory information, they typically exhibit
rhythmic activity at a frequency between 8-12 Hz, as seen in human
EEG measurement. As specified in 2.3.1, this is normally called the
alpha band, but when recorded from the sensory-motor cortex, it is
called the mu rhythm. BCIs utilizing internal electrodes can reliably
use gamma activity for MI classification. When using scalp EEG, the
recorded gamma signals do not reach the scalp with sufficient integrity
to be utilized.

When activity in a particular band decreases, this is called event-
related desynchronization (ERD), while an increase in a particular
band is called event-related synchronization (ERS) [52]. ERD and
ERS can be triggered by motor/sensory output or input [53]. There
is typically a decrease in the mu activity over the sensorimotor cortex
contralateral upon preparation for movement or actual movement. The
same changes can be seen when imagining movements, i.e., they can
occur independently of the brain’s output to peripheral muscles and
nerves, making them highly relevant for BCI applications.

Figure 2.8 illustrates the difference in topographical distribution
on the scalp when performing actual right-hand movement, 2.8A, and
corresponding imagined movement, 2.8B. In 2.8C, rest is depicted by
the dashed line and imagery movement by the solid line. 2.8D shows
the corresponding r2 spectrum for rest vs. imagined movement. Signal
modulation is focused on the frequency bands associated with the mu
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Figure 2.6: The international 10–20 system of EEG electrode place-
ment overlaid on the somatotopic organization of the sensorimotor cor-
tex [74].

rhythm and over the sensorimotor cortex.
The hand area of the motor cortex is the origin of the mu rhythm.

In addition, there is a similar rhythm originated from the foot area,
located between the hemispheres. Hence the mu rhythm of a human
can be influenced by hand or foot movement imagination [65]. The
signals of hand movements are most prominent in electrode locations
C3 and C4 in the 10/20 international system and Cz for foot movement,
see Figure 2.4. These electrodes are located above the sensorimotor
cortex, see Figure 2.6.

The initial goal of MI-based BCI research was to create new means
of communication for paralyzed people. Such patients can use, e.g.,
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Figure 2.7: Sensory Homunculus and Motor Homunculus sculptures
at the Museum of Natural History, London. They illustrate what a man
would look like, if each part of him grew in relation to the area of the
cortex that controls it.

left- and right-hand MI to answer yes and no. Today many researchers
study MI for neurorehabilitation after stroke. MI neurofeedback has
proven effective in reestablishing motor movements. MI BCIs also
have the potential to compensate for persistent sensory and motor
deficiencies. There are several examples in the literature where SMR
has been employed. To name a few: cursor control [45], opening and
closing a prosthetic hand with imagining right or left hand-movement
[27], foot imagery to restore one type of hand grasp [55] and controlling
an artificial upper limb [3]. There are also several non-medical
applications for SMR, such as gaming and controlling quadcopters or
robotic manipulators.
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Figure 2.8: Examples of modulated mu rhythm signals. A) illustrates
the difference in topographical distribution on the scalp when perform-
ing actual right-hand movement. B) illustrates imagined movement
corresponding to A. C) depicts rest by the dashed line and imagery
movement by the solid line. D) shows the corresponding r2-spectrum
for rest vs. imagined movement. [65]



3 Data sets

This chapter provides an overview of key distinctions of publicly
available datasets belonging to the motor imagery paradigm and a
description of the EEG experiment that was set up to collect relevant
data. Some preliminary analysis results are also presented.

The chapter is split into three parts. First, section 3.1 gives an
overview of existing available datasets containig motor imagery tasks.
Section 3.2 provides a thorough description of the data collection.
Finally, section 3.3 presents some results from a preliminary analysis
of the collected data, serving as a sanity check.

21
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3.1 Publically available data sets

Available EEG datasets intended for BCIs were reviewed, both to learn
the common approach in EEG data collection, and to identify potential
research gaps. Several websites provide such overviews. In table
3.1, the motor imagery datasets found from bnci-horizon-2020.eu,
moabb.neurotechx.com, and openbci.com have been listed, along
with key distinctions. The main objective of BNCI Horizon 2020
is to provide a roadmap for the BCI field, serving as a guideline
for future activities that will be supported by the EU research
framework program Horizon 2020. Moabb is short for mother of all
BCI benchmarks, aiming at building a comprehensive benchmark of
popular BCI algorithms applied on an extensive list of freely available
EEG datasets. Finally, OpenBCI is an open-source brain-computer
interface platform.

Both the literature [59, 68] and the available datasets reveal that
the vast majority of the existing MI EEG-based BCI systems have
focused on differentiating between left hand, right hand, feet, and
tongue. These tasks have been shown to produce significant and
discriminative changes in the EEG signals relative to background EEG
[25]. While the classification of them has been widely documented
and validated - achieving high accuracy, the task of discriminating
the motor imagery of different movements within the same limb has
proven challenging [48, 79]. This is due to the fact that these motor
tasks activate regions that have very proximate representations on
the motor cortex area of the brain, all on the same hemisphere, see
Figure 2.6. To date, not many studies have addressed this problem.
A few that has [20, 22, 38, 79], does however show promising results,
demonstrating the possibility of utilizing EEG signals to decode single-
limb MI tasks. Nonetheless, in these studies, the motor imagery task
has been conducted on one side only. The effect of hand dominance has
not been considered, which is the main focus of this thesis.

Some related work includes [80], where they evaluate the effect
of handedness on one simple left-hand/right-hand motor imagery
task. The results indicated that lateralization of SMR during a
motor imagery task differs according to handedness. Left-handers

bnci-horizon-2020.eu
moabb.neurotechx.com
openbci.com
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Table 3.1: Publically available MI EEG datasets

Dataset Tasks No of
subjects

No of
sessions

No of trials
per session

No of
electrodes

BCIC IV 2a,
2008 [16]

Left hand
Right hand
Feet
Tongue

9 2

6 runs ×
12 trials ×
4 tasks =
288

22

BCIC IV 2b
2008 [36]

Left hand
Right hand 9 5 144 (avg) 3

BCIC III 4a,
2004 [19]

Right hand
Right foot 5 1 280 118

BCIC II 3,
2002 [44]

Left hand
Right foot 1 1 280 3

PhysioNet,
2009 [23]

Eyes closed
Both feet
Both fists
Left fist
Right fist

109 1 270 64

High-Gamma,
2017 [66]

Left hand
Right hand
Both feet
Rest

14 13 1000 (total) 128

Müller-Putz et al,
2010

Right hand
Both feet 13 1

8 runs ×
10 trials ×
2 tasks =
160

15

Faller et al,
2015

Right hand
Both feet 12 2

5 runs ×
20 trials ×
2 tasks =
200

13

Cho et al,
2017

Left hand
Right hand 52 1

5 runs ×
20 trials ×
2 tasks =
200

64

Barachant,
2012

Right hand
Both feet 8 1

1 run ×
20 trials ×
2 tasks =
40

16
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presented lower accuracy during BCI performance (single session)
and weaker SMR suppression in the alpha band (8–13 Hz) during
mental simulation of left-hand movements. In another study [43],
the main objective was to identify specific hand movements from
electroencephalographic activity. The effect of hand dominance
was discussed, and they found statistically significant differences in
classification between the dominant and non-dominant hands for some
of the tasks. The research was however limited to motor execution, and
additional recording devices such as an optical sensor, and a sensor
glove were included.

3.2 Creating a new dataset

To address the research questions of this study, custom data had to
be collected. The main motivation for better classifications of same-
limb tasks is the increase in control dimensions of MI EEG-based BCI
systems it would provide. A step towards a more practical BCI would
be the ability to restore finer hand movements, such as different grasps
from MI. A neuro-prothesis, for instance, could be used to generate the
movement once it has been decoded.

Grasp types are divided into two main categories, precision, and
power. In a power grasp, all fingers and palms are activated, whereas,
in a precision grasp, only the tip of the thumb and opposing finger(s)
are used.

To ensure that the collected MI data is informative and high-quality,
the experimental setup followed the principal guidelines provided by
[17].

3.2.1 Subjects

9 right-handed, non-impaired subjects, aged between 25 and 60,
participated in the EEG experiment. 5 female and 4 male. None of
them had any previous experience with BCIs.
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3.2.2 Experimental protocol

Before the experiment began, the subjects were instructed to imagine
the kinesthetic, and not the visual experience, during the motor
imagery period. As reported in [71], kinesthetic MI modulates more
corticomotor excitability than visual MI does.

The cue-based protocol consisted of four different motor imagery/ex-
ecutory tasks, namely the imagination/execution of a left-hand cylin-
drical grasp (class 1), left-hand pinch grasp (class 2), right-hand cylin-
drical grasp (class 3), and right-hand pinch grasp (class 4). Two ses-
sions on different days were recorded for two of the subjects.

Each session comprised of 6 runs. One run consisted of 40 trials (10
for each of the four possible classes) in a pseudorandom order, yielding
a total of 240 trials per session. Two of the runs were motor execution
(ME), and four of them were motor imagery (MI).

Figure 3.1: Experimental setup.

The subjects were seated comfortably in an armchair in front of a
computer screen, see Figure 3.1. Each trial lasted eight seconds. At
the beginning of a trial (t = 0 s), a fixation cross appeared on a screen.
After three seconds, a visual cue in the form of an image (corresponding
to one of the four classes) appeared and stayed on the screen for two
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seconds, followed by a blank screen for three consecutive seconds.
This prompted the subjects to perform the desired motor im-

agery/execution task. The subjects were asked to carry out the motor
imagery task until the fixation cross reappeared from the screen at t =
8 s. The protocol is illustrated in Figure 3.2.

After each run, the participants were asked to rest while seated, in
order to avoid fatigue, see 3.2. No feedback was provided.

Figure 3.2: Illustration of the four grasping tasks, and the experimen-
tal protocol of a single trial.

3.2.3 Data Acquisition

The EEG data was recorded with the BioSemi ActiveTwo system,
sampled at 1024 Hz.

