NAFUMA Research group 2011

Professors

Helmer Fjellvåg Anja Olafsen Sjåstad Serena Margadonna

Ola Nilsen

Adjunct professors

Reinhard Nesper (ETH Zürich)

Spyros Diplas (SINTEF)

Suzanne McEnroe (NGU, Trondheim)

Engineers

Per Fostervoll

Administration

2011:

NN (Jan.2012→)

2 project students; 6 master students13 PhD students; 11 postdoc/researchers

SMN NAFUMA

NAnostructures and FUnctional MAteriales

An integrated approach

Bulk/solids

(Nano)particles

Laboratories; international collaborations

Synthesis

Bulk: Ceramic methods, sol-gel, hydro/solvothermal

Crystals: Transport reactions; flux methods

Thin film: ALD, spin-coating, MOCVD, PLD, sputtering

Nanoparticles: Hydrothermal, reverse micelles, sol-gel, electrospinning

Characterization

Structure: (S)XRD, ND, FTIR, UV-Vis, Ellipsometry, XRR, RAMAN

Composition: XRF, ICP, EDAX, XPS, SIMS, TOF-ERDA

Shape: AFM, SEM

Size: AFM, TEM/SEM, SANS/SAXS, DLS

Phys. prop.: PPMS, MPMS, Nanoscratch

National/international partners

S

NAFUMA

Approach / activity

abilty to make, study and understand....

Inorganic chemistry / materials chemistry / solid state chemistry

Synthesize novel inorganic compounds/materials

Derive thin films, nanostructures, nanoparticles

Investigate structure – property relations

Study model/real materials at working conditions

Integrate experiments with computational modeling

With applications in mind.....

Energy (batteries, solar cells, hydrogen technology)

Process industry (catalysts and absorbents)

Electronics (sensors and actuators)

Nanomedicine (particles, coatings, scaffolds)

Examples of activities

Nanomaterials - Preparation

Continues flow Pressure - Temperature

Nanomaterials – Characterization In-situ studies at working conditions

Morphology – size (TEM/AFM/DLS/SAXS/SANS)

Chemical composition Atomic arrangement (ICP/STEM-EDXS/XPS/ XRD/PN/XAS)

Conversion (%)

Properties Catalytic performance Magnetic properties

UiO: Kjemisk institutt Thin films & coatings

ALD (Atomic Layer Deposition) Sol-gel/spin-coating Electrospinning

Oxides with interesting physical properties

Multistructures with novel properties (nanostructures; interfaces)

Novel inorganic – organic hybridmaterials

Model materials for heterogeneous catalysts

Applications: solar conversion, transparent conductive layers,

batteries, imaging, photocatalysis sensors, photocatalysis, scaffolds,....

Spin-off company; Baldur Coating AS

Oxides and hybrid thin films

 $Ca_xLa_{1-x}MnO_3$ ($Co_xFe_{1-x})_3O_4$ Zn(M)O $CoMoO_4$

Unique possibilities to control stoichiometry at atomic level

Model materials for catalysis

(collaboration Haldor Topsoe, Denmark)

Magnetic nanomaterials (collaboration NGU, Trondheim + Münster)

Surfaces and multilayers

Synchrotron and neutron based studies (collaboration SNBL, ESRF, Grenoble + IFE)

Coatings for solar cells

(collaboration UiO; FME-solar united,...)

O. Nilsen et al. J. Mater. Chem. 17 (2007) 1466

Advanced characterization of nanoparticles and surfaces

Synchrotron based tools – in addition to "home lab"

Particles:

Total scattering studies (Bragg + diffuse)
Modulated studies to enhance surface effects
Information on size, shape, atomic arrangement
Average and local structure
XANES – oxidation states

Surfaces, thin films and multilayers:

Single crystal diffraction Surface sensitive techniques Reflectometry

Collaboration with staff at SNBL and ESRF, Grenoble (European Synchrotron Radiation Facility)

In-situ/time resolved studies at working conditions

What: Methods providing insight at realistic atmosphere-P-T conditions

Focus: Reducible oxides; catalysts; absorbents; fast reactions

Why: Insight in species/defects/structures that provides a certain function

Key to progress: State-of-the-art tools & model systems

Our approaches: Model surfaces for catalysts (ALD);

