

KJM 9250

¹H-¹⁵N NMR spectra on the AVIIIHD-800 spectrometer.

Version 2.0

Topspin 3,5 Windows 7 AVIIIIHD800

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. January 2020

¹⁵N⁻¹H f3 (and f2) Experiments on the AVIIIHD-800 Spectrometer

1.1 Introduction

aw coded ¹⁵N⁻¹H **f3** (and **f2**) **HSQC**, **HSQC-DIPS**I2 and **HMBC** parameter sets are set up with 2048 (2K) points acquired across a **12 ppm** ¹H window centered at **4.7 ppm** and a **30 ppm** ¹⁵N **window** (**SW**) centered at **118 ppm** (**O3**). The ¹H and ¹⁵N NMR signals of peptides and microcystins typically occur in these windows. Different **SW** and **O3** setttings may (will) be required for other nitrogen containing compounds.

1.2 Processing

HSQC and **HSQC-DIPSI2** experiments are phase sensitive experiments which should be phased **before** using the **abs1** and **abs2** commands.

HMBC experiments are absolute value experiment. Phasing is not required.

2.0 Experiments and Parameter Sets

The following aw coded ¹⁵N⁻¹H f3 HSQC, HSQC-DIPSI2 and HMBC parameter sets are available on the AVIIIHD-800 MHz spectrometer.

- 2.1 ¹H-¹⁵N f3HSQC spectrum
- 2.2 ¹H-¹⁵N f3HSQCfp spectrum with a flip back pulse
- 2.3 ¹H-¹⁵N f3HSQC135
- 2.4 ¹H-¹⁵N f3HSQCed
- 2.5 ¹H-15N f3TROSY
- 2.6 ¹H-¹⁵N f3HSQC-DIPSI2 spectrum
- 2.7 ¹H-¹⁵N f3HSQC-NOESY
- 2.8 ¹H-¹⁵N f3HMBCET spectrum
- 2.9 ¹H-¹⁵N f3HMBCQF spectrum
- 2.10 ¹H-¹⁵N f2HSQC
- 2.11 ¹H-¹⁵N f2HSQC135
- 2.12 ¹H-¹⁵N BESTf3HSQC
- 2.13 ¹H-¹⁵N BESTf3TROSY

2.1 ¹H-¹⁵N HSQC spectrum

Parameter sets: awf3hsqc (+ getprosol)

Pulse programme: awf3hsqc

Type eda (enter) and review the following default parameters $SW^{1}H = 12 \text{ ppm}$, $SW^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS =multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

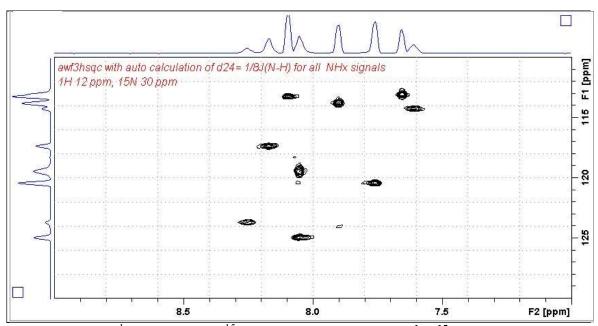
D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

D24 = D26 = 1/4J are auto calculated from CNST4

ZGOPTNS = Not used.

Check gradient settings.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb, abs1 and abs2

Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HSQC spectrum of a peptide which that has 9 amino axcid units

2.2 ¹H-¹⁵N HSQC spectrum with a flipback pulswe

Parameter sets: awf3hsqcfp (+ getprosol)

Pulse programme: awf3hsqcfp

Type eda (enter) and review the following default parameters $SW^{1}H = 12 \text{ ppm}$, $SW^{15}N = 30 \text{ ppm}$ (or other suitable values). $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $\mathbf{O1P} = {}^{1}\mathbf{H}$ spectral window midpoint = 4.7 ppm or other value of your choice.