The code for presenting instructions, and collecting trigger points
was written in Matlab, using the Psychophysics Toolbox extensions
[15]. A 64 channel montage was used, based on the international 10-20
system, see Figure 2.4. There is often a direct correspondence between
major brain features and the positions of the electrodes in this system.
When performing a sanity check of a given brain signal topology, this
ability can be exploited.
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Table 3.2: Entire experimental procedure

# Task Duration (min)

1 Filling out consent form 5
2 EEG electrode placement 40
3 Run 1 (Motor Execution) 5-6
4 Pause 3-6
5 Run 2 (Motor Imagination) 5-6
6 Pause 3-6
7 Run 3 (Motor Imagination) 5-6
8 Pause 3-6
9 Run 4 (Motor Imagination) 5-6
10 Pause 3-6
11 Run 5 (Motor Imagination) 5-6
12 Pause 3-6
13 Run 6 (Motor Execution) 5-6
14 Removing electrodes and cleaning laboratory 20

Total 105-126

3.2.4 Recorded EEG signals

Noise
High impedance can indicate poor conductivity between scalp and
electrodes. The impedance of all electrodes between the skin and the
sensors was maintained below 20 kΩ during the experiment.

Surrounding electronics can also induce noise to the raw brain
signal, inferring the quality. Hence the amplifier runs on batteries and
an optical cable leads to a computer standing outside from the shielded
space where the subjects were performing the tasks.

Common artifacts
Electrical power lines use sinusoidal voltages, generally with a
frequency of 50Hz in Europe. Such artifacts can be suppressed by a
notch filter in the pre-processing stage.

Fast movement of the eyelid generates eye blink artifacts. These
are recorded as positive peaks lasting a small proportion of a second,
see figure 3.3b. They are mainly visible in the frontopolar region, but
propagates, becoming weaker. So weak that these artifacts in the alpha
band are negligible, producing no apparent effect on a sensorimotor
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analysis. Averaged P300 waveforms, on the other hand, can be strongly
influenced by them.

Movement of the eye produces electrooculography (EOG) artifacts.
The effect of these artifacts are quite similar to that of eye blinking
on the time- or frequency domain analysis, except that the amplitude
tends to be larger, and the frequency lower, see figure 3.3c.

Figure 3.3: Brain waves recorded from one of the subjects in the
experiment, illustrating common artifacts. a) No artifacts. b) Eye blink
artifacts. c) Electrooculography (EOG) artifacts. d) Electromyography
(EMG) artifacts.

Finally, muscular artifacts (electromyography, EMG) are typically
caused by lifting eyebrows and closing the jaw. The effect of such
artifacts can completely obscure any frequency analysis, see Figure
3.3d. To avoid jaw-generated artifacts, the subjects were asked to keep
their mouths slightly open.
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3.2.5 Potential challenges

BCI researchers have been interested in performance variation from
subject to subject, and to provide subject-independent algorithms.
A fraction (10-30% [29]) of users are BCI-illiterate, meaning that
mu rhythms from their somatosensory cortex are difficult to detect.
Session-to-session variability is also a challenge, so minimizing the
environmental and psychological differences between training and
testing can be beneficial.

3.3 Preliminary data analysis

The raw EEG-data was saved in the BioSemi .bdf format, before being
preprocessed and analyzed using MNE [26]. MNE is a community-
driven software package to be used as a general-purpose toolbox for
processing electrophysiology data, offering tools for preprocessing,
time-frequency analysis, statistics, machine learning, and data visu-
alization.

As an initial inspection, or sanity check, of the collected data, some
visualization plots were generated. EEG data can be divided into 3
main types in MNE: raw data, epoched data, and evoked (averaged)
data. Continuous data is stored as a raw object containing a 2D array
with dimensions of channels×time. When the raw data is epoched,
it consists of time-locked trials. These are stored in a 3D array of
events×channels×times. Finally, evoked objects typically store EEG
data that has been averaged over multiple epochs, which is a common
technique for estimating stimulus-evoked activity. The data in an
evoked object is stored in a 2D array of shape channels×times. Thus
to create an evoked object, the raw data of runs 2-5 (motor imagery)
for all the subjects was epoched, then all the epochs from one condition
were averaged together.

It is expected to see a contralateral decrease in the mu/beta rhythm
activity in channels C3 and C4 upon imagination/execution of left-hand
or right-hand movement. Figure 3.4 shows evoked left hand and right-
hand data, over channels C3 and C4 for subject 1. The activity decrease
caused by right-hand motion (orange) in C3, is particularly pronounced
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around 0.5s, 2s, and 3s. Similarly, the decrease in activity caused by
left-hand motion (blue) in C4, is pronounced around 2s and 4s.

Figure 3.4: Evoked MI data for channel C3 and C4, Subject 1, band-
pass filtered to mu rhythm.

ERDS (ERD/ERS) maps of event-related EEG data were also calcu-
lated and visualized. ERDS is short for event-related desynchroniza-
tion (ERD) and event-related synchronization (ERS). As mentioned in
chapter 2, ERD corresponds to a decrease in power in a specific fre-
quency band relative to a baseline. Similarly, ERS corresponds to an
increase in power. An ERDS map is a time/frequency representation of
ERD/ERS over a range of frequencies [24]. ERDS maps were generated
for left-hand and right-hand movement, considering only channels C3
and C4.

First, the data was divided into epochs of 7s in length, one second
before the visual cue to one second after the end of the trial. The maps
were computed for frequencies ranging from 7 to 26Hz, to cover the
most relevant frequency bands. ERD was mapped to red color, and
ERS to blue color, which is the convention in many ERDS publications.
Finally, cluster-based permutation tests were performed to estimate
significant ERDS values.

The ERDS maps reveal contralateral suppression in both the mu
and beta band for both left- and right hand movement. In 3.5 the
contrast between the channels is more significant than in 3.6. It should
also be noted that the beta band (14-30) provides more distinguishable
characteristics than the alpha band in this case.

Confidence bands are plotted in 3.7, for mu and beta frequency
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Figure 3.5: ERDS map, mu and beta band, LH

Figure 3.6: ERDS map, mu and beta band, RH

bands. ERDS is lower for right-hand class (orange) in channel C3,
and the other way around for channel C4, as is to be expected from
the literature. Similar to what could be seen from the ERDS maps, the
distinction between the two classes is more evident in the beta band
than in the mu band for this particular subject.

Using Common Spatial Patterns (CSP) algorithm (for more details,
see chapter 5), spatial filters can be extracted that maximize the
difference of variance before and during the movement, and then
visualize the corresponding spectrum. The resulting CSP topography
and spectrum for subject 3 can be seen in 3.8. The CSP pattern
corresponding to the left motor cortex (right hand MI) to the left, and
the suppression during versus before movement to the right.
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Figure 3.7: ERDS values for left hand and right hand classes in
channels C3 and C4 (subject 1).

Figure 3.8: Topography of CSP pattern, and corresponding spectrum
of RH movement versus rest for subject 3.



4 Signal Processing

A conventional processing pipeline for brain-signal decoding as a
supervised classification problem is first presented. This is followed
by a general introduction to deep learning, with special attention
to convolutional neural networks. Finally, current state-of-the-art
methods are established.

The chapter is split into three parts. First, section 4.1 gives a
description of a general EEG-based processing pipeline. Section 4.2
prensents an introduction to relevant deep learning techniques for
classification of EEG signals. Finally, section 4.3 sums up the current
state-of-the-art methods.

33
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4.1 A general EEG signal processing pipeline

Figure 4.1 illustrates the signal processing carried out in a traditional
MI EEG-based system. Raw EEG data is usually pre-processed to some
degree to remove noise and/or artifacts, but this is not always the case.
Then features are extracted, and in some systems, the most salient
feature is selected before classification. Finally, the classifier attempts
to classify the motor imagery task performed by the user. Feature
extraction and selection techniques will be discussed in greater detail
in the following sections.

Figure 4.1: Illustration of a classical EEG signal processing pipeline
for motor imagery-based BCI.

There are four mental states to identify in the motor imagery
experiment of this thesis - left-hand power grasp, right-hand power
grasp, left-hand precision grasp, and right-hand precision grasp.

These states, are typically identified using band power features.
These represent the power of the signal in a specific frequency band.
As mentioned in section 2.4.1, these features are usually extracted
from the µ-band, at around 8 to 12 Hz, and the β-band, at around 16
to 24 Hz, when the tasks are motor imagery. Selected electrodes are
generally C3 and C4, for right and left-hand movements, respectively.
Finally, these features can be classified using e.g. logistic regression.

Two phases are generally required in order to make use of a BCI - an
offline training and calibration phase, and an online operational phase,
with a translation of brain activity patterns into computer commands.
In an online BCI system, a user produces some specific EEG pattern,
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e.g. through motor imagery, and these signals are recorded. Then
they are typically pre-processed using various spectral, temporal, and
spatial filters. In order to represent the signals in a compact form,
different features can be extracted. Finally, they are classified and
translated into a command for some applications. The user gets
feedback on whether the mental command was recognized or not.

Today, in order to obtain a reliable BCI system, offline calibration
is often used. Usually, optimal features are selected, and the
classification algorithm is tuned on pre-recorded training data. Most
BCIs are tuned specifically for each user, as EEG signals are highly
user-specific. The training data typically consists of an EEG signal
that has been recorded while the user performs mental tasks of interest
several times, based on the instruction. Offline calibration will be used
in this thesis.

The curse of dimensionality means that with a fixed number of
training samples, the average expected predictive power of a classifier
first increases as the number of features/dimensions used increases,
but beyond a certain dimensionality it starts deteriorating instead of
improving steadily. There is an exponential increase in the amount of
data needed for a proper description of the different classes with the
dimensionality of the feature vectors.

When using machine learning on a finite number of data samples in
high-dimensional feature space (each feature having a range of possible
values), typically a large amount of training data is required to ensure
that there are multiple samples with each combination of values. A
rule of thumb is that, for each dimension in the representation, there
should be at least 5 training examples [75].

