

KJM 9250

AVIIIHD-800 MHz HSQC, HMBC, SHMBC and H2BC Experiments

Version 1.0

Topspin 3.5

Windows 7

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. January 2018

AVIIIHD-800 MHz HSQC, HMBC, SHMBC and H2BC Experiments

1.0 Introduction

¹H detected aw coded **HSQC, HMB**C \and **H2BC** parameter sets are set up with 1K or 2K acquired ¹H points and 128 to 256 increments.

¹H and ¹³C spectral windows and their midpoints should be determined before setting up **HSQC, HMBC** or **H2BC** experiments. The **SHMBC** experiment has a narrow ¹³C window (10-20 ppm).

1.1 Processing

HSQC experiments are phase sensitive experiments. These spectra should be phased **before** using the **abs1** and **abs2** commands. Low level ${}^{2}J$ correlations may occasionally be observed in HSQC spectra.

HMBC experiments are absolute value experiments. Phasing is not required.

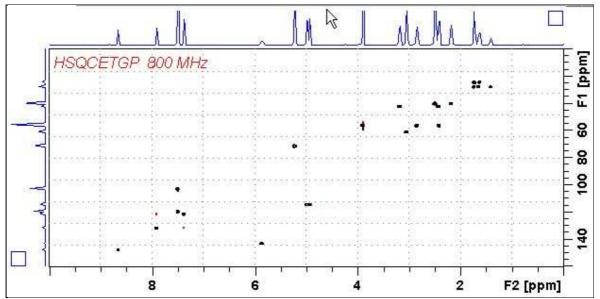
The **SHMBC** and **H2BC** experiments are acquired in phase sensitive mode and transformed to afford an absolute value spectrum using the **xfb** and **xf2m** commands.

2.0 Experiments and Parameter Sets

The following ¹H detected **HSQC**, **HMBC**, **SHMBC** and **H2BC** experiments and linked prosol compatible parameter sets have been set up on the **AVIIIHD-800** spectrometer.

gpsisp2.3-135 gpsisp2.3-135pr	not multiplicity edited, DEPT45 like multiplicity edited, DEPT135 like multiplicity edited, DEPT135 like with CW presaturation not multiplicity edited, DEPT45 like
si2 sy sy	not multiplicity edited, DEPT45 like DEPT45 and DEPT135-like variants CW spin locked variant pulsed spin locked variant
ar	with ⁿ Jselection with CW presaturation and ⁿ J selection with ${}^{1}J_{\min/\max}$ filter and ⁿ J selection with 13 C decoupling semi-selective hmbc for ${}^{2}J$ correlations
	gp gpsisp2.3-135 gpsisp2.3-135pr sisp2.2-45 y si2 Sy Sy Sy Sy Sy Sy Sy

2.1 HSQCETGP


Parameter set: **awhsqcetgp** (+ **getprosol**) Pulse programme: **hsqcetgp**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

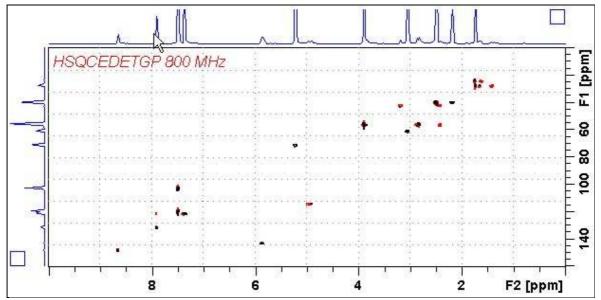
NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay = **1.5 sec** or other time of your choice. **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz **HSQCETGP** spectrum (not edited) of quinine in D₆-DMSO.

