

# KJM 9250

# <sup>1</sup>H-<sup>15</sup>N f3 Experiments on the AVI and AVII-600 Spectrometers

## Version 4.0

Topspin 1.3 Windows XP AVI600 Topspin 2.1 Windows 7 AVII600



© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. January 2020

## <sup>1</sup>H-<sup>15</sup>N f3 Experiments on the AVI and AVII-600 Spectrometers

#### 1.1 Introduction

aw coded <sup>1</sup>H-<sup>15</sup>N f3 HSQC, HSQC-DIPSI2 and HMBC parameter sets on the AVI and AVII-600 spectrometers are set up with 2048 (2K) acquired and processed points acquired across a 12 ppm <sup>1</sup>H window centered at 4.7 ppm and a 30 ppm <sup>15</sup>N window (SW) centered at 118 ppm (O3). The <sup>1</sup>H and <sup>15</sup>N NMR signals of peptides and microcystins typically occur in these windows. Different SW and O3 setttings may (will) be required for other nitrogen containing compounds.

**D24** = 1/8J (for all NH<sub>x</sub>'s, x = 1 or 2) and **D26** = 1/4J are auto calculated from CNST4 =  ${}^{1}J{}^{1}H{}^{-15}N$  coupling constant = 90 Hz in aw coded f3 HSQC parameter sets.

#### 1.2 Processing

**f3 HSQC** and **HSQC-DIPSI2** experiments are phase sensitive experiments which should be phased *before* using the **abs1** and **abs2** commands.

**f3 HMBC** experiments are absolute value experiment. Phasing is not required.

### 2.0 Experiments and Parameter Sets

The following aw coded <sup>1</sup>H-<sup>15</sup>N f3 HSQC, HSQC-DIPSI2 and HMBC parameter sets are available on the AVI-600 and AVII-600 spectrometers.

- 2.1 <sup>1</sup>H-<sup>15</sup>N f3 HSQC spectrum
- 2.2 <sup>1</sup>H-<sup>15</sup>N f3 HSQC-DIPSI2 spectrum
- 2.3 <sup>1</sup>H-<sup>15</sup>N f3 HMBCET spectrum

### 2.1 <sup>1</sup>H-<sup>15</sup>N f3 HSQC spectrum

Parameter set: awf3hsqc (+ getprosol)

Pulse programme: awf3hsqc

Type eda (enter) and review the following default parameters:

SW  ${}^{1}H = 12 \text{ ppm}$ , SW  ${}^{15}N = 30 \text{ ppm}$  (or other suitable values).

 $TD^{1}H = 2K$ ,  $TD^{15}N = 128-160$  (your choice).

 $O1P = {}^{1}H$  spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$  spectral window midpoint = 118 ppm other value of your choice.

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters used in the job.

D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$  coupling constant = 90 Hz or other value of your choice.

D24 = 1/8J (for all NH<sub>x</sub>'s) and D26 = 1/4J are auto calculated from CNST4

**ZGOPTNS** = Not used.

Check gradient settings are OK for <sup>15</sup>N.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb, abs1 and abs2



600 MHz <sup>1</sup>H-<sup>15</sup>N f3 HSQC spectrum of a peptide that has 9 amino acid units. 600 MHz

### 2.2 <sup>1</sup>H-<sup>15</sup>N f3 HSQC-DIPSI2 spectrum

Parameter set: awf3hsqc-dipsi2 (+ getprosol)

Pulse programme: awf3hsqdietf3gpsi

Type eda (enter) and review the following default parameters:

SW  ${}^{1}H = 12 \text{ ppm}$ , SW  ${}^{15}N = 30 \text{ ppm}$  (or other suitable values).

 $TD^{1}H = 2K$ ,  $TD^{15}N = 128-160$  (your choice).

 $O1P = {}^{1}H$  spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = {}^{15}N$  spectral window midpoint = 118 ppm other value of your choice.

NS = multiple of 8 or 16, DS = 16.

Type **ased** (enter) and review other parameters including:

D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J^{15}N-{}^{1}H$  coupling constant = 90 Hz or other value of your choice.

D24 = 1/8J (for all NH<sub>x</sub>'s) and D26 = 1/4J are auto calculated from CNST4

D9 = 80 msec or other value of your choice (20-160 msec).

**ZGOPTNS** = Not used.

Check gradient settings are OK for <sup>15</sup>N.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb, abs1 and abs2



600 MHz  $^{1}$ H- $^{15}$ N f3 HSQC-DIPSI2 spectrum of a peptide that has 9 amino acid units. The spectrum was acquired with d9 = 120 msec (rather than 80 msec).