In the setup of this thesis’ experiment, with 64 electrodes, a
sampling rate of e.g. 128 Hz (after downsampling), and one trial
being 1 second long, the dimensionality of the feature space would be
64 × 128 = 8192, which again would require at least 40960 training
samples. This amount of data is not available, hence it is necessary to
represent EEG signals in a compact manner when using traditional
machine learning algorithms. Relevant features can be extracted
before being fed to a classifier. Typically the signals are filtered in both
spatial- and time domains, before extracting the features.
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4.1.1 Feature extraction

Timepoint features and frequency band power features are commonly
used to represent EEG signals. Timepoint features are EEG samples
from all channels that are concatenated. They are typically extracted
after band-pass filtering and downsampling. Timepoint features are a
common choice to classify ERPs, for use in P300-based BCIs.

Band power features represent a signals’ power for a given channel
and frequency band, averaged over a time window. Such features are
extensively used in BCI systems where oscillatory activity, such as
changes in rhythm amplitude, is being exploited. Band power features
are considered the gold standard for MI-based BCIs, and several other
passive BCIs made for decoding mental states, or SSVEP-based BCIs
[39].

Both of these features should be extracted after some sort of spatial
filtering. Spatial filters combine the original sensor signals, usually
linearly. Well-known spatial filters include principal component
analysis (PCA), independent component analysis (ICA), and common
spatial patterns (CSP) [13, 32, 57]. The latter is dedicated to band-
power features and BCIs intended for oscillatory activity and is used
in this work.

In traditional EEG-based BCIs, spatial filtering followed by either
time point or band power feature extraction, is by far the most common
choice, though many other methods have been explored. Combining
various types of features can lead to higher classification accuracy,
but also increased dimensionality. This means that only the most
relevant features should be selected, in order to mitigate the curse of
dimensionality.[11].

To summarize, there are three main sources of information where
features can be extracted from EEG signals:

• Spatial information: Features describing spatially where the
signals are coming from. Then focus can be on signals originating
from a specific area of the brain. Practically, this would mean
selecting certain channels of interest.

• Spectral/frequential information: Features describing the
variance of the power in some relevant frequency bands.
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• Temporal information: Features describing how the relevant
signal varies with time. In practice, this means using signal
values from different time windows or points.

For motor imagery, spectral and spatial features are the most
commonly used sources of information.

4.1.2 Feature selection

There are several benefits from selecting a subset of the previously
extracted features. To name a few:

• Some features may not be related to the targeted mental states,
or redundant.

• There is a positive correlation between the number of parameters
that the classifier has to optimize and the number of features. The
risk of overtraining can be reduced.

• It is easier to detect which features that are related to the
targeted mental state.

• Computational efficiency and reduced data storage.

For example, frequency band selection has provided improvements for
MI-based BCIs, using maximal mutual information. Some frequently
used feature selection approaches include support vector machine
(SVM) for channel selection, genetic algorithms for spectral feature
selections, linear regressor for knowledge extraction, and evolutionary
algorithms for feature selection.

4.1.3 Features for oscillatory activity

A basic MI BCI system accsess spatial information by extracting
features only from electrodes located over the motor areas of the brain.
Typically these channels are C4 for left-hand movements, C3 for right-
hand movements, and Cz for movement of the feet. The spectral
information can be exploited through a focus on specific frequency
bands. These are generally the mu band, between 8 and 12 Hz, and
the beta band, between 16 and 24 Hz.

More precisely, for a BCI that can recognize left-hand MI versus
right-hand MI, the basic features extracted would be the average band
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power in 8 to 12 Hz and 16 to 24 Hz from both channels C3 and C4.
Hence, a BCI may be able to recognize left and right MI using EEG
signals only described by four features.

A basic design, such as the one described above, is however
not optimal. When only using two channels, relevant information
measured by other channels gets lost. Also, C3 and C4 may not be
the best channels for the specific subject. The same logic applies to the
fixed mu- and beta bands, they may not be the optimal frequency bands
for the subject at hand. Subject-specific designs, where the choice of
channels and frequency bands are optimized for this subject, generally
perform better. It is also known that performance is improved when
using more than two channels, as this enables the collection of relevant
information spread across various EEG sensors.

In [64], it is suggested that optimal performances are achieved by
using a larger number of channels, for example, 48. Interestingly,
with as little as 8 channels, reasonable performances in motor imagery
had been obtained [6, 64]. However, no fundamental rules have been
established as to what is the required number of electrodes for a
specific application, so the number used in various studies is usually
arbitrary [60]. Adding more electrodes would increase the spatial
resolution, but to what degree is of interest as the preparation time,
patient inconvenience and device cost also increase.

A blurred image of the signals that originated from within the
brain is represented through the EEG signals measured on the scalps’
surface. Due to the smearing effect of the brain and skull, the
underlying signal is spread over multiple EEG channels. Spatial
filtering may help in recovering the original signal that is spread over
various channels through a linear combination of them.

Blindly adding more channels will however not solve the problem.
The increase of dimensionality that follows channel addition may
actually decrease the performance, because of the following increase
in dimensionality. In order to exploit several EEG channels efficiently,
three main approaches are available. All of them contribute to reduced
dimensionality [40]:

• Feature selection algorithm: Automatic subset selection of rele-
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vant features, among the previously extracted features.
• Channel selection algorithms: Automatic subset selection of

relevant channels, among the available channels.
• Spatial Filtering algorithms: Generally, a small number of new

channels are defined as a linear combination of the original ones.

4.1.4 Classifiers

Linear discriminant analysis (LDA) and support vector machines
(SVM) have been the traditional choices for BCI classification algo-
rithms, particularly for real-time and online BCIs.

The main challenges for EEG-based classification methods are the
low signal-to-noise ratio and variation over time, users, and runs.
There is also generally a limited amount of training data available for
calibration of the classifiers, and still an overall low performance and
reliability of BCIs. For addressing these challenges, several methods
have been studied. For instance, adaptive classifiers, where the
parameters are updated incrementally while new EEG data becomes
available. This method deals with the non-stationarity of the EEG
signal and requires less offline training data.

Another method is transfer learning, where the aim is to transfer
features or classifiers from one domain to another, e.g. from one subject
to another, or from one session to another. In this way, the challenges
of the low amount of training data and variability between and within
subjects, are addressed.

Finally, new methods are explored to compensate for poor reliability
and low signal-to-noise ratio. These include matrix and tensor
classifiers, as well as deep learning. These methods explore the
possibility of merging feature extraction, selection, and classification,
by processing the signals and classifying them in one step. In addition,
a couple of miscellaneous methods should be mentioned, namely
random forest and shrinkage LDA (sLDA). The latter has shown to
be superior to LDA across a number of BCI datasets. These classifiers
have shown to be especially effective with little training data. [39]
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4.2 Deep learning for EEG analysis

Deep learning (DL) techniques have shown a great capacity for
learning useful feature representations from raw data. In an EEG
context, this can be a propitious aid in making sense of the recorded
signals. DL algorithms can merge feature extraction, selection,
and classification and hence not rely on subject-dependent, hand-
engineered features. They have the potential to provide subject-
independent classification, that requires little to no pre-processing and
calibration, with the ability to overcome data with high complexity.

Deep learning models use successive layers to progressively extract
higher-level features from raw input. A deep neural network (DNN)
contains multiple layers between input and output layers. Types of
neural networks can vary, but the components are the same: synapses,
neurons, functions, biases, and weights. Well-known network types
include fully connected- (FCN), convolutional- (CNN), and recurrent
neural network (RNN). Layers of artificial neurons are stacked, each
applying a linear transformation to the data they receive, followed by
a non-linear activation function. The parameters are learned through
the minimization of a loss function. The input in EEG data is usually
formatted as an n-dimensional array with dimensions n = c × l, where
c is the number of EEG-channel and l is the number of samples
(typically in µV). In a classification problem, the output represents
the number of classes. A potential workflow could be to perform
preprocessing and feature extraction of the input array before it is fed
into the neural network.

In fully connected networks, the activations from every single
neuron in a layer are fed as input to each neuron in the proceeding
layer. In convolutional layers, the neurons in a given layer only see a
subset of activations from the preceding one. This structure works very
well for data with a spatial structure. Recurrent neural networks, in
their most basic form, make use of the temporal structure by providing
the layers with current activations from the preceding layer, as well as
their own activations from a previous timestep.

For unsupervised tasks, where no labels are available, other
architectures can be used. Some examples are generative adversarial
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networks (GANs) and autoencoders (AEs). In GANs, a generator
attempts to create fake examples from an unknown distribution of
interest, then a discriminator tries to discriminate between real and
fake data. An equilibrium is reached when the discriminator no longer
can distinguish between real and fake data, because the probability
distribution approximated by the generator converges to the real data
distribution. Autoencoders try to reproduce their input, given some
constraint, such as sparsity or artificial noise. In that way they learn a
representation of the input data.

In most studies, CNNs have been the architecture of choice. Such
networks have had great success in other fields, such as computer
vision. Another reason for their popularity could be their capability
of simultaneously training both a feature extractor and a classifier, i.e.
end-to-end supervised feature learning. It is the preferred architecture
when using raw EEG data as input. GANs are also typically used
with this sort of data. When using frequency-domain features as input,
deep belief networks are a common choice. Independent of the input,
there is an increase in the interest of RNNs for EEG analysis. Also in
combination with CNNs.

According to [60] it is most common to utilize up to 10 layers
in a deep learning architecture for EEG analysis. Compared to the
common depth of networks used in areas such as computer vision,
the tendency in EEG deep learning is that shallower models achieve
better performance. There are however many dependencies, such as
task, amount of data, network architecture, hyperparameters, and
computational resources.