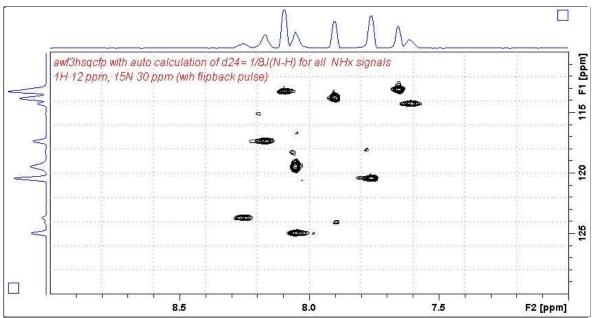
 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm or other value of your choice.

D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

D24 = 1/8J for all NH_x signals is auto calculated from CNST4

ZGOPTNS = Not used.


Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

Expansion of the ¹H 7-9 ppm and ¹⁵N 110-130 ppm region of a ¹H-¹⁵N HSQCfp spectrum of a peptide which that has 9 amino acid units.

2.3 ¹H-¹⁵N HSQC spectrum

Parameter sets: awf3hsqc135 (+ getprosol)

Pulse programme:

Type eda (enter) and review the following default parameters

SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

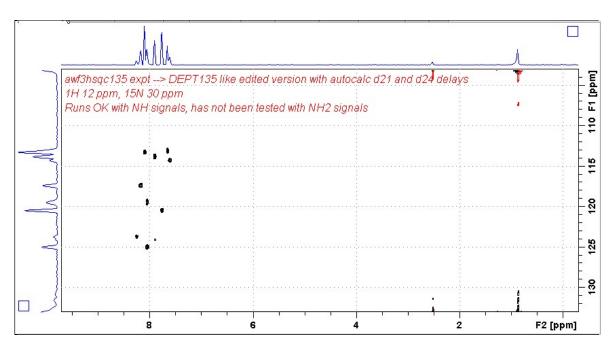
 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

D1 = repetition delay = **1.0** sec or other time of your choice.

CNST4 = ${}^{1}J^{15}N^{-1}H$ coupling constant = 90 Hz or other value of your choice.

D24 = D26 = 1/4J are auto calculated from CNST4

ZGOPTNS = Not used.


Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

File 8 Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HSQC spectrum of a peptide which that has 9 amino axcid units

2.4 ¹H-¹⁵N HSQC spectrum

Parameter sets: awf3hsqc (+ getprosol)

Pulse programme: awf3hsqc

Type eda (enter) and review the following default parameters SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values). $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice). NS = multiple of 8 or 16, DS = 16.

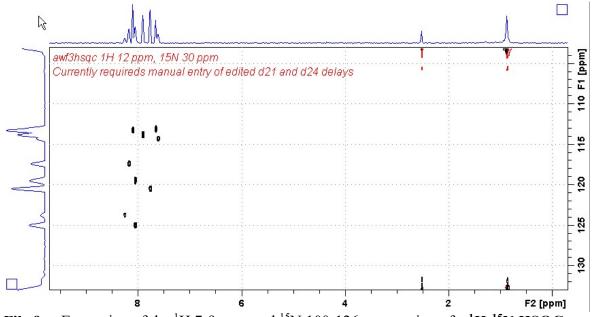
Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N^{-1}H$ coupling constant = 90 Hz or other value of your choice.


D24 = D26 = 1/4J are manaully set

ZGOPTNS = Not used.

Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1KWDW(F1) = WDW(F2) = QSINESSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HSQC File 9 spectrum of a peptide which that has 9 amino axcid units

2.5 ¹H-¹⁵N TROSY spectrum

Parameter sets: trosyeff3gpsi (+ getprosol)

Pulse programme: awf3trosy

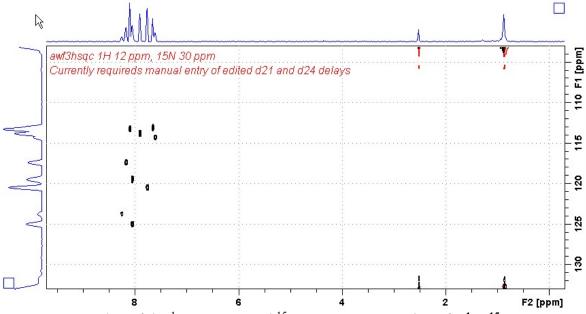
Type **eda** (enter) and review the following default parameters $SW^{1}H = 12$ ppm, $SW^{15}N = 30$ ppm (or other suitable values). $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice). NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

D1 = repetition delay = **1.0** sec or other time of your choice.


 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

ZGOPTNS = Not used.

Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K WDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

File 5 Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HSQC spectrum of a peptide which that has 9 amino acid units

2.6 ¹H-¹⁵N HSQC-DIPSI spectrum

Parameter sets: awf3hsqdietf3gpsic (+ getprosol)

Pulse programme: awf3hsqc-dipsi

Type eda (enter) and review the following default parameters

SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

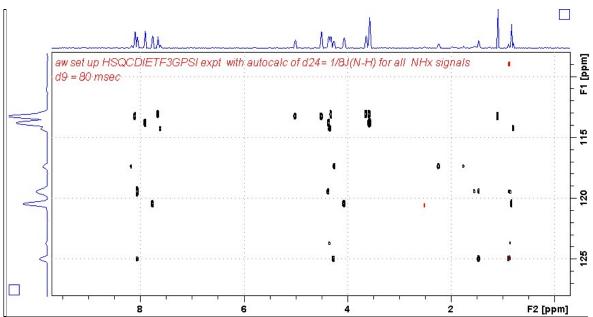
D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N^{-1}H$ coupling constant = 90 Hz or other value of your choice.

D24 = D26 = 1/4J are auto calculated from CNST4

D9 = 80 msec

ZGOPTNS = Not used.


Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

File 14 Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HSQC - DIPSI2 spectrum of a peptide which that has 9 amino acid units

2.7 ¹H-¹⁵N HSQC-NOESY spectrum

Parameter sets: awf3hsq-noesy + getprosol)

Pulse programme: hsqcetf3gpno

Type eda (enter) and review the following default parameters

SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

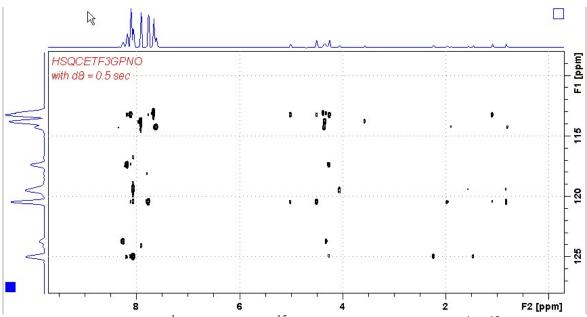
D1 = repetition delay = **1.0** sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

D24 = D26 = 1/4J are auto calculated from CNST4

D9 = 80 msec

ZGOPTNS = Not used.


Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

File 7 Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HSQC - NOESY spectrum of a peptide which that has 9 amino acid units

2.8 ¹H-¹⁵N HMBCET spectrum

Parameter sets: awf3hmbcet+ getprosol)

Pulse programme: hmbcetf3gpnd

Type eda (enter) and review the following default parameters

SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS =multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

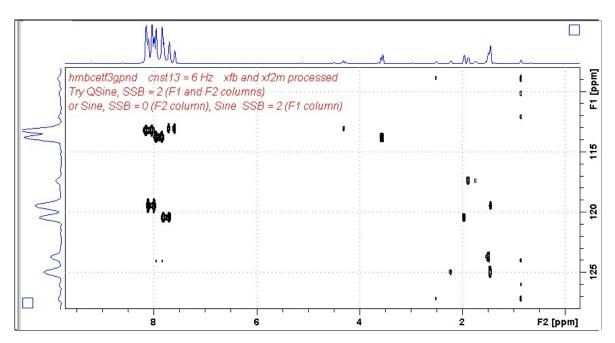
D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

CNST13 = 6 Hz

ZGOPTNS = Not used.