2.2 HSQCEDETGP


Parameter set: awhsqcedetgp-135 (+ getprosol) Pulse programme:awhsqcedetgp-135 d21 is automatically calculated from cnst2

Type eda (enter) and enter SW (¹H) and SW (¹³C)in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay = **1.5 sec** or other time of your choice. **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

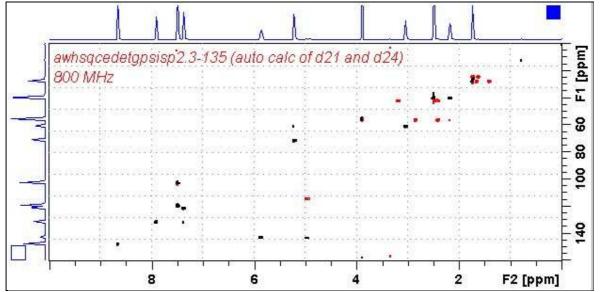
Set receiver gain using RGA (Important!).

800 MHz **HSQCEDETGP** spectrum (DEPT135-like) of quinine in D_6 -DMSO plotted with CH and CH₃ positive (black) and CH₂ negative (red).

2.3 HSQCEDETGPSISP2.3-135

Parameter set: **awhsqcedetgpsisp2.3-135** (+ **getprosol**) Pulse programme:**awhsqcedetgpsisp2.3-135**

d21 and d24 are automatically calculated from cnst2


Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay = **1.5 sec** or other time of your choice. **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice (eg: 125-160 Hz).

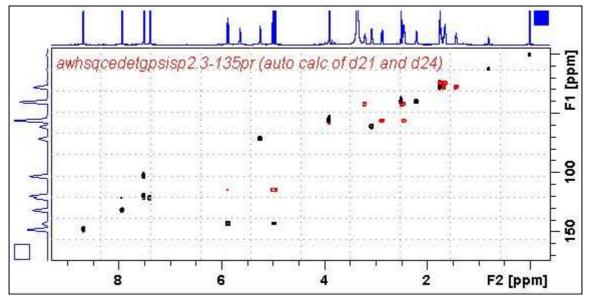
Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = SI(F1) = 1K or 2KWDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2 xfb, abs1 and abs2

800 MHz **HSQCEDETGPSISP2.3-135** spectrum of quinine in D_6 -DMSO plotted with positive CH and CH₃ correlations (black) and negative CH₂ correlations (red).

2.4 HSQCEDETGPSISP2.3-135PR


Parameter set: awhsqcedetgpsisp2.3-135pr (+ getprosol) Pulse programme: awhsqcedetgpsisp2.3-135pr d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

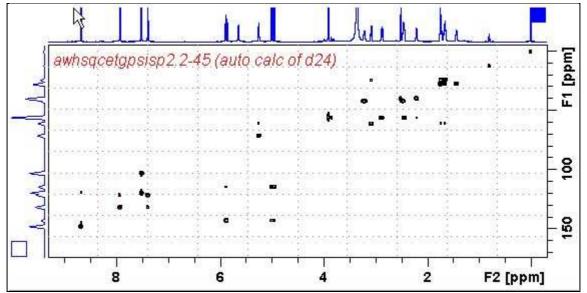
NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay = **1.5 sec** or other time of your choice. **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz **HSQCEDETGPSISP2.3-135PR** spectrum of quinine in D_6 -DMSO with CW presaturation of the HOD line at 3.37 ppm. The spectrum is plotted with positive CH and CH₃ correlations (black) and negative CH₂ correlations (red).

2.5 HSQCEDETGPSISP2.2-45


Parameter set: **awhsqcetgpsisp2.2-45** (+ **getprosol**) Pulse programme: **awhsqcetgpsisp2.2-45 d24** is automatically calculated from **cnst2**

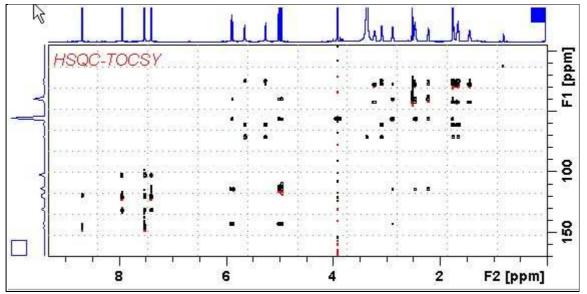
Type eda (enter) and enter SW (¹H) and SW(¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay = **1.5 sec** or other time of your choice. **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