Deep learning has the potential to both extend and improve
processing methods that exist today. The higher-level features that
can be extracted from DNNs could be more expressive or effective than
what can be engineered by humans. The possibility of applying such
models directly on raw data would also boost the application repertoire.
In several domains, DL has surpassed the previous state-of-art, e.g.
image analysis. One of the main enablers of deep learning research
is however the availability of large datasets. It is assumed that a
considerable amount of data is required for EEG signals, due to their
high dimensionality. Given the high cost of EEG data collection, it is
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crucial to understand what the equivalent amount of required data for
high performance in deep learning is compared to performance in other
domains.

The computational complexity and training time of deep neural
networks (DNNs) are also challenging for use in practical online BCI
applications. Thus, fast training is required, or, perhaps a more
valuable alternative, designing universal DNNs that do not require
any user-specific training. Another challenge is that the drawbacks
that accompany EEG, such as low SNR, are not present in other
kinds of data where DL has excelled. Hence current architectures and
approaches might not be readily applicable to EEG analyses.

4.3 State-of-the-art methods

Current state-of-the-art methods include filter bank CSP (FBCSP)
and Riemannian geometry. When evaluating the performance of
novel deep learning networks, these are the algorithms to compare
to. Deep learning methods are currently lagging in performance
for BCI, given the limited training data that is available. Shallow
networks do however show promise, and deep learning approaches are
also relevant for data augmentation through generative adversarial
networks (GANs), and end-to-end domain adaptation. Riemannian
geometry classifiers (RGCs) and FCSPs considered the golden standard
for several BCI problems, including motor imagery. [39]



5 Methods

In this chapter preprocessing and various augmentation techniques
used in the experiments are presented. Along with a thorough
description of the implemented algorithms.

The chapter is split into eight parts. First, section 5.1 describes
the pre-processing of the data. Section 5.2 explains basic concepts of
filter bank common spatial patterns. Section 5.3 briefly explains the
basic principals of Riemannian geometry. Section 5.4 introduce the
convolutional networks EEGNet, DeepConvNet and ShallowConvNet.
Section 5.5 describes the procedures used for channel selection. Section
5.6 discuss subject handling. Section 5.7 discuss the validation
procedure that is used. Finally, section 5.8 discuss perfomance
measures.

43
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5.1 Processing the data

To provide a realistic picture of performance, minimal pre-processing
was applied on all subjects, there was no tailoring for specific subjects.
First, potential power line noise at 50 Hz (Europe) was removed with
notch filtering. Then the data was high-pass filtering with a cutoff
frequency of 2 Hz to remove baseline drift.

Before feature extraction or classification, the raw data was epoched
into 3D arrays consisting of time-locked trials. The epochs were
then bandpass filtered to select the desired band(s), before being
downsampled to 128, in accordance with the MNE software’s best
practice [26]. To avoid the reduction in temporal precision of events
that comes with resampling a raw data object, and also avoid the edge
artifacts that come with filtering an epoch object, the best practice is
to first low-pass filter the raw data at or below the desired sample
rate, then decimate the data after epoching, by passing the ’decim’
parameter to the epochs constructor. 0.2 seconds in the beginning and
end of each trial were cropped away to remove possible acute artifacts.

Testing was performed with re-referencing using both Cz as
reference channel, and the average of signals from all electrodes (called
common average). None of these increased the performance, so no re-
referencing was used in the presented experiments.

Bad epochs were automatically rejected by defining a threshold of
800e-6V for peak-to-peak amplitude and flat signal detection.

5.1.1 Selecting trial segment

A window that is widely used in the literature is [0.5,2.5] s post cue [34,
41, 58, 62]. Before any channel or feature selection is applied, each trial
is shaped with a size of (64, 256), i.e. 64 channels, and 256 samples in
a 2s window with a sampling frequency of 128. The findings in section
3.3 further supports this choice of segment, see Figures 3.5, 3.6 and
3.7. The ERDS maps show that the motor imagery induced activity
repression is clearly most prominent in this time segment. By using
epochs that start 0.5s after cue onset one also avoids classification of
responses evoked by the visual cue.
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Further, a set of classifiers were tested on a sliding 2s-window with
0.5 second overlap, showing best performances when starting around
0.5 to 1.5 seconds. See Figure 5.1 for the results of subject 1 in this
study.

Figure 5.1: Subject 1, LH/RH classification, 2s sliding windows with
0.5 overlap. Showing variation of accuracy over the course of the trial.

5.1.2 Scaling

The data was scaled and normalized to zero mean and unit variance
using z-score. This can speed up convergence. The built-in function
Scaler in MNE [26] was used, which scales each channel using mean
and standard deviation computed across all of its time points and
epochs. Due to scaling sensitivity in deep learning, the data was
multiplied with 1e6, converting from µV to V.

5.1.3 Data augmentation

To reduce overfitting and to allow the use of more complex deep
learning models, new data examples can be artificially generated. This
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is called data augmentation, and can lead to better generalization
abilities and increased stability and accuracy.

Some examples of augmentation methods seen in the literature
include generated artificial EEG signals using a conditional generative
adversarial network (cDCGAN) on one of the motor imagery datasets
from the BCI competition [82]. This augmentation improved the
accuracy from around 83% to 86% when using a CNN for classification.
Several other studies have augmented their data through overlapping
windows. One study compared various shift lengths, showing that
generating samples through smaller shifts improved performance
significantly [60]. In [21], they made use of the part of the
downsampling data that is usually thrown away in the preprocessing
state. With this approach, the data can be augmented by n times when
downsampling by a factor of n.

Sliding window augmentations was experimented with, using two
differnt overlaps; 0.1 and 0.5 seconds. With a 0.1s overlap, one
trial was expandend to five highly correlated trials formed by the
moving windows of [0.3-2.3], [0.4, 2.4], [0.5-2.5], [0.6, 2.6] and [0.7-
2.7]. With 0.5s overlap, the following segments were used: [0.5-2.5],
[1.0, 2.0], [1.5-3.5], [2.0, 4.0] and [2.5-4.5]. The latter segments are
less correlated, and utilize the whole trial. The size of the data set is
increaced by five times.

Reuse of downsampled data was also tested. With an original
sampling frequency of 1024 Hz, the data could be augmented 8 times,
as the date was downsampled by a factor of 8, i.e. 128 Hz.

Preliminary testing was conducted based on the recommended
approaches in chapter 4, to decide which classifiers to use, and what
sort of feature extraction for the traditional approach.

5.2 Filter Bank Common Spatial Patterns (FBCSP)

The CSP algorithm is considered a standard tool in the repertoire
of oscillatory activity-based BCIs. An increase in performance has
been greatly influenced by this filter. So much that all the winning
entries for all EEG datasets in the BCI competition IV (2008) used this
algorithm [73].
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The CSP algorithm, simply put, finds spatial filters where the
variance of the filtered signal is maximal for one class, and minimal
for the other. Maximizing this difference between the classes leads
to optimized discriminant band-power features. The band-power of
a signal in a given band is actually the same as the variance of this
signal, band-pass filtered in said band. The most useful features
in oscillatory activity-based BCIs are indeed band power features,
making CSP particularly useful. In motor imagery, the EEG signals
are typically filtered in the 8-30 Hz band (including both mu and beta),
before being filtered spatially with CSP. See Figure 5.2 for illustration,
the signals are CSP filtered and show a clear difference in variance, i.e.
band power, ensuring increased classification performance.

Figure 5.2: CSP-filtered signals. Filters 1 and 2 maximize the
variance of signals from left hand MI, while minimizing right hand
MI. Filters 3 and 4 maximize variance of right hand MI and minimize
left hand MI. [40]

CSP does however also have some limitations, as it is not robust to
noise and non-stationarity, and is prone to overfitting when the amount
of training data is small. To make CSP more stable and robust, a
variant called Filter Bank CSP (FBCSP) was introduced [4, 5]. In
this method, the EEG signals are first filtered in multiple frequency
bands, using a filter bank. Then the CSP algorithm is used on each of
the frequency bands in the bank to optimize the spatial filters. Here
both spatial and spectral information is exploited, using band power
features from relevant frequency bands.
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Implementation
The implementation of the FBCSP algorithm follows the description
provided in [34]. First, the EEG signal was bandpass filtered into 9
non-overlapping filter banks with a step size of 4 Hz, starting at 4Hz.
Hence the following banks were created: 4-8Hz, 8-12Hz, 12-16Hz, 16-
20Hz, 20-24Hz, 24-28Hz, 28-32Hz, 32-36Hz, and 36-40Hz.

Second, 4 CSP filters was trained with a one-versus-rest strategy,
using Ledoit wolf regularization for each of the filter banks. This gives
a feature vector with a total of 36 features, 4 CSP filters × 9 filter
banks, for each trial. Third, an elastic-net logistic regression classifier
was trained, with a penalty α = 0.95.

Finally, the trained classifier was applied to the test set through
cross-validation.

5.3 Riemannian Geometry (RG)

The implementation of the RG used in this thesis is called Tangent
Space (TS) followed by logistic regression (TS), TSLR for short. The
following steps were applied: Same preprocessing as the other methods
except bandpass filtering between 4 Hz and 30 Hz. The covariance
matrices were computed and mapped into the Riemannian manifold
using the pyRiemann software [9, 10]. Then the matrices were
projected onto the tangent space. Logistic regression was used a the
classifier, same as for FBCSP.

5.4 Convolutional neural networks

5.4.1 EEGNet

EEGNet is a compact CNN architecture introduced by Lawhern et
al. [34]. It is intended for EEG-based BCIs, with the aim of
being applicable across several different BCI paradigms, working well
with limited data, and producing neurophysiologically interpretable
features. See Figure 5.3 for visualization of the architecture of
EEGNet. The network learns frequency filters through temporal
convolution first. The, in the middle column, frequency-specific spatial
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filters are learned by performing depthwise convolution connected to
each individual feature map. The optimal mix of the feature maps
together is learned in the fourth column.