### 2.3 <sup>1</sup>H-<sup>15</sup>N f3 HMBCET spectrum

Parameter set: awf3hmbcet+ getprosol)

Pulse programme: hmbcetf3gpnd

Type eda (enter) and review the following default parameters

SW  ${}^{1}H = 12 \text{ ppm}$ , SW  ${}^{15}N = 30 \text{ ppm}$  (or other suitable values).

 $TD^{1}H = 2K$ ,  $TD^{15}N = 96-160$  (your choice).

 $O1P = {}^{1}H$  spectral window midpoint = 4.7 ppm other value of your choice.

 $O3P = ^{15}N$  spectral window midpoint = 118 ppm other value of your choice.

 $NS = \text{multiple of 8 or 16}, DS = \overline{16}.$ 

Type **ased** (enter) and review other parameters used in the job.

D1 = repetition delay = 1.0 sec or other time of your choice.

 $CNST4 = {}^{1}J$   ${}^{15}N$ - ${}^{1}H$  coupling constant = 90 Hz or other value of your choice.

CNST13 = 6 Hz

**ZGOPTNS** = Not used.

Check gradient settings are OK for <sup>15</sup>N.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb and xf2m + abs1 and abs2



600 MHz <sup>1</sup>H-<sup>15</sup>N f3 HMBCET spectrum of a peptide that has 9 amino acid units

### 3.0 Appendix - Some Processing Options

#### 3.1 Qfil mode processing

The vertical axis noise pattern often seen in 2D spectra when spectra are run in 9:1  $H_2O:D_2O$  or other solvents can by suppressed by setting up the experimen with its O1 Hz, or O1P ppm value (typically  $\sim 4.7$  ppm), to that of the HOD line and processing the spectrum using the following **ProcPars** (edp) settings:

BC MOD = qfil

BCFW = 0.5 ppm or other (smaller) suppression band width value of your choice. COROFFS (Hz) can be use to offset the center of the concealed region from O1

Default values are: BC MOD = quad or no, BCFW = 0 or 1.00000, COROFFS = 0

| ABSG         | 5           | 5           | Degree of polynomial for abs (05)     |
|--------------|-------------|-------------|---------------------------------------|
| ABSF1 [ppm]  | 1000.00000  | 1000.00000  | Left limit for absf                   |
| ABSF2 [ppm]  | -1000.00000 | -1000.00000 | Right limit for absf, abs1, abs2      |
| BCFW [ppm]   | 0.50000     | 1.00000     | Filter width for bc (sfil/qfil)       |
| COROFFS [Hz] | 0           | 0           | Correction offset for BC_MOD=spol etc |
| BC mod       | qfil 🔻      | no 🔻        | Fid baseline modes for em, ft, xfb,   |

#### 3.2 Linear prediction and STSI processing

Provided the s/n ratio of Fourier transformed <sup>15</sup>N axis data points is reasonable **linear prediction** can be applied to improve the resolution of correlations in that axis.

| Fourier tr | ansform |        |                                                  |
|------------|---------|--------|--------------------------------------------------|
| TDeff      | 0       | 0      | Number of fid data points used by ft             |
| STSR       | 0       | 0      | First output point of strip transform            |
| STSI       | 1024    | 0      | Total number of output points of strip transform |
| ME_mod     | no      | ▼ LPfc | ▼ Linear prediction for ft, xfb,                 |
| NCOEF      | 0       | 32     | Number of LP coefficients                        |
| LPBIN      | 0       | 256    | Number of output points for LP                   |
| TDoff      | 0       | 0      | Number of back-predicted points                  |

F1 axis (2nd column) <sup>15</sup>N settings can be set up as:

ME MOD = LPfc, NCOEF = 32, LPBIN = twice the number of acquired increments.

Default linear prediction values when they are not used are:

$$ME MOD = no, NCOEF = 0, LPBIN = 0$$

**STSI** can be used to <u>ONLY</u> display spectral data to the left hand side (higher ppm side) of a selected number of processed points. If, for example, a noisy residual  $H_2O/HOD$  line appeared in the vicinity of **4.7 ppm** ppm in a **2048 point** processed spectrum acquired with SW = 12 ppm and O1 = 6 ppm, it would not be visible in the 6-12 ppm region view of the spectrum that would be displayed when it was processed with STSI = 1024 points.

The default value of **STSI** is **0**.