Check gradient settings.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb and xf2m + abs1 and abs2

File 16 Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HMBCET spectrum of a peptide which that has 9 amino acid units

2.9 ¹H-¹⁵N HMBCQF spectrum

Parameter sets: awf3hmbcqf + getprosol)

Pulse programme: hmbcf3gpndqf

Type eda (enter) and review the following default parameters

SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K, TD^{15}N = 128-160$ (your choice).

NS =multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

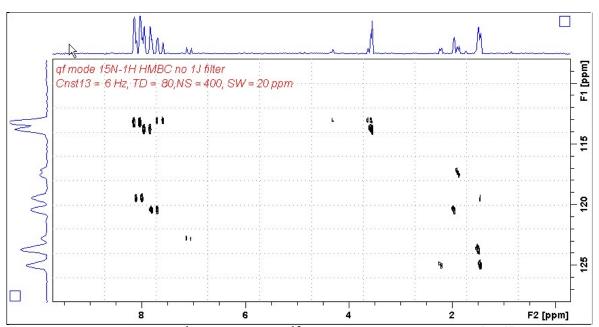
D1 = repetition delay = **1.0** sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

CNST13 = 6 Hz

ZGOPTNS = Not used.

Check gradient settings.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb and xf2m + abs1 and abs2

File 17 Expansion of the ¹H 7-9 ppm and ¹⁵N 100-126 ppm region of a ¹H-¹⁵N HMBCQF spectrum of a peptide which that has 9 amino acid units

2.10 ¹H-¹⁵N f2HSQC spectrum

Parameter sets: awhsqcetgp (+ getprosol)

Pulse programme: awf2hsqc

Type eda (enter) and review the following default parameters

SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

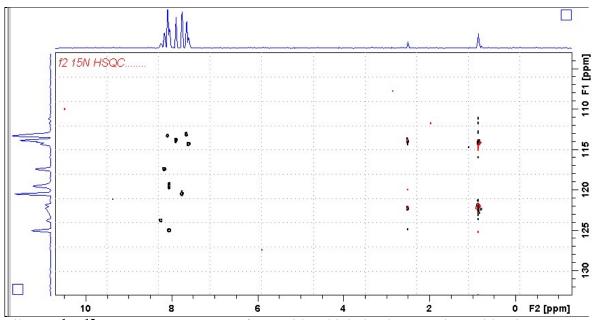
 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm or other value of your choice.

 $O2P = {}^{15}N$ spectral window midpoint = 118 ppm or other value of your choice.

D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

ZGOPTNS = Not used.


Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

File 101 ¹H-¹⁵N f2HSQC spectrum of a peptide which that has 9 amino acid units.

2.11 ¹H-¹⁵N f2HSQC spectrum

Parameter sets: **awf2hsqc135** (+ **getprosol**)
Pulse programme: **awhsqcedetdp-135**

Type **eda** (enter) and review the following default parameters $SW^{1}H = 12$ ppm, $SW^{15}N = 30$ ppm (or other suitable values). $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice). NS = multiple of 8 or 16, DS = 16.

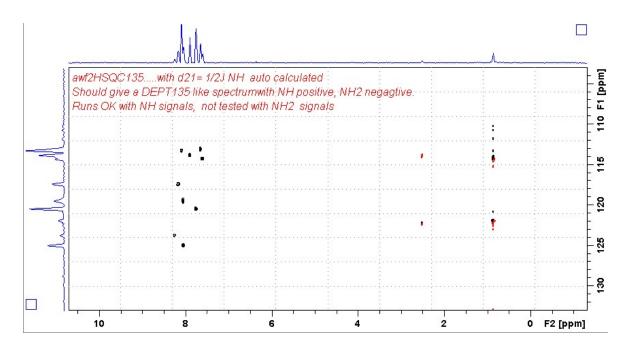
Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

 $O2P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

D1 = repetition delay = **1.0** sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.