2.6 HSQC-TOCSY


Parameter set: **awhsqc-tocsy** (+ **getprosol**) Pulse programme: **hsqcetgpml**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

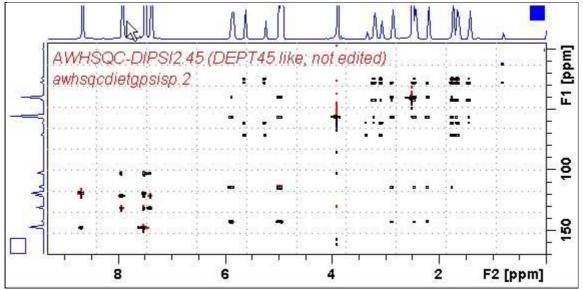
NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16. D1 = repetition delay = 1.5 sec or other time of your choice. D9 = correlation time = 80 msec or other value of your choice (6-240 msec). CNST2 = ${}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz **HSQC-TOCSY** spectrum of quinine in D_6 -DMSO. HSQC and correlated TOCSY peaks are positively phased.

2.7.1 HSQC-DIPSI2.45


Parameter set: **awhsqc-dipsi2.45** (+ **getprosol**) Pulse programme: **awhsqcdietgpsisp.2-45** With auto calculation of **d24** from **cnst2**

Type eda (enter) and enter SW (¹H) and SW (¹³C)in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

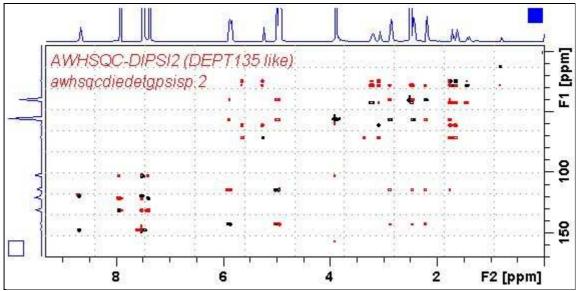
NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16. D1 = repetition delay = 1.5 sec or other time of your choice. D9 = correlation time = 80 msec or other value of your choice (6-240 msec). CNST2 = ${}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz HSQC-DIPSI2.45 spectrum of quinine in D₆-DMSO.

2.7.2 HSQC-DIPSI2.135


Parameter set: **awhsqc-dipsi2.135** (+ **getprosol**) Pulse programme: **awhsqcdiedetgpsisp.2-135** With auto calculation of **d24** from **cnst2**

Type eda (enter) and enter SW (¹H) and SW (¹³C in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

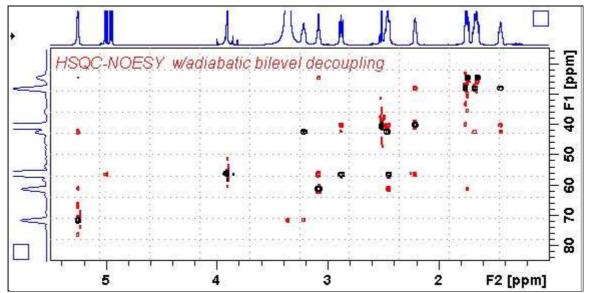
NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16. D1 = repetition delay = 1.5 sec or other time of your choice. D9 = correlation time = 80 msec or other value of your choice (6-240 msec). CNST2 = ${}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg: 122-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz HSQC-DIPSI2.135 spectrum of quinine in D₆-DMSO.

2.8HSQC-NOESY


Parameter set: **awhsqc-noesy** (+ **getprosol**) Pulse programme: **hsqcetgpnosp**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

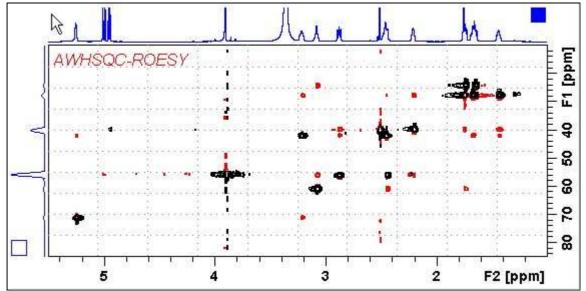
NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16, **D1** = repetition delay = **1.5 sec** or other time of your choice. **D8** = NOESY correlation time = **0.5 sec** or other value of your choice (0.3-0.8 sec), **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and the shaped pulse are OK.