Figure 5.3: Visualization of the EEGNet architecture. [34]

The EEGNet-8,2 version was used in the analysis, where 8 and 2
denote the number of temporal and spatial filters, respectively, to be
learned. The temporal kernel length was set to 32 samples, to account
for the data being high-pass filtered at 4 Hz. The implemented model
was fit using the Adam optimizer, with default parameters, minimizing
the categorical cross-entropy loss function. The drop-out rate was set to
0.5, due to the limited training data. The maximum number of training
iterations (epochs) was set to 500, and early stopping was enabled,
saving the model weights which produced the lowest validation set loss.

5.4.2 DeepConvNet

As described by [66], the deep ConvNet consists of four convolution-
max-pooling blocks. The first block is specially designed to handle
EEG input. The three following blocks are standard convolution max-
pooling layers and a dense softmax classification layer. The first
convolutional block is split into two layers for better handling of a large
number of input channels, i.e., one input channel per electrode. In the
first layer, each filter performs a convolution over time. In the second
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layer, each filter performs spatial filtering with weights for all possible
pairs of electrodes and filters of the preceding temporal convolution.
There is no activation function in between the two layers.

5.4.3 ShallowConvNet

the FBCSP pipeline inspired the ShallowConvNet [66], which is specifi-
cally tailored to decode band power features. The transformations per-
formed by FBCSP are similar to the transformations of the shallow
ConvNet. Specifically, the first two layers of the shallowConvNet work
the same way as in the deep ConvNet, performing temporal convolu-
tion and spatial filtering. These steps are the same as the bandpass
and filter steps of FBCSP. The shallow ConvNet does however have a
larger kernel size than the deep ConvNet, allowing a larger transfor-
mation range in this layer. The temporal convolution and the spatial
filtering are followed by a squaring nonlinearity, a mean pooling layer,
and a logarithmic activation function. These steps correspond to the
computation of trial log-variance in FBCSP. Shallow ConvNet embeds
all the computational steps in a single network, in contrast to FBCSP,
allowing all steps to be optimized jointly. Also, the shallow ConvNet
can learn a temporal structure of the band power changes within the
trial, due to having several pooling regions within one trial.

5.5 Channel selection

Both manual selection and automatic selection of channels were
employed.

In the manual selection, all 8 neighboring electrodes of both C3 and
C4 were selected, including C3 and C4 themselves. They were selected
based on the literature review that has been performed in this study,
which revealed that these channels are located on the sensory-motor
cortex, where distinctive activity when performing/imagining different
hand movements can be expected.

In addition, an automatic channel selection was made, based on a
Riemannian geometry criterion. For each class, a centroid is estimated,
and the channel selection is based on the maximization of the distance



CHAPTER 5. METHODS 51

between centroids. This is done by a backward elimination where the
electrode that carries the less distance is removed from the subset at
each iteration [8].

5.6 Subject handling

Inter- or intra-subject classification has an impact on the performance.
Models trained on the data of a single subject (intra-subject) have
less variability to account for and often lead to higher performances.
However, the data available for such models is limited. With multiple
subjects included (inter-subject), the model sees more data. This study
is limited to intra-subject classification.

5.7 Validation procedure

The validation procedure can impact the performance. Using different
subjects for training and testing may lead to lower performance, but is
applicable to scenarios in real life. In the experiments of this thesis,
Kfold cross-validation was used, where the folds comprised of the
various runs. So for the motor imagery case, with 4 runs per subject,
the number of folds was 4. When motor execution and imagery were
combined, the number of folds was 6, i.e. reflecting the total number
of runs. The random state was kept the same for all experiments to
ensure a proper comparison.

5.8 Performance measures

For a classification algorithm, the most basic performance measure is
accuracy. It is also the most widely used evaluation criteria in BCI
research. The classes should be balanced when using this metric,
meaning there should be the same number of samples for each class.
It is also important to note that the accuracy of a random classifier is
already 100% divided by the number class. If there are e.g. 2 classes,
there is a 50% chance of correct classification, given balanced classes.
Further exploration is required if the accuracy score is lower than this
limit [67].
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When the classes are unbalanced, or the classifier is biased, a
confusion matrix (including sensitivity, specificity, or precision) or the
Kappa metric can serve as more informative alternatives. The area
under the curve (AUC) and receiver operating characteristic (ROC) are
often used when the classification depends on a continuous parameter.

Generally, the performance of a classifier is computed offline on data
that has been pre-recorded. For evaluation, some of the data should
be set aside, and not be included in the training. Performance may
be overrated if measures are estimated through cross-validation on
training data [39].



6 Experiments and results

This chapter presents details about all the conducted experiments and
their results. A comparison of employed traditional and state-of-the-art
methods is made.

The chapter is split into two sections. Section 6.1 describes the
experiments. Section 6.2 provides the results.

53
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To investigate the effect of hand-dominance, the right-hand grasps
were separated from the left-hand grasps during the experiments,
making each of them a binary classification problem. The number of
class samples per subject was thereby reduced from 160 (4 classes ×
10 trials × 4 runs) to 80 (2 classes × 10 trials × 4 runs) in the motor
imagery case.
The different variations that were tested included:

1. Left hand vs right hand, where all left-hand grasps were
combined and marked as LH, and all right-hand grasps were
combined and marked as RH. This will from now on be referred
to as the LH-RH case.

2. Only left-hand classes included, divided into two separate classes
of precision grasp and power grasp. From now on referred to as
the LH-LH case.

3. Only right-hand classes included, divided into two separate
classes of precision grasp and power grasp. From now on referred
to as the RH-RH case.

4. All four classes included, none of them combined. From now on
referred to as the 4-class case.

6.1 Experiments

The following experiments were conducted for both left-hand and right-
hand grasps, using all the five models introduced in chapter 5 - FBCSP,
TSLR, EEGNet, ShallowConvNet, and DeepConvNet.

1. Data from BCI competition IV 2a was classified, to compare
results to Lawhern et al. [34], and verify that the algorithms
were implemented correctly.

2. Motor imagery data for all subjects, cross-validated on every run.
This will be referred to as the baseline experiment.

3. Augmented motor imagery data for all subjects, cross-validated
on every run, using sliding window approaches (see section 5.1.3).
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4. Augmented motor imagery data for all subjects, cross-validated
on every run, using downsampling approach (see section 5.1.3).

5. Motor imagery and executory data for all subjects, cross-validated
on every run.

6. Manual channel selection before feature extraction and/or classi-
fication.

7. Riemannian automatic channel selection algorithm before feature
extraction and/or classification.

The software and hardware used for these experiments are:

• Programming language: Python3
• Signal processing library: MNE-python 0.23.0.
• Traditional baselines: MNE-python 0.23.0 and scikit-learn 0.24.
• Deep learning library: Keras and TensorFlow 2.
• Hardware: Nvidia RTX3090 GPU.

6.2 Results

The reproduction of the results from Lawhern et. al [34] can be seen
in Figure 6.1. The hyperparameters and preprocessing methods were
kept the same, and the plots were produced to verify that all algorithms
were implemented correctly. Tangent space (TSLR) was not used in
the compared study but achieved satisfactory results when set side by
side with the other models. The accuracy scores are corresponding to
those gained by [34], with some expected deviance, presumably due to
randomness in folds.

The results of the remaining experiments are presented in tables
6.1-6.4. For simplicity, only the best performing augmentation
technique has been included. This was sliding window augmentation
with an overlap of 0.1s, providing a five times increase in the amount
of data.

The results of the LH-RH classification problem are summarized in
Table 6.1. The accuracies are averaged across all folds and all subjects.
As expected, due to neural networks achieving better performance
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Figure 6.1: Accuracy of implemented algorithms for 4-class problem
using BCIC 2a dataset, averaged over all folds and all subjects.

with more training data, sliding window augmentation and adding
executory data to the imagery enhances the performance of EEGNet
and ShallowConvNet. Interestingly, it does not affect the performance
of DeepConvNet. This could be due to the amount of training data still
being too small for the intended use of this network. The accuracies of
FBCSP are decreasing with this increase in data, while the results of
TSLR are approximately the same. Manual channel selection does not
stand out with regards to performance, achieving some approvement
in FBCSP. Riemann channel selection, on the other hand, provides an
improvement in performance for all models, compared to experiments
with motor imagery data only. The average accuracy of FBCSP is
increased by 7.19 percentage points, due to this selection algorithm.

The results of the LH-LH and RH-RH classification problems
are summarized in Tables 6.2 and 6.3, respectively. RH-RH has
poorer performance than LH-LH when only imagery data is included.
Interestingly, adding motor executory data achieves an increase of up
to 4.95 percentage points for the conventional methods in the RH-RH
case, surpassing LH-LH, which in fact has a decrease in performance.

The average accuracies are in general very close to random chance,
except for Riemann channel selection experiments, which increase the



CHAPTER 6. EXPERIMENTS AND RESULTS 57

Table 6.1: LH-RH case: Accuracies averaged accross all subjects and
all folds. Best performing experiment marked in bold for each model.

Experiment FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

Motor imagery
data only 60.99 61.35 54.90 50.89 50.47

Motor imagery +
Motor executory 59.65 60.26 57.75 56.45 51.55

Sliding window
augmentation 58.16 61.53 58.74 55.44 50.95

Manual channel
selection (18 chns) 62.50 60.47 53.39 52.19 48.44

Riemann channel
selection (16 chns) 60.83 61.35 55.94 57.19 51.46

Riemann channel
selection (8 chns) 68.18 68.59 59.06 55.78 51.30

Table 6.2: LH-LH case: Accuracies averaged accross all subjects and
all folds. Best performing experiment marked in bold for each model.

Experiment FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

Motor imagery
data only 54.17 56.04 53.85 54.48 49.69

Motor imagery +
Motor executory 53.86 55.54 55.39 55.33 53.65

Sliding window
augmentation 52.48 55.25 54.12 54.60 50.19

Manual channel
selection (18 chns) 53.44 49.69 53.65 52.60 50.42

Riemann channel
selection (16 chns) 59.27 60.52 53.02 54.69 52.60

Riemann channel
selection (8 chns) 60.63 60.31 55.00 57.40 52.40

performance by 11.56 percentage points for the best performing model,
compared to the baseline experiment.