D24 = D26 = 1/4J are auto calculated from CNST4

ZGOPTNS = Not used.

Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K WDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

File 104 ¹H-¹⁵N f2HSQC spectrum of a peptide which that has 9 amino acid units

2.12 ¹H-¹⁵N BESTF3HSQC spectrum

Parameter sets: awbestf3hsqc (+ getprosol)

Pulse programme: b hsqcetf3gpsi

Type eda (enter) and review the following default parameters SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values). $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

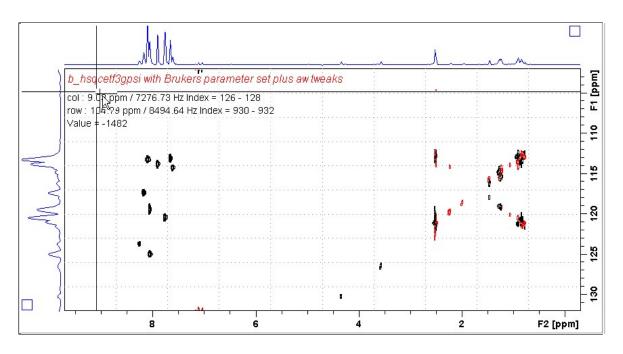
 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

D1 = repetition delay = 0.xx sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N^{-1}H$ coupling constant = 90 Hz or other value of your choice.

ADD best set up info

ZGOPTNS = Not used.


Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

File 18 Best f3hsqc expt

2.13 ¹H-¹⁵N BESTf3TROSY spectrum

Parameter sets: awbestf3trosy (+ getprosol)

Pulse programme: b_rosyetf3gpsi

Type eda (enter) and review the following default parameters

SW ${}^{1}H = 12 \text{ ppm}$, SW ${}^{15}N = 30 \text{ ppm}$ (or other suitable values).

 $TD^{1}H = 2K$, $TD^{15}N = 128-160$ (your choice).

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

 $O1P = {}^{1}H$ spectral window midpoint = 4.7 ppm other value of your choice.

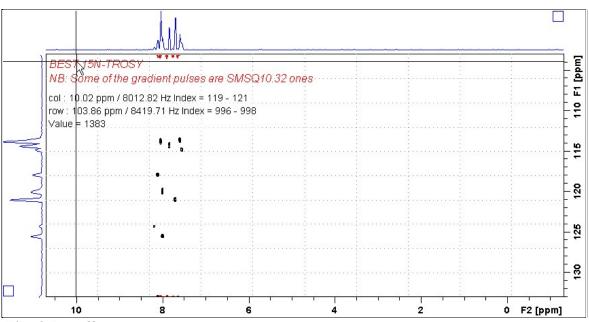
 $O3P = {}^{15}N$ spectral window midpoint = 118 ppm other value of your choice.

D1 = repetition delay = 0.xx sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$ coupling constant = 90 Hz or other value of your choice.

ADD besttrosy set up info

ZGOPTNS = Not used.