Set receiver gain using RGA (Important!).

800 MHz **HSQC-NOESY** spectrum (expansion of the 1.0-5.5 ppm/10-85 ppm region) of quinine in D_6 -DMSO. Positively phased HSQC signals (black) are scaled down by a factor of 10 using the **edlev** command relative to less intense negatively phased NOESY correlations (red).

2.9 HSQC-ROESY


Parameter set: **awhsqc-roesy** (+ **getprosol**) Pulse programme: **hsqcetgprosp**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

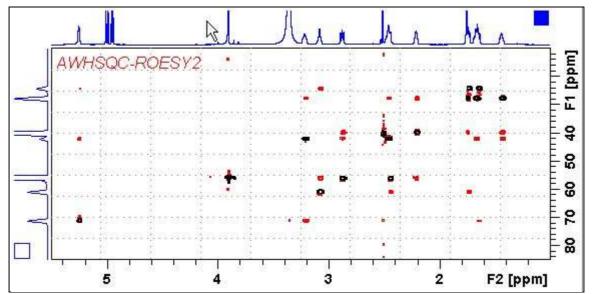
NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16. D1 = repetition delay =1 .5 sec or other time of your choice. CNST2 = ${}^{1}J$ coupling constant = 145 Hz or other value of your choice. P15 = ROESY correlation time 200000 or 250000 usec (= 200 or 250 msec).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz **HSQC-ROESY** spectrum (expansion of the 1.0-5.5 ppm/10-85 ppm region) of quinine in D6-DMSO. HSQC signals (black are positively phased. Correlated ROESY signals (red) are negatively phased. HSQC signal levels were reduced by a factor of 10 relative to ROESY signal levels using the **edlev** command.

2.10 HSQC-ROESY2


Parameter set: **awhsqc-roesy2** (+ **getprosol**) Pulse programme: **hsqcetgprosp.2**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

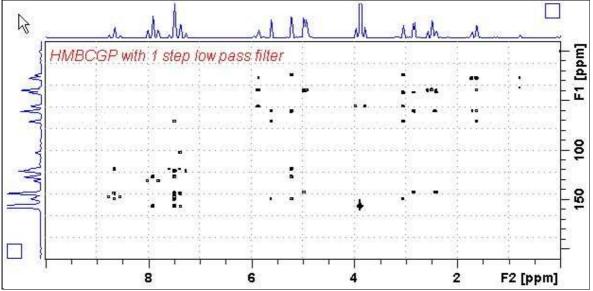
NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16. D1 = repetition delay = 1.5 sec or other time of your choice. CNST2 = ${}^{1}J$ coupling constant = 145 Hz or other value of your choice P15 = ROESY correlation time 200000 or 250000 usec (= 200 or 250 msec).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz **HSQC-ROESY2** spectrum (expansion of the 1.0-5.5 ppm/10-85 ppm region) of quinine in D₆-DMSO. HSQC signals (black) are positively phased. Correlated ROESY signals (red) are negatively phased. HSQC signal levels were reduced by a factor of 10 relative to ROESY signal levels using the **edlev** command.

2.11HMBC


Parameter set: **awhmbcgplpndqf** (+ **getprosol**) Pulse programme: **hmbcgplpndqf**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K,TD(F1) = 128-256 (your choice).