Selective absorbents – MOFs;

Partners: SNBL/ESRF; Utrecht (AFM;RAMAN);

Haldor Topsoe (ETEM)

Structure analysis: synchrotron + neutron

Purpose: To understand structure and bonding $\leftarrow \rightarrow$ properties

Hydrated oxidehydroxide (Pr,Sr)₄(Fe,Co)₃O₇(OH)₂-yH₂O

Hybridization of Mn3d-O2p orbitals in BiMn₇O₁₂

UiO: Kjemisk institutt
Organic- inorganic hybrid films

Novel microporous MOF materials; Coordinatively unsaturated metal sites

Arbeidssted etter avsluttet studium/forskertrening ved UiO

Statistikk basert på 44 medarbeidere (master, PhD, post doc) Innen uorganisk materialkjemi; gruppen til prof. Fjellvåg 1990-2007

Master 2012 – (nano)materials

- Surfaces, multilayers and nanoparticles
 - Characterization of monodisperse nanoparticles
 - Characterization of surfaces and multilayers
 - Modeling of reactions and properties
- Complex oxides structures and properties
 - Synthesis; crystal structure, physical properties

Organic-inorganic hybrid films for cell growth

Kjemitunge masteroppgaver – muligheter 2012

- Complex oxides structures and properties
 - Bulk nanoparticles thin films
 - Experiments or modelling

- Monodispersible nanoparticles
- Model surfaces for catalysis

Bakgrunnskunnskaper for master

- Oppgaver innen syntese, karakterisering og modellering stiller ulike krav til optimal bakgrunn
- Viktig å vite hva man er mest interessert i (syntese, studier av struktur/fysikalske egenskaper, eller teori/modellering)
- Ulike MENA-kurs kan være nyttig; videre fysikalsk kjemi.
- Kurs 1.semester master bør avtales med veileder(e)
- TA KONTAKT og diskuter dine valg med oss!

A few more examples

ongoing and planned activities

UiO: Kjemisk institutt Complex oxides

What: Oxides with particular physical properties (phenomena)

Focus: Magnetic/electric/optical properties; oxygen reservoirs; catalysts

Why: Novel phenomena, higher yield, fundamental insight, technology

Our approaches: Soft chemical synthesis (pO₂ control); nano/thinfilms/bulk; exp+theory Partners: Large scale facilties (synchrotron & neutron diffraction); world wide universities

Organic-inorganic hybrid films for cell growth

Bionano:

Have unique abilities to functionalize surfaces to become bioactive. Wish to exploit this through joint project with Ullevål hospital to study cell growth on functionalized surfaces.

Aim:

Regeneration of retinal cells

Requirements:

Some understanding of what a cell is – will be admitted to cell growth laboratory at Ullevål

Modeling – computational materials science

The vision: understanding of electronic properties

feedback to experiments and improved materials

Modeling of the ALD deposition process; surface reactions

Modeling of chemical defects in semiconductors – TCOs

Multiferroics and magnetoelectrics; coupling between structure and properties

Properties of nanoparticles; freestanding and in scaffolds

Prediction of possible novel compounds (hydrogen storage; Li-ion batteries)

UiO: Kjemisk institutt Battery materials

What: Cathode, anode and electrolyte materials

Focus: Li-ion batteries; microbatteries

Why: Need for breakthroughs in energy capacity

Key to progress: Solid state chemistry/electrochemistry

Our approaches: Novel electrode materials; all-solid-state microbatteries by ALD Our partners: Key European universities, research centres and leading inductry

UiO: Kjemisk institutt Solar cell materials

What: Bulk Si-absorber; all means to enhance energy efficiency

Focus: Si-solar cell; bulk absorber, TCOs and conversion materials

Why: Need for improved (cheap) technology with higher energy efficiency

Bulk absorber

Passivation layer

Key to progress: Materials/nanophysics and -chemistry

Our approaches: Tailored TCOs - understanding of defects & chemistry; materials

facilitating energy conversion; fundamentals of Si-growth. Partners: FME-solar; REC