Due to the promising results of Riemann channel selection perfor-
mance, especially with 8 channels, this experiment will be further re-
viewed by analyzing the performance of the individual subjects. The
results are presented in Tables 6.5, 6.6, 6.7, and 6.8.

Riemann geometry and filterbank CSP outperform all convolutional
neural networks for most subjects. There is high variability among
the subjects. Five out of nine subjects reach accuracy levels above
the mentioned threshold (70%) for LH/RH classification. Based on the
literature it was to be expected that the majority of the participants
should reach such levels.
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Table 6.3: RH-RH case: Accuracies averaged accross all subjects and
all folds. Best performing experiment marked in bold for each model.

Experiment FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

Motor imagery
data only 53.33 52.50 53.12 53.85 51.56

Motor imagery +
Motor executory 57.59 57.45 54.48 56.25 49.34

Sliding window
augmentation 53.63 53.98 53.67 54.02 50.71

Manual channel
selection (18 chns) 52.50 53.75 53.65 55.31 52.19

Riemann channel
selection (16 chns) 60.83 61.35 55.94 57.19 51.46

Riemann channel
selection (8 chns) 63.23 64.06 57.40 57.40 53.33

Table 6.4: 4-class case: Accuracies averaged accross all subjects and
all folds. Best performing experiment marked in bold for each model.

Experiment FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

Motor imagery
data only 30.99 32.92 29.58 26.88 26.09

Motor imagery +
Motor executory 30.24 31.80 31.23 28.44 27.12

Sliding window
augmentation 30.54 33.57 31.06 31.59 26.39

Manual channel
selection (18 chns) 31.46 32.08 28.59 27.34 26.61

Riemann channel
selection (16 chns) 38.02 40.63 30.57 29.74 25.68

Riemann channel
selection (8 chns) 37.50 37.76 31.25 30.52 25.73

Table 6.5: LH-RH case: Accuracies of individual all subjects averaged
over all folds. Accuracies above 70% are marked in bold.

Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

1 85.63 80.63 78.13 62.50 57.50
2 62.50 70.00 58.75 58.75 54.37
3 70.00/71.25 71.25/77.5 65.00/58.75 57.50/58.75 58.75/51.25
4 75.63/61.25/69.38 66.25/65.63/70.00 66.88/51.88/63.75 53.75/54.38/60.63 47.50/46.87/50.63
5 73.13 73.13 57.50 53.75 45.00
6 57.50 56.88 53.13 61.87 55.00
7 66.88 58.75 50.00 46.25 46.25
8 60.63 60.00 48.75 46.25 52.50
9 64.38 73.13 56.25 56.88 50.00
Avg 68.18 68.59 59.06 55.78 51.30
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Table 6.6: LH-LH case, with Riemann channel selection, 8 channels:
Accuracies of individual all subjects averaged over all folds. Accuracies
above 70% marked in bold. The multiple scores for subjects 3 and 4
reflects the different sessions.

Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

1 48.75 46.25 47.50 52.50 45.00
2 60.00 50.00 60.00 56.25 50.00
3 57.50/65.00 48.75/67.50 50.00/57.50 53.75/58.75 57.50/55.00
4 56.25/71.25/62.50 58.75/65.00/58.75 56.25/58.75/61.25 58.75/62.50/50.00 57.50/45.00/52.50
5 60.00 70.00 46.25 58.75 50.00
6 61.25 61.25 48.75 56.25 50.00
7 73.75 76.25 66.25 66.25 57.50
8 52.50 53.75 52.50 57.50 50.00
9 58.75 67.50 55.00 57.50 58.75

Avg 60.63 60.31 55.00 57.40 52.40

Table 6.7: RH-RH case, with Riemann channel selection, 8 channels:
Accuracies of individual all subjects averaged over all folds. Accuracies
above 70% marked in bold. The multiple scores for subjects 3 and 4
reflects the different sessions.

Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

1 65.00 61.25 51.25 53.75 55.00
2 73.75 78.75 72.50 72.50 61.25
3 65.00/76.25 66.22/78.75 43.75/75.00 48.75/58.75 50.00/55.00
4 62.50/53.75/56.25 65.00/55.00/50.00 66.25/58.75/55.00 61.25/45.00/60.00 50.00/47.50/52.50
5 65.00 67.50 50.00 62.50 51.25
6 56.25 60.00 55.00 52.50 53.75
7 62.50 66.25 58.75 58.75 55.00
8 57.50 62.50 50.00 57.50 52.50
9 65.00 57.50 52.50 57.50 56.25

Avg 63.23 64.06 57.40 57.40 53.33
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Table 6.8: 4-class case:, with Riemann channel selection, 8 channels:
Accuracies of individual all subjects averaged over all folds. In this
case, random chance is at 25%. The multiple scores for subjects 3 and
4 reflects the different sessions.

Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

1 43.75 40.00 36.87 30.00 28.75
2 35.00 41.25 46.87 46.25 25.00
3 33.75/41.88 28.75/47.50 30.00/36.25 36.25/35.00 21.88/30.00
4 45.63/35.00/39.38 37.50/43.75/34.38 36.25/30.00/28.75 23.12/36.25/27.50 25.63/24.37/23.12
5 37.50 38.13 26.25 30.63 25.63
6 33.13 35.00 21.25 29.38 23.13
7 35.00 43.75 30.00 36.25 24.37
8 33.13 35.00 23.75 22.50 26.88
9 36.88 37.50 26.87 28.75 25.62

Avg 37.50 37.76 31.25 30.52 25.73

It should however also be noted that subjects 4, 5, and 7 reach the
threshold in the LH-LH case, and subjects 2 and 3 reach it for the RH-
RH case. It is interesting to see that the same subjects do not reach
these levels in both cases, indicating that there is indeed a difference
based on the side of the imagined movement.

In the 4-class problem, the chance level is at 25 %, and all the
subjects reach accuracies well above this limit. The best performing
subject got a score of 47.50%, so it is however quite far from being
deployable in a BCI application.

In Figure 6.2, the accuracies for the best performing subjects of
the different cases have been plotted, including standard deviation,
visualizing the variance between the different folds, i.e. runs. For
some of the models the accuracy varies a lot, depending on the run
that is being tested.

Overall, TSLR achieves the highest accuracies, followed by FBCSP.
Out of the convolutional neural networks, EEG has the best perfor-
mance, while deepConvNet in most of the experiments gave accuracies
close to chance. The performance of shallowConvNet is along the lines
of EEGNet.

The individual results of all the subjects for all experiments can be
found in appendix A.
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(a) LH-RH, subject 1 (b) 4-class, subject 3 (session 2)

(c) LH-LH, subject 7 (d) RH-RH, subject 3 (session 2)

Figure 6.2: Accuracies for best performing subjects of the different
cases, all models included. Error bars denote the standard deviation of
the folds. The dotted line indicates chance level.



7 Discussion

An evaluation of the results and ethical dilemmas. Research questions
are addressed. Recommendations for further research are also given.

The chapter is divided into two sections. Section 7.1 provides some
ethical considerations. Section 7.3 presents future work.
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One critical limitation of current BCIs applications is the lack of
usability. This is mainly due to the small number of available classes
for decoding. In this thesis, the aim was to contribute in a direction
towards more commands. With that in mind, two research questions
were formulated.

1) Does hand-dominance affect the discriminative properties of a set
of hand grasps?

The results in chapter 6show that there is a clear difference in per-
formance with regards to what side the imagery task is performed on.
In Table 7.1, the percentage differences between RH-RH and LH-LH
classification have been calculated. It should be noted that what side
performs better seemingly depends on a variety of factors:

1. The subject performing the task. Subject 2 got 28.75 percentage
points better accuracies for RH-RH classification than LH-LH,
while e.g. subject 7 got 11.25 percentage points poorer scores
when comparing the same cases.

2. The classification model. Subject 9 got better scores for RH-
RH imagery when classified with FBCSP, but poorer when using
TSLR.

3. The session. For subject 2, which side performs better, varies
across the different sessions.

To establish clear trends, a larger number of subjects, trials, and
sessions is necessary.

2) To what extent do tasks within the same limb reach decoding ac-
curacies above the required threshold (∼70%) for BCI applications?

Five out of the nine subjects reached decoding accuracies above the
required threshold for one of the sides. None of them reached it for
both LH-LH and RH-RH. The results indicate that same-limb motor
imagery has the potential to be utilized in a BCI system, providing ad-
ditional commands to external devices. It should also be noted that
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Table 7.1: RH-RH accuracies subtracted from LH-LH accuracies.

Subj. FBCSP TSLR
1 16.25 15.00
2 13.75 28.75
3 7.50/11.25 17.5/11.25
4 6.25/-17.5/-6.25 6.25/-10.00/-8.75
5 5.00 -2.50
6 -5.00 -1.25
7 -11.25 -10.00
8 5.00 8.75
9 6.25 -10.00
Avg 2.6 3,75

when all four classes are considered, the accuracy drops significantly.
The four-class system does not pass the minimum threshold, hence
more research on the topic is required to achieve satisfactory results.

It is also clear that differences in subject-wise performance is a
challenge. In [35] 30% of the subjects were not able to achieve
more than 70% decoding accuracy when using an MI-based BCI and
approximately 15% showed insufficient decoding accuracy when using
ERP-based and SSVEP-based BCIs. The users did however tend to
prefer MI to ERP or SSVEP based systems [37]. BCI illiteracy is
a proposed condition wherein users of BCI technology fail to reach
proficiency in using it within a standard training period [50]. This is
a challenge in MI BCI systems, as it means that not everyone can use
them. However if successful, users can control a device without eye
strain, as is the case for the other paradigms. The subjects that did not
achieve accuracies above the threshold in any of the experiments could
be suffering from BCI-illiteracy. This applies to two of the subjects, i.e.
22%. It would however be interesting to see if performance could be
enhanced if feedback was given during the collection of data.