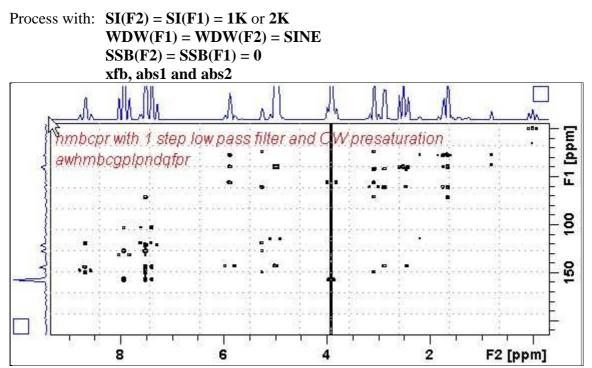
NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay = **1.5 sec** or other time of your choice. **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice. **CNST13** = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice.

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz HMBC spectrum of quinine in D₆-DMSO.

2.12 HMBCPR


Parameter set: **awhmbcpr** (+ **getprosol**) Pulse programme: **awhmbcgplpndqfpr**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K,TD(F1) = 128-256 (your choice).

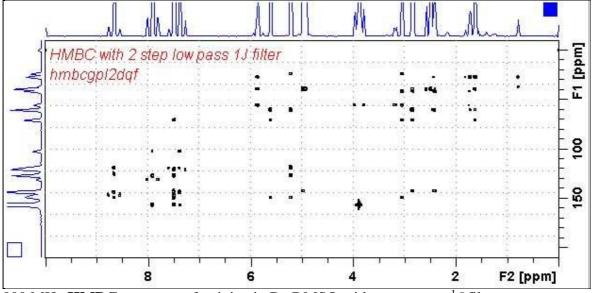
NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay =**1.5 sec** or other time of your choice. **CNST2** = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice. **CNST13**= ${}^{n}J$ selection filter = **8 Hz** or other value of your choice.

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz **HMBC** spectrum of quinine in D₆-DMSO with CW presaturation of the HOD signal at 3.37 ppm,

2.13 HMBCL2


Parameter set: **awhmbcgpl2ndqf** (+ **getprosol**) Pulse programme: **hmbcgpl2ndqf**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

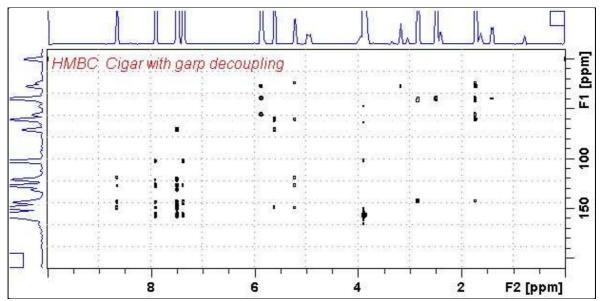
NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay =**1.5 sec** or other time of your choice. **CNST6** = min.¹*J* coupling constant = **125** Hz or other value of your choice. **CNST7** = max.¹*J* coupling constant = **165** Hz or other value of your choice. **CNST13** = ⁿ*J* selection filter = **8** Hz or other value of your choice

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz **HMBC** spectrum of quinine in D_6 -DMSO with a two stage ¹J filter.

2.14 HMBC-CIGAR


Parameter set: **awhmbc-cigar** (+ **getprosol**) Pulse programme: **hmbcacgplpqf** Spectrum is acquired with ¹³C decoupling

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay = **1.5 sec** or other time of your choice. **CNST6** = 125 Hz, **CNST7** =160 Hz = min/max ${}^{1}J$ selection filter range. **CNST14** = 4 Hz, **CNST15** =12 Hz = min/max ${}^{n}J$ selection filter range. **CNST16** = 1.0 = J scale factor.

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

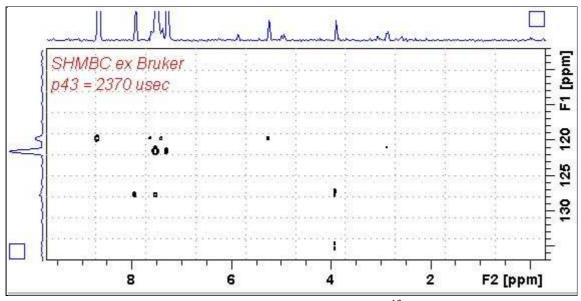
800 MHz HMBC-CIGAR spectrum of quinine in D₆-DMSO.