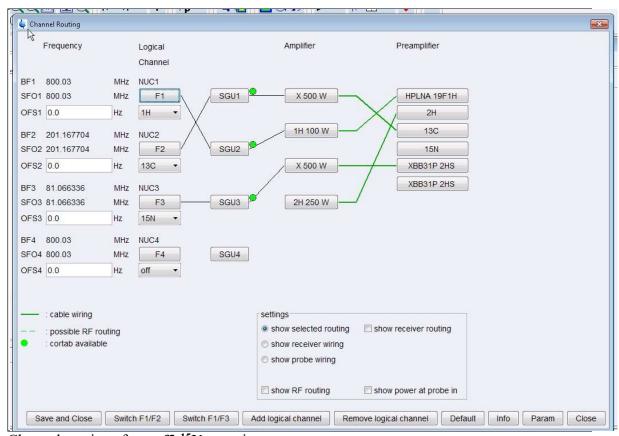

Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

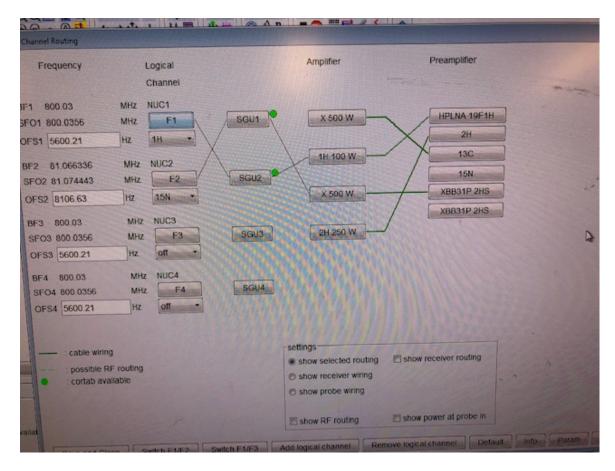
WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2



File 6 Best f3trosy expt

Appendixor standalone f2/f3 1H-15N set up info file


Spectrometer routings

The required spectrometer routing for a ¹⁵N f3 channel experiment is shown in Figure 1. The routing can be checked by typing: edsp (return). If a red error line appears between the second (lower) X 500 W Ampifler and the ¹⁵N Preampifer can be removed by selecting the Default and Save and Close buttons, after which O1, O2 if used and O3 must be re-entered since they will have been reset to 0 Hz. The correct routing for an f2 channel ¹⁵N experiment is shown on the next page.

Channel routings for an f3 ¹⁵N experiment.

The **f2** channel can optionally be set to **OFF** if ¹³C pulses are not used.

Channel routings for a f2 ¹⁵N experiment.

Processing options

A large residual H_2O/HOD line when spectra are run in 9:1 $H_2O:D_2O$ or other solvents can by suppressed by setting up the experimen with its O1 value in Hz, or O1P ppm value (typically ~ 4.7 ppm), to that of the HOD line and pProcessing the spectrum using the following **ProcPars (edp)** settings:

BC MOD = qfil

BCFW = 0.5 ppm or other suppression band width value of your choice STSI = 0 (not used) or 1024 points when a data data set acquired and processed with 2048 ¹H points to <u>ONLY</u> display spectral data to the left hand side (higher ppm side) of the noisy residual H₂O/HOD line.

ABSG	5	5	Degree of polynomial for abs (05)
ABSF1 [ppm]	1000.00000	1000.00000	Left limit for absf
ABSF2 [ppm]	-1000.00000	-1000.00000	Right limit for absf, abs1, abs2
BCFW [ppm]	0.50000	1.00000	Filter width for bc (sfil/qfil)
COROFFS [Hz]	0	0	Correction offset for BC_MOD=spol etc
BC mod	qfil -	no 🔻	Fid baseline modes for em, ft, xfb,

Ofil setttings.

The defaul values are: BC MOD = no, BCFW = 0 or 1.00000

Provided the s/n ratio of Fourier transformed ¹⁵N axis data points is reasonable, **linear prediction** can be applied to improve the apparent resolution of that axis.

♠ Fourier tra	ansform		
TDeff	0	0	Number of fid data points used by ft
STSR	0	0	First output point of strip transform
STSI	1024	0	Total number of output points of strip transform
ME_mod	no	LPfc	Linear prediction for ft, xfb,
NCOEF	0	32	Number of LP coefficients
LPBIN	0	256	Number of output points for LP
TDoff	0	0	Number of back-predicted points

STSI and linear prediction setings

The defaul values for these parameters when they are not used are:

ME MOD = no, NCOEF = 0, LPBIN = 0