There is a lack of understanding of the relationship between
performance within BCIs and the neuroanatomic state of a user.
MI BCIs rely heavily on the user’s ability to consciously generate
the required signals [50]. More research is needed to understand
how these neurological factors affect the performance of MI BCIs in
order to understand how they could possibly be exploited to improve
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performance.
The performance also varies within trials, runs, and sessions. The

classification accuracy is usually at its peak around the chosen window
segment in this study, i.e. 0.5 to 2.5. In later stages of the trials,
the classification accuracy often decreases. This could be caused by
the subject losing concentration towards the end of the task. When
collecting data for this study, it was commented that especially the
motor imagery runs were tiring, compared to the executory ones.

The variation between the runs for the best performing subjects is
visualized in Figure 7.1. There is no clear tendency as to which run
performs better or worse. It is observed that for the LH-RH and RH-
RH cases, all runs were above the required threshold, suggesting that
the trained classifiers in these cases are quite robust. The highest
variation among runs can be seen in 7.1b, also displaying a steady
improvement throughout the runs.

7.1 Ethical considerations

As the field of brain-computer interface research grows and the tech-
nology in brain-computer interface applications continues to improve,
a number of ethical issues have been raised.

A BCI is a software application, sending information to an external
device. The transmitted data can potentially fall into the wrong hands.
Security is especially critical in BCI technology because BCI captures
signals directly from a subject’s nervous system. BCIs could e.g. be
used to determine a user’s health status, which presents a significant
privacy risk.

Ethical considerations arise when determining how BCI data
should be stored and protected. While much of the discussion around
ethical issues related to brain-computer interfaces are still being
shaped, privacy and security issues remain premier concerns of today.
Should Elon Musk achieve his "symbiosis with artificial intelligence",
as mentioned introductory, the ethical considerations will be in a whole
new ballgame.
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(a) LH-RH, sub 1, TSLR (b) 4-class, sub 3 (session 2), TSLR

(c) LH-LH, sub 7, TSLR (d) RH-RH, sub 3 (session 2), TSLR

Figure 7.1: Accuracies for best performing subjects of the different
cases, with each run used as unseen test data.
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7.2 Future work

There are many ways to further explore the collected dataset beyond
the scope of this work. Models pre-trained on open relevant datasets
can be used for transfer learning, aiming for better initialization and/or
regularization. This could perhaps enhance the performance of the
neural networks especially. Several other models, feature extraction,
and feature selection techniques can be tested to improve performance.

There is a shifting focus in the BCI field from inter-subject analysis
to intra-subject analysis. It would be exciting to examine this aspect
further, as such a system would require no training from the user, and
the amount of available training data would be substantially increased.
The session-to-session problem could also be interesting to explore, as
two of the subjects in the dataset were recorded for two and three
sessions.

Further understanding of the extracted features, would also be
helpful upon the investigation of novel classification methods, specif-
ically focused on single-limb classification. Structural and functional
differences are known to exist within the cortical sensorimotor net-
works with respect to the dominant vs. non-dominant hand. The find-
ings in this study indicates that further research is worthwhile.



8 Summary and conclusion

This chapter presents the conclusion of this study by summarizing the
results.
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This project researched both traditional approaches and convolu-
tional neural networks to classify a privately collected EEG dataset.
Through a literary review, a general introduction of the oscillatory ac-
tivity based brain-computer interfaces was made.

The main objective was to determine whether hand-dominance has
an effect when classifying imagery movements within the same limb
and to investigate to what extent finer motor tasks on a single limb can
reach acceptable performance criteria to pass as additional commands
in a BCI. In order to investigate these matters, an EEG dataset with
nine right-handed participants was collected. They performed an
identical set of grasping tasks with both dominant and non-dominant
hand.

To establish a baseline, current state-of-the-art algorithms in
traditional machine learning, i.e. FBCSP and Riemannian geometry
were implemented and compared to novel, promising, EEG-tailored
convolutional neural networks. Different data augmentation and
feature selection techniques were be explored in various experiments.

One of the experiments, using a Riemann geometry-based channel
selection before feature extraction/classification, outperformed the
others. Tangent Space logistic regression yielded the highest accuracy
scores averaged over all the subjects, namely 68.59% for right-
hand/left-hand classification, 64.06% for two different right-hand
grasps, and 40.63% for the 4-class problem. FBCSP achieved the
highest average for left-hand grasps, with a score of 60.63%. Hence
none of the scores averaged across all subjects reached the required
accuracy level of 70%. Some of the individual subjects in the study
did, however. The best scores were 85.63% for right-hand/left-hand
(RH/LH) discrimination, 76.25% for LH/LH grasps, 78.75% for RH/RH
grasps, and 46.87% for the 4-class distinction. BCI illiteracy could be
the reason why some of the subjects failed to reach accuracy levels
above the required minimum to be deployed in a BCI application.

There was a clear tendency on most of the subjects that one of
the sides provided higher accuracy decoding levels than the other.
As to which side, dominant or non-dominant, was varying across the
subjects. The findings in this report do encourage further research on
the topic.



A Appendix

The individual results of all the subjects for left-hand/right-hand, left-
hand/left-hand grasps and right-hand/right-hand grasps have been
included in this appendix.
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MOTOR IMAGERY - LH/RH:  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 76.88 78.75 75.62 55.00 50.00 

2 53.13 58.13 52.50 51.25 48.75 

3 68.75 66.88 60.00 68.13 59.38 58.75 53.75 51.88 48.75 51.87 

4 64.38 55.63 53.75 70.00 61.25 63.13 45.00 46.25 52.50 43.12 48.12 56.25 44.38 53.13 49.38 

5 68.75 68.13 60.00 50.00 48.75 

6 66.88 48.75 53.75 50.00 56.25 

7 55.00 51.25 51.25 47.50 49.37 

8 52.50 53.75 50.00 53.75 53.75 

9 49.38 55.00 53.75 50.00 51.25 

Avg 60.99 61.35 54.90 50.89 50.47 

 

 

MOTOR IMAGERY - LH/LH:  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 46.25 56.25 43.75 45.00 55.00 

2 55.00 51.25 57.50 42.50 45.00 

3 50.00 62.50 56.25 58.75 50.00 50.00 61.25 51.25 52.50 46.25 

4 52.50 62.50 53.75 70.00 50.00 68.75 57.50 51.25 51.25 55.00 56.25 53.75 50.00 46.25 48.75 

5 53.75 45.00 63.75 50.00 51.25 

6 50.00 46.25 58.75 67.50 45.00 

7 56.25 67.50 56.25 61.25 57.50 

8 50.00 51.25 48.75 57.50 50.00 

9 57.50 51.25 57.50 52.50 48.75 

Avg 54.17 56.04 53.85 54.48 49.69 

 

 

MOTOR IMAGERY - RH/RH:  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 56.25 50.00 47.50 45.00 47.50 

2 53.75 51.25 61.25 71.25 56.25 

3 53.75 60.00 45.00 67.50 41.25 70.00 56.25 60.00 50.00 55.00 

4 66.25 52.50 45.00 46.25 56.25 43.75 47.50 48.75 55.00 56.25 53.75 51.25 53.75 52.50 51.25 

5 55.00 52.50 46.25 46.25 40.00 

6 38.75 43.75 56.25 48.75 52.50 

7 50.00 57.50 52.50 57.50 60.00 

8 55.00 57.50 48.75 46.25 47.50 

9 53.75 58.75 62.50 53.75 52.50 

Avg 53.33 52.50 53.12 53.85 51.56 
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MOTOR IMAGERY AND EXECUTION - LH/RH:  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 72.00 81.50 71.00 62.00 52.50 

2 50.61 51.87 49.75 53.12 49.00 

3 59.17 68.75 63.33 73.75 51.67 75.83 50.00 61.67 50.83 54.17 

4 67.50 52.92 56.67 63.33 52.50 54.17 53.33 51.67 55.42 61.25 54.17 58.33 48.33 50.00 52.08 

5 57.50 62.50 52.50 47.92 50.00 

6 64.58 52.50 54.58 56.67 51.67 

7 61.53 65.75 65.28 60.65 52.28 

8 54.58 54.17 60.83 58.33 53.75 

9 52.08 51.25 53.33 54.17 54.17 

Avg 59.65 60.26 57.75 56.45 51.55 

 

 

MOTOR IMAGERY AND EXECUTION - LH/LH:  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 43.00 51.00 58.00 50.00 46.00 

2 51.67 55.00 51.67 46.67 54.17 

3 49.17 62.50 49.17 58.33 52.50 58.33 54.17 53.33 56.67 56.67 

4 53.33 52.50 55.83 68.33 52.50 50.83 57.50 59.17 53.33 45.00 44.17 65.00 51.67 52.50 52.50 

5 55.00 64.17 59.17 64.17 49.17 

6 48.33 40.83 55.00 61.67 52.50 

7 67.37 71.36 55.48 73.11 64.82 

8 51.67 53.33 49.17 55.00 55.00 

9 54.17 50.83 55.83 50.83 50.83 

Avg 53.86 55.54 55.39 55.33 53.65 

 

 

MOTOR IMAGERY AND EXECUTION - RH/RH:  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 55.00 48.00 51.00 53.00 60.00 

2 63.16 65.61 70.53 72.24 50.48 

3 58.33 71.67 50.00 60.83 41.67 60.83 44.17 59.17 44.17 53.33 

4 57.50 60.83 57.50 61.67 51.67 60.83 65.00 49.17 49.17 55.00 58.33 54.17 49.17 48.33 48.33 