2.15 SHMBC

Parameter set: **awshmbc** (+ **getprosol**) Pulse programme: **shmbcctetgpl2nd**

SW (¹**H**) = ¹H spectral window = 10 ppm or other value of your choice). **O1P** = ¹H spectral window midpoint in ppm.

 $SW(^{13}C) = ^{13}C$ spectral window = 20-30 ppm. $O2P = ^{13}C$ spectral widow point.


TD(F2) $(^{1}\text{H}) = 1\text{K}$ or 2K, **TD(F1)** $(^{13}\text{C}) = 64-80$ or other value of your choice. **SI(F1)** $(^{1}\text{H}) = 1\text{K}$ or 2K, **SI(F2)** $(^{13}\text{C}) = 128-160$.

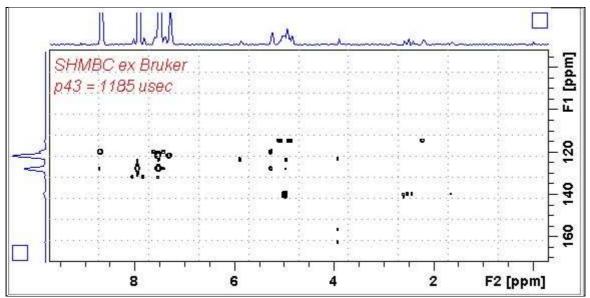
NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay =**1.5 sec** or other time of your choice. **CNST6** = **120 Hz**, **CNST7** = **170 Hz** = min/max ${}^{1}J$ coupling constants. **CNST13** = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice (eg: 6-14 Hz).

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = SI(F1) = 1K or 2K WDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2xfb, xf2m, abs1 and abs2

800 MHz **SHMBC** spectrum of quinine in D_6 -DMSO. The ¹³C axis was centered at 122 ppm.


The ¹³C spectral window can be adjusted via the time and power of the **P43 SP32** shaped pulse as described on the next page.

SHMBC Experiment ¹³C spectral window adjustment

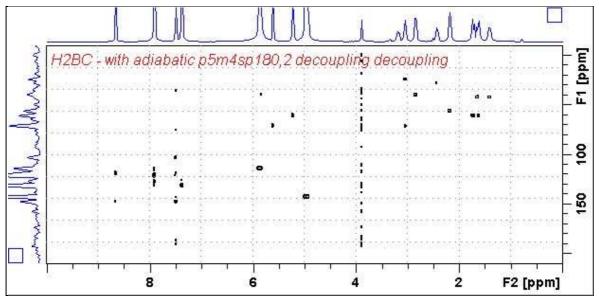
The ¹³C spectral window of the **shmbcctetgpl2nd** pulse programme can be increased from ~10 ppm (\pm 5 ppm) to ~ 20 ppm ppm (\pm 10 ppm) by halving the time and doubling the power (= subtract 6 db from it) of the frequency selective **P43 SP32** shaped pulse.

Eg: Standard values for ~ 10 ppm 13 C window: P43 = 2370 usec, SP32 = 0.04 db Adjusted values for ~ 20 ppm 13 C window: P43 = 1185 usec, SP32 = -5.96 db

No change(s) are required to the other shaped pulse times and powers used in the pulse programme.

800 MHz **SHMBC** spectrum of quinine in D₆-DMSO with adjustment of the **P43 SP32** shaped pulse time and power. The 13 C axis was centered at 122 ppm.

2.16 H2BC spectrum (+ getprosol)


Parameter set: **awh2bc** (+ **getprosol**) Pulse programme: **h2bcetgpl3**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm. Enter O1P = ¹H spectral window midpoint in ppm. Enter O2P = ¹³C spectral window midpoint in ppm. TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), **DS** = 8 or 16. **D1** = repetition delay =**1.5 sec** or other time of your choice. **CNST6** = 125 Hz, **CNST7** =165 Hz = min/max ${}^{1}J$ selection filter range.

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

800 MHz H2BC spectrum of quinine in D₆-DMSO.