5 50.83 61.67 55.83 63.33 50.83 

6 48.33 50.00 51.67 45.00 40.83 

7 66.67 67.50 63.33 60.00 49.17 

8 46.67 46.67 48.33 54.17 45.00 

9 54.17 63.33 46.67 55.83 54.17 

Avg 57.59 57.45 54.48 56.25 49.34 
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MOTOR IMAGERY - LH/RH. (Window slide augmentation)  

 

  FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 70.50 76.25 75.00 67.75 50.87 

2 48.88 61.50 53.88 55.75 52.50 

3 63.50 64.25 60.13 67.75 60.00 70.00 54.13 56.13 53.50 54.13 

4 61.13 54.13 55.63 66.00 59.88 62.38 66.50 52.00 60.25 58.62 49.00 56.00 48.25 48.88 47.00 

5 65.50 66.13 52.50 51.50 51.12 

6 59.25 47.13 51.00 48.50 46.75 

7 50.38 56.25 56.13 57.25 53.38 

8 54.25 55.88 56.00 55.25 54.38 

9 50.50 59.13 51.63 55.38 50.62 

Avg 58.16 61.53 58.74 55.44 50.95 

 

 

MOTOR IMAGERY - LH/LH. (Window slide augmentation)  

 

  FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 46.00 58.00 54.00 58.00 44.75 

2 51.50 45.50 54.00 45.25 48.25 

3 52.00 58.25 49.00 64.75 57.75 56.75 54.50 56.50 55.25 49.25 

4 54.75 47.25 55.50 59.25 60.25 58.50 56.50 56.50 50.00 58.50 45.00 54.25 51.00 48.25 50.00 

5 53.00 50.25 50.50 54.00 49.00 

6 54.00 51.75 54.25 56.50 54.00 

7 55.00 60.00 55.25 64.75 56.75 

8 50.75 59.50 51.25 54.25 48.75 

9 51.75 46.25 52.75 53.75 47.00 

Avg 52.48 55.25 54.12 54.60 50.19 

 

 

MOTOR IMAGERY - RH/RH. (Window slide augmentation)  

 

  FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 52.00 57.00 53.25 54.25 48.50 

2 53.25 47.75 64.25 62.25 49.25 

3 59.00 59.25 48.75 70.75 55.25 70.25 53.50 59.25 51.00 52.75 

4 59.75 56.00 49.75 50.50 54.00 46.75 59.25 47.00 52.25 53.00 56.00 50.25 52.50 48.25 56.50 

5 53.75 57.25 54.50 58.75 52.00 

6 44.50 45.50 47.00 45.25 49.50 

7 53.50 58.25 50.75 52.75 51.00 

8 48.75 52.50 42.75 44.75 51.00 

9 54.00 58.75 47.50 58.25 46.25 

Avg 53.63 53.98 53.67 54.02 50.71 
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MOTOR IMAGERY - LH/RH. Manual channel selection (18 chs):  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 82.50 85.00 70.63 65.00 53.13 

2 55.63 57.50 48.75 48.75 43.75 

3 65.00 63.75 64.38 56.25 47.50 50.62 50.62 50.62 45.00 50.62 

4 68.13 58.75 62.50 65.63 60.00 58.75 53.13 50.63 53.75 51.87 53.75 52.50 50.00 50.62 48.75 

5 70.63 65.63 57.50 42.50 48.13 

6 56.25 48.13 51.87 50.63 49.37 

7 61.88 56.25 49.37 48.75 45.62 

8 51.25 54.38 55.63 53.75 51.25 

9 53.75 53.75 51.25 57.50 45.00 

Avg 62.50 60.47 53.39 52.19 48.44 

 

 

MOTOR IMAGERY - LH/LH. Manual channel selection (18 chs): 

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 37.50 60.00 57.50 47.50 45.00 

2 47.50 40.00 48.75 46.25 45.00 

3 60.00 52.50 53.75 42.50 50.00 57.50 62.50 53.75 48.75 57.50 

4 56.25 58.75 62.50 38.75 50.00 60.00 57.50 47.50 58.75 56.25 48.75 51.25 48.75 45.00 52.50 

5 52.50 42.50 45.00 53.75 56.25 

6 57.50 57.50 52.50 56.25 48.75 

7 45.00 48.75 57.50 57.50 61.25 

8 52.50 55.00 55.00 52.50 43.75 

9 58.75 47.50 56.25 45.00 52.50 

Avg 53.44 49.69 53.65 52.60 50.42 

 

 

MOTOR IMAGERY - RH/RH. Manual channel selection (18 chs): 

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 56.25 51.25 46.25 55.00 48.75 

2 46.25 42.50 62.50 56.25 61.25 

3 52.50 63.75 58.75 76.25 56.25 62.50 48.75 60.00 53.75 67.50 

4 50.00 53.75 50.00 48.75 48.75 53.75 57.50 48.75 51.25 63.75 50.00 57.50 52.50 48.75 46.25 

5 55.00 47.50 48.75 55.00 45.00 

6 47.50 56.25 51.25 53.75 51.25 

7 53.75 61.25 60.00 53.75 52.50 

8 41.25 37.50 47.50 57.50 52.50 

9 60.00 62.50 51.25 52.50 46.25 

Avg 52.50 53.75 53.65 55.31 52.19 
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MOTOR IMAGERY - LH/RH. Riemann channel selection (16 chs):  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 81.25 80.00 68.13 65.63 49.38 

2 53.75 66.25 56.88 50.63 48.75 

3 65.00 79.38 65.63 83.75 58.75 68.13 55.00 59.38 56.88 55.63 

4 66.88 68.75 61.88 65.00 65.63 66.88 64.38 48.75 52.50 52.50 48.75 57.50 55.00 46.88 47.50 

5 73.75 73.75 52.50 51.25 51.88 

6 63.13 60.00 50.63 53.75 51.25 

7 64.38 66.88 53.13 46.25 42.50 

8 61.88 61.25 53.75 55.00 51.25 

9 63.13 62.50 52.50 55.00 50.63 

Avg 66.93 68.13 56.67 54.22 50.63 

 

 

MOTOR IMAGERY - LH/LH. Riemann channel selection (16 chs): 

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 47.50 53.75 45.00 55.00 52.50 

2 61.25 63.75 48.75 47.50 46.25 

3 56.25 67.50 52.50 68.75 53.75 61.25 53.75 55.00 58.75 55.00 

4 55.00 76.25 58.75 66.25 70.00 57.50 61.25 52.50 43.75 45.00 50.00 51.25 57.50 57.50 55.00 

5 57.50 60.00 56.25 61.25 51.25 

6 52.50 50.00 53.75 60.00 47.50 

7 63.75 73.75 51.25 66.25 56.25 

8 48.75 48.75 46.25 61.25 43.75 

9 66.25 61.25 62.50 50.00 50.00 

Avg 59.27 60.52 53.02 54.69 52.60 

 

 

MOTOR IMAGERY - RH/RH. Riemann channel selection (16 chs): 

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 62.50 71.25 51.25 66.25 43.75 

2 76.25 76.25 85.00 81.25 55.00 

3 57.50 71.25 52.50 67.50 55.00 53.75 47.50 55.00 50.00 61.25 

4 66.25 53.75 53.75 55.00 56.25 40.00 63.75 45.00 48.75 65.00 58.75 53.75 52.50 51.25 48.75 

5 56.25 67.50 57.50 55.00 53.75 

6 61.25 55.00 53.75 45.00 52.50 

7 61.25 67.50 65.00 56.25 55.00 

8 51.25 68.75 40.00 50.00 48.75 

9 58.75 58.75 52.50 52.50 45.00 

Avg 60.83 61.35 55.94 57.19 51.46 
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MOTOR IMAGERY - LH/RH. Riemann channel selection (8 chs):  

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 85.63 80.63 78.13 62.50 57.50 

2 62.50 70.00 58.75 58.75 54.37 

3 70.00 71.25 71.25 77.50 65.00 58.75 57.50 56.88 58.75 51.25 

4 75.63 61.25 69.38 66.25 65.63 70.00 66.88 51.88 63.75 53.75 54.38 60.63 47.50 46.87 50.63 

5 73.13 73.13 57.50 53.75 45.00 

6 57.50 56.88 53.13 61.87 55.00 

7 66.88 58.75 50.00 46.25 46.25 

8 60.63 60.00 48.75 46.25 52.50 

9 64.38 73.13 56.25 56.88 50.00 

Avg 68.18 68.59 59.06 55.78 51.30 

 

 

MOTOR IMAGERY - LH/LH. Riemann channel selection (8 chs): 

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 48.75 46.25 47.50 52.50 45.00 

2 60.00 50.00 60.00 56.25 50.00 

3 57.50 65.00 48.75 67.50 50.00 57.50 53.75 58.75 57.50 55.00 

4 56.25 71.25 62.50 58.75 65.00 58.75 56.25 58.75 61.25 58.75 62.50 50.00 57.50 45.00 52.50 

5 60.00 70.00 46.25 58.75 50.00 

6 61.25 61.25 48.75 56.25 50.00 

7 73.75 76.25 66.25 66.25 57.50 

8 52.50 53.75 52.50 57.50 50.00 

9 58.75 67.50 55.00 57.50 58.75 

Avg 60.63 60.31 55.00 57.40 52.40 

 

 

MOTOR IMAGERY - RH/RH. Riemann channel selection (8 chs): 

 

 Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet 

1 65.00 61.25 51.25 53.75 55.00 

2 73.75 78.75 72.50 72.50 61.25 

3 65.00 76.25 66.25 78.75 43.75 75.00 48.75 58.75 50.00 55.00 

4 62.50 53.75 56.25 65.00 55.00 50.00 66.25 58.75 55.00 61.25 45.00 60.00 50.00 47.50 52.50 

5 65.00 67.50 50.00 62.50 51.25 

6 56.25 60.00 55.00 52.50 53.75 

7 62.50 66.25 58.75 58.75 55.00 

8 57.50 62.50 50.00 57.50 52.50 

9 65.00 57.50 52.50 57.50 56.25 

Avg 63.23 64.06 57.40 57.40 53.33 
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